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Abstract. Oligoribonucleotides carrying 5-ethyluridine units were prepared using solid-

phase phosphoramidite chemistry. The introduction of the tert-butyldimethylsilyl group 

at the 2’-OH position proceeded in good yield and very high 2’-regioselectivity. RNA 

duplexes carrying 5-ethyluridine either at the sense or the guide strands display RNAi 

activity comparable to or slightly better than that of unmodified RNA duplexes. Gene 

suppression experiments using luciferase targets in SH-SY5Y cells show that the ethyl 

group is generally well accepted at all positions although a small decrease in RNA 

interference activity is observed when one 5-ethylU residue is incorporated in the 3’ 

overhangs.   
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Abbreviations   

as, guide (antisense) strand; ACN, acetonitrile; DIPEA, N,N-diisopropylethylamine; 

DMAP, N, N-dimethylaminopyridine; DMEM, Dulbecco’s modified Eagle medium; 

DMT, 4,4’-dimethoxytrityl; EtOAc, ethyl acetate; FBS, fetal bovine serum; HEPES, 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid; MeOH, methanol; siRNA, small 

interfering RNA; ss, sense strand; TBAF, tetrabutylammonium fluoride; TBDMS, tert-

butyldimethylsilyl; TEAA, triethylammonium acetate.  

 

INTRODUCTION 

The discovery of RNA interference (RNAi) [1] and the subsequent demonstration that 

RNAi can be triggered by small interfering RNA (siRNA) [2] has generated intense 

research efforts in the development of new RNA derivatives for the control of gene 

expression [3, 4]. These small RNA duplexes formed by two RNA strands (known as 
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sense strand and guide (antisense) strand) of approximately 20-25 nucleotides long 

complementary to a particular messenger RNA bind to the RNA-induced silencing 

complex (RISC). After siRNA binding the complex formed by the guide RNA strand 

and RISC catalyzes the efficient degradation of a specific messenger RNA, thereby 

lowering the amount of target protein [5].  

Some of the problems encountered during the development of nucleic acids as drugs 

entail the degradation of these by exonucleases under physiological conditions and their 

low uptake by cells. Most of the improvements in the design of nucleic acid derivatives 

aim to enhance stability to nuclease and improve cell uptake without affecting the 

hybridisation properties, which are vital for the efficient inhibitory properties of 

oligonucleotides. To this end, a large number of nucleic acid derivatives have been 

developed showing that is possible to improve stability towards nuclease degradation 

[3, 4, 6]. On the other hand, the delivery problem [7] is being addressed with the 

development of non-viral carriers such as polymers [8], lipids [9], cell-penetrating 

peptides [10] or nanoparticles [11].   

The use of modifed bases in siRNA has been somehow less studied, but there are 

several examples in the literature. siRNAs containing 5-bromo, 5-iodouridine and 2,6-

diaminopurine nucleoside substitutions can induce RNAi gene suppression although to 

a level slightly lower to the one observed for the wild type siRNA [12]. 4-Thiouridine 

[13], 2-thiouridine, dihydrouridine and pseudouridine [14] have also been studied with 

some promising results. Non-polar nucleosides carrying 2,4-difluorobenzene [15], 2,4-

difluorotoluene [16], dichlorobenzene and 4-methylbenzimidazole [17] moieties have 

been used to determine the effect of nucleobase shape and steric effects on RNA 

interference. Recently, 5-methyl and 5-propynyl pyrimidine nucleosides (mU and pU, 

respectively; Figure 1) have been used to probe major groove steric effects in the active 
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RISC complex [18]. It was found that the 5-methyl group was well tolerated by the 

RNA interference machinery, whereas the bulky 5-propynyl group was detrimental to 

RNA interference activity, despite its stabilization of the duplex.   

Here we describe the synthesis and RNA interference activity of oligoribonucleotides 

carrying 5-ethyluridine (5-ethylU; eU; Figure 1). The ethyl group is larger than the 

methyl group but smaller than the propynyl group and it may be a good compromise 

between methyl and propynyl groups in terms of size, duplex stabilization properties, 

nuclease resistance to degradation and RNA interference activity. 

EXPERIMENTAL SECTION 

General experimental methods 

All reagents and anhydrous solvents obtained from commercial suppliers were used 

without further purification. All reactions were carried out under argon atmosphere in 

oven-dried glassware. Thin-layer chromatography was carried out on aluminium-backed 

Silica-Gel 60 F254 plates. Column chromatography was performed using Silica Gel (60 

Å, 230 x 400 mesh). NMR spectra were measured on Varian Mercury-400 or Varian-

300 instruments. Chemical shifts are given in parts per million (ppm); J values are given 

in hertz (Hz). All spectra were internally referenced to the appropriate residual 

undeuterated solvent. 

