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Diabetes incidence highly increased in the last years. According to IDF 

(International Diabetes Federation), 463 million people suffered this disease 

in 2019. The estimations of diabetic people highly increase in the upcoming 

years, rising approximately to 700 million diabetic patients in 2045 [1]. Type 

2 diabetes (T2D) is the most common type of diabetes, representing 90% of 

diabetic patients. It occurs when the body becomes resistant to insulin.  

Body insulin resistance confirms that T2D is not only a pancreatic disease, as 

there are many other tissues involved, like liver, adipose tissue, or skeletal 

muscle. This last has a significant implication in glucose-insulin homeostasis 

as it is one of the main glucose-consuming organs in the body.  

Nowadays, to study how two tissues crosstalk between them, animal testing 

is the gold standard. However, the unmatching physiological behaviors 

compared to humans, the variability between different animals, ethical 

dilemmas, and the need to go for more personalized medicine activates the 

search for other suitable alternatives. At this point, Organs-on-a-chip 

appeared as a valid alternative. Organs-on-a-chip (OOC) are 3D 

bioengineered microfluidic cell culture platforms to simulate 

microphysological environments of an organ or its specific functions.  

Nowadays, to engineer the tissues for OOC applications, encapsulating cells 

inside hydrogels is the most common technique. Its beneficial properties 

include high water content, mechanical adjustability, and moldability to 

generate the desired architectures [2]. However, its small porosity limits 

nutrient and oxygen diffusion through it [3]. 

This problem is a significant limitation when pancreatic islets are 

encapsulated inside hydrogels due to their size (~100 μm of diameter). 

Pancreatic islets are cell aggregations composed of many different cells as 

insulin-secreting cells (Beta-cells) or glucagon-secreting cells (alpha-cells). 

Similarly, skeletal muscle tissue is generally encapsulated in small bundles. 

Skeletal muscle is a highly aligned and multinucleated tissue formed from the 

fusion of single cells, called myoblasts, into multinucleated cells, called 

myotubes. 

Cryogels have been proposed as a valid alternative to overcome these 

limitations. Cryogels are fabricated by crosslinking a prepolymer solution at 

sub-zero temperatures, so while the material crosslinks, water freezes, 

generating the desired micropore architecture. After thawing, cryogels are 

sponge-like scaffolds with microporous structure, high interconnected 

porosity, high diffusivity, fine-tuned properties, and desired internal pore 

architecture. 
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This thesis developed two cryogel scaffolds made of gelatin and 

carboxymethylcellulose with different pore architectures to engineer 

pancreatic and skeletal muscle tissues. Here, we proved that the achieved 

pore architecture fits with the prerequisites to engineer each tissue. 

Moreover, the mechanical and physical properties of each scaffold highly 

resemble the 3D microenvironment of each tissue. In pancreatic tissue, we 

generate a random pore cryogel to aggregate beta-cells to form pseudoislets. 

We proved that these engineered pseudoislets are viable, functional 

responding correctly to the glucose and improving insulin response 

compared to monolayer results. In the skeletal muscle approach, we could 

develop a highly aligned pore architecture to prompt cell alignment and cell 

fusion. Moreover, we incorporate carbon nanotubes to enhance the electrical 

conductivity of the scaffold, so by applying electrical pulse stimulation, we 

could improve the early steps of the myogenic maturation. 
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1.1 TISSUE ENGINEERING 
 

In the 80s, scientists realized that generating tissues in vitro would solve 

many problems, such as reducing the waiting list for organ transplantation 

and cure many diseases [4]. Following this purpose, since the late 80s, this 

field gained much importance due to the high possibilities it offers.  

Citing Vacanti and Langer in 1993, they defined tissue engineering as “an 

interdisciplinary field that applies the principles of engineering and the life 

sciences toward the development of biological substitutes that restore, 

maintain, or improve tissue function.” Nowadays, we could say that tissue 

engineering is the combination of different scientific disciplines as cell 

culturing, biomaterials, and bioengineering. This field’s high 

multidisciplinarity and its high potential in tissue generation converted tissue 

engineering into a potent science branch. And not only to reach Vacanti’s 

original purpose of organ generation for transplantation. The vast pool of 

knowledge tissue engineering can offer converts this field into a precious ally 

in many other science branches as personalized medicine, regenerative 

therapies, disease modeling, drug screening platforms, or metabolomic 

studies.  

Nevertheless, not all tissues are equal. The complexity of generating tissue in 

vitro varies depending on the tissue that we want to engineer. Dr. Anthony 

Atala classified it into four main classes, depending on the degree of 

complexity [5]: 1) Flat tissues and simple organs like skin, 2) Tubular organ 

structures as trachea or blood vessels, 3) Hollow nontubular organ structures 

as the bladder, and 4) Solid organs as heart, liver or kidney. Depending on the 

tissue that we wanted to engineer, unique characteristics are needed. For this, 

different approaches were used to escalate levels up to the more complex 

tissues: free-scaffold approximation (2D tissue engineering) and scaffold-

based tissue engineering (3D tissue engineering).  

2D tissue engineering consists of generating the desired tissue over a 

substrate. This approximation is a handy tool to study cell-cell interactions 

[6], preliminary modeling of more complex tissues [7], or study the cell 

behavior in different substrates [8], [9]. For this, many different substrates 

with variable mechanical and biochemical cues had been studied. Besides 

plastic from the culture flasks or Petri dishes, some biomaterials are used. 

Each biomaterial has its unique mechanical and biochemical properties that 

fit the needs of every tissue. From synthetic biomaterial sheets [10] to natural 
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biomaterial interfaces [6] or the combination of both [11], are used in 2D 

tissue engineering for the mentioned purposes.   

Besides biomaterials, the techniques used to generate the surfaces has a 

fundamental implication in tissue formation. Cells can not only sense the 

stiffness or the biochemical cues that the substrate promotes, but cells also 

can feel the topography of it. For this, different topographical 2D substrates 

can be generated. Going from flat surfaces [12] to 2D patterned surfaces 

fabricated by stamping [13] or electrospinning [10]. These patterned 

substrates aim to promote cell functionality by helping the cells to order in a 

specific manner.  

Some of the most studied tissues in 2D are skin [14] or skeletal muscle [15], 

[16], but many other tissues were simplified and studied in 2D. For example, 

pancreatic tissue [17] or liver [18]. 

However, tissues in our body have a specific architecture. By engineering 2D 

tissues, the importance of each tissue’s volumetric structure, the cues that the 

extracellular matrix (ECM) can provide (both mechanical or biochemical), the 

3D cell interconnectivity, and other essential features are obviated. This lack 

of a 3D environment leads to many unmatching functionalities, not precisely 

mimicking each organ in vivo environment. 3D matrices made of different 

biomaterials, called scaffolds, with unique properties, are used to overcome 

these limitations.  

 

1.1.1 3D tissue engineering 

 

3D tissue engineering consists of combining different science fields with the 

final aim to engineer functional tissues in the laboratory. This approach of 

tissue engineering incorporates the fabrication of 3D biomaterial structures 

to the cell culturing processes. The unification of these two fields opens a wide 

range of new possibilities to engineer fully functional tissues (Figure 1). 

Moreover, it allows the opportunity to study complex tissues and extrapolate 

the previously gained knowledge in 2D surfaces to 3D constructs. This 

extrapolation is significant in cell behavior and tissue engineering as the cells, 

when surrounded by a 3D matrix, behave differently [19], [20].  

Scaffolds are needed to engineer 3D tissues. Scaffolds are polymer matrices 

made of different and specific biomaterials to mimic the 3D environment of 

each tissue. By mimicking the ECM’s physical and biochemical properties, cell 
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orientation and functionality are promoted.  This scaling has the final goal to 

generate more resemblant tissues in vitro than the previously fabricated in 

2D.  

However, this objective to generate an extracellular-like environment makes 

the scalability from 2D to 3D an intricate point. The morphology, the pore 

diameter, the stiffness, or the biochemical cues are only a few examples of the 

variables that must be considered depending on the tissue we wanted to 

generate. To modulate all these essential scaffold properties, the biomaterials 

used to cast the scaffold, or the crosslinking methods are important variables 

to consider when designing the proper scaffold for each specific tissue.  

 

 

1.1.1.1 Biomaterials 

 

Each scaffold must be made of a specific or a combination of biomaterials. 

Scaffolds are bioengineered biomaterial matrices that are mainly 

Figure 1: Overview of tissue engineering process and some of its applications. To 

engineer tissues in the laboratory, patient cells can be obtained by a biopsy. These cells are 

then cultured and expanded. Once enough cells, these are seeded inside a scaffold, a 3d 

microenvironment resemble to the ECM of the body. In here is were the cells traditionally 

differentiate into more mature constructs. Finally, when tissue is fully generated, the 

engineered tissue is ready to be used in multiple applications as in vitro test, transplantation 

or incorporated into microfluidic chips. 
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biocompatible and can give particular architecture to the cell environment. 

Moreover, these biomaterials can have biochemical and physical cues that 

enhance cell formation and functionality. Among all the materials that can be 

used for scaffolding, we can split them into three main classes: natural, 

synthetic, and composites.  

Natural biomaterials are the biomaterials that are mainly found in nature or 

are derivates of it. Most of them have interesting biological features, as good 

biocompatibility, and good bioactivity.  

One of the most common biomaterials is collagen, the most abundant protein 

in the human body and found in the ECM [21]. This biomaterial is perfect for 

some applications due to its high biocompatibility and cell activity promoters, 

as the polypeptide Arginine-Glycine-Aspartic acid (RGD), a cell-binding motif. 

On the other hand, it has low mechanical properties, low viscosity, and is 

degradable by mammalian cells [22]. As this material is also found in the ECM, 

it is very used in tissue engineering [23]. Another very used biomaterial is 

gelatin, a derivate of collagen obtained from its hydrolysis. It has similar 

biological features to collagen in terms of biocompatibility and bioactivity. 

Also, it is cheap, easy to obtain, and temperature-dependent [24]. However, 

gelatin has similar collagen drawbacks, as it is enzymatically degradable and 

has low mechanical properties.  To overcome these limitations, collagen, 

gelatin, and many other biomaterials can be chemically modified to generate 

a mechanically enhanced fibrous-network scaffold.  

One example of these chemical modifications is to replace the amino groups 

of the lysines with methacryloyl groups [2]. With this addition, the material 

can be crosslinked so that some of the detrimental properties can be reversed. 

For example, this chemical reaction allows the enhancement of the 

mechanical properties of the scaffold. This allows encapsulating cells inside 

in a more long-lasting scaffold, a handy tool for tissue engineering.  

Another attractive biomaterial is alginate, obtained from brown algae, with 

good biocompatibility, low toxicity, and affordability. However, alginate 

needs some cationic crosslinkers as Ca2+ to generate the fiber mesh for cell 

encapsulation [22]. One interesting point of alginate is it has no bioactivity 

with mammalian cells. Like alginate, cellulose is also a natural polymer with 

a lack of cellular interactions because it is not an ECM-derived protein. 

Cellulose has good biocompatibility and better mechanical properties than 

the biomaterials mentioned above. Also, it is cheap, and it is non-

temperature-dependent. As explained with gelatin and collagen, these 

biomaterials can also be chemically modified to improve some of their 
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properties. This offers the possibility to mix different natural biomaterials 

and so enhancing scaffold properties, generating new biomaterials with many 

potentials for tissue engineering [25].   

On the other hand, synthetic biomaterials are biomaterials that do not come 

from natural sources. Although these biomaterials are also biocompatible, 

most of them are non-bioactive [26]. One of the most common synthetic 

biomaterials for tissue engineering is Poly(lactic acid) (PLA). PLA has very 

interesting properties as tunable mechanical stiffness, biocompatibility, and 

non-toxic degradability [27]. It is widely used in many different tissues as the 

nervous [10] or skeletal muscle [27].  Other attractive synthetic biomaterials 

are Poly(ethylene glycol) (PEG) and its derivates as Poly(ethylene glycol) 

diacrylate (PEGDA). PEG-based scaffolds have tunable mechanical properties, 

facility to control scaffold architecture, easy polymerization, and bioinerty 

[28]. Polycaprolactone (PLC) [29] or poly-glycolic acid (PGA) [30] are other 

widely used synthetic biomaterials for multiple tissue engineering 

applications.  

The high disparity in the natural and synthetic biomaterials’ properties opens 

a third way to generate different scaffolds. By combining different 

biomaterials, new and unique properties can be achieved. Biocomposites aim 

to generate more tunable scaffolds with the desired properties of each 

component for precise tissue engineering. These biocomposites can be 

fabricated by mixing natural polymers with other natural polymers [25], [31], 

natural polymers with synthetic polymers [25], [32], or two synthetic 

biomaterials [30]. 

One step further, previously explained biomaterials might not accomplish all 

the features for engineering various specific tissues or not entirely enhance 

tissue maturation or functionality. To fulfill each specific tissue’s particular 

properties, different elements can be incorporated to modify some 

properties, as their mechanical or biochemical properties, but without 

significantly affecting other primordial properties. For example, cell-binding 

peptides enhance cell-adhesion properties [33], or conductive elements as 

gold particles or carbon nanotubes [34] to prompt scaffold conductivity, help 

to reach the final goal to generate a fully functional tissue for different 

applications.  

By using different materials, various properties of the scaffold can be 

controlled. However, other variables may influence the final properties of it. 

One of the most relevant parameters is the crosslinking of the biomaterial 

fibers to form the net-like structure. 
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1.1.1.2. Crosslinking techniques 

 

Biopolymers have many advantages as good biocompatibility, 

cytocompatibility, and ability to degrade. However, natural materials lack 

many important properties as mechanical properties, as they are not stable 

in an aqueous solution. On the other hand, synthetic materials have good 

biocompatibility, but most are non-bioactive and enzymatically 

undegradable. To overcome these limitations and generate more stable 

scaffolds and better mechanical properties, crosslinking the fibers appeared 

to be a need to solve.  

Crosslinking consists of introducing chemical or physical bonds to the 

biomaterial fibers and prompting their mechanical properties, stability, and 

tissue formation by endowing geometrical cues. Moreover, by varying various 

crosslinking parameters, scaffold properties as the stiffness or the water 

content can change. Crosslinking parameters are another variable to consider 

when fabricating scaffolds.  Moreover, these enhanced properties obtained by 

the crosslinking process allow to encapsulate or seed cells inside the scaffolds 

and favor the tissue formation. 

However, biomaterial crosslinking for tissue engineering also have their 

drawbacks. Decreased degradability in biopolymers or increased cytotoxicity 

due to crosslinker agents are potential disadvantages that may lead to 

decreased cell viability [35]. Another problem is the decreasing availability of 

functional groups. Some materials like gelatin must be chemically modified to 

enable crosslinking. Also, the crosslinking bonds may have an essential effect 

in decreased functional group availability. 

Two types of crosslink are mainly used to generate biomaterial scaffolds: 

chemical crosslinking and physical crosslinking. The use of each 

A) B)

Figure 2: Overview of different crosslinking techniques. A) Chemical crosslinking. B) 

Physical crosslinking 
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approximation depends mostly on the polymers used and the desired 

properties that the final scaffold may have.  

Chemical crosslinking (Figure 2A) consists of the covalent bonding of the 

material fibers using a linker or linking activated functional groups (Figure 

2A). This linker will be the molecule in charge of bounding both functional 

groups of the biomaterial fibers and unite them. By liking polymer fibers with 

chemical reagents, highly enhanced biomechanical properties are achieved, 

as these fibers linking is unreversible. However, the toxicity of the unreacted 

chemical reagents is highly harmful to the cells [36]. Among all the chemical 

crosslinking approximations, UV irradiation is widely used in tissue 

engineering. Here, polymer chains are bounded due to the functional group 

activation prompted by light exposure and a photoinitiator [37]. The 

hydrogel's final mechanical properties can vary depending on the 

photoinitiator used and its activation wavelength, photoinitiator 

concentration, light power, or exposure time. However, most of these 

parameters are also toxic for the cells, so adjusting them is crucial for tissue 

engineering. Again, this approximation usually requires the chemical 

modification of the pristine material, for example, by methacrylating it. This 

process aims to provide the raw material the functional groups needed for the 

effectivity of the UV-crosslinking.  

Another chemical approach is using carbodiimide crosslinking. In here, 1-

Ethyl-3-(3-dimethyl aminopropyl)-carbodiimide (EDC)-based crosslinks are 

the most used approximations. This carbodiimide can react with various 

functional groups as carboxyl or hydroxyl groups [38]. The unreacted EDC, 

the optimal acidic conditions for the crosslinking, and other chemical 

reagents as N-Hydroxysuccinimide (NHS) activate carboxyl groups make the 

reaction more effective are parameters that need to be controlled in this 

approximation.    

