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1. SUMMARY 

This bibliographic report summarizes the use of MXenes in photocatalysis based on the 

research of different papers published in the recent years. MXenes are two-dimensional materials 

formed by layers of carbides or nitrides, mostly carbides that have many applications in different 

fields. Due to their unique physicochemical properties, they are used in photocatalysis, 

electrocatalysis, lithium-ion batteries and biomedicine, among others. One of the most promising 

applications is photocatalysis. It has been analyzed that MXenes could have remarkable 

properties that allow a rapid separation of photogenerated charge carriers acting as 

photocatalysts. MXenes also have abundant superficial groups on the surface that allow them to 

have a high efficiency in photoconversion.  

For these reasons, both theoretical and experimental studies have been carried out to 

demonstrate the potential of MXenes in different photocatalytic applications. This bibliographic 

study aims, on one hand, to relate the composition, structure and terminal groups to their 

photocatalytic behavior and, in addition, to acknowledge in which photocatalytic processes they 

have been applied and which are the most studied. 

 

Keywords: MXenes, Photocatalysis  
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2. RESUM 

 Se trata de un trabajo bibliográfico en el que se ha resumido la utilización de los MXenes en 

la fotocatálisis a partir de la investigación de diferentes artículos en los últimos años. Los MXenes 

son unos materiales bidimensionales formados por capas de carburos o nitruros, 

mayoritariamente carburos que tienen muchas aplicaciones en diferentes ámbitos. Debido a sus 

propiedades fisicoquímicas únicas, estos tienen aplicaciones en fotocatálisis, en electrocatálisis, 

en baterías de iones de litio y en biomedicina entre otros. Una de las aplicaciones más 

interesantes es la fotocatálisis. Se ha analizado que el MXene podría tener unas propiedades 

destacables que permitan una rápida separación de portadores de carga fotogenerada actuando 

como fotocatalizadores. Estos también tienen abundantes grupos superficiales en la superficie 

que les permite la alta eficiencia en la fotoconversión. 

Por estos motivos, se han realizado estudios tanto teóricos como experimentales que 

demuestran el potencial que tiene el MXene en diferentes aplicaciones fotocatalíticas. Este 

estudio bibliográfico pretende, por un lado, relacionar la composición, la estructura y los grupos 

terminales con su comportamiento fotocatalítico y, por otro lado, dar a conocer en qué procesos 

fotocatalíticos se han aplicado y cuáles son los más estudiados.  

 

Palabras clave: MXenes, Fotocatálisis 
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3. INTRODUCTION 

Photocatalysis refers to the chemical reactions that take place in the presence of light and a 

photocatalyst. The term is expressed as a combination of photo (derived from photon) and 

catalyst (substance that alters the reaction rate in its presence). The main role of photocatalyst is 

to accelerate the photoreaction by interacting with the substrate in its ground or excited state.[1]  

 

The word catalyst was first used in the sixteenth century by a chemist called A.Libavius in his 

book Alchymia. The researcher Berzelius assigns that term to reactions that occur in the presence 

of compounds that are not directly involved in the chemical transformation. Shortly thereafter, 

Ostwald defined catalysis as a kinetic phenomenon in which the catalyst participates. The function 

of this catalyst is to change the rate of the reaction without changing the chemical equilibrium.[1] 

 

3.1. PHOTOCATALYSIS 

The electronic structure of the materials is essential to understand its photocatalytic 

properties. Depending on the distribution of the electronic states, there are three types of 

materials as depicted in figure 1.  

Figure 1: A diagram showing the different sizes of bands gaps for insulator, semiconductor and conductor. 
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Insulating materials are those that do not allow current to pass through because they have a 

very high energy band gap, which is the energy difference between the Most Occupied Molecular 

Orbital (HOMO) of the Valence Band (VB) and the Lowest Unoccupied Molecular Orbital (LUMO) 

of the Conduction Band (CB). Therefore, insulating materials under light-promoting conditions 

leave no room for an electron transfer process and therefore do not exhibit conductivity 

properties.[2,3] 

Referring to the electrical and thermal conductivities of semiconductor materials, it can be 

seen that with increasing temperature, the thermal conductivity increases while the electrical 

conductivity decreases. They have no forbidden band, which means that electrons can freely 

ascend to the CB. Semiconductors are in between, because at very low temperatures they do not 

conduct electric current and therefore act as insulators, but as their temperature increases they 

acquire the properties of conduction and therefore increase their conductivity.[1]  

Most primary light absorbers used in photocatalysis are semiconductors due to their light 

absorption properties.[1] The most commonly used in photocatalysis are semiconductors, which 

are constituted of a three-dimensional network where the atomic orbitals overlap. They have a 

relatively small band gap value and therefore the electron can move from the VB to the CB when 

there is incidence of light. Fundamentally, the VB is occupied by electrons that are in the last shell 

or energy level of the atoms, which are the ones who will shift to the CB and promote the 

conductivity of the material. Semiconductors can be type “p” or type “n”, depending on the 

predominating charges, positive or negative, respectively.  