 

5-Iodo-N3,O2’,O3’,O5’-tetratoluoyluridine (2) 

To a solution of 5-iodouridine (1) (Pharma-Waldorf) (3.0 g, 8.1 mmol) in dry pyridine 

(30 mL), DIPEA (3.8 mL, 21.9 mmol) and toluoyl chloride (8.6 mL, 64.9 mmol) were 

added at 0 ºC. The mixture was allowed to warm to room temperature and stirred for 20 

h. Then, 8 mL of water were added and the mixture was allowed to stirr at room 

temperature for 1 h. The solvents were removed by rotatory evaporation. The residue 
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that was obtained was dissolved in CH2Cl2 and washed with water. The mixture was 

extracted with CH2Cl2, dried with MgSO4, filtered and concentrated. The residue that 

was obtained was purified by silica gel column chromatography (hexanes/EtOAc 3:1) to 

give 3.8 g (80%) of 2 as a foam. 1H-NMR (400 MHz, CDCl3): δ (ppm) 8.04-7.76 (m, 

9H, Ar, C6H), 7.32-7.11 (m, 8H, Ar), 6.38 (d, 1H, 1'H, J = 6.4 Hz), 5.87 (dd, 1H, 2'H, J 

= 6.0 Hz, J = 2.6 Hz), 5.73 (dd, 1H, 3'H, J = 6.0 Hz, J = 6.4 Hz), 4.81-4.68 (m, 3H, 4'H, 

5'CH2, 5''CH2), 2.43, 2.40, 2.36 (3s, 12H, 4CH3). 13C-NMR (100 MHz, CDCl3): δ (ppm) 

166.9, 166.1, 165.5, 165.3, 158.4, 149.1, 146.5, 144.7-143.5, 130.7-129.2, 128.2, 126.2, 

125.8, 125.4, 87.4, 81.3, 73.8, 71.5, 69.5, 63.7, 21.8, 21.7, 21.6. HR-ES-MS [M + Na]+ 

Calcd. for C41H35IN2NaO10: 865.1234, found: 865.1230. 

 

N3-Toluoyl-1-[2',3',5'-tri-O-toluoyl-β-D-ribofuranosyl]-5-vinyluracil (3) 

 To a solution of 2 (1.1 g, 1.3 mmol) and tetrakis(triphenylphosphine)palladium (0) (151 

mg, 0.13 mmol) in hexamethylphosphoramide (10 mL), tetravinyltin (475 µL, 2.6 

mmol) was added. The mixture was allowed to stirr at 60 ºC for 16 h. Then, 100 mL of 

water were added. The mixture was extracted with diethyl ether, dried with MgSO4, 

filtered and concentrated. The residue that was obtained was purified by silica gel 

column chromatography (hexanes/EtOAc from 5:1 to 3:1) to give 716 mg (74%) of 3 as 

an oil. 1H-NMR (400 MHz, CDCl3): δ (ppm) 8.04-7.77 (m, 8H, Ar), 7.50 (s, 1H, C6H), 

7.32-7.12 (m, 8H, Ar), 6.47 (d, 1H, 1'H, J = 6.8 Hz), 5.95 (ABX system, 1H, 

CHAHBCHX, J AB = 17.6 Hz, J AX = 11.4 Hz), 5.90 (dd, 1H, H-2', J = 6.0 Hz, J = 3.2 Hz), 

5.78 (ABX system, 1H, CHAHBCHX, J AB = 17.6 Hz, J BX = 1.2 Hz), 5.76 (dd, 1H, 3'H, J 

= 6.8 Hz, J = 6.0 Hz), 5.03 (ABX system, 1H, CHAHBCHX, J AX = 11.4 Hz, J BX = 1.2 

Hz), 4.87 (dd, 1H, 4'H, J = 2.4 Hz, J = 12.4 Hz), 4.71 (m, 1H, 5'CH2), 4.65 (dd, 1H, 

5''CH2, J = 3.2 Hz, J = 12.4 Hz), 2.43, 2.40, 2.37 (3s, 12H, 4CH3). 13C-NMR (100 MHz, 
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CDCl3): δ (ppm) 167.8, 166.1, 165.5, 165.4, 160.7, 148.7, 146.3, 144.7-144.6, 135.2, 

130.6-129.2, 128.7, 127.0, 126.3, 125.9, 125.5, 86.9, 81.1, 73.5, 71.4, 63.7, 21.8, 21.7, 

21.7. HR-ES-MS [M + Na]+ Calcd. for C43H38N2NaO10: 765.2424, found: 765.2419. 

 

1-(β-D-Ribofuranosyl)-5-vinyluracil (4) 

This compound has been previously synthesized by an alternative route [19-20]. 

Compound 3 (200 mg, 0.27 mmol) was treated with 2.6 mL of 0.5 M sodium methoxide 

in methanol. After 1 h at room temperature, the reaction mixture was quenched with a 

solution of 1N HCl (2.6 mL). The solvent was concentrated in vacuo and the residue 

that was obtained was purified by silica gel chromatography (CH2Cl2/MeOH from 95:5 

to 90:10) to give 121 mg (68%) of 4 as an oil. 1H-NMR (400 MHz, D2O): δ (ppm) 7.94 

(s, 1H, C6H), 6.31 (ABX system, 1H, CHAHBCHX, J AB = 17.4 Hz, J AX = 11.8 Hz), 5.78 

(m, 1H, 1'H), 5.67 (ABX system, 1H, CHAHBCHX, J AB = 17.4 Hz, J BX = 1.2 Hz), 5.15 

(ABX system, 1H, CHAHBCHX, J AX = 11.8 Hz, J BX = 1.2 Hz), 4.21 (m, 1H, H2'), 4.13 

(m, 1H, 3'H), 4.00 (m, 1H, 4'H), 3.84-3.69 (m, 2H, 5'CH2, H-5''CH2). 13C-NMR (100 

MHz, D2O): δ (ppm) 164.7, 151.2, 138.0, 127.4, 116.1, 113.0, 89.8, 84.1, 74.1, 69.1, 

60.3. 