The other approximation is the physical crosslinking (Figure 2B), which 

consists of the non-covalent binding of two functional groups of different 

biomaterial fibers. However, as it is non-covalent, this crosslinking is 

reversible. Moreover, the unnecessary use of chemical reagents to crosslink 

the fibers makes this approach less toxic than chemical crosslinking.  As an 

example, one of the most used biomaterials for this approach is alginate. 

Alginate can be physically crosslinked with divalent cations as Calcium (Ca2+) 

[39]. Other physical crosslinking approximations are hydrophobic 

interactions, hydrogen bonding, metal coordination, or crystallization [36].  
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By combining the biomaterials with the crosslinking techniques explained in 

this section, scaffolds can be generated with many different properties. This 

high variability allows for generating many tissues in vitro for tissue 

engineering. However, the casting technique used to crosslink the 

prepolymers is another essential property to generate the desired scaffold 

geometrical architecture needed for better cell functionality. 

 

1.1.1.3. Casting Techniques 

 

The casting technique is another essential feature of tissue engineering. By 

changing the material or the crosslinking parameters, we can mainly 

modulate its physical and biochemical properties. Moreover, we can promote 

cell functionality by endowing geometrical cues to the scaffold, and here, 

casting techniques have an important role. The most common casting 

technique to engineer tissue in vitro is hydrogel encapsulation. This 

technique consists of entrapping cells inside a biomaterial hydrogel scaffold.  

Hydrogel encapsulation has many variants to generate different architectures 

for specific tissues. Among all, 3D bioprinting is the gold-standard due to its 

high reproducibility and precise control (Figure 3A). Many different 

bioprinted-based approaches have been developed. However, the most used 

is bioprinting by extrusion. The bioinks, the polymer solution made of 

biomaterials, mixed with the cells are extruded in a specific pre-designed 

shape. The shape of the scaffold is essential to prompt cell functionality. Most 

of the tissues engineered with bioprinting are highly structured tissues, 

taking benefit of the geometrical cues that the bioprinting can highly enhance. 

Bioprinting highly aligned structures enhance cell directionality and cell 

fusion in skeletal muscle tissue [40]. Moreover, the high reproducibility of the 

bioprinting leads to generate many different scaffolds for a wide variety of 

tissues, as skin or neuronal tissue [41]. 

Nevertheless, bioprinting is not the only casting approach to encapsulate cells 

inside. Micromolding and micropatterning (Figure 3B,C)are also very used 

approximations. As the pre-crosslinked polymers are in a liquid state, the 

ability to confine this solution in a mold or a pattern and then crosslinking it 

permits generating multiple designs. Cylindric shape [25], trenches [42], 

drops [43], or pillars [44] are only a few examples of the many different 

scaffold architectures that this technique allows.  
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There are other techniques to study and engineer tissues separately from 

hydrogel encapsulation. Electrospinning is another interesting technique to 

generate the desired scaffold morphologies due to its high area-volume ratio, 

low-cost assembling, reproducibility, and versatility [45]. This technique’s 

principle consists of generating an electrostatic force to the polymer that 

electrostatic interactions will charge. After this, the polymers can be 

electrospun, forming a fibrous scaffold and varying the parameters, different 

polymer fibers diameter, fiber distribution, and bigger porosities than 

hydrogel encapsulation can be achieved. 

Finally, cryogelation and freeze-drying techniques have gained some 

relevance lately due to their attractive properties. This technique consists of 

casting and crosslinking the prepolymer solutions at sub-zero temperatures. 

With this, injectable, highly porous, and highly interconnected scaffolds can 

be generated. Also, pore morphology, stiffness, and bulk architecture can be 

modeled [46].   

 

1.2 CRYOGELS IN TISSUE ENGINEERING 
 

The utilization of hydrogel encapsulation to generate scaffolds for tissue 

engineering is, nowadays, the gold-standard technique. This technique’s 

capacity to generate 3D structures with good mechanical and structural 

stability makes this approach a handy tool for scaffold generation. 

Additionally, the high-water content and the ability to promote cell 

Figure 3: Hydrogel encapsulation casting techniques. A) 3D Bioprinting. B) Micromolding. 

C) Micropatterning. 

A) B) C)
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attachment, cell survival, or cell differentiation allowed the engineering of 

many different tissues in vitro. 

Although these beneficial properties, hydrogel encapsulation still lacks many 

essential points to generate fully functional tissues. Despite its good 

interconnectivity, its pore size limits oxygen diffusion, waste products 

removal, and nutrients [3], [47]. Small porosity also limits vessel formation, a 

key factor to engineer fully functional tissues [48], [49]. Another significant 

drawback of hydrogel encapsulation is crosslinkers’ use, such as UV light or 

glutaraldehyde, highly toxic for cells.  

Recently, to overcome these drawbacks, cryogelation appeared as a valid 

alternative. Cryogelation is a well-defined technique that generates 

microporous sponge-like scaffolds with highly interconnected pore 

structures and high-water content. Moreover, the net-like pore structure 

allows high solvent diffusion, overcoming the hydrogel limitations [50]. 

Furthermore, this technique leads to a high-water content scaffold with good 

mechanical properties, injectability, and good potential for angiogenesis. 

Combined with the option to seed the cells after scaffold fabrication, cell 

viability is highly increased compared to traditional hydrogels.  

Another great feature of cryogels is that the internal pore morphology can be 

modified by changing different variables, as temperature, cooling rate, or 

material concentration. This permits the proper scaffolding and modification 

of its biochemical and physical cues for every specific tissue.  These primary 

characteristics of the cryogelation technique make this approach a suitable 

scaffold fabrication method to engineer different tissues [51].  

 

1.2.1 Cryogelation principle 

 

Cryogels are generated by the crosslinking of the biomaterials at sub-zero 

temperatures (Figure 4). Once the prepolymer is prepared, it is placed at sub-

zero temperatures, so while the materials start to crosslink, water-ice crystals 

are formed. These water ice crystals displace the fibers of the biomaterial into 

unfrozen areas, where they crosslink.  When thawed, these ice crystals lead 

to an “empty” space called pores. These pores can range from few 

micrometers to hundreds of micrometers in diameter, showing a high 

interconnected microporosity scaffold. Apart from this pore structure, these 

scaffolds are outstanding due to their high-water content, good mechanical 
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properties, injectability, and the ability to load the cells after scaffold 

formation, leading to good cell viability.  

Moreover, its pore structure can be modified to scaffold the needed 

properties for every specific tissue. The biomaterials used, the temperature, 

the cooling rate, or the crosslinking reagents may vary the scaffold’s final 

internal structure and so its properties. By combining all these different 

parameters, unique scaffolds with specific properties can be generated, each 

for a determined tissue [51].  

Among all the previous variables, the temperature-related parameters have 

high importance in cryogelation. The sub-zero temperature prompts the ice-

crystal nucleation. This ice nucleation can vary depending on the 

temperature, the cooling rate, or even the directionality of where it comes. 

Briefly, at higher sub-zero temperatures (from 0ºC to -10ºC), ice crystals are 

small in a wide variety of shapes, from needles to dendrites or plates. By 

decreasing the temperature (from -10ºC to -25ºC), bigger dendrite or plates 

are formed. Around -20ºC is where the size of these ice crystals is the biggest. 

By decreasing the temperature, ice crystals lead to smaller plates or 

cylindrical columns  [52], [53]. However, this crystal morphology may vary by 

changing the pressure or the cooling rate and modulating the pore diameter 

of the cryogels [54]. Last, even the directionality of the temperature applied 

Sponge-like structurePrepolymer solution

Freezing
Defreezing

Freezing

Figure 4: Cryogel principle.  When prepolymer solution with crosslinking reagents are 

frozen. While ice-water crystal nucleation starts, the fibers are displaced, prompting the 

crosslinking of it. When thawed, ice crystals lead to empty spaces, that turs into porous. 

Finally, a sponge-like scaffold is generated. Moreover, freezing directionality changes pore 

architecture. 
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can influence pore architecture. For example, placing the prepolymer solution 

over liquid nitrogen or carbonic ice forces the nucleation to grow in one 

direction, forming highly aligned and tubular pores [55].  

In the freeze-drying and cryogelation technique, the most usual crosslinking 

is the chemical crosslinking (Section 1.1.1.2). The utilization of this kind of 

crosslinkers allows the formation of the pore architecture while the ice-

crystals are formed.  Carbodiimide, free radical, and glutaraldehyde 

crosslinking are the most used approximations to engineer the scaffolds. In 

cryogelation, due to the high porosity achieved in the scaffolds, the unreacted 

chemicals represent a lower risk after an easy removal of it by consecutive 

washings.  

 

1.2.2 Cryogelation for tissue engineering 

 

One of the essential variables for tissue engineering is the biomaterials used 

to generate the scaffold. From naturally derived to synthetic or a combination 

of biomaterials can be used to form cryogels. Equally, in hydrogels, each 

biomaterial can dote the scaffold of unique mechanical and biochemical 

properties to help the tissue formation. Blends of different biomaterials 

crosslinked by cryogelation allow obtaining different scaffolds suitable for 

many different tissues, as cartilage [55], bone [56], liver [57], or neural tissue 

[46]. 

Natural-ECM-derived biomaterials are the most common choice to generate 

cryogel scaffolds, mainly due to their biocompatibility and bioactivity. These 

biomaterials have many ECM-like cues, which convert these biomaterials into 

an excellent choice. Gelatin is the most used biomaterial due to its biochemical 

cues, biodegradability, and low-cost effectiveness [55]–[58]. Also, gelatin has 

a strong potential to be modulated in different approaches. For example, to 

generate bone-like tissue, a highly anisotropic structure by temperature 

directionality was achieved [55]. Other applications for bone tissue 

engineering may be using a gelatin methacrylate cryogel [56]. The scaffold’s 

properties can be enhanced without changing its structural properties by 

adding microparticles or nanotubes. Here, bioglass particles were 

incorporated to improve osteoconductivity. Other ECM-derived biomaterials 

have been used besides gelatin, as collagen [59], [60] or laminin [61].  

Other common biomaterials are the natural but non-ECM derived 

biomaterials like alginate [46], [62], chitosan [63], or cellulose [46], [64].  This 
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kind of biomaterials are a useful tool for scaffold generation mainly for their 

biocompatibility, good mechanical stability, no enzymatic degradation, and 

low cost.  

Other approaches use synthetic biomaterials to fabricate inactive scaffolds 

with good mechanical properties. In synthetic materials, the biochemical cues 

can be provided by multiple approximations, as peptide functionalization or 

surface coating of different proteins [65]. Among all the synthetic 

biomaterials used in cryogelation, the most common is Polyethylene glycol 

(PEG) [66]–[68]. However, there are many different synthetic materials with 

plenty of different properties.  Some less-used biomaterials are poly-e-

caprolactone (PCL) [69], poly(lactide-co-glycolide) (PLG)[70], Poly-

hydroxyethyl methacrylate (PHEMA) [71] or poly (vinylpyrrolidone) [72].  

However, single biomaterial cryogels lack some properties to have the 

desired scaffold for tissue engineering. The combination of different 

biomaterials is an up-and-coming solution [73]. With this, a more ECM-

resemblant scaffold can be achieved. For example, polyethylene glycol (PEG) 

was combined with gelatin to form an improved mechanical stable cryogel for 

soft tissue engineering [58]. Another example could be the combination of 

PEG with Heparin [74] to generate a co-culture of pancreatic islets and 

mesenchymal stromal cells or the combination of PEG with gelatin and 

alginate to generate liver tissue [75].  

 

1.3 ORGANS-ON-A-CHIP 
 

In the last years, personalized medicine gained much relevance due to tissue 

engineering advances. The ability to generate tissues in the laboratory 

became a useful tool for drug development, drug screening, or disease 

modeling. Moreover, the ability to generate patient-derived tissues opens a 

wide range of possibilities in personalized treatment. Despite the low 

resemblance between engineered tissues and human tissues, tissue 

engineering became a useful tool to complement tests in traditional cell 

culture methods [76]. However, tissue engineering did not yet provide 

enough robustness to extrapolate results directly from the in vitro to the in 

vivo. 

For this, animal testing is still needed and the closest approximation to human 

physiology. According to the UE, in 2017, around 10 million vertebrate 

animals are used for many studies as drug screening, metabolic assays, or 
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A)

B)

C)

D)

Figure 5: Overview of different Organs-on-a-Chip (OOC) fabricated for different tissues. 

A) First developed OOC. It simulates the alveolar function of the lungs (Huh et al. [79]). B) A 

skeletal muscle-on-a-chip device. ITO electrodes are printed in the glass to generate electric 

pulse stimulation. (Ortega et al. [42]) C) A pancreas-on-a-chip.  That allows to trap pancreatic 

islets and sense its insulin secretion (Gliermann et al. [258]). D) One example of next 

generation of Organs-on-a-chip. In here, liver tissue and kidney tissue are both studied. (Tian 

et al. [86])  
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disease modeling [77]. However, the unmatching physiological behaviors 

compared to humans, the variability between different animals, ethical 

dilemmas, and the need to go for more personalized medicine prompted other 

suitable alternatives.  

As a potential alternative to animal testing and a trustable platform for 

preclinical studies or disease modeling, organs-on-a-chip appeared as a valid 

technology. Organs-on-a-chip (OOC) are 3D bioengineered microfluidic cell 

culture platforms to simulate an organ or its specific functions. For this, OOC 

recreates tissue-tissue interactions or its microphysological environments by 

generating external physical and biochemical inputs to simulate the activity 

of the desired organ [78]. The highly modulable capacity of microfabrication 

and microfluidic techniques makes this approach a proper tool for a wide field 

of applications. Moreover, OOC can be combined with biosensing platforms 

for constant monitoring of cell behavior. Furthermore, by engineering 

patient-derived tissue inside every chip, many requirements of personalized 

medicine could be accomplished, and so, in the future, partially substitute 

animal testing. 

Until now, many various tissues were engineered in these microfluidic 

platforms. The first organ on a chip was the Lung-on-a-chip, generated by Dr. 

Ingber group [79]. This OOC simulates the alveolar-capillary interface on the 

lung. Interestingly, it has two vacuum channels, so the pulmonary respiration 

can be simulated. Since the first appearance of an OOC, many other organs-

on-a-chip appeared and with many different applications, as drug screening 

or disease modeling. Intestine [80], liver [81], heart [82], skeletal muscle [42], 

pancreas [83] or kidney [84] are only a few examples of new OOC that 

appeared recently. All this OOC has the common property of being a single-

tissue OOC. Nowadays, the next generation of OOC starts to appear. This new 

generation consists of multi-tissued OOC for more precise disease modeling 

or drug screening. For example, pancreas-liver OOC [85] or liver-kidney OOC 

[86] are examples of these multi-tissued Organs-on-a-chip. 

Another example of an Organ-on-a-chip is the one being developed in our 

group that has the objective to study how different tissues crosstalk under 

diabetic conditions. Specifically, this thesis aims to generate specific scaffolds 

using cryogelation technique to engineer pancreatic and skeletal muscle 

tissues for further incorporation inside an OOC. 
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1.4 DIABETES 
 

Diabetes is a group of metabolic diseases characterized by high blood glucose 

levels over a prolonged period. According to WHO (World Health 

Organization), in 2014, 422 million people suffer this disease worldwide. The 

number of diabetic patients highly increased in the last years. To note, 

according to IDF (International Diabetes Federation), 463 million people 

suffered this disease in 2019, and 79% of adults with diabetes live in low- or 

middle- income countries, 2 in 3 lives in urban areas, and 50% of diabetic 

patients are undiagnosed. Precisely, it is estimated that 9,3% of adults 

worldwide have diabetes, representing 1 in 11 adults ranging from 18 to 79 

years old.  Diabetes is also one of the diseases with more economic impact. In 

2019, IDF estimates that the total diabetes-related health expenditure 

reached USD 760 billion, representing 10% of the 10% of the global health 

expenditure. Compared to the 2017 USD 727 billion, it represents an increase 

of 4,5% in only two years [1].  

Figure 6: Infographic of diabetes incidence. (Adapted from 9 th IDF atlas [1]) 
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However, diabetes is not only about blood glucose levels. This disease and its 

associated high glucose levels may lead to many other complications as heart 

attacks, vascularization difficulties, renal insufficiency, blindness, or limb 

amputation. Moreover, diabetes and high blood sugar levels were the 7th 

leading cause of death in 2016, estimating 3.8 million deaths.  

Diabetes has its origin in many different factors. Starting from genetics or 

population aging to unhealthy lifestyle, sedimentary behaviors, and 

unhealthy diets, which leads to overweight and obesity [87]. Together, all 

these factors make that the estimations of diabetic people highly increase in 

the upcoming years, rising approximately to 700 million diabetic patients in 

2045 [1].  

Nowadays, the initial treatment for diabetes consists of a healthy diet and 

physical exercise. If this results unsuccessful, oral drugs or, in some cases, 

insulin injections may also be needed to control hyperglycemia.  