Photocatalysis’ basic principle consist on the excitation of one electron (e-) from the VB to the 

CB by the action of a photon creating a hole (h+) in the VB.[2] The initial stage of the process 

consists of the generation of an electron-hole pair in the semiconductor particles. When a photon 

with hv energy higher than the band gap of the material, an electron (e-) is boosted from the VB 

towards the CB, generating a gap (h+) in the VB. In solid state physics, the VB and the CB are 

the ones closest to the Fermi level, which is defined as the thermodynamic work required to add 

an electron to the body.[2,3,4] 

Figure 2 shows that there are two reactions at once, an oxidation reaction and a reduction 

reaction. The excited electrons work as a reducing agent and the holes generated work as 

oxidants. 
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 In the figure 2 we have an example of a semiconductor in general:  

 

 

 

 

 

 

 

 

 

 

 

Photocatalyst such as TiO2, ZnO, CdS, WO3, ZnS, iron oxides and Bi2WO6 are the most 

studied.[5,6] Normally these photocatalysts are used in heterogeneous photocatalysis. In recent 

years, TiO2 has been the most studied photocatalyst due to its low cost, redox potential, 

environmental compatibility and good photostability.[7,8] Visible light cannot be used for TiO2 

because ultraviolet light is needed for the electron transition to take place and thus generate 

electron-hole pairs.[9,10,11,12] TiO2 is a n-type semiconductor that has oxygen vacancies on the 

surface that correspond to unpaired electrons. Those results in a transference from a 2p oxygen 

orbital to the CB, which is formed by 3d orbitals of titanium.[13] However, TiO2 has two 

disadvantages, which are its wide band gap and its high rate of photogenerated carrier 

recombination. Based on strategies that include metallic/non-metallic doping, cocatalyst loading 

and the construction of heterojunctions, solutions are being developed to expand the response 

range to light and improve the utilization rate of photogenerated carriers.[14] 

Another photocatalyst used is graphene, which was the first 2D material. This nanomaterial 

is made up of a layer of hexagonally positioned carbon atoms linked by covalent bonds. Graphene 

has a high electron and hole mobility that prevents the pairs generated when lighting the catalyst 

from recombining and destroying each other before reaching the surface. These characteristics 

make graphene a good candidate for photocatalysis.[14]  

Figure 2: Photocatalysis reaction basic scheme. 
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Photocatalysis is applied to different areas, such as wastewater treatment, to minimize the 

impacts generated by industries in water sources, from water disinfection and contamination from 

titanium dioxide photocatalyst, in air pollutant degradation, nitrogen fixation and many others.[15,16] 

According to its structure, there are several families of photocatalysts, being de MXenes one 

of the newest and most promising ones. 

3.3. MXENES 

Since 2011, a new two-dimensional material has a great relevance in photocatalytic 

processes, this newly discovered photocatalyst is called MXene. This material is formed by thick 

layers of carbides, nitrides or carbonitrides atoms; being carbides and nitrides the most typical 

ones. These materials are very new and are currently being studied for many applications since 

they have a high potential due to their good chemical properties.[17,18]  

Figure 3 shows the composition of MXenes. They are composed of transition metal (M) layers 

such as (Ti, Sc, V, Mo and others) that are interspersed with n layers of carbon or nitrogen (X) 

and are terminated with a surface functional group (denoted as Tx) with a general formula of 

Mn+1XnTx, where n= 1-3. MXenes sheets surfaces may end with -OH, -O, -F, -S, -Cl, -Se, -Br, -Te, 

-I but these usually end with –OH, -O or -F.[17,18]  

Figure 3: Periodic table showing the composition of MXenes. Adapted with permission from [18] Copyright 
2021, ACS Nano. 
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As shown in figure 4, the ‘M’ atoms are organized in a compact hexagonal structure, in which 

the octahedral sites are filled with the ‘X’ atoms.[19] Several studies have evaluated that the most 

stable configuration occurs when the atoms of the "T" terminations are placed in different positions 

than the "M" and "X" atoms. Although, in some compounds, “T” atoms are above the “X” ones, in 

order to enhance their electronic interaction.[14]  

 

 

 

 

 

 

 

 

 

 

 

M atoms are arranged in a close-packed structure and X atoms fill the octahedral interstitial 

sites. The M-X bonds are less chemically active and more stronger than the M-A bonds, therefore 

A layers can be selectively removed by a strong acid (e.g. HF or HCl) etching to produce Mn+1Xn 

layers than can be further separated by sonication.[20,21] Since the first MXene discovered in 2011 

(Ti3C2); which is the most studied one; more than twenty types of MXenes have been obtained, 

such as SrTiO3, Ti3CN, TiNbC, Mo2C, Nb2C, V2C and Y2CF2.[14,20,22,23] All of these have not been 

comprehensively studied yet. 

MXenes can be found in different structures as: mono-M elements (e.g. Ti2C, Nb4C3); solid 

solutions (e.g. (Ti,V)3C2, (Cr,V)3C2; ordered out-of-plane double-M elements, in which one 

transition metal occupies the external layers (e.g. Mo and Cr), while the central ones are filled by 

another metal (e.g. Ta and Nb), for example Mo2TiC2  and Mo2Ti2C3; ordered in-plane double-M 

elements, in which the different M elements are ordered in the basal plane (e.g. (Mo2/3Y1/3)2AlC; 

vacancies ordered (e.g. Mo1.33CTx) and vacancies randomly distributed (e.g. Nb1.33CTx).[14]. The 

different structures mentioned are observed in figure 5. 

Figure 4: Schematic illustrations of the Surface of MXenes with general formula of 
Mn+1XnTx. Adapted with permission from [24] Copyright 2020, Advanced Functional 

Materials. 



12 Cervelló  Sanjurjo, Cèlia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 6 is observed the structure of this material, based in nanolayers. This allows 

increasing the active surface of the material resulting in enhanced catalysis rate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Image obtained by scanning electron 
microscope of Ti3AlC2. Adapted with permission from 

Creative Commons. 