 

5-Ethyl-1-(β-D-ribofuranosyl)uracil (5) 

This compound has been previously synthesized by an alternative route [19-21]. A 

mixture containing compound 4 (198 mg, 0.73 mmol), Pd/C (10%, 53.5 mg) and 

methanol (2 mL) was stirred under H2 for 18 h. The mixture was filtered through Celite 

and the solvent evaporated from the filtrate in vacuo to give compound 5 (200 mg, 

quant) as a colorless oil. 1H-NMR (400 MHz, D2O): δ (ppm) 7.53 (s, 1H, C6H), 5.75 

(m, 1H, 1'H), 4.18 (m, 1H, 2'H), 4.09 (m, 1H, 3'H), 3.97 (m, 1H, 4'H), 3.79-3.65 (m, 
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2H, 5'CH2, 5''CH2), 2.14 (q, 2H, CH2-ethyl, J = 7.2 Hz), 0.92 (t, 3H, CH3-ethyl, J = 7.2 

Hz). 13C-NMR (100 MHz, D2O): δ (ppm) 166.6, 152.1, 136.7, 117.2, 89.4, 84.1, 73.9, 

69.4, 60.6, 19.7, 12.0.  

 

1-[5'-O-(4,4'-Dimethoxytrityl)-β-D-ribofuranosyl]-5-ethyluracil (6) 

To a solution of triol 5 (191 mg, 0.71 mmol) in pyridine (3.6 mL), DIPEA (185 µL, 1.1 

mmol) and DMTrCl (288 mg, 0.85 mmol) were added at 0 ºC. After 5 min the reaction 

was allowed to warm to room temperature and stirred for 2 h. The mixure was then 

quenched with a solution of NaHCO3 (5%), dried with MgSO4, filtered and 

concentrated. The residue that was obtained was purified by silica gel column 

chromatography (CH2Cl2/MeOH 98:2) to give compound 6 (190 mg, 47%) as a foam. 

1H-NMR (400 MHz, CDCl3): δ (ppm) 10.24 (bs, 1H, NH), 7.56 (s, 1H, C6H), 7.41-7.21 

(m, 9H, Ar), 6.82 (d, 4H, Ar, J = 8.0 Hz), 5.99 (d, 1H, 1'H, J = 4.4 Hz), 5.34 (m, 1H, 

OH), 4.40-4.35 (m, 2H, 2'H, 3'H), 4.21 (m, 1H, 4'H), 3.77 (s, 6H, 2CH3O-

dimethoxytrityl), 3.57 (m, 1H, OH), 3.53 (dd, 1H, 5'CH2, J = 2.4 Hz, J = 10.8 Hz), 3.36 

(dd, 1H, 5''CH2, J = 2.8 Hz, J = 10.8 Hz), 1.98 (m, 1H, CH2-ethyl), 1.75 (m, 1H, CH2-

ethyl), 0.81 (m, 1H, CH3-ethyl). 13C-NMR (100 MHz, CDCl3): δ (ppm) 163.9, 158.6, 

151.3, 144.3, 135.4, 135.3, 135.2, 130.1, 130.1, 128.2, 127.9, 127.0, 117.0, 113.2, 89.7, 

86.8, 84.0, 75.2, 70.7, 62.8, 55.2, 20.2, 13.1. HR-ES-MS [M + Na]+ Calcd. for 

C32H34N2NaO8: 597.2213, found: 597.2208. 

 

1-[2'-O-tert-butyldimethylsilyl-5'-O-(4,4'-dimethoxytrityl)-β-D-ribofuranosyl]-5-

ethyluracil (7)  

Diol 6 (175 mg, 0.31 mmol) was dissolved in THF (3.2 mL) followed by the addition of 

pyridine (91 µL, 1.1 mmol) and silver nitrate (62.2 mg, 0.34 mmol). The solution was 
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stirred (20 min) until all the silver nitrate was dissolved and then tert-butyldimethylsilyl 

chloride (59.8 mg, 0.40 mmol) was added. The mixture was stirred at room temperature 

for 5 h. The solution was then filtered into a 5% NaHCO3 solution (3 mL). This solution 

was extracted with CH2Cl2 and the extractes were dried and evaporated. After silica 

column chromatographic purification (hexanes/EtOAc from 70:30 to 60:40), 128 mg 

(62%) of the 2'-O-TBDMS protected isomer (7) and 3 mg (2%) of the 3'-O-TBDMS 

protected isomer were obtained as colorless oils. 1H-NMR of compound 7 (g-COSY, 

400 MHz, CDCl3): δ (ppm) 8.63 (bs, 1H, NH), 7.52 (s, 1H, C6H), 7.43-7.29 (m, 9H, 

Ar), 6.87 (d, J = 8.8 Hz, 4H, Ar), 6.11 (d, 1H, 1'H, J = 6.0 Hz), 4.51 (m, 1H, 2'H), 4.27 

(m, 1H, 3'H), 4.21 (m, 1H, 4'H), 3.82 (s, 6H, 2OCH3), 3.57 (dd, 1H, 5'CH2, J = 2.4 Hz, J 

= 10.8 Hz), 3.38 (dd, 1H, 5''CH2, J = 2.4 Hz, J = 10.8 Hz), 2.80 (bs, 1H, 3'OH), 1.86-

1.81 (m, 2H, CH2-ethyl), 0.95 (s, 9H, tBu-TBDMS), 0.82 (t, J = 7.4 Hz, 3H, CH3-ethyl), 

0.17, 0.15 (2s, 6H, 2CH3-TBDMS). 13C-NMR of compound 7 (100 MHz, CDCl3): δ 

(ppm) 162.9, 158.7, 150.3, 144.2, 135.2, 135.1, 135.0, 130.1, 128.1, 128.0, 127.2, 

117.4, 113.2, 87.4, 87.0, 83.8, 75.4, 71.5, 63.4, 55.2, 25.6, 20.2, 18.0, 13.5, -4.8, -5.1. 