Mainly, there are three types of diabetes, type 1, type 2, and gestational 

diabetes: 
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Figure 7: Body alterations due to diabetes. A) Diagnosis events for diabetes. B) Diabetes 

related complications 



Introduction 

32 
 

1.4.1 Type 1 diabetes 

 

Type 1 diabetes occurs when the pancreas does not produce enough insulin, 

mainly due to autoimmune defects and highly affecting insulin production. 

The body’s autoimmune response destroys approximately 75% of the beta-

cell mass, leading to a progressive insulin deficiency [88]. The chronic lack of 

insulin production lately affects other organs like kidneys or leads to acute 

cardiovascular diseases, the leading causes of mortality associated with this 

disease [89].   

Nowadays, type 1 diabetes represents 10% of the whole diabetic patients. 

This disease highly increased its prevalence in the last years, passing from 2% 

to 5% worldwide [90]. Although type 1 diabetes can affect people of all ages, 

it is developed predominantly in children or young adults.  

Despite the high mortality associated with this disease (3-4 times higher than 

a healthy patient), this disease is still not fully understood [89]. The lack of 

knowledge about this autoimmune disease is one of the limitations to find a 

cure. For this, there is not a definitive treatment. In some cases, the only 

preventive treatment for diabetes is the lifetime and periodic injection of 

insulin. This insulin injection may be done more than once per day under 

continuously glucose-monitoring or via automatic insulin pumping, resulting 

in a very dependent disease. Combining insulin injections with a healthy 

lifestyle (healthy nutrition and physical exercise) increases the patients’ 

quality of life to almost average life expectancy.  

 

1.4.2 Type 2 diabetes 

 

Type 2 diabetes (T2D) represents 90% of the total adult patient with diabetes. 

This disease was traditionally associated with adult humans, although, every 

year, more diabetic children are diagnosed. This type of diabetes has a wide 

variety of risk factors. Genetics, a sedimentary lifestyle, or an unhealthy diet, 

leading to obesity are the major causes of diabetes [87]. Nowadays, 85% of 

diabetic patients have obesity. Patients suffering from T2D and obesity may 

also suffer cardiovascular and kidney complications, the leading diabetes-

related causes of mortality in T2D patients [91].  

This type of diabetes occurs when the body becomes resistant to the 

pancreas' insulin, and finally, there is insufficient insulin production and, 

consequently, hyperglycemia. Diabetes starts when the organs in the body 
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can not properly use insulin. Due to this effectiveness, the blood glucose 

remains high.  This situation prompts the pancreas to produce insulin 

continuously [1]. Over time, this pancreatic dysfunction drives beta-cell 

failure, losing approximately 50% of beta-cell mass [91], leading to a lack of 

insulin production and hyperglycemia. Moreover, this unbalanced glucose 

homeostasis affects many organs in the body as skeletal muscle, liver, kidney, 

brain, small intestine, or adipose tissue. Other complications as endothelial 

dysfunction, hypercoagulability, or increased platelet reactivity may also be 

caused by unbalanced glucose-insulin pairing [91].  

Nowadays, there is no cure for T2D, but it can be prevented and slightly 

controlled by lifestyle modifications [87].  

 

1.4.3 Gestational diabetes 

 

Gestational diabetes can occur in pregnant women. It differs from T1D and 

T2D in that this diabetes is reversible and finishes once the pregnancy ends. 

However, suffering from gestational diabetes increases the risk to suffer type 

2 diabetes in the future for both the mother and the children [92]. 

This diabetes consists of the incapacity to generate enough insulin to counter 

the amount of glucose and hormone production made by the placenta in the 

body during the pregnancy.  These hyperglycemic levels are above average 

but below the levels for a diabetes diagnosis. However, this gestational 

diabetes may lead to T2D, and it can be reverted naturally past 6-12 weeks 

post-partum [92].  

 

1.4.4 Tissues related to diabetes. 

 

Diabetes is always mainly related to the pancreas, as it is the glucagon-insulin 

secretory organ. However, many other tissues are involved in this disease. 

Although pancreas, other essential tissues, and organs are the liver, the 

skeletal muscle, or the adipose tissue. The liver has a significant impact on 

insulin-glucose homeostasis. Briefly, the liver is the organ responsible for 

transforming the glucagon, released by the pancreatic alpha-cells, into 

glucose and releasing it into the blood flow by a process called glycogenolysis. 

Also, in high blood glucose levels, it can store glycogen by uptaking glucose 

through glycogenesis (Figure 8). The unbalanced insulin-glucagon secretion 
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of the pancreas may lead to the continuous transformation of glucagon into 

glucose, leading to high blood levels. 

Other tissues related to diabetes are glucose-consuming tissues like muscle 

tissues [93]. Due to its continuous activity, skeletal or cardiac muscle tissues 

are highly glucose-dependent. These tissues can uptake the glucose secrete 

by the liver or from the blood flow and transform it into metabolic energy by 

glycolysis. Adipose tissue is also a critical tissue involved in insulin-glucose 

homeostasis. Adipose tissue has the primary function of storing lipids in a fat 

form to protect the body from high glucose levels. This tissue has an 

endocrine function that influences glucose metabolism that may alter insulin 

secretion [86]. 

 

 

Among all, the relation between the pancreas and skeletal muscle in glucose-

insulin homeostasis is still not clear. Although skeletal muscle is well-known 

tissue for its contraction and mechanical stability supporter, it also 

significantly impacts glucose-insulin homeostasis, as extensive glucose-

Low blood
glucose levels

High blood
glucose levels

Glucagon

Glucose

Insulin

Insulin

Figure 8: Glucose-insulin homeostasis in different diabetes-related tissues. When 

glucose levels are low, pancreatic alpha-cells secrete glucagon, and liver transform it into 

glucose, to be uptake by glucose-consuming organs for metabolic energy generation. When 

the blood glucose levels are high, pancreatic beta-cells secrete insulin, to trigger the glucose 

uptake by different tissues. 
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consuming tissue. Recently discoveries about the skeletal tissue's endocrine 

function and how skeletal muscle cytokines may affect insulin-glucose 

homeostasis generated some controversy. Among all the cytokines skeletal 

muscle releases, interleukin-6 (IL-6) seems to impact insulin secretion and 

glycemic regulation directly. (More information in Section 1.6.3) 

Due to these skeletal muscle endocrine function findings and which cytokines 

and how can affect the pancreas and glucose-insulin homeostasis, it is 

interesting to generate both tissues in the laboratory and study its 

crosstalking in an Organ-on-a-chip technology. 

 

1.5 PANCREATIC TISSUE 
 

1.5.1. Pancreas histology 

 

The pancreas is an essential organ of our body, located behind the stomach 

and half-surrounded by the duodenum. It is composed of a head, a pancreatic 

neck, and a tail. Although the pancreas is well known for its endocrine 

function of secreting hormones, it is also part of the exocrine system. Indeed, 

the pancreatic endocrine portion, composed of the pancreatic islets, only 

accounts for around 2% of this organs’ total mass. In contraposition, the 

exocrine part is approximately 95% of the total mass [94].  

The exocrine part of the pancreas is mainly composed of acinar cells. These 

cells produce different digestive enzymes as nucleases and lipases secreted 

directly to the duodenum [95]. On the other hand, the endocrine pancreas is 

mainly composed of Islets of Langerhans. These pancreatic islets are cell 

aggregations consisting of many different hormone-secreting cell types 

(alpha cells, beta cells, delta cells, epsilon cells, and pp cells) to regulate the 

glucose homeostasis in the body (Figure 9). It is known that in humans, there 

are around 1 million islets of Langerhans in our pancreas [96]. These cell 

aggregations have a wide range of sizes, ranging from a few microns to 150-

200 μm in diameter [97]. However, these sizes and the pancreatic cell 

percentages may vary among different mammal species or their metabolic 

state.  

Alpha and beta-cells are the most common cells within Langerhans’ islets. 

Alpha-cells represent around 30-40% of the cells in the islets of Langerhans 

in humans. The primary function of these cells is to secrete glucagon into the 
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blood flow [98]. In contraposition, beta-cells are the most abundant cells in 

the pancreatic islets, representing 50-60% of the islet total cells. They are 

responsible for secreting insulin, the antagonist of the glucagon, and amylin. 

Delta, epsilon, and PP cells are responsible for secreting somatostatin, ghrelin, 

and pancreatic polypeptide. They are the less common cells in pancreatic 

islets, representing together less than 10% of the total amount of cells. In 

rodents, the ratio of these cells varies significantly compared with humans. 

Beta-cells represent almost 60-80% of the number of cells in the pancreas, 

whereas alpha-cells only represent 10-20%. Delta, epsilon, and PP cells 

represent less than 10% [99]. Additionally, in rodents, the islet architecture 

highly varies from humans. In rodents, beta-cells are focused on the core of 

the pancreatic islet, while alpha-cells are found peripherally.  

 

 

1.5.2 Pancreas and beta-cell development 

 

Pancreatic development begins at embryo day 8.5 in mice and gestational day 

26 in humans [100].  Pancreas/duodenum homeobox protein 1 (PDX1), a 

homeodomain transcription factor found in mature beta-cell, plays a crucial 

role in pancreatic development, beta-cell differentiation, and beta-cell 

function [101]. It is already expressed at gestational week 4 in humans or 

embryonic day 8.5 in mice, where pancreas development begins. This protein 

is essential for early embryonic development. Also, PDX1 is needed for later 

differentiation of pancreatic lineages. At E11.5, PDX1 expression decreases as 

Alpha cells

Beta cells

Delta cells

Epsilon cells

PP cells

Blood vessels

HUMAN RODENT

Figure 9: Schematic representation of the pancreas and its functional unit, pancreatic 

islets. Pancreatic islets are composed of many different cells; however, percentages and 

distribution are not equal in humans than in rodents.  
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pancreatic epithelium is already formed. However, in the mature pancreas 

and mature beta-cells, this protein is again expressed, as it is crucial in beta-

cell function [102]. Interestingly, when PDX1 expression is down expressed, 

Neurogenic differentiation 1 (NeuroD1) starts to express at E10.5 in rodents 

and week 15 in humans. Since here, the expression of NeuroD1 is 

continuously expressed, having an essential role in beta-cell fate and insulin 

regulation [103]. At E13.5, V-maf musculoaponeurotic fibrosarcoma 

oncogene homolog A (MafA) is firstly expressed in rodents, as PDX1 regulates 

it. Equally in humans, MafA is firstly detected at embryo week 21. Since this 

first expression of MafA, this protein expression gradually increases, as this 

transcription factor is crucial for beta-cell maturation (Figure 10).   

 

Besides, there are many transcription factors involved in maintaining beta-

cell identity. These three exposed transcription factors play a crucial role in 

insulin-secreting cell functionality [102]. MafA, NeuroD1, and PDX1 are all in 

charge of activating the insulin secretion gene in response to increasing 

glucose levels.  

Aside from the continuously increasing knowledge of the pancreas formation, 

the pancreatic regeneration, or the beta-cell formation and regeneration, still 

Pdx1 NeuroD1

Alpha-cell

Beta-cell

MafA
Pdx1

MafAPax4

NeuroD1

NeuroD1 MafAPdx1

Pancreatic 
Buds

Endocrine 
precursor 
cells

Figure 10: Beta-cell differentiation pathway. Different transcription factors expressed in 

early stages are also expressed in late stages, being important beta-cell health and 

functionality markers.  
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has a significant lack of knowledge [95]. Different theories of how beta-cells 

differentiate are exposed, but none of them show some definitive light in the 

field.  

Due to these unknown events and the difficulty of obtaining or generating 

fully functional human pancreatic islets in vitro, different strategies appeared 

to study the pancreatic tissue and its functionality in many pancreatic-related 

diseases. Studying pancreatic islets from rodents or mammals is the gold-

standard technique. However, human pancreatic islets are very difficult to 

obtain due to the donor’s cadaveric conditions. Its obtention is more 

straightforward in rodents than human islets; however, it implies the animal’s 

sacrifice to obtain the islets. Moreover, the variability among donors and 

experiment batches complicates the comparison between them [104]. In front 

of these difficulties, cell lines are a valid alternative to engineer and study 

pancreatic tissue. Mouse insulinoma (MIN6) and rat insulinoma (INS1) are 

the most resembling cell lines to examine beta-cell functionality. INS1 cell line 

was developed in 1992 for Asfari et al. [105] and became the gold standard 

cell line for beta-cell studies due to its similar morphological characteristics 

and glucose-depending insulin responsivity. These cells have the 20% insulin 

content comparing to native beta-cells, and despite their low proliferation 

ratio compared to other immortalized cell lines, they can be passed and 

remain functional up to passage 80 [105]. Finally, other approximations to 

study diabetic diseases and alpha- and beta-cell functions are to reprogram 

non-insulin producing cells into beta-cell like cells [106], [107] or 

differentiate pluripotent stem cells into insulin-secreting cells [108], [109]. 

One common point of all these approximations is the enhanced functionality 

of the insulin-secreting cells aggregated in clusters. It has been proved that 

the cell-cell interactions in these pseudoislets, resembling the in vivo 

architecture of the pancreatic islets, improves beta-cell maturation and 

functionality in both cell lines [6], [110], [111] and stem cells [70], [112].  

However, many of these approaches use non-adherent surfaces or flat 

strategies to generate or study beta-cell differentiation and functionality. 

These approximations obviate the role of the pancreatic extracellular matrix 

(ECM) that is found in vivo. ECM has an essential role in cell behavior. The 

mechanical cues, as the substrate stiffness [8] or the biochemical cues, can 

favorably modulate cell behavior and functionality [113], [114]. The use of 

biomaterials to generate structures similar to the pancreatic ECM is an 

exciting and promising point to generate a more in vivo-like environment for 

better pancreatic-tissue approximation.  
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1.5.3 Hormone regulation 

 

Sugar blood regulation is one of the major homeostatic processes in the whole 

body, and it is carried out by glucagon and insulin, counter-regulatory 

hormones. These hormones are both secreted in the pancreatic islets by the 

alpha-cells and the beta-cells, correspondingly.  

Insulin is a 51 aminoacid polypeptidic hormone. Its principal function is 

regulating the body’s metabolism by pairing to the glucose and making it 

accessible for various tissues. On the other hand, glucagon is a 29 amino acid 

hormone. Its principal function is to increase glucose secretion by the liver 

during glycogenolysis, converting glucagon into glucose.  

After eating, glucose levels are highly increased. When this occurs, alpha and 

beta-cells are capable of sensing this event. Beta-cells start to secrete insulin 

under these high blood sugar level conditions, and alpha-cells stop secreting 

glucagon. Insulin is responsible for pairing with blood glucose, so the insulin-

depending tissues as the skeletal muscle can use it to generate metabolic 

energy or be stored in a glycogen form in the liver through glycogenesis.  

When blood glucose levels are low, the opposite process occurs. Beta-cells 

stop secreting insulin, and alpha-cells start to secrete glucagon. Glucagon 

secretion is regulated by beta-cell function, by secreting γ-amino-butyric acid 

(GABA), Zinc ions, and glutamate [115]. However, this is not the only path for 

the alpha-cells to secrete glucagon. Other factors like the autonomic and the 

central nervous system, some neurotransmitters, and other hormones can 

induce this glucagon secretion. When secreted, glucagon is uptaken by the 

liver, where glycogenolysis starts. This process consists of converting the 

glycogen stored in the liver into glucose and release it into the blood flow. 

This glucose can then be uptaken by the skeletal muscle and transform into 

metabolic energy through glycolysis.   

This homeostasis is essential as the unbalanced pairing of insulin-glucose 

may lead to critical blood sugar levels. When these levels are low, it is named 

hypoglycemia. However, when blood glucose levels are elevated, 

hyperglycemia and persistent high blood glucose levels may lead to severe 

diseases such as diabetes. 
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1.5.4 Pancreatic tissue engineering 

 

Pancreatic tissue engineering presents many limitations. The difficulties of 

obtaining pancreatic islets from donors due to cadaveric conditions elevate 

this tissue to a more intricate approximation. The pancreatic tissue studies 

mainly focus on two approaches: studying rodent or mammal pancreatic 

islets or studying beta-cell function as a pancreatic tissue model.  

Studying pancreatic islets as functional pancreatic tissue has strong potential 

due to their in vivo properties. Its architecture, cell proportionality, and 

glucose secretion are strong points of using pancreatic islets. Most of the 

pancreatic studies with islets of Langerhans are made in suspension or non-

adherent cell cultures. With this, islet size heterogeneity, spherical 

architecture, cell percentages, and glucose sensitivity are maintained, 

mimicking the in-body situation. However, as previously mentioned, this 

approximation has substantial limitations. Besides the variability and the 

difficulty to obtain pancreatic islets, study pancreatic islets in suspension, 

without a scaffold, did not mimic the body situation, as they are not 

surrounded by any matrix [114]. To improve this, some studies encapsulate 

islets of Langerhans inside hydrogel [31], [116]–[119]. This approximation 

allows a better in vivo resemblance by adding a soft matrix around it. Most of 

these studies are made for transplantation, so this matrix also protects the 

islets from the immune system and avoids biocompatibility defects.  