Figure 5: Different MXenes structure. Adapted with permission from [19] Copyright 2019, 
Ceramics International. 
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Referring to stability of MXenes, they are not stable in the presence of oxygen or water. 

However, they are relatively stable in dry air or in oxygen-free degassed water. In addition, when 

these are exposed to light, the oxidation process of the colloidal solutions of the MXenes can be 

accelerated. In consequence, it is recommended to store MXene colloids in a dark environment 

without oxygen.  

Different applications of MXenes in several areas can be found. They participate in reactions 

as photocatalysts, in biomedicine for the detection of cancer biomarkers, in lithium-ion batteries 

they act as accelerators in the charge period, reducing it to just few seconds. Numerous 

theoretical and experimental studies are currently underway to demonstrate the great potential 

that MXenes can have when used as a photocatalyst in photocatalysis systems.[25] 

A further analysis of MXenes’ properties, their synthesis and their applications in 

photocatalysis systems will be carried out in the results and discussion section.[17] 
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4. OBJECTIVES 

The main objective of this bibliographic research project summarizes the current use of 

MXenes as photocatalysts.   

In this context special attention will be pay to: 

 The relation between the composition and structure of MXene to its catalytic 

behaviour. 

 Determine which MXenes are most commonly used. 

 To define which MXenes terminations show the best photocatalytic behaviour. 

 Analyse in which processes MXenes have been studied. 
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5. METHODS 

Bibliographic research on this project was subjected to an exhaustive research on MXenes 

and their based systems as photocatalyst from two main data bases including Science Direct® 

and Scifinder® available on the CRAI of the Universitat de Barcelona. The search criteria were 

based on keyword (e.g. MXenes, photocatalysis, etc.), type of document (e.g. review, article, 

journal, etc.) and year of published.  

 

For the last 20 years, there have been published more than 16,700 documents about MXenes. 

This research report is focused on articles based on MXenes in photocatalysis systems. For the 

last 9 years there have been more than 1,200 documents about Mxenes in photocatalysis 

systems publicated. However, the exponential increase of these publications has been in the last 

5 years, being the 2020 the highest peak, as shows Figure 7. If one takes a close look and 

compares the individual years with the total amount of documents, will see that around 40% of 

the documents corresponds to the year 2020. This shows that MXenes generated a great impact 

and interest in many research fields such as industries, universities, etc. If you look at this year 

2021, publications are increasing in proportion to the other years. This means that this field is 

very interesting and that there is still a lot of research to be done. 
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The work on this project has been focused on the search of different articles. Many articles 

associated to photocatalysis, to MXenes and MXenes based on photocatalysis systems have 

been studied. In general, the report is focused on the last 5 years, between 2016-2021. 

Based on this bibliographic research, it has been discovered that there are 4 main research 

groups which are in China, Philadelphia, Missouri and the University of Barcelona. All of them 

were contacted and the following questions were asked:   

 How long have you been researching MXenes?  

 How do MXenes work in photocatalysis?  

 What are the advantages of MXenes in comparison to other catalytic elements?  

 What reactions do they cause in the photocatalysis? Are they involved in these four 

reactions: Photocatalytic water splitting, Photocatalytic CO2 reduction, Photocatalytic 

pollutant degradation, Photocatalytic N2 fixation? 

 What applications do you see coming in the future?   

 What are the most important things about MXenes you found in your research?   

 Do you have enough researchers to continue with your research?  

 

As of now, the replies received were from one of the main discoverers of MXenes, the 

Philadelphia author Gogotsi, who explained that he is not studying MXenes in photocatalytic 

systems because he and his team are researching the MXene nanomaterial which allows gas 

separation for the use of hydrogen fuel. This author enclosed some of his articles on MXenes, 

some of which, have been useful for this work. 

In addition, Francesc Illas a professor from University of Barcelona has been really helpful 

explaining his MXenes research work. His research is focused on the application of this material 

on catalysis reactions. 
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6. RESULTS AND DISCUSSION  

Based on the collected information during the research, we can sum up all the applications 

that MXenes have in the photocatalysis process. 

The main role of a MXene is that it acts as a photogenerated electron acceptor for light-

gathering materials in a photocatalysis process, due to its Fermi level, which is lower than most 

semiconductors studied in this process. MXenes have a layered structure that contain more than 

one element. The density functional theory (DFT) suggested the first structure of these 2D 

materials, the Ti3C2. This structure is composed of several layers of titanium bonded to carbons 

and with OH terminations.[26] 

MXenes have different properties, which include: electrical, electronic, mechanical, thermal, 

magnetic and optical. Two of the main properties of this materials are electrical and electronic, 

which are related with their stoichiometry, the alteration of functional groups or the formation of a 

solid compound. Experimentally, the electrical conductivities of MXenes are similar to the ones 

that graphene has, but greater than carbon nanotubes and graphene oxide materials.[19,27] This 

shows that MXenes are good conductors of electricity. 

Mechanical properties also have a huge interest because MXenes are composed of strong 

M-C and M-N bonds. Thanks to these bonds, these materials have a better interaction with the 

polymeric matrices than graphene has. Other studies have validated that the Young modulus of 

carbides and nitrides of MXenes decrease when the number of layers increase.[19] The presence 

of terminations reduces the values of the elastic constant in the following order: O > F > OH, but 

increases its critical deformations. An example found in the articles [27] demonstrated that the Ti2C 

can be deformed up to 9.5, 18 and 17% at biaxial tensions. However, the Ti2CO2 can reach 

deformations up to 20, 28 and 26,5%. 