HR-ES-MS of compound 7 [M + Na]+ Calcd. for C38H48N2NaO8Si: 711.3078, found: 

711.3072. 

 

1-[2'-O-tert-butyldimethylsilyl-5'-O-(4,4'-dimethoxytrityl)-β-D-ribofuranosyl]-5-

ethyluracil 3’-(2-cyanoethyl diisopropylphosphoramidite) (8)  

To a solution of alcohol 7 (131 mg, 0.19 mmol) in CH2Cl2 (2.2 mL) at 0 ºC, DIPEA 

(183 µL, 1.1 mmol), DMAP (6.8 mg, 0.06 mmol) and 2-cyanoethyl 

diisopropylphosphoramidochloridite (85 µL, 0.38 mmol) were added. After 15 min the 

reaction was allowed to reach room temperature and stirred for 2 h. The reaction was 

quenched with 5% NaHCO3, extracted with CH2Cl2, dried with MgSO4 and 
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concentrated. The residue that was obtained was purified by silica column 

chromatography (hexanes/EtOAc 60:40 + 2% Et3N) to give 159 mg (90%) of 8 as a 

mixture of diastereoisomers. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.96 (bs, 1H, NH), 

7.53 (s, 1H, NH), 7.51 (s, 1H, C6H), 7.42-7.26 (m, 18H, Ar), 6.85 (d, 4H, Ar, J = 8.8 

Hz), 6.83 (d, 4H, Ar, J = 8.8 Hz), 6.13 (d, 1H, 1'H, J = 6.8 Hz), 6.07 (d, 1H, 1'H, J = 6.8 

Hz), 4.54 (dd, 1H, 2'H, J = 6.8 Hz, J = 4.8 Hz), 4.46 (dd, 1H, 2'H, J = 6.8 Hz, J = 5.2 

Hz), 4.34-4.21 (m, 4H, 3'H, 4'H), 4.02-3.91 (m, 2H, POCH2), 3.92 (s, 6H, 2OCH3-

dimethoxytrityl), 3.81 (s, 6H, 2OCH3-dimethoxytrityl), 3.66-3.62 (m, 7H, POCH2, 

2CH-iPr, 5'CH2), 3.29-3.25 (m, 2H, 5''CH2), 2.69-2.64 (m, 2H, CH2CN), 2.32-2.28 (m, 

2H, CH2CN), 1.89-1.84 (m, 4H, 2CH2-ethyl), 1.31-1.28 (m, 24H, 8CH3-iPr), 0.92, 0.90 

(2s, 18H, 2tBu-TBDMS), 0.90-0.81 (m, 6H, 2CH3-ethyl), 0.15, 0.12, 0.11, 0.08 (4s, 

12H, 4CH3-TBDMS). 13C-NMR (100 MHz, CDCl3): δ (ppm) 162.8, 162.7, 158.7, 

150.3, 150.2,144.2, 144.1, 135.3, 135.2, 135.1, 135.1, 135.0, 130.2, 130.1, 130.0, 130.0, 

128.2, 128.1, 128.0, 127.9, 127.2, 117.7, 117.2, 113.3-113.2 (m), 87.1 (d, J CP = 4.6 Hz), 

87.0, 86.7, 83.9 (m), 83.7 (m), 77.2, 75.2, 74.6 (d, J CP = 6.2 Hz), 73.5, 72.3 (d, J CP = 

13.8 Hz), 63.5, 63.2, 59.0 (d, J CP = 14.9 Hz), 57.4 (d, J CP = 19.1 Hz), 55.3, 55.2, 46.8, 

45.3 (d, J CP = 6.3 Hz), 43.4 (d, J CP = 12.8 Hz), 42.8 (d, J CP = 12.4 Hz), 29.7, 25.7, 25.6, 

24.7-24.6 (m), 22.9 (dd, J CP = 2.4, J CP = 8.7, Hz), 20.5 (d, J CP = 5.8 Hz), 20.3 (d, J CP = 

5.2 Hz), 19.2, 18.1, 17.9, 13.5, 13.4, -4.4, -4.9. 31P-NMR (110 MHz, CDCl3): δ (ppm) 

151.1, 148.8. HR-ES-MS [M + Na]+ Calcd. for C47H65N4NaO9PSi: 911.4156, found: 

911.4146. 

 

RNA synthesis and purification methods  

RNA oligonucleotides were synthesized on the 0.2 µmol scale on an Applied 

Biosystems 394 synthesizer using 2'-O-TBDMS protected phosphoramidites. 
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Acetonitrile (ACN) (synthesis grade) and the 2'-O-TBDMS protected phosphoramidite 

monomers of A, C, G and U were from commercial suppliers. The following solutions 

were used: 0.4 M 1H-tetrazole in ACN (activation); 3% trichloroacetic acid in DCM 

(detritylation), acetic anhydride / pyridine /tetrahydrofuran (1: 1: 8) (capping A), 10 % 