The difficulty in obtaining pancreatic islets from mammals or rodents 

impulses new approaches to study pancreatic tissue. Differentiate stem cells 

to insulin-secreting cells is a valid alternative [70], [120]. However, the most 

used approximation to engineer pancreatic tissue is utilizing immortalized 

beta-cell lines, as INS1 or MIN6. These are producing insulin-cell lines that 

have reasonable proliferation rates for expansion and cell culturing, good 

glucose sensitivity, and reflect similar physiological conditions [104].  Despite 

insulin-secreting cell lines can be cultured and expanded in monolayer, 

different studies proved the better functionality of clustered cells [121]–

[123]. For this, in pancreatic tissue engineering, cell aggregations are 

encapsulated inside hydrogels in the form of spherical aggregations [116], 

[124].  

In pancreatic scaffolding, many different casting techniques have been used. 

Due to its reproducibility, 3D bioprinting is the gold-standard technique to 

encapsulate pancreatic islets inside hydrogel scaffolds [31], [116], [118]. 
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However, other casting techniques as micromolding are widely used for their 

moldability and ability to create small and thin constructs [117], [124]. 

In all these approximations, many different materials have been used for 

islets or cell aggregates encapsulation. Natural-derived materials are the most 

common due to their biocompatibility and bioactivity. ECM-derived 

biomaterials, as collagen [125],  gelatin [118], [126], or fibrin [120], are 

mainly used for their biochemical activity. Combining these biomaterials with 

non-mammalian cell degradable biomaterials as non-ECM derived 

biomaterials or synthetic polymers enhances its mechanical stability. Alginate 

[116], [118], cellulose [31], or polylactic acid (PLA) [120] are only a few 

examples of stable and mechanically enhanced biocomposites.  

However, small porosity and low diffusion of hydrogels taunt decreased 

viability and glucose sensitivity [3], [47]. This problem increases as more 

prominent are the cell aggregations, leading to early cell core hypoxia. 

Moreover, pancreatic islets are highly sensitive tissue. In vivo, it needs to 

sense and secrete insulin or glucagon fast to respond to the sugar blood levels. 

If the diffusion of the scaffold is not high, this retarded sensing from the islets 

can lead to insulin-secreting defects or a not accurate model of pancreatic 

tissue. To overcome these limitations, the use of microporous cryogels gained 

much relevance recently.  

 

1.5.5 Cryogels in pancreatic tissue engineering 

 

Despite the recent advances in cryogelation and tissue engineering, cryogels 

with for pancreatic tissue engineering are still not much explored.   

In pancreatic tissue, we can find Borg et al. [74] where they fabricated a Poly( 

ethylene)glycol – heparin cryogel for co-culturing of pancreatic islets and 

mesenchymal stromal cells. In here, cryogel was transplanted in mice for type 

1 diabetes studies. Similarly, we can find other studies with pancreatic islets 

seeded inside silk fibroin - Heparin cryogel [127], in collagen-calcium 

peroxide cryogel [59], or gelatin and poly (vinylpyrrolidone) cryogel [72].  
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The limitations in pancreatic islet obtention and the non-resembling 

functionality of monolayer immortalized cell lines open another exciting 

approximation. Taking profit from the microporous structure of the cryogel, 

aggregating insulin-secreting cells inside the cryogels opens an interesting 

approximation for pancreatic tissue engineering. For example, dextran-

gelatin cryogel was used to differentiate adipose stem cells into insulin-like 

cell clusters [125].  Similar to this, human pluripotent stem cells were 

differentiated into insulin-secreting cells and clustered inside poly(lactide-

co-glycolide) (PLG) and polyethylene glycol (PEG) cryogels [70].  

A) B)

C) D)

E) E)

Figure 11: Small overview of pancreatic tissue engineering. A) Bioprinted scaffold for islet 

encapsulation in alginate-based hydrogel (Marchioli et al. [116]). B) Alginate bioploted scaffold 

of pancreatic islets (Duin et al. [31]). C) PEG-heparin cryogel for co-housing pancreatic islets and 

mesenchymal stromal cells. (Borg et al. [74]). D) Heparin-silk microporous scaffold for seeding 

pancreatic islets inside. (Mao et al. [127]). E) Beta-cell aggregations in gelatin electrospun 

scaffolds (Blackstone et al. [126]). F) Beta-cell progenitor aggregations inside microporous 

scaffolds fabricated by porogen leaching (Youngblood et al. [70]). 
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To date, cryogelation is still a not very advanced technique to generate 

scaffolds for tissue engineering. Pancreatic tissue engineering is still mainly 

focused on hydrogel encapsulation for transplantation in diabetes type 1 

studies. Previously exposed limitations as oxygen and nutrient diffusivity 

complicates the functionality of the encapsulated pancreatic islets. 

Moreover, this tissue is highly sensitive and needs fast sensing of the blood 

glucose levels. If the diffusion of it is slow, the delayed release of insulin makes 

this approach nonrealistic. To overcome this, the microporosity of the 

cryogels and their high diffusion rate should allow fast glucose sensing and a 

more realistic in vivo 3D environment. The possibility to seed cells after the 

material crosslinking and the potential to aggregate the cells in clusters is a 

potential option to engineer functional in vivo like pancreatic tissue in vitro.  

Moreover, its easy manipulation should permit to cryogelation be an exciting 

tool to study diabetes type 2 in vitro. 

 

1.6 SKELETAL MUSCLE TISSUE 
 

1.6.1 Skeletal muscle structure 

 

Skeletal muscle tissue represents 40% of the mass of an adult body. Its 

principal function is to give mobility and support to the body [128].  

The skeletal muscle structure goes from the whole tissue to single proteins 

capable of contracting this muscle and allowing the body’s movement. The 

muscle is a well multi-layered tissue, highly structured, and highly aligned. 

Each muscle is composed of multiple sub-units called muscle fascicles 

surrounded by an extracellular matrix. This extracellular matrix is called 

perimysium, and it is mainly formed of Collagen Type I and V. At the same 

time, this conjunct of fascicles and ECM is surrounded by a layer of connective 

tissue, called epimysium, which is the most external layer of the muscle and 

is mainly composed of collagen type I and type III.   

Each muscle fascicle is composed of many muscle fibers (myofibers).  Muscle 

fibers are also surrounded by the last extracellular matrix layer, called 

endomysium [129]. Endomysium is mainly composed of Collagens type I, type 

III, and type V. Muscle fibers are mature multinucleated and highly aligned 

cells fused from single myoblasts to form myotubes. Each muscle fiber has 

approximately 1 cm in length [128].  
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Muscle fibers are composed of many muscle fibrils (myofibrils). These fibrils 

are composed of repetitive contractile units called sarcomeres. Finally, a 

sarcomere is mainly composed of two proteins: actin and myosin [130].  

These two proteins are the main ones responsible for regulating the 

contraction of the skeletal muscle. Briefly, actin is the thin filament with a 

myosin-binding site. Myosin is a thick filament with two actin-binding sites. 

The muscle contraction occurs because of the movement of the myosin heads 

on actin filaments (Figure 12).  

 

1.6.2 Skeletal muscle formation and differentiation 

 

Differently from pancreatic islets and beta cells, skeletal muscle tissue is well-

known for its regeneration capability. 

This regeneration ability is performed by cells located close to the muscle 

fibers. Progenitor muscle cells or satellite stem cells are a heterogeneous 

population of stem cells. These cells can enter the cell cycle by differentiating 

into myoblasts. Once they became myoblasts, these cells can divide, 

proliferate, or differentiate into myotubes by fusing with other myoblasts 

Figure 12: Skeletal muscle structure. Skeletal muscle is a highly aligned and structured tissue. 

Skeletal muscle is formed by a conjunct of muscle fascicles. Each muscle fascicle is, at its time, to 

a conjunct of myofibers. Finally, these are composed of many myofibrils, composed of sarcomeres. 

In these sarcomeres is where actin and myosin, the proteins responsible of contraction, are found. 

Actin
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[131]. Many transcription factors regulate all this cell cycle. While satellite 

stem cells are in a quiescent state, they express Paired box Proteins 3 and 7 

(PAX3 and PAX 7). However, when they differentiate into myoblasts, this 

expression is downregulated, and Myogenic Factor 5 (MYF5) first and 

myogenic differentiation 1 (MYOD) later are expressed. These transcription 

factors are crucial for myogenic cell determination. In this step, myoblasts 

exponentially divide and proliferate before differentiating into myotubes by 

fusing between them [131].  

When this occurs, MYOD expression starts to down express, and neither PAX7 

and MYF5 are expressed. In contraposition, Myogenin (MYOG) and Myogenic 

regulatory factor 4 (MRF4) are expressed.  However, these myotubes need to 

undergo maturation to be fully contractile and functional. Depending on the 

myogenic differentiation stage, different markers are expressed, but 

constantly decreasing the expression of MYOG as more mature are the 

myotubes. Some of the most relevant proteins expressed during myotube 

maturation are actin, myosin (Myosin Heavy Chain (MHC) and its isoforms), 

or Troponin (Figure 13). 

 

Myoblasts
Satellite 
cell

Inmature
myotubes

Fusing 
myoblasts

Mature 
myotubes

PAX7 MyoD Myog Mhc Tnnt

Figure 13: Transcription factors expressed during the myogenic development. During 

myogenic maturation different markers are expressed, sign of its grade of maturation. 
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1.6.3 Skeletal muscle myokines 

 

Until now, it is well known how muscles can uptake glucose. During exercise, 

glucose levels decrease due to the conversion of it into Adenosine 

triphosphate (ATP). Because of this decrease, the skeletal muscle needs to 

uptake more glucose to keep converting it into ATP. This transportation of 

glucose inside the muscle is carried by Glucose transporter type 4 (GLUT4) 

[132]. However, recent discoveries proved that skeletal muscle is not only a 

glucose-consuming tissue. Nowadays, we also know that skeletal muscle has 

an endocrine function [133].  

Myokines are the cytokines released by the active muscle. The essential 

myokines that seem to have some effect on the pancreas are interleukins. 

Among all the interleukins, Interleukin-6 (IL-6), a proinflammatory cytokine, 

is the most common skeletal muscle secreted cytokine and has a pivotal role 

in type 2 diabetes and obesity, as high concentration of it are found in plasma 

[134]. 

However, the correlation of high IL-6 levels in diabetic and obesity conditions 

is proved, there is some controversy on how it acts in glucose-insulin 

metabolism [135]–[137]. Firstly, the pathological influence of IL-6 in 

metabolism was observed. Many articles claimed that elevated interleukin-6 

levels highly correlate with insulin resistance in liver and adipose tissue 

[138], [139]. However, other studies observed an increase in insulin 

sensitivity when this interleukin was secreted, helping glucose homeostasis 

[134]. Here, they claim that IL-6 secreted from skeletal muscle during 

exercise stimulates glucagon-like peptide-1 (GLP-1), so induces insulin 

secretion.  

Also, other interleukins as IL-1β has a crucial role in inducing β-cell damage.  

Another interesting skeletal muscle cytokines that have effects on pancreatic 

behaviors and glycemic control are angiopoietin-like protein 4 (ANGPTL4), 

which is observed to prompt hyperplasia in pancreatic alpha-cells [140], 

[141] and, Tumor necrosis factor (TNF-α) that prompts insulin resistance 

[142]. Finally, other more specific myokines as angiogenin and 

osteoprotegerin may influence favorably to protect β-cell survival by 

promoting anti-inflammatory actions [143].  
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1.6.4 Skeletal muscle tissue engineering 

 

Skeletal muscle tissue engineering has appeared as a useful tool to study 

many muscular diseases, such as muscular dystrophy [144] or the 

crosstalking between this tissue and others, simulating multiorgan diseases 

as diabetes [17]. The well-understood path of muscle regeneration and the 

easy obtention of patient cells makes skeletal muscle tissue engineering a 

promising field in personalized medicine.  

However, before working with patient cells, different variables as the 

structure of the scaffold, the biomaterials, or the casting technique needs to 

be optimized. To study the mentioned variables for the engineer a functional 

muscle bundle, immortalized cell lines are a valid alternative. In the case of 

skeletal muscle, the C2C12 murine myoblasts cell line is the most used. These 

cell lines behave similarly to the in vivo. As the myoblasts highly proliferate, 

they can fuse in myotubes, and when they are fully mature, they can go upon 

contraction.  

To date, many different approximations have been generated to engineer 

skeletal muscle in vitro. Among all, the most used technique is the 

encapsulation of cells inside hydrogels [145]. Combining this principle with 

all the potential combinations of biomaterials and casting techniques permits 

fabricating high variability of different scaffolds with unique properties. For 

this wide tuneability, hydrogel encapsulation is a very valuable 

approximation for miniaturized skeletal muscle generation.  

Some prerequisites are needed to engineer skeletal muscle in vitro, as the 

tissue’s highly aligned structure. Scaffolds must favor the cells’ alignment, 

directional proliferation, and cells’ fusion to form mature and contractile 

myotubes. Nowadays, 3D bioprinting appeared as the gold-standard casting 

technique due to its ability to fabricate anisotropic scaffolds, highly precise 

extruding methods, and high reproducibility [40]. Regardless of 3D 

bioprinting, 3D micromolding in very structured shapes, as grooves or 

trenches, is widely used [42]. This technique is very used because of its easy 

assemble method and low-cost fabrication when compared to bioprinting. 

These scaffold casting techniques prompt the 3D cell orientation, favoring 

aligned proliferation, and favor myogenic maturation.  
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Figure 14: Overview of skeletal muscle tissue engineering. A) Different biomaterial 

composites engineered by 3D bioprinting or molding enhances myogenic maturation (Garcia-

Lizarribar et al. [25]). B) 3D hydrogel scaffold made by micromolding improves cell alignment 

(Ortega et al. [42]). C) Muscle bundles generated inside fibrin hydrogels (Christensen et al. 

[259]). D) Skeletal muscle tissue formed from human pluripotent steam cells encapsulated in 

fibrin hydrogels (Rao et al. [152]). E) 3D model of a muscular dystrophy (Maffioletti et al. 

[260]). 

A) B)

C)

D)
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Natural biomaterials are widely used in tissue engineering to cast these 

scaffolds. Natural polymers are common due to their biocompatibility, 

bioactivity prompted by biochemical cues, and the capacity to tune different 

physical properties like stiffness or swelling. Among all the natural polymers, 

ECM-derived biomaterials have a strong potential to generate skeletal muscle 

scaffolds, especially for their resemblance with the natural ECM. Some of the 

most used are collagen [21], [146], fibrinogen [147], [148], gelatin [148]–

[150] or fibrin [151], [152]. 

However, these ECM-derived biomaterials are enzymatically and cell-

mammalian degradable, temperature-dependent, and non-stable in a liquid 

solution. To overcome these limitations, chemical modifications and prior 

crosslinking are valid alternatives to enhance these properties. One of the 

most common chemical modifications is the methacrylation. The 

methacrylation allows, with the help of specific photoinitiators, as Irgacure 

2959 or lithium phenyl(2,4,6-trimethylbenzoyl) phosphinate (LAP), the 

chemical crosslinking of the biomaterial fibers by irradiating the prepolymer 

solution with UV-light. From all the possible modified biomaterials, gelatin 

methacryoyl (GelMA) is the most used biomaterial [153]–[155]. The high 

versatility of this material permits us to use it in many different 

approximations. For example, because of its bioactivity, the presence of RGD 

cell adhesion peptides, temperature-dependent properties, low viscosity, and 

photocrosslinkable ability, GelMA-based hydrogels are a common biomaterial 

to engineer skeletal muscle. Combining it with previously mentioned casting 

techniques allows generating highly reproducible aligned bundles that help 

the myoblasts align and fuse. Besides gelatin, collagen methacrylate is also 

used in 3D bioprinting or micromolding [154]. 

Same as gelatin or collagen, other natural biomaterials are also used in 

skeletal muscle tissue engineering. Cellulose-based biomaterials, as 

carboxymethylcellulose methacrylated or Alginate-based biomaterials, as 

alginate methacrylated, are also used in hydrogel encapsulation [25], [156]. 

The low biochemical cues related to mammalian-cells make these natural 

biomaterials low bioactive for tissue engineering when used alone. These 

materials are mostly combined with previously mentioned ECM-derived 

biomaterial to fabricate a material with unique properties [25], [153]. With 

this combination, the final biomaterial composite can have both biomaterials’ 

beneficial properties, overcoming some limitations of GelMA, as the low 

mechanical properties or the cell degradability. 
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However, not only the combination of natural biomaterials can improve the 

formation of skeletal muscle tissue. Some combinations of natural and 

synthetic materials can enhance specific properties, as degradation rate or 

conductivity.  Combining fibrinogen and PEG [147] or combining PEGDA with 

GelMA [25] are only a few examples of it. 