Among the thermal properties, as has been demonstrated in the study [28,29], we can find that 

the thermal expansion coefficients of MXenes are low and their thermal conductivities higher than 

other semiconductors such as phosphorene or the MoS2 monolayer. Experimentally, just the 
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thermal conductivity of Ti3C2Tx has been studied, which means there is not enough information 

about these properties, and therefore it should be proved with other compounds. 

To determine the magnetic properties of MXenes, an individual analysis of each one of them 

and their functional groups must be performed. Studies have shown that Ti3CNTx and Ti4C3Tx 

attached to functional groups become non-magnetic; however, compounds such as Cr2CTx and 

Cr2NTx become ferromagnetic at room temperature bound to OH and F groups. Nevertheless, 

these studies have not yet been demonstrated experimentally since the synthesis of MXene 

compounds is limited.[19] 

Optical properties are very important for photocatalysts. First of all, it’s important to highlight 

the absorption bands that are between 300-500 nm, as this is the range in which the catalyst must 

be irradiated in order to have a photocatalytic effect. It should be noted that these optical 

properties may be affected by the presence of functional groups such as OH or F.[19] 

MXenes are made from a bulk crystal called MAX (M denotes a transition metal, A represents 

an element from the 13th or 14th group of the periodic table such as aluminum or gallium and X is 

either carbon or nitrogen).[7,14,26,30,31] 

The MXene’s manufacturing process is very complex due to the need of acids and strong 

oxidants in large amounts. This generates an elevated cost that limits the possible applications in 

different areas.[32]  

MXenes can be synthesized trough different methods. Among those, we can find HF etching 

using a mixture of HCl and LiF, hydrothermal/solvothermal treatment, calcination method, 

electrochemical method and molten salts. 

The most common method is HF etching using a mixture of HCl and LiF, even though it is 

also possible to etch with HCl. This method consists of a selective elimination of the "A" elements 

from the MAX phases in the presence of HF at room temperature. MXene’s surface is negatively 

charged due to the presence of surface functional groups, which allows them to adsorb the metal 

cations from an electrostatic attraction and enables the formation of the semiconductors on their 

surface.[32] In this case, the etching solution contains traces of HF. In order to avoid the use of 

HF, there are 3 ways to synthesize MXenes: 

1. Hydrothermal method in an aqueous NaOH solution, which is carried out in a closed 

container under high pressure and high temperature conditions. This is beneficial for 

the production of composites with highly crystalline and controlled morphologies.[14] This 
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method is particularly used to prepare MXene-based compounds with a 2D/2D 

structure. For example, Cao et al.[33] applied an electrostatic attraction and a thermal 

strategy to Ti3C2 / Bi2WO6 compounds, which indicated the formation of a 2D/2D 

heterojunction. 

2. Molten salt method to produce 2D nitrides. This synthesis has only been used for the 

production of Ti4N3 and it requires the use of fluoride salts and a high temperature.[25] 

3. Electrochemical method at room temperature in HCl or ammonium chloride 

electrolytes.[25] 

 

The previously discussed etching process is followed by an exfoliation, where the dissolved 

atomic layers are replaced by several terminations linked by hydrogen bridges or van der Waals 

forces resulting in MXenes. The individual layers can be delaminated in aqueous colloidal 

suspensions in order to obtain other 2D materials. These layers can be exfoliated by intercalation 

with large organic molecules or with cations, by agitation or by sonication. Finally, it is also worth 

mentioning that, for the synthesis of some ultra-fine MXenes, this exfoliation process is not 

necessary to obtain MXenes with one or a few layers. [25]  

Furthermore, the calcination method has also been explored for the synthesis of MXene-

based photocatalysts. This method consists of a heat treatment procedure under controlled 

temperature and atmosphere whose purpose is to eliminate the present volatile components. 

MXenes have been studied to be easily oxidized at high temperatures and either oxygen or air 

atmospheres. Yang et al.[34] used the calcination method to synthesize Ti3C2/g-C3N4 from a 

mixture of Ti3C2 and urea, where urea releases NH3 gas to exfoliate the multilayer of Ti3C2 in 

nanofilms and generate g-C3N4 on the surface. Using calcination, the yield of Ti3C2 is improved.  

Ti 2D-based MXenes have been considered excellent candidates for TiO2 synthesis and TiO2-

based photocatalysts.[14] In their article, Yuan et al. [35] studied a 2D carbon / TiO2 layered 

compounds that were obtained from the oxidation of CO2 with Ti3C2. They improved the synthesis 

method by intercalating sulfur layers in Ti3C2, which resulted in TiO2 based compounds doped 

with carbon and sulfur. With this study, it was stated that the layer intercalation could improve the 

separation of photogenerated carriers and, subsequently, more active sites would be formed. 
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In short, Ti3C2 is the most widely used photocatalyst in photocatalysis. This is because the 

MAX phase naturally exists and its synthesis protocol is well established. 

The etching different methods used to obtain MXenes are done with different components at 

specific temperatures, as shown in table 1. 

 

Table 1: Distinct etching methods used to get MXenes.[25] 

 

 

 

6.1 MXENES IN PHOTOCATALYSIS 

As we previously stated, due to MXenes conductivity, they can be used as photocatalysts. In 

this process, the photogenerated electrons are excited to the CB, generating holes in the VB.[32] 

The different terminal groups are important for the catalytic behavior of MXenes, due to the 

high availability of active sites for the adsorption of atoms and their low ΔGº. For example, the 

presence of terminal groups such as -O, have turned out to be beneficial for hydrogen 

production.[24] 

Figure 8 shows the mechanism of the MXenes in a photocatalyst system. This mechanism is 

the same as the one described in the introduction. The only difference between them is that in 

this case, a MXene is used as a photocatalyst instead of another type such as TiO2. 