N-methylimidazole in tetrahydrofuran (capping B), 0.01 M iodine in tetrahydrofuran/ 

pyridine /water (7: 2: 1) (oxidation). The coupling time was 15 min. All 

oligonucleotides were synthesized in DMT-ON mode. After the solid-phase synthesis, 

the solid support was transferred to a screw-cap glass vial and incubated at 55 ºC for 1 h 

with 1.5 mL of NH3 solution (33%) and 0.5 mL of ethanol. The vial was then cooled on 

ice and the supernatant was transferred into a 2 mL eppendorf tube. The solid support 

and vial were rinsed with 50% ethanol (2 x 0.25 mL). The combined solutions were 

evaporated to dryness using an evaporating centrifuge. The residue that was obtained 

was dissolved in a total volume of 85 µL of 1M TBAF in THF and rocked at room 

temperature for 12 h. Then, 85 µL of 1M triethylammonium acetate (TEAA) and 330 

µL of water were added to the solution. The oligonucleotide was desalted on a NAP-5 

column using water as the eluent and evaporated to dryness. The oligonucleotide was 

purified by HPLC (DMT-ON). Column: Nucleosil 120-10 C18 (250x4 mm); 20 min 

linear gradient from 15%  to 80% B and 5 min 80% B, flow rate 3 mL/min; solution A 

was 5% ACN in 0.1 M aqueous TEAA and B 70% ACN in 0.1 M aqueous TEAA.  

The pure fractions were combined and evaporated to dryness. The residue that was 

obtained was treated with 1 mL of 80% AcOH solution and incubated at room 

temperature for 30 min. The deprotected oligonucleotide was desalted on a NAP-10 

column using water as the eluent. All oligonucleotides were quantified by absorption at 

260 nm and confirmed by MALDI mass spectrometry. MALDI-TOF spectra were 

performed using a Perseptive Voyager DETMRP mass spectrometer, equipped with 
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nitrogen laser at 337 nm using a 3ns pulse. The matrix used contained 2,4,6-

trihydroxyacetophenone (THAP, 10 mg/mL in ACN/ water 1:1) and ammonium citrate 

(50 mg/mL in water). 

 

UV-monitored thermal denaturation 

Absorbance versus temperature curves of duplexes were measured at 1 µM strand 

concentration in 15 mM HEPES-KOH (pH 7.4), 1 mM MgCl2 and 50 mM potassium 

acetate buffer. Experiments were performed in Teflon-stoppered 1 cm path lenght 

quartz cells on a JACSO V-650 spectrophotometer equipped with thermoprogrammer. 

The samples were heated to 90 ºC, allowed to slowly cool to 25 ºC, and then warmed 

during the denaturation experiments at a rate of 1 ºC/min to 85 ºC, monitoring 

absorbance 260 nm. The data were analyzed by the denaturation curve processing 

program, MeltWin v. 3.0. Melting temperatures (Tm) were determined by computerfit of 

the first derivative of absorbance with respect to 1/T. 

 

RNAi methods 

SH-SY5Y were grown at 37 ºC in Dulbecco’s modified Eagle medium (DMEM; 

GIBCO) supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin and 

100 µg/mL streptomycin. Cells were regularly passaged to mantain exponential growth. 

Twenty-four hours before transfection at 50–80% confluency, mammalian cells were 

trypsinized and diluted 1:5 with fresh medium without antibiotics (1–3 x 105 cells/mL) 

and transferred to 24-well plates (500 µL per well). Two luciferase plasmids, Renilla 

luciferase (pRL-TK) and Firefly luciferase (pGL3) from Promega, were used as a 

reporter and control, respectively. Cotransfection of plasmids and siRNAs was carried 

out with Lipofectamine 2000 (Life Technologies) as described by the manufacturer for 
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adherent cell lines. Per well, 1.0 µg pGL3-Control, 0.1 µg pRL-TK and 0.03–26 nM 

siRNA duplex formulated into liposomes, were applied; the final volume was 600 µL 

per well. The cells were harvested 22 h after transfection, and lysed using passive lysis 

buffer, 100 µL per well, according to the instructions of the Dual-Luciferase Reporter 

Assay System (Promega). The luciferase activities of the samples were measured using 

a MicroLumaPlus LB 96V (Berthold Technologies) with a delay time of 2 s and an 

integrate time of 10 s. The following volumes were used: 20 µL of sample and 30 µL of 

each reagent (Luciferase Assay Reagent II and Stop and Glo Reagent). The inhibitory 

effects generated by siRNAs were expressed as normalized ratios between the activities 

of the reporter (Renilla) luciferase gene and the control (Firefly) luciferase gene. 

 

Stability assays in 50% human serum 

Unmodified or modified double-stranded siRNA samples (20 µM; 24 µL) were 

incubated in human serum (24 µL) at 37 ºC. At appropriate periods (0, 0.5, 1, 2, 1, 7 and 

9 hours), 6 µL aliquots of the reaction mixture were added to 54 µL of a 1% sodium 

dodecyl sulphate aqueous solution and the mixtures were heated-denatured for 5 min at 

90 ºC. siRNAs were isolated by hot phenol extraction followed by ethanol precipitation. 

After re-suspension in 20 µL of loading buffer (90% formamide, 10% 1X TBE), the 

samples were run on a denaturing 14% polyacrylamide gel containing 20% formamide. 

RNA bands were visualized with the SYBR Green II reagent (Sigma-Aldrich) according 

to the manufacturer’s instructions. 

 

Statistical analysis 
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Data were analyzed by GraphPad Prism 5 program (GraphPad Software). Significant 

differences were assessed by ANOVA to compare three or more groups followed by 

Bonferroni test. In all figures, * represents p values < 0.05. 