Besides all the possible combinations found in the literature, hydrogels still 

lack some properties to engineer skeletal muscle tissue. When fully mature, 

skeletal muscle tissue contracts for the mobility of the human body. In vitro, 

this is possible when the tissue is stimulated electrically. However, most of 

the biomaterials presented lacks electrical conductivity. To solve this 

problem, the combination of specific biomaterials with a conductive polymer 

or the incorporation of conductive elements as nanoparticles [157], 

nanotubes [150], or nanowires [146] can enhance this property without 

affecting other essential features of the scaffold. 

However, many of these hydrogel-based approximations still have some 

limitations. One of the main concerns is the small porosity of these scaffolds. 

This may lead to diffusion problems of oxygen and nutrient supply [3]. Also, 

the cleaning out of some toxic reagents can lead to cell death. Another issue 

related to the small porosity is the blood vessel generation inside the scaffold 

to oxygen supply the already formed skeletal muscle tissue. This lack of 

angiogenesis aggravates cells’ viability deep inside the scaffold or when they 

are highly surrounded by other oxygen and nutrient consuming cells. This 

insufficient diffusion through the scaffold lead by small porosity drives to 

decreased cell viability [3].   

 

1.6.5 Cryogels for skeletal muscle tissue engineering 

 

Despite the promising potential of cryogelation as a scaffold for volumetric 

tissues, only a few studies combine both approaches. One of them is from 

Singh et al. [71]. Here, Singh et al. use Poly-hydroxyethyl methacrylate 

(PHEMA) – gelatin cryogel to engineer skeletal muscle. In here, random pore 

morphology cryogels were used. In the study, the authors achieved to 

generate multinucleated and aligned myotubes.  Another interesting 

approximation for skeletal muscle tissue engineering is the generation of 

blood and plasma cryogels [158]. These novel cryogels promote cell 

proliferation, alignment, and myogenic differentiation.  
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2.1 HYPOTHESIS AND OBJECTIVES 
 

The possibility of engineering tissues in the laboratory opens a promising 

field for multiple applications, such as personalized medicine or disease 

modeling. The generation of 3D microenvironments for better mimicking the 

in vivo situation of every tissue is a real need to engineer more physiologically 

alikeness functional tissues. However, the perfect scaffold is not yet found. 

Every tissue has its requirements, so different scaffolds with unique 

properties can be fabricated. Among all the fabrication techniques, hydrogel 

encapsulation is the most used technique because of its high-water content, 

moldability, modulable stiffness and pore interconnectivity. However, the 

small porosity of the hydrogels leads to diffusion problems. This drawback is 

a limitation for the fabrication of volumetric tissues, as viability highly 

decreases when cells are deeply encapsulated. This problem is mainly found 

in pancreatic islets encapsulation or in the volumetric scaling up of other 

tissues. Recently, to overcome these limitations, cryogels appeared as an 

alternative as their microporous and highly interconnected structure 

improves the nutrient and oxygen diffusion. 

This thesis is part of a DAMOC’s ERC grant project that wants to study the 

metabolic crosstalking between different tissues as pancreas, skeletal muscle 

or liver in the scope of the diabetes mellitus by using organ-on-a-chip 

technology. Particularly this thesis aims to manufacture microporous 

scaffolds for the generation of skeletal muscle tissue and pancreatic tissue. To 

reach this final goal, more specific objectives had been proposed.  

 

• Development and optimization of microporous scaffolds with specific 

pore architecture that fits with the needs of each tissue. Moreover, 

scaffolds need to be easy to manufacture and with good mechanical 

stability for incorporation in organ-on-a-chip applications. 

 

o In the case of pancreatic tissue, microporosity and random-sized 

pore distribution is needed. 

 

o For skeletal muscle, a highly anisotropic pore architecture is 

required.  
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• Characterization of the mechanical and physical properties of each 

cryogel, studying how modulating different variables affect to 

important properties.   

 

• Evaluation of scaffolds bioactivity seeding cells inside and generating 

both pancreatic and skeletal muscle tissue. For pancreatic tissue two 

different approximations were studied: Seed mouse pancreatic islets 

inside the scaffold and generate pseudoislets by aggregating beta-cells. 

 

2.2 WORK RELATED WITH THE THESIS 
 

2.2.1 Journal articles related with the thesis. 

 

• Ferran Velasco-Mallorquí, Juan M. Fernández-Costa, Luisa Neves, 

Javier Ramón-Azcón. “New volumetric CNT-doped Gelatin-Cellulose 

scaffold for skeletal muscle tissue engineering”. Nanoscale Advances 

(2020). DOI: 10.1039/d0na00268b 

 
Herein, we present a combination of gelatin-carboxymethyl cellulose materials 

polymerised by a cryogelation process that allowed us to reach scaffold fabrication 

up to millimeters size and solve the main problems related with large size muscle 

tissue constructs.  We have fabricated an anisotropic internal three-dimensional 

microarchitecture pore distribution with high aligned morphology to enhance cells 

alignment, cell fusion and myotubes formation. In conclusion, we fabricate a 

biocompatible and customizable scaffold for 3D cell culture suitable for a wide range 

of application such as organ-on-a-chip, drug screening, transplantation and disease 
modelling. 

This paper correspond to all the skeletal muscle part. From the development of the 

anisotropic scaffold, to its characterization and finally to the engineering of the 
skeletal muscle constructs inside the scaffold. 

 

• F. Velasco-Mallorquí, J. Rodríguez-Comas, J. Ramón-Azcón. “Cellulose-

based scaffolds enhance pseudoislet formation and functionality”. 

(submitted) 

 
Here, we use cryogelation technology to develop a more resemblance scaffold with 

the mechanical and physical properties needed to engineer pancreatic tissue. This 

study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to 

generate β-cell clusters. The high porosity achieved with this approach allowed us 
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to create specific range pseudoislets. Overall, our results demonstrate that CMC-

scaffolds can be used to control the organization and function of insulin-producing 

β-cells, representing a suitable technique to generate β-cell clusters to study 

pancreatic islet function. 

This paper correspond to the fabrication and characterization of the random pore 

scaffold. Also, the pancreatic tisse generation by pseudoislet formation is also 
explained in this study. 

 

• María A. Ortega, Júlia Rodríguez-Comas, Ozlem Yavas, Ferran Velasco-

Mallorquí, Jordina Balaguer-Trias, Victor Parra, Anna Novials, Joan M. 

Servitja, Romain Quidant, Javier Ramón-Azcón. “In-situ LSPR sensing of 

secreted insulin in organ-on-chip”. Biosensors (2021) DOI: 

10.3390/bios11050138 

 

Here we aim to develop an integrated technology based on coupling a Localized 

Surface Plasmon Resonance (LSPR) sensing module to an OOC device to monitor the 

insulin in-situ secretion in pancreatic islets, a key physiological event that is usually 

perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof‐of‐

concept, we developed a biomimetic Islet-on-a-chip (IOC) device composed of 

mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The 

developed platform offers a strong tool for enabling the in-situ response study of 

microtissues to external stimuli, for applications such as drug screening platform for 

human models surpassing animal testing. 

This article correspond to the seeding of pancreatic iselts inside the scaffold, and its 

viability and functionality studies. Moreover, the characterization and fabrication of 

the random pore scaffold is also explained in this paper. 

 

2.2.2 Other scientific work related with the thesis. 

 

2.2.2.1 Journal articles 

 

• Andrea García-Lizarribar, Xiomara Fernández-Garibay, Ferran 

Velasco-Mallorquí, Albert G.Castaño, Josep Samitier, Javier Ramón-

Azcón. “Composite biomaterials as long-lasting scaffold for 3D 

bioprinting of highly aligned muscle tissue”. Macromolecular Bioscience 

(2018). DOI: 10.1002/mabi.201800167 

 
New biocompatible materials have enabled the direct 3D printing of complex 

functional living tissues, such as skeletal and cardiac muscle. Gelatinmethacryloyl 

(GelMA) is a photopolymerizable hydrogel composed of natural gelatin 

https://doi.org/10.3390/bios11050138
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functionalized with methacrylic anhydride. However, it is difficult to obtain a single 

hydrogel that meets all the desirable properties for tissue engineering. In this work, 

a library of composite biomaterials to obtain versatile, lasting, and mechanically 

tunable scaffolds are presented.  

 
 

• Juan M. Fernández-Costa, Xiomara Fernández-Garibay, Ferran 

Velasco-Mallorquí, Javier Ramón-Azcón. “Bioengineered in vitro 

skeletal muscles as new tools for muscular dystrophies preclinical 

studies”. Journal of Tissue Engineering (2021). DOI: 

10.1177/2041731420981339 

 

Muscular dystrophies are a group of highly disabling disorders that share 

degenerative muscle weakness and wasting as common symptoms. To date, there is 

not an effective cure for these diseases. In the last years, bioengineered tissues have 

emerged as powerful tools for preclinical studies. In this review, we summarize the 

recent technological advances in skeletal muscle tissue engineering. Here, we 

reviewed and identify several ground-breaking techniques to fabricate in vitro 
bioartificial muscles. 

 

 

2.2.2.2 Patents 
 

PCT/EP2020/075278. Multi-layered cell capsules and uses thereof. Spain. 

16/11/2020. FUNDACIO PRIVADA INSTITUT DE BIOENGINYERIA DE 

CATALUNYA (Submitted). 

 

452021106. A system and a method of analysing a physiological condition in 

an analyte. Spain. 26/4/2021. FUNDACIO PRIVADA INSTITUT DE 

BIOENGINYERIA DE CATALUNYA. 

 

  



 

57 
 

 

3. MATERIALS AND 

METHODS   



 

58 
 



Materials and methods 

59 
 

3.1 CRYOGEL FABRICATION 
 

3.1.1 Prepolymer solution 

 

Gelatin and carboxymethylcellulose (CMC) cryogel scaffolds were fabricated 

using the cryogelation technique with a carbodiimide crosslinking. As a 

linker, Adipic acid dihydrazide (AAD, Sigma Aldrich) was selected because of 

the presence of amine groups on both sides of the molecule. N-(3-

Dimethylaminopropyl)-N′-ethyl carbodiimide hydrochloride (EDC, Sigma 

Aldrich) was the activating agent. With these biomaterials, casting 

techniques, and crosslinking, sponge-like microporous scaffolds can be 

fabricated (Figure 15A). 

A prepolymer solution must be prepared to generate the scaffolds. The 

prepolymer solution was composed of gelatin from porcine skin (Sigma 

Aldrich) and 90 kDa carboxymethylcellulose (Sigma Aldrich). Both were 

dissolved into MilliQ, at 45ºC and under stirring conditions until 

homogenization of the dissolution. For the proper generation of the final 

cryogel different concentrations of biomaterials were tested, evaluating its 

viscosity, crosslinking ability, and mechanical stability after thawed. Different 

percentage of CMC, from 5% (w/v) to 0,25% (w/v) were tested. Similar, 

different percentages of gelatin, from 4% (w/v) to 1% (w/v) were evaluated.  

Crosslinking

Cryogel

Prepolymer
solution

A)

B)

Crosslinker

Biomaterial fiber

Figure 15: Cryogel formation scheme. A) Schematic representation of the cryogel matrix 

formation. B) Chemical structure of the biomaterials and the crosslinker used to generate the 

cryogels. In the left, a chemical scheme of the crosslinking. 
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All the reagents were mixed with the dissolved biomaterial inside 2 mL vial. 

Each reagent was optimized to an optimal condition, evaluating viscosity, 

crosslinking ability, and mechanical stability when thawed. Different 

concentrations of AAD, from 3% (v/v) to 0,5% (v/v), were tested to optimize 

the needed concentration. Equally, different EDC concentrations, from 2% 

(v/v) to 0,5% were tested (Figure 15B). EDC efficiency was improved using 

1% (v/v) MES buffer from MES hydrate (Sigma Aldrich) to the final 

prepolymer solution to adjust the pH. In case needed, Aminofluorescein could 

be added to the prepolymer solution to stain the cryogel fibers. Finally, 

different carbon nanotubes (CNT, Sigma Aldrich) concentrations were also 

studied to achieve better distribution and conductivity inside the cryogel.  

Once all the reagents were dispensed inside a 2 mL vial, vigorously pipetting 

was performed to achieve a proper homogenization, and PDMS molds were 

filled to cast the cryogels at sub-zero temperatures. Finally, different 

temperatures were studied, evaluating its pore size, pore architecture, and 

mechanical stability. 

 

3.1.2 Fabrication of the molds for cryogel fabrication 

 

Different set-ups were prepared depending on the pore size and pore 

architecture was needed. In both cases, cryogel was casted inside a cylindrical 

Polydimethylsiloxane (PDMS, Sylgard 184 silicone elastomer, Dow Corning, 

Germany) mold. PDMS molds were fabricated by mixing the silicone 

elastomer with the curing agent in a 1:10 ratio and vigorously mixing until 

homogenization. Then, the prepolymer solution was placed into a vacuum 

chamber to eliminate all the bubbles generated. Finally, PDMS was dispensed 

confined between two Poly (methyl methacrylate) (PMMA) slides with 

another PMMA spacer to control the height of the mold. Then, PDMS was 

incubated in an oven at 65ºC for 48 hours. When cured, PMMA structure was 

removed, and PDMS were shaped into the desired mold shape and size using 

a bistoury and a cylindrical punch. 

For the random pore morphology or the pancreatic tissue approximation, 

cryogels were cast inside a 10 mm diameter and 1 mm heigh PDMS. This 

PDMS mold were placed between a 24x24 cover slide and a 12-mm diameter 

cover slide. The mold has 2 small inlets on every side in order to fill the mold 

by capillarity. Finally, this set-up was placed over a plastic petri dish, and after 

prepolymer filling, placed at the freezer (Figure 16A). 
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For the skeletal muscle tissue engineering or the anisotropic scaffold, cryogels 

were cast inside a 6 mm heigh and 6 mm diameter mold. These molds were 

placed over a 24x24 cover slide, rounded with a polypropylene thermal 

isolator, and placed over a metallic sheet in carbonic ice (Figure 16B).   

3.1.3 Random pore cryogel fabrication protocol 

 

 For 1% (w/v) cryogels, CMC and gelatin from porcine skin were weighted 

inside a vial and diluted with MilliQ water with stirring conditions at 45ºC.  

Once the prepolymer solution was dissolved, the crosslinking reagents were 

prepared; Adipic acid dihydrazide (AAD) at 50 mg/mL, MES buffer from 2-(N-

Morpholino)ethanesulfonic acid hydrate (MES, Sigma Aldrich) at 0,5M and pH 

at 5,5 and N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

(EDC) at 1 mg/μl all dissolved in MilliQ water and vortexed to ensure the 

homogeneity in all the solution. The final prepolymer solution was fabricated 

adding 1 ml of the prepolymer solution, 100 μl of MES buffer, 7 μl of AAD, and 

4 μl of EDC into a vial and vigorously pipetted to avoid early crosslinking 

before freezing (Percentages are resumed in Table 1). For stained cryogels, 

12 μl of 1mM fluoresceinamine (Sigma Aldrich, Germany) was added to the 

final prepolymer solution. Then, the molds were filled with the prepolymer 

solution (Figure 17). Once filled, the mold was placed at -20ºC freezer for 24 

hours.  

The next day, the crosslinked cryogels were removed carefully from the cover 

glass and the PDMS mold and were cleaned and sterilized until needed 

(Section 3.1.6 Cleaning and sterilizing protocol). 

 

A) B)

Figure 16: Images of the PDMS molds. A) PDMS mold used for the random pore architecture 

approximation. B) PDMS mold used for the anisotropic pore architecture approximation 
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3.1.4 Random Bilayer cryogel fabrication protocol 

 

This cryogel has two different layers, the bottom layer with tiny pores and the 

upper with more prominent pores. This bilayer cryogel was generated using 

a similar protocol for random pore cryogel optimizing some steps. The first 

layer was fabricated using 5% (w/v) CMC cryogel in a 250 heigh and 10 mm 

diameter PDMS mold. For this, 5% (w/v) CMC solution was prepared and 

warmed at 45ºC until fully dissolved. Once homogeneous, the prepolymer 

solutions were prepared as follows: 1 ml of the 5% CMC prepolymer solution, 

100 μl of MES buffer, 12 μl of 1mM fluoresceinamine (if needed), 35 μl of AAD, 

and 4 μl of EDC were added into a vial and vigorously pipetted to avoid early 

crosslinking before freezing (Percentages are resumed in Table 1). Then the 

cryogel was cast inside the PDMS mold and frozen for 24 hours. The second 

layer was fabricated using 1% (w/v) cryogel over it. Briefly, instead of 

demolding the cryogel, the top cover slide was removed, and the 1mm heigh 

and 10 mm diameter PDMS mold for 1% CMC scaffolds was placed over it and 

covered with a cover slide as previously explained (Figure 18). Once the set-

up was ready, 1% CMC cryogel was fabricated as previously explained in 

section 3.1.3 Random pore cryogel fabrication protocol).  