Type of method Etchent Temperature 

 
 
 

Acid with fluorine 
 
 

HF 

H2O2 + HF 
HCl + LiF 

HCl + (Na, K or NH4F) 
NH4HF2 

 

Room temperature 

                    40 
                 35-55 
                 30-60 

Room temperature 

Molten salts 

 

LiF + NaF + KF 550 

Hydrothermal 

 

NaOH 

NaBF4, HCl 

270 

180 

Electrochemical 

 

NH4Cl/TMAOH 

HCl 

Room temperature 

Room temperature 
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MXenes play different roles in the improvement of the photocatalytic activity, which are their 

action as a deposit of electrons, as active sites and as adsorbents among others. These are briefly 

detailed below.[32] 

MXenes have a high electrical conductivity and a favorable structure that allows them to act 

as a reservoir of electrons to trap and transport photoelectrons from semiconductors. This 

promotes the separation of charge carriers and improves the photoactivity of MXene-based 

compounds.[32] 

MXenes can also act as absorbents or as active sites. This last one is because the surfaces 

that have functional groups terminated in –OH, -O or –F serve as active sites for different 

photocatalytic applications, such as the hydrogen evolution reaction. The Gogotsi group has 

reported in an article [38] the use of Ti3C2Tx, a MXene that is used as an absorbent for dyes. In 

order to investigate the degradation of Ti3C2Tx, they chose two colorants; a cationic methylene 

blue (MB) and an anionic acid blue 80 (AB80). In the presence of the MXene Ti3C2Tx for more 

than 20 hours, no change in AB80 concentration was observed. On the contrary, under the same 

conditions but within 8 hours instead of 20, a decrease in the concentration of MB was observed. 

These results demonstrate that Ti3C2Tx has a preference for adsorbing the cationic MB dye and 

not the anionic AB80. This is due to favorable electrostatic interactions between negatively 

charged Ti3C2Tx surfaces and cationic MB molecules. In short, these results show that MXenes 

have great potential as adsorbents for 2D materials and it is expected that, in the future, they will 

Figure 8: Mechanism of MXenes applied in photocatalysis. 
Adapted with permission from [32] Copyright 2019, Nano-

Micro Letters. 
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contribute to photoactivity for specific reactions, such as the degradation of cationic dyes. All 

these functionalities are also applied to graphene.  
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Table 2: Comparison of the different functionalities of MXenes and graphene for photocatalysis.[40] 
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A comparison between the functionalities of MXenes and graphene, as shown in table 2, leads 

to the conclusion that MXenes have a polar surface that allows interfacial charge transfer in order 

to improve catalytic efficiency. In contrast, graphene possesses surfactants that deteriorate its 

properties and complicate processing. Another point to note is that MXenes can be used as 

semiconductor precursors; a feature that graphene does not have. As summarized in table 2, 

MXenes can attract multiple factors to drive the activity of photocatalysts. Among these, MXenes 

have a high conductivity. Although graphene also has a high conductivity, they require materials 

for their construction in which reduction processes are generated resulting in a partial recovery of 

conductivity. In particular, it has also been found that MXenes can be used as active sites for 

photocatalytic applications, which have not been reported in graphene. MXenes and graphene 

share similar characteristics as adsorbents of reagents by electrostatic interactions or π - π 

interactions.[40] 

Some considerations to take into account when using MXenes in photocatalytic applications 

are their morphological control, the problem of their stability and the mutability of their electronic 

structure.[24] 

When MXenes are used for semiconductor growth, some semiconductors are grown on the 

open edge of MXenes rather than in their basal plane. This reduces the functions of the MXenes 

as a growth platform and charge carriers since the interfacial interaction between the 

semiconductors and the MXene is reduced. In addition, it was reported that the resistivity of 

MXenes increases as their thickness also increases, generating a multilayer stack of MXenes. 

This results in a conductivity decrease and, consequently, affects the performance of MXenes 

when they have to transport and accept charge carriers. In order to avoid these problems, it is 

necessary to effectively etch the MAX phase and then intercalate multilayered MXenes into single 

or few-layered nanosheets.[24] 

Due to the high amount of metal atoms exposed on the surface of MXenes, they are 

vulnerable to oxidation. It has been shown that the use of organic solvents, inert atmosphere and 

low temperature can decrease the oxidation rate and increase the stability of MXenes.[24] 

One of the most attractive properties of these materials is their high electrical conductivity to 

accept and transport photogenerated electrons and thus be able to improve the activity of the 

photocatalyst. Studies have shown that the Fermi level of MXenes depends on the surface 
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terminal groups. An example is the terminal group – O that, due to its high electronegativity, 

increases the work function compared to MXenes that do not have it.[24] 

Due to the high metallic conductivity of MXenes, large surface area, abundant functional 

groups, excellent light absorption capacity and strong interactions with metals, they can be 

applied in different reactions; which are photocatalytic water splitting, photocatalytic CO2 

reduction, photocatalytic pollutant degradation and photocatalytic N2 fixation, which will be 

detailed below.[25] 

 

6.2 PHOTOCATALYTIC REACTIONS 

 

6.2.1. Photocatalytic water splitting 
 

This reaction consists of the photocatalytic splitting of water for the production of H2.[26] It is 

used as an alternative energy source to fossil fuels and can provide solutions to environmental 

problems. This has been considered a good method for converting solar energy into chemical 

energy by splitting water into hydrogen (H2) and oxygen (O2).[37] 

In this reaction, photocatalysts participate in the migration of electrons through the absorption 

of solar energy and holes are generated on the semiconductors surface. Then we obtain the redox 

reaction of water, which creates H2 and O2 on the surface. 