 

RESULTS AND DISCUSSION 

Study of the conformational flexibility of the 5-ethyl substitution 

In previous studies carried out in our laboratory, we evaluated the conformational 

flexibility of an ethyl group located at the C-5 position of uridine by means of 

computer-based modeling (which consisted in a molecular mechanics conformational 

search and geometry optimization of the most energetically stable conformers (Spartan 

’04)). To carry out these studies, the sugar ring was kept frozen while the nucleobase 

and the ethyl group were allowed to move freely during the calculations. The results of 

these studies suggest that this system has two energy minima that are quite close in 

relative energies, in which (i) the ethyl group is nonlinear and has the CH2-CH3 bond 

perpendicular to the nucleobase plane, and (ii) the ethyl group is linear (see Figure 9 in 

the Supporting Information). Our results suggest that in order to prevent possible steric 

clashes, the ethyl group could fold and adopt a nonlinear conformation during the 

process of recognition of the eU-modified siRNA guide strand by RISC. In this 

conformation, the ethyl substitution would behave more like a methyl group than like a 

propynyl group (Figure 1), as only the methylene hydrogen atoms of the ethyl group 

would point toward the amino acid residues of RISC.  

Synthesis of 5-ethyluridine phosphoramidite  

5-Ethyluridine can be prepared either (i) by condensation of a mercury derivative of 5-

ethyluracil with a poly-O-acylglycosyl halide [21], (ii) by condensation of silylated 5-

ethyluracil with protected 1-O-acetyl ribofuranose using the Vorbrüggen glycosylation 
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procedure [22], or (iii) by catalytic hydrogenolysis of 5-vinyluridine, which can be 

obtained by ethylene coupling to organopalladium intermediates derived from uridine 

[19, 20].  In this work we have prepared 5-ethyluridine following an alternative method 

described for the preparation of 2’-deoxy-5-ethyluridine [23], which is based on the 

cross-coupling of protected 2’-deoxy-5-iodo-uridine with tetravinyltin in the presence of 

tetrakis(triphenylphosphine)palladium (0) (scheme 1). 5-Iodouridine (1) (Pharma-

Waldorf) was treated with p-toluoyl chloride and the resulting protected nucleoside (2) 

was converted into the 5-vinyluridine derivative 3 in good yield by reaction with 

tetravinyltin in the presence of tetrakis(triphenylphosphine)palladium (0) in 

hexamethylphosphoric triamide at 60 ºC [23]. Removal of the protecting toluoyl groups 

with sodium methoxide in methanol at room temperature followed by catalytic 

hydrogenolysis gave the desired 5-ethyluridine 5. The 5’ hydroxyl group was protected 

by a 4,4’-dimethoxytrityl group (DMT) and the resulting 5’-O-DMT-protected 

nucleoside 6 was treated with tert-butyldimethylsilyl (TBDMS) chloride using silver 

nitrate as catalyst [24] to give the desired 2’-O-TBDMS-5’-O-DMT-protected 

nucleoside 7 with excelent 2’-regioselectivity (> 90%; as evaluated by 1H NMR of the 

crude; see the Supplementary Data). The g-COSY 1H-NMR spectrum of the major 

regioisomer (7; which could be isolated by column chromatography) confirmed that the 

TBDMS group was on the 2’-OH. To the best of our knowledge there are no reports on 

the direct protection of the 2’-OH group of 5’-O-DMT-protected nucleosides with such 

high regioselectivity. For example, in the report of Hakimelahi et al. [24], 2’-O-

TBDMS-protection of 5’-O-DMT-protected uridine under the above described 

conditions proceeded with 70 : 15 regioselectivity (2’ versus 3’, respectively). Our 

results bring new data on the effect of an alkyl substituent at the 5 position of 

pyrimidine nucleosides on the selectivity of silylation, since the incorporation of an 



 15

ethyl group has given a remarkable improvement in 2’-selectivity with respect to natural 

uridine. Finally the 2’-O-TBDMS-5’-O-DMT-protected nucleoside 7 was converted 

into the desired phosphoramidite (8) by reaction with 2-cyanoethyl-N,N-

diisopropylchlorophosphoramidite.  

Synthesis and thermal stability of siRNA duplexes containing 5-ethyluridine 

The 5-ethyluridine (eU) monomer was incorporated into different positions in place of 

natural U along a 21-mer siRNA that targets an A-rich site (501–509) of Renilla 

luciferase mRNA (Table 1) [15,16,25]. This sequence allowed us to make a large 

number of U to eU replacements into the guide strand, which has been reported to be 

more sensitive to chemical modification compared to the sense strand [12]. Moreover, it 

is known that different regions of siRNA (as defined by the guide strand) play distinct 

roles in target recognition, cleavage and product release. Thus, the nature of the 

chemical modification, as well as their placement within the guide strand can provide 

useful information on the RNAi mechanism and on guide siRNA-RISC interactions. 

First, we prepared the unmodified siRNA 11. Then, to localize possible steric effects in 

the RISC complex, we made single U (or T) to eU exchanges at different positions in the 

guide strand. Among the positions that were tested (Table 1) we compared 5’-

substituted siRNAs (position 2, siRNA 12; position7, siRNA 13) with 3’-substituted 

siRNAs (position 13, siRNA 14; position 20, siRNA 15), since it is known that the 5’-

half of the siRNA duplex (as defined by the guide strand) is functionally different from 

the 3’-half, due to the asymetric nature of siRNA recognition for initiation and 

unwinding [12]. siRNA 15 (containing a single eU substitution at the second position of 

the 3’ dinucleotide overhang) was also designed to study the effect of the eU 

modification on nuclease resistance. Moreover, we prepared siRNA 16, with a single 

substitution at position 11; it is known that positions 10 and 11 play an important role in 
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the RNAi process, since mRNA clevage occurs between these two positions. Next, in 

order to study the effect of the number of eU substitutions on RNAi activity, we 

prepared siRNAs 17 and 18, containing two substitutions at both ends of the guide 

strand (positions 2 and 20, siRNA 17) and two substitutions at internal positions of the 

guide strand (positions 7 and 13, siRNA 18). Finally, in order to study the effect of the 

modification of the dinucleotide overhangs on serum stability and the effect of the 

modification of the sense strand on RNAi activity, we prepared siRNA 19, which 

contains a single eU substitution at position 20 of the sense strand. The desired RNA 

strands were purified by HPLC and characterized by MALDI-TOF mass spectrometry 

(Table 1). 