The next day, the crosslinked cryogels were removed carefully from the cover 

glass and the PDMS mold and were cleaned and sterilized until needed 

(Section 3.1.6 Cleaning and sterilizing protocol).  

Rounded cover slide

PDMS mold

Squared Cover slide

1 cm

A) B) C)

Figure 17: Scheme of the fabrication of the random pore architecture cryogel. A) Scheme 

of the molding. B) Picture of the mold after mounted. C) Example of the filling of the mold with 

the prepolymer. 
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3.1.5 Anisotropic pore cryogel fabrication protocol 

 

For the anisotropic pore architecture 3% (w/v) cryogels were fabricated. 

Particularly, for the fabrication of this cryogel, gelatin anc CMC were both 

used, generating a biocomposite. Percentages of each biomaterial were 

determined as  1% (w/v) carboxymethylcellulose – 2% (w/v) gelatin. First, 

prepolymers were fabricated at the double concentration (2% and 4% 

respectively) and diluted into MilliQ water in stirring conditions at 45ºC. Once 

the CMC and the gelatin were dissolved, the crosslinking reagents were 

prepared; Adipic acid dihydrazide at 50 mg/mL, MES buffer from MES 

hydrate at 0,5M and pH at 5,5, and EDC at 1 mg/μl all dissolved in MilliQ water 

and stirred at 45ºC to ensure the homogeneity in all the solution. To fabricate 

the prepolymer solution 0,5 ml of  2% (w/v) CMC solution and 0,5 ml of  4% 

(w/v) gelatin solution , 100 μl of MES buffer, 21 μl of AAD, and 4 μl of EDC 

were added into a vial and vigorously pipetted to avoid early crosslinking 

before freezing. For stained cryogels, 12 μl of 1mM fluoresceinamine (Sigma 

Aldrich, Germany) was added to the prepolymer solution (Percentages are 

resumed in Table 1). In the case of the doped cryogels with carbon nanotubes 

(CNT), we added 100 μl of CNT (Sigma Aldrich) at 2 mg/ml dissolved in MilliQ 

water. In contraposition for non-doped cryogels, 100 μl of MilliQ water was 

A) B)

C) D)

Figure 18: Scheme of the fabrication of the bilayer random pore architecture cryogel. A-

B) Fabrication of the denser layer of the cryogel. It was fabricated as explained in 3.1.3. C) 24 

hours later, the coverslide was removed, and another PDMS mold was placed over the first. D) 

Example of the filling of the mold with the prepolymer solution. 



Materials and methods 

64 
 

added to keep the material concentration equal in both conditions. Then, the 

molds were filled with the final prepolymer solution. Once filled, the mold was 

placed fast over a metallic sheet above carbonic ice and let freeze for 1 hour 

(Figure 19). After, the molds were placed into a -20ºC freezer for 24 hours.  

The next day, the crosslinked cryogels were removed carefully from the PDMS 

mold. For the proper pore architecture and to avoid small porosity regions, 

the top and bottom sites of the cryogel were sliced manually with a bistoury. 

Finally, cryogels were cleaned and sterilized until needed (Section 3.1.6 

Cleaning and sterilizing protocol). 

 

  

 

 

3.1.6 Cleaning and sterilizing protocol  

 

To remove unreacted reagents and in order to sterilize the cryogels for cell 

seeding experiments, cryogels were submerged into consecutive 5 minutes 

cleaning steps; 1x MilliQ water, 1x 100 mM NaOH (Panreac), 1x 10 mM 

Ethylenediaminetetraacetic acid (EDTA, Sigma Aldrich,), 1x MilliQ and 3x 

Concentration

(%) 

MES 

(0,5M, 

5.5 pH) 

AAD  

(50 mg/ml) 

EDC 

(1 μg/ μl) 

Aminofluorescein 

(if needed) 

0,5% (w/v) 100 μl 7 μl 4 μl 12 μl 

1% (w/v) 100 μl 7 μl 4 μl 12 μl 

3% (w/v) 100 μl 21 μl 4 μl 12 μl 

5% (w/v) 100 μl 35 μl 4 μl 12 μl 

Table 1: Resume of the concentrations and volumes used for cryogel fabrication. 

Metallic slice

Carbonic ice

Glass slidePolypropylene thermal isolator

PDMS mold

A) B)

Figure 19: Scheme of the fabrication of the anisotropic pore architecture scaffold. A) 

Picture of the molding set-up. B) First the PDMS mold is filled with the prepolymer solution, 

and then placed on a metallic sheet over carbonic ice for its anisotropic ice nucleation. 
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Phosphate Buffered Saline (PBS, Sigma Aldrich) (Table 2). Finally, cryogels 

were placed inside a laboratory bottle filled with PBS and autoclaved until 

needed for further experiments.  

 

Cleaning and sterilizing steps 

• MilliQ 

• 100 mM NaOH 

• 10 mM EDTA 

• MilliQ 

• 3x PBS 

• Autoclave 

Table 2: Cryogel cleaning steps needed to remove unreacted reagents. 

 

3.2 STRUCTURAL AND MECHANICAL CHARACTERIZATION 
 

3.2.1 Pore distribution and morphology 

 

Cryogels were fabricated as explained in previous sections. For pore 

quantification, the addition of fluoresceinamine is necessary. Once fabricated, 

washed, and autoclaved, cryogels were analyzed in wet and dry conditions. 

For wet analysis, confocal images were acquired and then analyzed using 

ImageJ software. Confocal microscopy will allow studying the porosity in 

many different axes, so obtaining a general characterization of the whole 

scaffold. For this, 3 different z-stack were taken per cryogel. Out of this z-

stack, different images between 20 μm of z-distance were analyzed. For pore 

quantification, ImageJ 1.53c software was used. The image was converted into 

black and white using a threshold to ensure that only the fibers of the cryogel 

were transformed. Then diameters of the pores were obtained by minFeret's 

diameter approximation. This approximation shows the shortest distance 

between two diametrical points of the pore (Figure 20). The quantification of 

the minimum diameter is because it would be the limitation property of our 

pores when pancreatic islets seeded.  
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For a dry analysis, scanning electron microscopy (SEM) was used. This 

technique allows observing the surface of the scaffold to have a more precise 

and general image of the surface topography and morphology of the cryogel. 

To acquire images with a SEM, a dry scaffold is needed. Cryogel scaffolds were 

subjected to consecutive ethanol dehydration steps, washing the cryogels 

with ethanol 50%, 70%, 80%, 90%, 96% (x2), and 99,5% to maintain the 

structure. Once all the water was substituted for ethanol, and to replace all 

ethanol for CO2, a critical point dry was performed. A final step of carbon 

sputtering to improve the conductive properties of the scaffold was done. 

With this procedure, the scaffold maintains its structure in a dry state for SEM 

imaging. Finally, images were acquired with a NOVA NanoSEM 230 

microscope at 10 kV.  

 

3.2.2 Stiffness 

 

Tissue engineering aims to generate scaffolds with similar properties to the 

in-vivo extracellular matrix. As cells can change their behavior depending on 

the topography or stiffness of the scaffold, this is an exciting property to 

characterize. Moreover, stiffness allows us to know how different materials 

and topographies affect this property.  

Compression assays were performed to determine the stiffness of our 

samples. The compression assays were performed in a Zwick Z0.5 TN 

instrument (Zwick-Roell, Germany) with 5N load cell (Figure 21A). The 

experiment was performed with samples at room temperature up to 30% 

final compression range at 0.1 mN of preloading force and 20%/minute of 

strain rate (Figure 21B). Finally, the Young modulus was calculated from 10% 

to 20% of the compression curve (Figure 21C).  

Figure 20: ImageJ pore size quantification protocol. First image was transformed to 

binary. Then, pores were reconstructed manually to avoid miss quantification of these pores. 

Finally, ImageJ quantified pore sizes using MinFeret approximation. 
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1% gelatin, 1% CMC and 1% gelatin:CMC (ratio 1:2) were tested for the 

random pore cryogels. Cryogels were fabricated following the explained 

protocol. After autoclaving, cryogel were deep under PBS for 1 day until the 

sample reached equilibrium. With these cryogels, 3 compressions were 

applied for each cryogel. Maximum compression was set at 30% to avoid fiber 

breaking due to excessive compression.  

For the anisotropic scaffold, the same procedure was performed. However, 

the compression was applied in 2 different directionalities: parallel to the 

fibers or perpendicular to it.  The difference between the compression applied 

against the fibers or the compression of the empty spaces would indirectly 

indicate if the anisotropy was achieved.  

 

3.2.3 Water uptake capability of the cryogel 

 

Pore architecture, pore interconnectivity, and permeability of the scaffold are 

critical factors for engineering volumetric tissues inside a scaffold. These 

terms are highly related to cell viability as high pore sizes and high pore 

interconnectivity prompt nutrient and oxygen diffusion. If these parameters 

are high, cells will be more viable and functional when seeded inside the 

scaffold.  

Deformation

Fo
rc

e

A) B) C)

Figure 21: Mechanical testing assay to determine stiffness by compression. A) Example 

of the sample positioning. B) Schematic example of how compression assays were performed. 

C) Compression curve of the assay and determination of the Young Modulus as a tangent of the 
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One parameter that allows an estimated reference of all these parameters is 

the swelling capability of a scaffold. Swelling is the water uptake capability by 

a cryogel. This property points how water colonizes a scaffold. By analyzing 

swelling behaviour, we could determine how porous and interconnected is 

our scaffold. High swelling ratios indicates faster water colonization of the 

scaffold, meaning larger pore sizes, higher pore interconnectivity, and higher 

permeability the scaffold could have.  

Cryogels were fabricated as explained previously, and after sterilizing, 

cryogels were dried at room temperature. Once dried, cryogels were 

weighted. Next, cryogels were submerged into PBS up to 1 day, when they 

reached equilibrium. Finally, cryogels were weighted again. The swelling 

ratio was calculated as follows:  

 

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =
𝑊𝑒𝑞 − 𝑊𝑑

𝑊𝑒𝑞
 𝑥 100 

 

Where Weq is the weight in equilibrium and Wd is the dry weight. 

 

3.2.4 Permeability assay 

 

One of the most exciting properties of the cryogels is their high permeability, 

allowing high diffusion rates. Pancreatic islets need to rapidly sense the 

amount of glucose in the blood to respond appropriately to it. Thus, having a 

high diffusivity among all the scaffolds will ensure that cryogel does not act 

as a barrier to this critical need. Cryogels were placed over a transwell inside 

a 12 well-plate. A metallic mesh was placed over the cryogel to avoid the 

cryogel floating (Figure 22A, C). 0.5 ml of 1.5 mM fluorescein (Sigma Aldrich) 

were added at the upper compartment of the transwell to check the 

permeability of the scaffold, and 1.5 ml of PBS were added in the lower 

compartment. 100 μl of PBS from the well were taken out in consecutive 

times. The exact amount of fresh PBS was added to readjust the volume, again 

to the lower compartment. This procedure was repeated during different 

times up to an overnight when equilibrium was reached (Figure 22B). Finally, 
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the concentration of fluorescein was obtained by absorbance measurements 

at 494 nm with a Power wave X microplate spectrophotometer.  

 

Transwell

Flourescein
Metallic mesh

Cryogel

PBS

Time

Porous membrane

Well

A)

B)

C) D)

Figure 22: Permeability and diffusion experimental design. A) Experimental assembling. B) 

Overview of the experiment through time. Fluorescein reaches equilibrium by diffusion to the 

lower chamber of the transwell. C) Example of the floating of the cryogel. A metallic mesh was 

added over the cryogel to avoid this phenomenon. D) Equilibrium state at the final timepoint. 
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Permeability was calculated in the linear part of the diffusion curve by the 

following equation: 

 

𝑃 =  
∆𝑄

∆𝑡

1

𝐴𝐶𝑜

 

 

Where Q is the milligrams of fluorescein that pass through the cryogel at a 

specific time. T is the time. A is the area of the cryogel, and Co is the initial 

concentration of fluorescein. Finally, the permeability of the cryogel was the 

difference between the total permeability and the permeability of the 

transwell. 

𝑃𝑐𝑟𝑦𝑜𝑔𝑒𝑙 =  
1

P𝑡𝑜𝑡𝑎𝑙

−
1

P𝑡𝑟𝑎𝑛𝑠𝑤𝑒𝑙𝑙

 

 

3.2.5 Electrical properties for anisotropic structure 

 

A tapered transmission line method was used to measure the samples' 

dielectric properties; the conical feature of the cell allows the insertion of a 

watertight sample-holder (SH), providing a significant increase in the net 

sample volume. This modification permitted the evolution of the coaxial line 

in terms of types of materials measured [159], [160], and speed and flow of 

acquisition [161].  

In this study, the cell was connected to a calibrated Anritsu MS46122B VNA, 

which allowed extracting the S-Parameters S11, S12, S21, S22, of the cell 

sample. Knowing the intrinsic electric distances between connectors and the 

sample, and considering the attenuation of the cell, it is possible to carry out 

a de-embedding process, where the S-Parameters of the sample are extracted 

through the S-Parameters of the cell and sample. 

The acquisition method of the complex permittivity is based on the Nicolson-

Ross  [162] & Weir [163] algorithm; through the sample S-Parameters, it is 

possible to determine the Reflection (Ґ) and Transmission (T) coefficient, as 

seen in (1)-(6), 

 

ҐҐ =
1+S11

2 −S21
2

2S11
± √(

1+S11
2 −S21

2

2S11
)

2

− 1    (1) 
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T =
S11+S21−Ґ

1−(S11+S21)Ґ
    (2) 

zr = (
1+Ґ

1−Ґ
)   (3) 

 

where zr is the reduced impedance of the system, a condition that must be 

respected at this point is that the magnitude of | Ґ | must be equal or inferior 

to the unit; thus, it is possible to determine the complex permittivity ε*, the 

complex permeability µ* and the conductivity σ, expressed in S/m. 

 

μr = j
c

2πfL
(

1+Ґ

1−Ґ
) ln (

1

T
)    (4) 

εr = j
c

2πfL
(

1−Ґ

1+Ґ
) ln (

1

T
)   (5) 

σ = 2πfε′′ε0   (6) 

 

Here, L represents the sample length, c the speed of light in vacuum, and ε0 is 

the permittivity of free space, 8.85 x10-12 F/m. 

A SH of length 6 mm was used to measure the samples, from 10 MHz to 8 GHz, 

at room temperature conditions (26,8°C, 31% humidity).  

Each sample was inserted into the SH; since the cylindrical samples have a 

similar diameter and length as the SH, the sample was simply introduced into 

the SH. Thus, the CNTs are horizontally aligned with the cell's axis.  

 

3.3 PANCREATIC TISSUE ENGINEERING  
 

3.3.1 Cell culture 

 

3.3.1.1 Pancreatic cell culture 

 

Pancreatic islets were obtained from Institut d'Investigacions Biomèdiques 

Agust Pi I Sunyer (IDIBAPS). Mouse pancreatic islets were isolated from 8-12 

weeks-old C57BL/6 mice and were allowed to recover for 24h at 37ºC and 

5% CO2 in RPMI-1640 medium with 11 mM of glucose and supplemented with 
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10% Fetal bovine serum (FBS, Thermofischer) (v/v), 2 mM glutamine and 1% 

penicillin/streptomycin.  

  

3.3.1.2 INS1E cell culture 

 

Rat pancreatic β-cell line INS1E cells provided by Institut d'Investigacions 

Biomèdiques Agust Pi I Sunyer (IDIBAPS) were cultured in RPMI-1640 with 

11.1 mM glucose, supplemented with 10mM HEPES (Gibco), 2mM L-

glutamine (Gibco), 1mM sodium-pyruvate (Gibco), 0.05 mM 2-

mercaptoethanol (Thermofisher), 10% FBS (v/v) and 1% 

penicillin/streptomycin (v/v) (Thermofisher) (complete media). When cells 

reached confluency, cells were trypsinized. Briefly, for cell trypsinization, 

cells were washed with PBS, and 2 ml of 0,25% trypsin-EDTA were added to 

the flask. After 2 minutes, 8 ml of fresh medium was added to the flask to stop 

the trypsin reaction and all placed into a falcon for centrifuging. After 

centrifuging and resuspending cells were seeded in a new flask at 1:4 density. 

Cells were maintained in an incubator at 37ºC and 5% CO2. 

 

3.3.2 Cell seeding 

 

3.3.2.1 Pancreatic cell seeding 

 

For islet seeding, 30 islets were selected into a drop of 20 μl of the medium. 

This drop of medium with islets was placed over the cryogels and it was dried 

at room temperature for 20 minutes before filling the plate with additional 

medium. While waiting, the infiltration of the pancreatic islets was 

continuously monitored with a magnifying glass. If needed, reseeding the 

islets or low flow turbulences may be generated to help the islets to infiltrate 

inside the cryogel.  