In order to achieve water splitting, it is necessary for the photocatalyst to have four 

characteristics which are:[38]   

 

 The ability to absorb light. 

 Stability in extreme environments 

 Excited electrons and holes must migrate from the surface of catalysts with a low 

possibility of recombination. 

 The CB edge must be higher than the hydrogen reduction potential (H+/H2) and the VB 

edge must be lower than the water oxidation potential (H2O/O2). 

 

Referring to the last feature, it has been studied that the band gap of a semiconductor must 

be between 1.24-3.0 eV in order to make the reaction efficient as shown in figure 9.[38]  
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TiO2 is the most investigated photocatalyst for the water splitting reaction, since it fulfills some 

of the characteristics mentioned above such as stability, its ability to absorb light and the 

compatible band edge level to produce water splitting. However, it has a drawback which is that 

has a fast recombination of photogenerated electrons and holes [37].  

One of the possible solutions to improve the photocatalytic water splitting activity is the use 

of MXenes which can guide the flow of photogenerated charge carriers in semiconductors.[26] 

These MXenes meet the above characteristics and currently many studies are being done 

applying this new 2D material as a semiconductor in the water splitting reaction. However, there 

are some MXenes that perform better than others depending on their forbidden bands. 

The synthesized MXenes usually end with -O, -OH and -F groups such as Ti3C2, Sc2C, 

Mo2CF2, among others. Results from a study indicate that MXenes Sc2C and Mo2CF2 have 

forbidden bands of 0.74 eV and 0.84 eV respectively, which are too small to provide sufficient 

energy for water splitting.[38] However MXenes Zr2CO2 and Hf2CO2 have a band gap greater than 

1.55 eV which is higher than water’s reduction potential of (1.23 eV), implying that these two are 

potential photocatalysts to drive the water splitting reaction. These two exhibit large size 

absorption of visible and ultraviolet light, which ensures high efficiency in harnessing solar energy. 

The mobility carrier is highly anisotropic, i.e., electrons have a tendency to migrate in the y-

direction while holes have a tendency to move in the x-direction. This movement facilitates the 

migration and separation of photogenerated electron-hole pairs to obtain good photocatalytic 

Figure 9: Band gap necessary for the water splitting reaction 
to take place. Adapted with permission from Creative 

Commons. 
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water splitting. Thus, it is found that the adsorption of water and the formation of hydrogen in the 

MXene are energetically favorable for the photocatalytic production of hydrogen gas.[38] 

Another study used the hydrothermal method for photocatalytic water splitting from a 

TiO2/Ti3C2Tx composite. With X-Ray Diffraction (XRD) characterization, it was observed that 

Ti3C2Tx can reduce the crystalline size of TiO2 and avoid the aggregation of TiO2 nanoparticles. 

Next, the photocatalytic activity of the different samples prepared from the photocatalytic 

separation of water was studied in order to produce hydrogen. It was observed that the 

photocatalytic activity of TiO2/Ti3C2Tx was approximately 4 times higher than that of pure TiO2 due 

to the formation of the Schottky barrier between TiO2 and MXene Ti3C2Tx, whose function is to 

guide the transfer of photogenerated electrons from TiO2 to Ti3C2Tx in order to enhance the 

separation of photogenerated electrons and holes in TiO2.[26] The photocatalytic activity of 

TiO2/Ti3C2Tx was found to be approximately 4 times higher than that of pure TiO2 due to the 

formation of the Schottky barrier between TiO2 and MXene Ti3C2Tx. TiO2 can react with H2O to 

produce O2. The reactions of this process are shown in reaction 1 as follows: 

 

 

 

 

 

 

 

 

 Therefore, electron-hole pairs can be separated and transferred in the presence of the 

TiO2/Ti3C2Tx catalyst. 

It is important to note that surface functional groups (Tx) allow to determine the surface active 

sites in a photocatalytic system and allow to create a close contact between the MXene and the 

photocatalyst. Xiang [39] demonstrated this fact in his study, based on the solvothermal method. 

He used plasma treated Ti3C2Tx with abundant oxygen groups on its surface which allowed the 

Ti3C2Tx/CdS bonding. It was determined that the Ti3C2Tx/CdS hybrid had a higher hydrogen 

production rate than pure TiO2 nanoparticles due to the oxygen-containing groups on the Ti3C2Tx 

Reaction 1: Use of TiO2 semiconductor in water splitting reaction. 

(1) TiO2 + hv                            TiO2 + 2e- + 2h+(vB)

(2) H2O + 2h+                          1/2 O2 (g) + 2H+

(3) 2H+ + 2e-                            H2 (g)

             H2O                                H2 (g) + 1/2 O2

TiO2, hv
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surface and the intimate contact between Ti3C2Tx and CdS nanoparticles, which suppressed 

electron-hole recombination. Ultimately, using MXene Ti3C2Tx, H2 production was obtained by 

modifying the Ti3C2 surface with plasma technology. 