We examined the effect of the 5-ethyluridine substitutions on siRNA duplex stability. 

The thermal stability of the modified and unmodified duplexes was measured in 50 mM 

potassium acetate, 1 mM magnesium acetate, and 15 mM HEPES-KOH at pH 7.4. 

Compared to the unmodified siRNA (11), most of the modified siRNAs had greater 

duplex stability (Table 2). The melting temperature (Tm) of the unmodified duplex was 

67.8 ºC while the Tm of the 5-ethyluridine modified duplexes 12-15 and 17-19 were 0.6-

1.4 ºC higher than unmodified duplex. Our results indicate a small but clear stabilization 

of the duplex induced by the 5-ethyl- uridine substitutions. This stabilization effect 

depends on the position of the substitution. The stabilization is similar to the one 

described for 5-methylU but smaller than that of 5-propynylU [18]. In contrast, the 

replacement of uracil by 5-ethyluracil in DNA has been described to produce a slight 

destabilization of the duplex [26,27]. 

Stability of modified siRNA in human serum 

An important issue on nucleic acids drug development is the stability of the nucleic acid 

derivatives in serum. In DNA, oligonucleotides carrying 2’-deoxy-5-ethyluridine have 
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shown a high stability to exonucleases [28] and to several restriction endonucleases 

[26]. In RNA oligonucleotides the presence of 5-methyluridines induced a moderate 

increase on the stability of siRNA in human serum [18]. A higher stability was found 

when uridine was replaced by 5-propynylU [18].  

Unmodified and modified 5-siRNAs (11-19) were incubated in 50% human serum. At 

various time points, siRNAs were extracted, analyzed on a 20% polyacrylamide gel 

under denaturing conditions and visualized by staining. Figure 2 shows the results 

obtained with three representative examples: unmodified oligoribonucleotide 11 and 

siRNAs 15 and 17. Contrary to what has been described for DNA oligomers we could 

not observe any significant difference in the degradation rates. 

Inhibition of Luciferase. 

To evaluate whether 5-ethyluridine-modified siRNAs are accepted by RISC and 

regulate gene expression via the RNAi pathway we carried out a first series of RNAi 

studies in SH-SY5Y cells with siRNAs containing each of the seven eU-modified guide 

strands (12–18), siRNA 19 (containing a single eU substitution into the sense strand), as 

well as with the unmodified (wild type) RNA (11). In a previou work, Terrazas and 

Kool found that the presence of bulky substitutents at the C-5 position of uridine could 

be detrimental to RNAi activity and, in some cases, siRNA concentrations higher than 

2.6 nM were needed in order to observe significant activity [18]. Thus, in order to avoid 

a great loss of activity (when compared with the unmodified siRNA), we used a 

relatively high siRNA concentration in the cell media (26 nM). The cells were 

transfected with dual reporter plasmids that express Renilla luciferase (the target) and 

nontargeted firefly luciferase as an internal nontargeted control, and with siRNAs 11-
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19. The effects of the different RNAs on luciferase expression were evaluated 

measuring luminescence responses after 22 h 

Figure 3 shows the inhibition of the expression of Renilla luciferase caused by modified 

siRNAs at a concentration of 26 nM. Significant differences were assessed by ANOVA 

analysis followed by Bonferroni test. Renilla luciferase gene silencing was 75-90% for 

modified siRNAs 12-19, and 87% for unmodified oligoribonucleotide 11. The less 

active siRNAs were compounds 12, 15 and 19. In particular, siRNA 15 displayed RNAi 

activity significantly lower than the unmodified siRNA (11) (p < 0.01, Bonferroni test). 

These siRNAs contain a single eU at the dangling end (15, 19) or at the 5’-end of the 

guide strand (12). These results indicate that the eU substitution is less tolerated at the 

ends of the duplex. The inhibitory properties of siRNAs 13, 16 and 17 were very similar 

to the unmodified siRNA. The most active duplexes were siRNA 14 (with a single eU 

modification at position 13) and siRNA 18 (with two eU modifications at positions 7 

and 11).  

In order to confirm these results the most active siRNAs (14, 17, and 18) were studied 

together with unmodified siRNA 11 in a dose-response experiment (after dosing with 

0.21-210 ng of double stranded siRNAs in the cell media; concentrations of siRNA 

ranged from 0.03 nM-26 nM). The modified eU-siRNA 18 was slightly more active than 

the unmodified siRNA as shown in Figure 4 and in the Supplementary Figure 10 (at 

siRNA concentrations of 0.1 nM, 1.3 nM and 26 nM, p < 0.05; Bonferroni test). All the 

results confirm that 5-ethyluridine is well tolerated by the RNA machinery in a similar 

manner to what has been described for 5-methyluridine [18]. Based on our 

computational studies, we could speculate that in the presence of the RISC complex, the 

ethyl group could fold and adopt a nonlinear conformation, in order to avoid possible 

steric clashes with RISC (see Panel A in the Supplementary Figure 9). Although this 
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idea needs further exploration, it may provide an explanation to the observation that 5-

ethylU-modified siRNAs and 5-methylU-modified siRNAs have similar biological 

activity. This is in contrast with previous studies that described a slight decrease of the 

inhibitory properties when uridine is substituted by 5-bromouridine and 5-iodouridine 

[12] and a large decrease when uridine is substituted by the propynyl group [18].  