 

3.3.2.2 INS1E cell seeding. 

 

Cryogels were dried for 30 minutes. While drying, cells were trypsinized by 

removing the medium from the flask and cleaning with PBS. After, 2 mL of 

0,25% trypsin-EDTA were dispersed inside the flask and incubated for 2 
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minutes inside the incubator. After, 8 mL of complete medium was added 

inside the flask and vigorously pipetted to detach all the cells. Next, cells were 

centrifuged, the supernatant removed, and resuspended up to the desired 

concentration. In our case, 107 cells/mL was used. To seed the cells, 200.000 

cells in a drop of 20 μl of medium were seeded in each cryogel. After seeding 

the cells, cryogels were left at RT for 20 minutes. Besides, 1 mL of complete 

RPMI-1640 medium was added, and cells were left at the incubator until the 

experiment. 

 

3.3.3 Cell health analysis by metabolic activity quantification 

 

 3.3.3.1 Cell health determination by alamarBlue test 

 

Check cell health and cell viability when interacting with the scaffold is a 

critical point to consider. Cell viability is essential to ensure that cells can be 

viable and functional. AlarmarBlue metabolic assay was proposed to check 

cell health. AlamarBlue test is a rezasurin-based blue solution. When this 

solution interacts with the cells, cells can metabolize this resazurin by 

reducing it into resorufin. This reduction changes solution color from blue to 

red. Cell metabolic activity can be assessed by the absorbance of the solution 

(Figure 23).   

Figure 23: Metabolic activity assay. Example of alamarBlue plate, and how it changes the 

color depending metabolic activity of the cells. 
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AlamarBlue was performed according to manufacturer specifications. Briefly, 

the medium was removed from the well plate and substituted for a new 

medium with 1:10 dilution of alamarBlue. After 2-hour incubation, 100 μl of 

each condition was placed in a well of 96 well plate and read in a Power wave 

X microplate spectrophotometer at 570 nm wavelength. Results were 

normalized based on INS1 cells seeded in the plate.  

 

3.3.3.2 Cell viability determination by Live/Dead assay   

 

Another important hallmark of the cell-biomaterial interaction is the 

biocompatibility of this with the cells. A viability assay is performed to study 

how viable the cells are inside or in contact with the scaffold. This assay was 

performed with the Live/dead assay kit (Thermofischer). Live/Dead kit 

detects cell viability based on intercellular esterase activity and cell 

membrane integrity. Specifically, this kit detects intercellular esterase 

activity, staining it with Calcein AM in green and ethidium homodimer-1 to 

detect the loss of the plasmatic membrane integrity, stained in red. 

Viability was analyzed on days 1, 4, and 7 after cell seeding. Firstly, the 

cryogels were washed 5 minutes with PBS (x5). While washing steps are in 

the process, the working solution was prepared. For this solution, 12 μl of 2 

mM ethidium homodimer-1 (EthD-1), 3 μl of Calcein AM, and 6 μl of Hoechst 

were mixed in 6 mL of PBS (Table 3).  

 

Live/Dead working solution 

• 12 μl of 2 mM ethidium homodimer-1 (EthD-1) 

• 3 μl of Calcein AM 

• 6 μl of Hoechst  

• 6 mL of PBS 

Table 3: Volumes for working solution for the Live/Dead assay 

Once washed the PBS was removed and 250 μl of working solution was added 

to each well and stored at the incubator. After 25 minutes, the cryogels were 

washed 3 times with PBS. Finally, images were taken with confocal 

microscopy for live/dead ratio quantification. 
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The quantification of live/dead ratio was calculated as follows: 

 

𝐿𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 =
#𝐿𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠

#(𝐿𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠 + 𝐷𝑒𝑎𝑑 𝑐𝑒𝑙𝑙𝑠)
 𝑥 100 

 

3.3.4 Pancreatic tissue immunostaining 

 

For confocal analysis, stained cryogels were used. After culturing the cells, 

cryogels were washed with PBS and fixed with 10% formalin solution (Sigma 

– Aldrich) for 30 minutes. Then, cryogels were washed with Tris Buffered 

Saline (TBS, Canvax Biotech) and permeabilized with 0.1% Triton X-100 (v/v) 

(Sigma Aldrich) solution in TBS for 15 minutes. Cryogels were blocked with 

0.5% Triton X-100 (v/v) and 3% Donkey serum (v/v) (Sigma-Aldrich) into 

TBS for 2 hours. Cryogels were incubated overnight with primary antibodies 

against Rabbit-anti Ki-67 (1:250, Invitrogen), mouse anti-insulin (1:500, 

Origene), or rabbit anti-Cleaved caspase 3 (1:250, Cell Signaling) in blocking 

solution (Table 4). The following day, cryogels were washed with 

permeabilization solution and were incubated with secondary antibodies for 

2 hours at room temperature (Alexa-Fluor 647 conjugate anti-mouse 1:200, 

Alexa-Fluor 568 conjugate anti-rabbit 1:200 and Alexa-Fluor 488 conjugate 

anti-rabbit 1:200, Invitrogen) (Table 4). Subsequently, cryogels were 

incubated with 1 μM DAPI (Thermofisher) for nuclei counterstain into 

blocking solution for 15 minutes. Finally, cryogels were washed with TBS for 

15 minutes and stored at 4 ºC until confocal microscopy acquisition. Images 

were taken using a LSM 800 from Zeiss. 

 

 

 

 

 

 

Table 4: Resume of the antibodies used for the pancreatic tissue. 

Primary antibodies 

• Rabbit-anti Ki-67 (1:250) 

• Mouse anti-insulin (1:500) 

• Rabbit anti-Cleaved caspase 3 (1:250) 

Secondary antibodies 

• Alexa-Fluor 488 conjugate anti-rabbit (1:200) 

• Alexa-Fluor 568 conjugate anti-rabbit (1:200) 

• Alexa-Fluor 647 conjugate anti-mouse (1:200) 
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3.3.5 Cell cluster diameter 

 

To calculate cell cluster diameter, the area of the stained insulin was taken. 

Insulin was used to acquire the diameter because it is secreted by all the cells 

forming the pseudoislet aggregations. Taking the diameter of the insulin area 

secreted, we can obtain precise diameter values.  Cell cluster diameter was 

analyzed at days 1, 4, and 7 prior to immunostaining of the cells (Section 

3.3.5). Once finished, confocal images were taken. 20 pseudoislets per cryogel 

were analyzed with ImageJ software. Briefly, the insulin channel was 

converted to binary. After, Feret diameter of the pseudoislets was quantified. 

Here, Feret was quantified as it is the most significant distance between two 

diametrical points. 

 

3.3.6 Pseudoislets proliferation 

 

The proliferation of cells was quantified by confocal imaging after 

immunostaining protocol (Section 3.3.5) at days 1, 4, and 7. After confocal 

imaging acquisition, images were analyzed with ImageJ software. Briefly, 

image channels were split and thresholded into black and white. To avoid 

miscounting of the nuclei and Ki-67, Watershed separation was applied in 

both channels. Finally, the number of areas were counted. The proliferation 

ratio was set as the ratio between Ki-67 positive cells against a total number 

of nuclei.  

 

𝑃𝑟𝑜𝑙𝑖𝑓𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
#(𝑁𝑢𝑐𝑙𝑒𝑖 + 𝐾𝑖67)

#𝑁𝑢𝑐𝑙𝑒𝑖
 𝑥 100 

 

 

3.3.7 Glucose Stimulation Insulin Secretion (GSIS) 

 

3.3.7.1 Buffer preparation 

 

For GSIS, Krebs-Ringer Bicarbonate Buffer (KRBH) was used. KRBH stock 

solutions must be prepared and mixed upon the following concentrations 

(Table 5). 
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Table 5: Stock buffer solutions for GSIS. These solutions can be stored for 1 month in the fridge. 

For the preparation of KRBH buffer, stock solutions must be mixed in the 

following proportions (Table 6).  

 

 

 

 

 

 

 

 

Finally, pH must be adjusted to 7.4, and glucose has to be added up to the 

desired concentration of 2.8 mM and 16.7 mM of glucose. 

To lysate the cells and quantify the insulin content of each, lysis buffer was 

prepared as follows (Table 7): 

 

Solution I 

• 460 mM NaCl 

• Diluted in MilliQ 

Solution II 

• 96 mM NaHCO3 

• 20 mM KCl 

• 4 mM MgCO2·6H2O 

• Diluted in MilliQ 

Solution III 

• 10 mM CaCl2·2H2O 

• Diluted in MilliQ 

Hepes 1M 

• 1 M Hepes sodium salt 

• Diluted in MilliQ 

KRBH buffer 

• Solution I….……….…25% 

• Solution II……...…….25% 

• Solution III…….…….25% 

• Hepes 1M………………2% 

• MilliQ…………………..23% 

• BSA………………………0,5g 

Table 6: Proportions for KRBH buffer used in GSIS assays. 
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Lysis Buffer 

• Glacial acetic acid…...5,75% 

• BSA……………………….…0,1% 

• Diluted into MilliQ water 

Table 7: Lysis buffer for insulin content extraction. 

  

3.3.7.2 GSIS Protocol 

 

For GSIS, cells seeded inside the cryogels or in a well plate were preincubated 

with KRBH buffer solution containing 2.8 mM glucose for 30 min. Then, cells 

were incubated at low glucose concentrations (2.8 mM, G3) for 1h followed 

by an incubation at high glucose concentrations (16.7 mM, G16) for another 

hour. Then, an additional step at 2.8 mM for an extra hour was added. After 

each incubation step, supernatants were collected. Finally, cellular insulin 

contents were recovered in lysis buffer.  

For the assay with the cryogels, slight modifications were done in the 

protocol. After the first preincubation step, cryogels were transferred to a 

new well, mainly to avoid counting insulin-released from cell attached to the 

plate. Unlike plate cultures, instead of changing the KRBH buffer, cryogel was 

moved to another well, and then new KRBH buffer at the desired glucose 

concentration was added. All these steps were perform to avoid cell losing 

during the cleaning steps. 

For GSIS experiment in a microfluidic chip, different KRBH buffers were 

pumped inside the chip and incubated for 30 minutes or 1 hour. Briefly, after 

mounting the chip platform, 11.1 mM glucose medium was pumped inside the 

chip and incubated for 30 minutes. Then, 2.8 mM KRBH buffer (G3) was 

connected to the pump, perfused inside, and incubated for 30 minutes. 

Subsequently, G3 was removed and stored, and new G3 was pumped inside 

the chip. This process was performed 3 times, for 30 minutes each incubation. 

After the last G3 incubation, G16 was pumped inside the chip and incubated 

for 1 hour. Then, G16 was removed and stored, and fresh G16 was pumped 

inside the chip. This step was repeated for up to 3 hours. Finally, cryogels 

were taken out from the chip for insulin content lysates.  
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Figure 24: Scheme of the set-up for the real time GSIS measurements. Chip with the 

cryogel inside was connected to a pump, that continuously injects the desired buffer. Outgoing 

buffers flown inside the LSPR sensing platform, where light refractive index was measured. 

(Adapted from Ortega et al. “In-situ LSPR sensing of secreted insulin in organ-on-chip”. 2021) 
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For the continuous insulin releasing sensing, the chip was incorporated into 

a Localized Surface Plasmon Resonance (LSPR) sensing platform developed 

at ICFO (Figure 24). Briefly, LSPR sensing platform is an optic sensor with an 

array of gold nanorods where antibodies were attached. To quantify the 

amount of insulin, the refractive index can be used, so knowing the shift of 

this index and its displacement, the amount of insulin can be extrapolated. For 

GSIS assay, KRBH buffer was continuously pumped through the chip, and then 

flown inside the LSPR sensing platform. LSPR sensing chip has 8 different 

channels, so 7 cycles were determined for the experiment. Each cycle consists 

of 30 minutes of continuously pumped buffer. After each cycle, LSPR sensing 

channel was changed. KRBH buffer was changed to G16 conditions after 120 

minutes.   

 

3.3.7.3 Insulin content 

 

Samples were taken out from the freezer and defrosted at RT. Then, samples 

were boiled at 100 ºC for 10 minutes and vortexed. Finally, samples were 

centrifugated at 4ºC for 10 minutes at 12000 rpm. Finally, supernatants were 

collected. Insulin concentration was determined by Enzyme-Linked 

Immunosorbent Assay (ELISA). G3 samples were not diluted, G16 samples 

were dilute 1:4 into PBS, and content samples were diluted 1:200 into PBS. 

 

3.3.8 Enzyme-linked immunosorbent assay (ELISA) 

 

3.3.8.1 Buffer preparation 

 

Sandwich Enzyme-Linked ImmunoSorbent Assay (ELISA) was used to 

quantify the amount of insulin released in the GSIS assays (Figure 25). The 

protocol for this assay was previously developed in the laboratory.  

For ELISA assay, different buffers must be prepared (Table 8): 
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Table 8: Resume of the preparation of the ELISA buffers. 

 

3.3.8.2 Sandwich ELISA protocol 

 

First, mouse mAB insulin 26.6 nM of capture antibody (Novus) was diluted 

into coating buffer (0.05M, 1x) and placed into 96-well plate at 4ºC O/N.  

The next day, the plate was taken out from the fridge and washed 3 times with 

PBST to remove all unattached antibodies. Once dried, a calibration curve was 

performed. The calibration curve previously optimized started at 100 nM and 

decreased to consecutive 1:10 dilutions into PBST. Then, each sample was 

placed in a well with a respective duplicate, and the plate was incubated for 1 

hour at room temperature.  

PBS 100 mM (for 1L) 

• NaCl   ……………..…80 g 

• KH2PO4   ……………..2 g 

• Na2HPO4  ..……...11.4 g 

• KCl   …………………...2 g 

• Dissolve in MilliQ 

PBST 10 mM, pH 7.5 

• 50 mL of PBS buffer 100 mM 

• 445 mL of MilliQ water 

• Adjust pH to 7,5 

• 5 ml of Tween 20 (5%) 

Coating Buffer 0.25 M (5x) 

• Na2CO3  ……… 3.975 g 

• NaHCO3   ………..7.32 g 

• Dissolve into 500 mL of MilliQ water 

• pH 9.6 

Citrate Buffer  

• 0.04 M Sodium Citrate  

• 96 ug/mL of Tetramethylbenzidine  

• 0.004 % of Oxigen Peroxide 

• pH 5.4 
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After protein attachment into the primary antibody, 5x PBST washings were 

performed to remove all unreacted proteins. Then, biotinylated secondary 

anti-insulin antibody was placed at 0.2 nM and incubated for 1 hour. Next, 

streptavidin was added at 4.73 nM (Thermo Scientific) and incubated for 30 

minutes. Following, citrate buffer was added to start the reaction. After 3 

minutes, 4 M Sulfuric acid were added to stop the reaction (Figure 25A). The 

colorimetric quantification was made with a Power wave X microplate 

spectrophotometer at 490 nm of wavelength (Figure 25B).  

Data analysis was done using GraphPad software. Calibration curves were 

transformed into logarithmic and non-linear regression fitting. Samples were 

interpolated within the linear part of this curve. 

 

3.3.9 qPCR for INS1E 

 

3.3.9.1 RNA extraction 

 

After cell culture or respective assay, cryogels were deep into an Eppendorf 

with 500 μl of TriReagent (Thermo Scientific) and vortexed for 15 seconds. 

Addition of TMB solutionCapture antibody Protein Biotin labeled 
detection antibody

Streptavidin

A)

B)
Change solution color

Figure 25: Sandwich ELISA scheme. A) Step-by-step process for insulin quantification. First, 

capture antibody was immobilized in the plate. Then, insulin was attached to it. Consecutively, 

detection-biotinylated antibody was attached to the protein. Later, streptavidin was added. 

Finally, TMB solution was mixed, prompting a color change depending on the amount of protein 

found. B) Example of an ELISA plate. 
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For plate cultures, 500 μl of TriReagent was dispensed in each well and 

vigorously pipetted to ensure all cells were lysate. After lysing, trizol was 

transferred into a tube and vortexed for 15 seconds. After, samples were 

placed inside a -80ºC freezer until RNA extraction. 

 For RNA extraction, first, samples were thawed within the ice. When trizol 

was defrosted, the cryogels were smashed with a PCR stick, and 500 μl more 

of TriReagent were added. Then, 200 μl of Chloroform was added for phase 

separation, vortexed for 15 seconds, and incubated for 5 minutes at RT. 

Samples were centrifuged at 12000 rcf for 15 minutes at 4ºC, and the 

colorless phase was split to a new tube. Following, 1 mL of isopropanol and 

10 μl of GlycoBlue (15 mg/mL, Thermo Fischer) were added, vortexed, and 

incubated at RT for 5 minutes. Centrifugation was performed at 12000 rcf for 

10 minutes at 4ºC, and the pellet was washed with EtOH 80%, and 

centrifugated again at 7500 rcf for 5 minutes at 4ºC. Next, the EtOH has been 

air-dried with the vacuum/heater centrifuge. Finally, RNA was resuspended 

in RNAse free water at 65ºC, and the RNA was read into the Nanodrop ND-

1000 spectrophotometer.  Samples were stored into the -80ºC until RNA 

digestion and cDNA synthesis. 