 
 

6.2.2. Photocatalytic CO2 reduction 
 

The constant increase in the concentration of carbon dioxide (CO2) in the atmosphere is one 

of the main causes of global warming and the greenhouse effect. This increase is due to different 

activities related to combustion. In order to reduce the amount of CO2 in the atmosphere, 

photocatalytic CO2 reduction has been performed. As a way to enhance the photocatalytic activity, 

MXene has been used to improve the separation of photogenerated charge carriers.[26] 

Photocatalytic reduction of CO2 is a method to obtain chemical energy from solar energy storage. 

During the past few years, a variety of semiconductors such as metal sulfides, metal oxides, etc. 

have been applied in the reactions of photocatalytic CO2 reduction. Due to the characteristics of 

MXenes, a Ti3C2 compound was prepared from the calcination method, which was used in the 

photocatalytic reduction of CO2 to CH4. From the direct oxidation method, the Ti atoms on the 

surface of Ti3C2 can be oxidized to TiO2 and form an interface between TiO2 and Ti3C2 that 

generates a benefit for electron and hole separation.[40] TiO2/Ti3C2 provided a large amount of 

surface active sites that favored the photocatalytic reaction. In this compound, in the presence of 

light, the photocurrent density increased because electron-hole pair separation was achieved 

from the migration of electrons from TiO2 to Ti3C2 before reaching the cathode. Then, when the 

light was turned off this density decreased, a process that indicates the electron deposition 

behavior of Ti3C2.[26] The CO2 reduction reaction that took place is shown in reaction 2. 

 
 
 
 
 
 
 

In this experiment, it was observed that the CO2 reduction photocatalytic activity of TiO2/Ti3C2 

was higher than that of pure TiO2, which shows that MXene gives enhanced CO2 reduction 

activity.[26] 

Reaction 2: CO2 reduction reaction. 

CO2 + 8H+ + 8e-                                        CH4 + 2H2O
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Another researcher studied a 2D/2D heterojunction composed of Ti3C2/ g-C3N4 from the direct 

calcination method. Tests of CO2 photoreduction show that pure g-C3N4 has very weak 

photoactivity, however when Ti3C2 is coupled with g-C3N4 the photocatalytic performance is 

increased. This improvement in CO2 reduction photoactivity is due to the Ti3C2 / g-C3N4 

heterojunction, which allows for intimate contact and faster electron transfer that promotes good 

separation of the photoexcited charge carriers. The compounds are shown to have a strong 

chemisorption effect, thereby increasing the adsorption capacity of CO2 and leading to CO2 

activation.[34] 

 

6.2.3. Photocatalytic pollutant degradation 

 

Nowadays, water pollution caused by organic pollutants has attracted more and more 

attention in society. Among these organic pollutants, dyes and antibiotics (belonging to the group 

of pharmaceutical compounds) represent a growing group of organic pollutants in wastewater. 

Another group of reactions that can be catalyzed by MXenes are the degradations of organic 

compounds. These aim to transform organic pollutants into simple and inert molecules in a 

process analogous to combustion, where the necessary energy is provided by photons.  

A study indicating the capabilities of MXenes as photocatalysts to remove pollutants is 

investigated by Z.Miao [41] et al. In this study, Bisphenol A (BPA) “as can been seen in figure 10” 

is used as a pollutant and the degradation of BPA is compared in catalyst-free experiments with 

TiO2 and with a TiO2 / Ti3C2-derived MXene.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: BPA. 

Reaction 3: Pollutant degradation reaction. 

OHHO

C15H16O2 (g)
                                          15 CO2 + 8H2O
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As can be seen in the reaction 3 above, the initial product is a complex organic molecule, 

which is reduced to CO2 and water, inert products that do not pose a problem for living beings. 

As mentioned in the article, it can be seen that in the experiments carried out in the presence 

of MXene, the % of BPA degraded over a period of time is significantly higher than in the other 

experiments.  

Another study by M.Abdullah[42] “as can been seen in figure 11 and 12” uses Congo red and 

acetophenone as a contaminant, in this case the MXene acting as a catalyst is BiFeO3 / Ti3C2. 

 

 
 

 
 
 
 
 

 

Congo Red is a dye, therefore, to study its degradation, the color change of the solution can 

be observed. UV-Vis spectrometry can be used to determine the contaminant remaining in the 

solution. The presence of light and the photocatalyst allows the contaminant to be completely 

eliminated from the water in a remarkably short time. On the other hand, the experiments carried 

out with acetophenone, which is colorless, as a contaminant are also successful, also managing 

to eliminate the presence of this one from the water.[42]  

This type of reaction is mainly used for the removal of dyes, widely used in the textile industry, 

but it is not only limited to colored compounds since, as we have seen, it can also be useful for 

colorless molecules.  

 

 

 

 

Figure 11: Congo Red Figure 12: Acetophenone 
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6.2.4. Photocatalytic N2 fixation 

 

At present, the synthesis of ammonia at industrial level is carried out by means of the Haber-

Bosch process from N2 and H2. This process currently allows large-scale production with a higher 

yield, but as it requires very high temperature and pressure conditions, it has a high energy cost, 

which makes the process more expensive and causes a high environmental impact due to CO2 

emissions. It is estimated that the Haber-Bosch process consumes between 1 and 2% of the 

world's energy. On the other hand, it is a necessary process due to the high demand for ammonia 

derivatives, mainly fertilizers, which are necessary to maintain current food production.[43] 

This is why it is of great interest to search for other ways of fixing nitrogen, in order to reduce 

energy expenditure and that can serve both to reduce costs and to be more sustainable.  