In conclusion, we have evaluated the effect on RNAi activity of uridine residues 

modified with an ethyl group at the 5-position. We described the synthesis of the 

appropriate phosphoramidite showing that the introduction of the tert-butyldimethylsilyl 

group at the 2’-OH position proceeded in good yield and very high 2’-regioselectivity.  

The presence of 5-ethylU residues provoked a moderate stabilization of the duplex but 

this stabilization did not increase the stability to degradation by serum nucleases. The 

ethyluridine substitution was well accepted by the RNAi machinery. In most cases 

although we observed a small decrease in the silencing properties when 5-ethylU was 

located at the dangling ends. Thus our study will support the use of 5-ethyluridine as 

uridine substitute for RNA interference studies. 
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Table 1. MALDI-TOF mass spectra of synthesized oligonucleotides 

 

Oligonucleotide Sequence MW calcd. MW found 

ss (11, wt) 3'-TTAAAAAGAGGAAGAAGUCUA-5' 6790.0 6787.6 

as (11, wt) 5'-UUUUUCUCCUUCUUCAGAUTT-3' 6423.0 6426.4 

12   5'- UeUUUUCUCCUUCUUCAGAUTT-3' 6451.9 6455.6 

13   5'- UUUUUCeUCCUUCUUCAGAUTT -3' 6451.9 6451.8 

14   5'- UUUUUCUCCUUCeUUCAGAUTT -3' 6451.9 6454.4 

15   5'- UUUUUCUCCUUCUUCAGAUeUT-3' 6453.8 6456.5 

16   5'- UUUUUCUCCUeUCUUCAGAUTT -3' 6474.9 (+Na) 6470.0 (+Na) 

17   5'- UeUUUUCUCCUUCUUCAGAUeUT -3' 6481.8 6484.2 

18 5'- UUUUUCeUCCUUCeUUCAGAUTT -3' 6481.8 6484.9 

19   3'-TeUAAAAAGAGGAAGAAGUCUA-5' 6821.4 6824.9 
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Table 2. Sequences of unmodified and modified RNAs (1-9) and Tm data  
                     Tm (ºC)a ∆Tm (ºC) 
 
native                ss      TTAAAAAGAGGAAGAAGUCUA   5'          11 (wt) 67.8 --  
                          as    5’   UUUUUCUCCUUCUUCAGAUTT 
 
 
 
antisense 
modification     TTAAAAAGAGGAAGAAGUCUA           12 69.0 1.2  
  UeUUUUCUCCUUCUUCAGAUTT 
  
 TTAAAAAGAGGAAGAAGUCUA        13 68.4 0.6  
  UUUUUCeUCCUUCUUCAGAUTT 
 
 TTAAAAAGAGGAAGAAGUCUA       14 68.6 0.8  
  UUUUUCUCCUUCeUUCAGAUTT 
 
 TTAAAAAGAGGAAGAAGUCUA          15 68.6 0.8  
  UUUUUCUCCUUCUUCAGAUeUT 
 
 TTAAAAAGAGGAAGAAGUCUA          16 67.9 0.1  
  UUUUUCUCCUeUCUUCAGAUUT 
 
 TTAAAAAGAGGAAGAAGUCUA        17 68.7 0.9  
 UeUUUUCUCCUUCUUCAGAUeUT 
 
 TTAAAAAGAGGAAGAAGUCUA            18 69.2 1.4  
  UUUUUCeUCCUUCeUUCAGAUTT 
 
 
sense 
modification               TeUAAAAAGAGGAAGAAGUCUA          19 69.0 1.2  
   UUUUUCUCCUUCUUCAGAUTT 
 
a Errors in Tm are estimated at ± 0.5 ºC. 
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Scheme 1 Synthesis of the 5-ethyl-U nucleoside TBDMS phosphoramidite 
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Fig. 1 Uridine derivatives containing substitutions of different size at the C-5 position 
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Fig. 2 Stability assays in 50% human serum 
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as    5'-UUUUUCUCCUUCUUCAGAUTT 
 
 

 

       0        1/2         1         2          4         7          9  hours 

 
 

ss    TTAAAAAGAGGAAGAAGUCUA   5'         15  
as    5'-UUUUUCUCCUUCUUCAGAUeUT 
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Fig. 3   Plot of RNAi activities for unmodified (11), and modified (12-19) siRNAs (at 

an siRNA concentration of 26 nM per well) targeting the Renilla luciferase gene 

expressed in SH-SY5Y cells. Experiments were carried out in triplicate. Bars indicate 

standard error. A Bonferroni test was conducted to evaluate TN modifications to the 

unmodified control (1). ** indicates a significant change in Renilla luciferase 

expression from unmodified siRNA 1 (p < 0.01). 
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Fig. 4 Plot of gene-specific RNAi activity for unmodified siRNA (11) and 5-ethyl 

substituted siRNAs 14, 17 and 18 expressed in SH-SY5Y cells. Varied concentrations 

of siRNA (0.03 nM, 0.1 nM, 1.3 nM, 26 nM) were used. Experiments were carried out 

in triplicate. Bars indicate standard error. 

 

 
 

 