Among many other avenues of research, one of them is photocatalysis. This technique was 

first described in 1977 by Schrauzer et al.[44] who used TiO2 as a photocatalyst to synthesize 

ammonia. In this case, the light energy allowed hydrolyzing water which then together with 

nitrogen formed the desired compound in a process analogous to photosynthesis.  

In this process, the limiting step is the breaking of the triple bond of molecular nitrogen, a very 

strong bond, which can be broken by light energy. Once the nitrogen is dissociated, it is easily 

hydrogenated under non-extreme conditions with H2 at moderate temperature. The reaction of 

this above mentioned process can be seen in reaction 4. 

  
 
 
 

In recent years, interest in the development of catalysts that allow the production of ammonia 

from water and nitrogen has been increasing. This has made it possible to synthesize several 

catalysts that are capable of fixing nitrogen at ambient temperature and pressure. Despite the 

advances, it has not yet been possible to achieve sufficiently high yields to allow production at an 

industrial level. This is mainly due to the nature of N2. The very stable triple bond makes it a very 

inert gas and makes nitrogen reduction very difficult.  

Currently, new materials called MXenes that can act as photocatalysts in the nitrogen fixation 

reaction are being studied. Liu and co-workers [45] prepared an AgInS2 / Ti3C2 based MXene 

composite from the hydrothermal method and found that the coupling of Ti3C2 with AgInS2 created 

a direct heterojunction in order to maximize the photoxidation and photoreduction capabilities of 

Reaction 4: Nitrogen fixation. 

3H2 (g) + N2(g)                                         2NH3
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the photocatalytic system. As it is commonly known, the N2 molecule should be chemisorbed on 

the surface of a photocatalyst in order to perform the nitrogen fixation reaction. This AgInS2 / Ti3C2 

compound has a high adsorption capacity which makes it a good candidate for this reaction. 

In the work of J.D.Gouveia[46] up to 18 different MXenes are compared in this reaction. One 

of these is W2C, in which the reaction is carried out at 800 K and low pressure. Moreover, it 

presents energetic values comparable to those of the catalysts currently used in the Haber-Bosch 

process, suggesting that they are a field of great interest due to their potential, although there is 

still much to be investigated.  

Ultimately, the use of a MXene-based photocatalyst represents a viable way to achieve 

photocatalytic N2 fixation in order to produce NH3. However, to this day many questions remain 

as to how MXenes act in this reaction since it is not known how the N2 molecule is adsorbed on 

Ti3C2. Therefore, much research and future studies are needed to determine the N2 adsorption 

capacity of MXene-based photocatalysts, in particular Ti3C2.  

In addition to the applications mentioned above, MXenes can be used for the production of 

hydrogen peroxide due to the excellent electrical conductivity and two-dimensional structure of 

MXenes. These materials are also being applied in organic synthesis. Using bioethanol as an 

example, which is a material widely used in this type of synthesis, a study was carried out where 

it was concluded that, when used with the aid of a photocatalyst and under visible light the 

material, it could be converted into fine chemical raw material. This demonstrates that the use of 

the photocatalyst favors the reaction. Another current application is that these can be used for 

disinfection and sterilization. With the global outbreak of COVID-19 there has been increasing 

attention on this application. One researcher, prepared a single-layer TiO2/Ti3C2Tx photocatalyst 

and coated it with polyurethane (PU) foam. With this experiment, it was shown that the efficiency 

of MXene-based photocatalyst to kill airborne bacteria under UV irradiation was better than that 

of pure TiO2.[47]
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7. CONCLUSIONS 

One of the main goals of this bibliographic project was to research the different applications 

of MXenes in photocatalysis. Taking this into account, the following conclusions can be extracted.  

MXenes are newly discovered 2D materials. As mentioned in the report, all applications of 

these materials are still to discover. This project covers the photocatalytic applications of MXenes, 

which represent a small fraction of all applications this substance can have. That is why 

information is limited and it is still under massive research. 

Related to the first objective of this project, the relation between the composition and the 

structure of MXenes to its catalytic behavior has been analyzed. The interest of this material in 

catalysis is due to the fact that MXenes have a really small band gap. This characteristic makes 

this material more prone to have the electron exited when exposed to visible light wavelength. 

That is why they are more interesting than semiconductors such as TiO2, SrTiO3, etc. 

There are a lot of MXenes that are being studied, but not a lot are synthesized. The MXene 

that is most commonly used is Ti3C2 because it was discovered in its MAX phase in a natural form 

and the synthesis protocol is formally known. 

Talking about which MXenes terminations show the best photocatalytic behavior, this is a still 

under research topic. Although no conclusion is being extracted yet about which is the best 

termination. Some groups are better suited for some applications and some for others. For 

example, the groups -O have been proved to be very beneficial for hydrogen production. 

One of the last objectives of this project was to analyze in which processes MXenes have 

been studied. As mentioned on the report, there are 4 major processes that are very important 

for the development of a sustainable society which are photocatalytic water splitting, 

photocatalytic CO2 reduction, photocatalytic pollutant degradation and photocatalytic N2 fixation. 

Finally, it is worth to mention that this is a really new material that is now on the exponential growth 

on properties discovery. In the next year more information and more application will be known 

around the scientific world. 
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12. ACRONYMS 

HOMO               Highest Occupied Molecular Orbital 

LUMO                Lowest Unoccupied Molecular Orbital 

VB                      Valence Band 

CB                     Conduction Band 

DFT                   Density Functional Theory 

MB                     Methylene Blue 

AB80                  Acid Blue 80 

XRD                   X-Ray Diffraction  

PU                      Polyurethane 
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