 

3.3.9.2 RNA digestion and cDNA synthesis 

 

Of total RNA, 300 ng were used for RNA digestion. For this, 300 ng of RNA 

sample, 1 μl 10X DNAse I reaction buffer, 1 μl DNAse I, and complete the 

volume until 10 μl with free RNAse water were mixed inside a vial (Table 9). 

This mix was incubated for 15 minutes at RT. After, 1 μl of 25 mM EDTA was 

added and incubated for 10 minutes at 65ºC.  

 

RNA digestion 

• 300 ng of RNA sample 

• 1 μl 10X DNAse I reaction buffer 

• 1 μl DNAse I  

• complete the volume until 10 μl with 

Nuclease-free water 
Table 9: RNA digestion proportions 
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cDNA synthesis was done using a high-capacity cDNA reverse transcription 

kit (Applied Biosystems). Reagents and volumes used for cDNA transcription 

are listed in the following table (Table 10). For cDNA synthesis, 10 μl of the 

kit mixture was added to the previous digested mix. Samples were cycled with 

a thermocycler as follows: 10 minutes at 25ºC, 2 hours at 37ºC 5 minutes at 

85ºC, and 4ºC until sample collecting. 

 

cDNA synthesis volumes (For one sample) 

• 2 μl 10X RT buffer 

• 0.8 μl 25X dNTP mix (100mM) 

• 2 μl 10X Random primers 

• 1 μl MultiScript Reverse Transcriptase 

• 4.2 μl Nuclease-free water 

Table 10: cDNA synthesis proportions 

 

3.3.9.3 qPCR 

 

Quantitative PCR reactions were run using SyberGreen gene expression 

assays according to the manufacturer's directions (Solis Biodine) in a 7900HT 

fast real-time PCR system (Applied Biosystems). Primer sequences used for 

gene expression analysis are listed in Table 11. Tbp1 was used to normalize 

the expression of genes of interest. 

Table 11: Primers used for gene expression in pancreatic tissue. 

 

Gene Forward Reverse 

Tbp1 ACCCTTCACCAATGACTCCTATG ATGATGACTGCAGCAAATCGC 

MafA AAGGAGGAGGTCATCCGAC TCTCCAGAATGTGCCGCTG 

PDX-1 CCCCAGTTTACAAGCTCGCT CTCGGTTCCATTCGGGAAAGG 

NeuroD1 GATCAATCTTCTCTTCCGGTG TGCGAATGGCTATCGAAAGAC 

Ki67 CAGCTCCTGCCTGTTTGGAA TTGCCTCTTGCTCTTTGACTTCA 

Pbk GAAGCTTGGCTTTGGGACTG GGAGAATGAGACAACCCTCTTGG 

Ddit3/Chop TCATCCCCAGGAAACGAAGAG GCTTTGGGATGTGCGTGTG 

Trib3 CGTGGCACACTGCCACAAG TCCAGGTTCTCCAGCACCAG 

Atf3 GTCCGGGCTCAGAATGGAC CGTGCCACCTCTGCTTAGCT 
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3.3.10 Diabetes modeling 

 

After proving we could generate reseblant pseudoislets inside the scaffold we 

wanted to prove if our platform can simulate a diabetes-like situation. For 

this, we decided to add free fatty acids and different glucose concentrations 

to the cell cultures.  

After seeding cells over the cryogel, cells were cultured until day 4 with 

comprete RPMI-medium at 11 mM of glucose. On day 4, we add the free fatty 

acids inducing the diabetic conditions. In some samples, the medium was 

replaced for 25 mM glucose medium. Further, in the desired samples, 400 μM 

of Palmitic acid (Sigma Aldrich) were added at day 4 after seeding. Briefly, 

palmitic was obtained from diluting 1g of palmitic acid into 100% 

isopropanol. Then palmitic was diluted into PBS/1% BSA to ensure proper 

dissolution. Finally, an extra 1:10 dilution in respective mediums was 

performed, and the culture medium was replaced for each respective 

treatment up to day 7 of culture. 

In summary, we tested two different glucose concentrations with and without 

palmitic acid.  All these conditions were studied in plate monolayered 

distributions and in cryogels were pseudoislet were formed. To understand 

cell viability and functionality, GSIS analyzed by insulin ELISA and gene 

expression analyzed by qPCR were performed. 

 

3.4 SKELETAL MUSCLE TISSUE ENGINEERING  
 

3.4.1 C2C12 cell culture 

 

Frozen vials of C2C12 myoblasts (American Type Culture Collection (ATCC), 

USA) with 1·106 cell/mL were thawed in a bath at 37ºC for 1 minute. Before 

the complete defrosting of the vial, cells were placed inside a 75 cm2 flask and 

filled with 15 ml of growth medium  

(Dulbecco's Modified Eagle Medium (DMEM) high glucose with L-glutamine 

(Gibco, Thermofisher) supplemented with 10% FBS (Thermofisher) and 1% 

Pen/Strep (Thermofisher)). Finally, the flask was placed inside an incubator 

at 37ºC, and 5% CO2 and the medium was changed every 2-3 days. When cells 

reached ∼75% of confluency, they are trypsinized for cell passaging or cell 

seeding inside scaffolds. For cell trypsinization, 2 ml of 0,25% trypsin-EDTA 
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were added to the flask and placed inside the incubator for 2 minutes. After, 

8 ml of medium were added to stop the reaction. In the case of cell passaging, 

2,5 ml (1:4 cell passaging) of the cell mix were added to another 75 cm2 cell 

culture flask and filled with 15 mL of growth medium.  

 

3.4.2 C2C12 cell seeding. 

 

First, the cryogel was dried a bit at RT to empty the pores of water. For cell 

seeding, the medium was removed from the culture flask, and before 

trypsinization, the flask was washed using 10 mL of PBS. After PBS removing, 

cells were trypsinized with 2 mL of 0,25% trypsin-EDTA and placed 2 minutes 

inside the incubator at 37ºC and 5% of CO2. Next, minor hits were applied to 

the flask to ensure the total detachment of all the cells, and the flask was filled 

with 8 ml of fresh medium, and 10 ml in total were placed inside a 15 ml 

falcon. Here, 10 μl of cells were used for cell counting with a Neubauer 

chamber or a cell counter, while the falcon was centrifuged at 1.2 rpm for 5 

minutes. When centrifuge finished, the supernatant was discarded, and cells 

were resuspended to 9x106 cells/ml.  Upon this concentration, a drop of 20 μl 

was seeded in the upper part of the cryogel. After 10 minutes, we collect the 

medium from the bottom that passed through the cryogel, and we reseed it 

on the top of the cryogel again. After seeding, cells were in growth medium 

(DMEM, 10% FBS 1% Pen/strep) for 10 days, and the medium was changed 

to differentiation medium (DMEM, 2% horse serum, 1% pen/strep) up to 22 

days of culture. The medium was changed every 2-3 days. 

 

3.4.3 Electrical stimulation for skeletal muscle 

 

Electrical Pulse Stimulation (EPS) was applied on day 11 after differentiation 

medium. The stimulation was performed by placing the cryogels inside a 6 

well-plate with a C-dish from IonOptix connected to a multifunction generator 

(WF 1948; NF Co.) with a specified regime (1 Hz of frequency, 1V p-p, and 10 

ms of width) for 12 consecutive hours. Cryogel was placed in the middle of a 

6 well and centered between the two electrodes of the C-dish. Notably, the 

pores of the cryogel must be oriented parallel to the electric field (Figure 26).  
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3.4.4 Live/Dead assay  

 

An important hallmark of the cell-biomaterial interaction is the 

biocompatibility of this with the cells. A viability assay was performed to 

study how viable the cells are inside or in contact with the scaffold. This assay 

was performed with the Live/dead assay kit (Thermofischer) at days 1, 5 and 

7 after cell seeding. Firstly, the cryogels were washed 5 minutes with PBS 

(x5). While washing steps were performed the working solution was 

prepared. For this solution, 12 μl of 2 mM EthD-1, 3 μl of Calcein AM, and 6 μl 

of Hoechst were mixed in 6 mL of PBS. Once washed, the PBS was removed, 

and 250 μl of the working solution was added. Then, cryogels were stored at 

the incubator. After 25 minutes, the cryogels were washed 3 times with PBS. 

Finally, images were taken with confocal microscopy for live/dead ratio 

quantification. 

 

 

A)

C)B)

Figure 26: Schematic of the electrical stimulation process. A) Pictures of the IonOptix C-

dish plate. B) Schematic image of the lower view. Cryogels were placed in the middle of the 6 

well-plate. C) Side view of the stimulation set-up. Cryogels were placed centered between the 

electrodes of the C-dish. 
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The quantification of viability ratio was calculated as follows: 

 

𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =
#𝐿𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠

#(𝐿𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠 + 𝐷𝑒𝑎𝑑 𝑐𝑒𝑙𝑙𝑠)
 𝑥 100 

 

3.4.5 Skeletal immunostaining 

 

For confocal analysis, stained cryogels were used. The staining was done with 

DAPI for nuclei, Rhodamine-Phalloidin for F-actin, and MF20 Alexa Fluor 488 

for Myosin Heavy Chain. After culturing the cells for 22 days, the cryogels 

were washed with PBS and fixed with 10% formalin solution (Sigma - Aldrich) 

for 30 minutes. Then, the cryogels were washed with TBS (Canvax Biotech) 

and permeabilized with 0,1% v/v Triton X-100 (Sigma Aldrich) solution in 

TBS for 15 minutes. Besides, the blocking of the cryogels was done with a 

solution of 0,3% v/v Triton X-100 and 3% v/v Donkey serum (Sigma-Aldrich) 

into TBS for 2 hours. Then, the cryogels were incubated with 100 nM 

Rhodamine-Phalloidin 480 (Cytoskeleton Inc) and 5 μg/mL MF20 Alexa Fluor 

488 blocking solution overnight. The following day, the cryogels were washed 

with permeabilization solution (3x, 10 minutes each). Subsequently, cryogels 

were incubated with 1 μM DAPI (Thermofisher) into blocking solution for 15 

minutes. Finally, cryogels were washed with TBS for 15 minutes and stored 

at 4 ºC until confocal microscopy acquisition. 

 

3.4.6 Alignment in skeletal muscle 

 

Stained cryogels were used, to calculate the alignment of the fibers. Also, 

nuclei and F-Actin for cells were stained following immunostaining protocol. 

The PlugIn "OrientationJ" from ImageJ were used to see the distribution of the 

fibers and the alignment of the cells in a random fiber distribution cryogel 

against the aligned fiber cryogels. OrientationJ calculates the orientation of an 

image evaluating the gradient structure tensor in a local neighborhood. 

Distribution from OrientationJ PlugIn was used with a cubic spline and a local 

window of 2 pixels. 
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3.4.7 Fusion Index 

 

C2C12 myoblast cells were seeded as previously explained in the cryogel for 

22 days with or without Electrical Pulse Stimulation (EPS) to differentiate 

them into myotubes. Cryogels were fixed for prior staining of DAPI, F-actin, 

and Myosin heavy chain. Cryogels were sliced vertically to improve image 

acquisition. Then, confocal images were taken in 5 random areas over the 

cryogel, and 3 cryogels per condition were used. From these images, the 

fusion index has been calculated. Briefly, image channels were split. Then, the 

blue channel (Nuclei) and green channel (Myosin Heavy Chain) were 

transformed into binary. Next, each channel area from different myotubes 

were counted. The index fusion consists of the number of cells that are 

differentiated and fused. To calculate the fusion index, the following equation 

was used: 

 

𝐼𝑛𝑑𝑒𝑥 𝑓𝑢𝑠𝑜𝑛 =
 #𝐺𝑟𝑒𝑒𝑛 & 𝑏𝑙𝑢𝑒 𝑎𝑟𝑒𝑎𝑠

𝑇𝑜𝑡𝑎𝑙 #𝑛𝑢𝑐𝑙𝑒𝑖
 𝑥 100 

 

For the index fusion analysis, 5 images for sample and 3 samples per 

condition were taken and analyzed. 

 

3.4.8 qPCR for skeletal muscle 

 

3.4.8.1 RNA extraction 

 

After cell culture and stimulation, cryogels were placed into a 1.5 mL vial and 

were frozen in liquid nitrogen until PCR assay. Firstly, the cryogels were 

homogenized with 500 μl of TriReagent at room temperature, smashed with 

a PCR stick, and 500 μl more of TriReagent were added. Then, 200 μl of 

chloroform was added, vortexed for 15 seconds, and incubated for 5 minutes 

at RT. Samples were centrifuged at 12000 rcf for 15 minutes at 4ºC, and the 

aqueous phase was split into a new eppendorf tube. Then, 1 mL of isopropanol 

and 10 μl of GlycoBlue (at 15 mg/mL) were added, vortexed, and incubated at 

RT for 5 minutes. Following, centrifugation was performed at 12000 rcf for 

10 minutes at 4ºC, and the pellet was washed with EtOH 80%, and 

centrifugated again at 7500 rcf for 5 minutes at 4ºC. Next, the EtOH has been 
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air-dried with the vacuum/heater centrifuge. Finally, RNA was resuspended 

in RNAse free water at 65ºC, and the RNA was read into the Nanodrop ND-

100 spectophotometer.  Samples were stored into the -80ºC until RNA 

digestion and cDNA synthesis.  

 

3.4.8.2 RNA digestion and cDNA synthesis 

 

For the DNA digestion, a mixed reaction of 1 μg of RNA sample, 1 μl 10X DNAse 

I reaction buffer, 1 μl DNAse I was prepared. The volume was complete until 

10 μl with free RNAse water. This mix was incubated for 15 minutes at RT 

(Table 12). After, 1 μl of 25 mM EDTA was added and incubated for 10 

minutes at 65ºC.  

 

RNA digestion 

• 1 μg of RNA sample 

• 1 μl 10X DNAse I reaction buffer 

• 1 μl DNAse I  

• complete the volume until 10 μl with Nuclease-free water 

Table 12: RNA digestion concentrations. 

 Later, 1 μl of random hexamer primer (10 mM) and 1 μl of dNTPs (10mM) 

was added and incubated at 65ºC for 5 minutes and placed on ice to cDNA 

synthesis. The content was collected into another Eppendorf, and 4 μl of First 

Strand Buffer, 2 μl 0.1 M DTT, 1 μl of RNAseOUT, and 1 μl of SuperScript were 

added (Table 13). Then the mix was incubated into the thermocycler for 10 

minutes at 25ºC, 50 minutes at 42ºC, and 15 minutes at 70ºC. Finally, samples 

were kept at -20ºC for further analysis. 

 

cDNA synthesis volumes (For one sample) 

• 1 μl random hexamer primer (10 mM) 

• 1 μl of dNTPs (10mM)  

• 4 μl of First Strand Buffer  

• 2 μl 0.1 M DTT  

• 1 μl of RNAseOUT 

• 1 μl of SuperScript 
Table 13: cDNA synthesis protocol proportions 
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3.4.8.3 qPCR 

 

Finally, quantitative PCR reactions were run using SyberGreen gene 

expression assays according to the manufacturer's directions (Solis Biodine). 

Briefly, a reaction mix was performed, as shown in Table 14. 

 

Reaction mix (per sample) 

• 1 μl of 5X HOT FIREPol EvaGreen qPCR 

Mix Plus 

• 0.5 μl of primer Forward  

• 0.5 μl of primer Reverse 

• 2 μl of cDNA (previously diluted 1:10) 

• 13 μl of H2O RNAse free 

Table 14: Reaction mix proportions for qPCR standard curve 

 

Expression levels were measured using an Applied Biosystems StepOnePlus 

Real-Time PCR System. Cycles were as follows: 40ºC for 12 min., 90ºC for 15 

min., 60ºC for 20 min., and 72ºC for 20 min. Expression relative to ActB 

endogenous genes and control group was calculated using the 2−ΔΔCt 

method. At least three cryogels per condition were evaluated. The primers 

studied were listed in Table 15. For the qPCR 3 cryogels per condition were 

evaluated.  

 

Gene Forward Reverse 
Actb CATTGCTGACAGGATGCAGAAGG TGCTGGAAGGTGGACAGTGAGG 
Myog GCTGGAAGATGAGTGCTCAGAG TCCAAACCAGCCATCTCCTCTG 
Myh2 GCGACTTGAAGTTAGCCCAGGA CTCGTCCTCAATCTTGCTCTGC 
Tnnt1 GAGCAGAGGATGACGCCAAGAA TTCATCTCCCGACCAGTCTGTC 

Table 15: Primers used for gene expression analysis in the skeletal muscle tissue. 

 

3.5 STATISTICAL ANALYSIS 
 

Data are expressed as the mean ± SD of at least 2 independent experiments 

with 3 replicates each. Statistical significance for two conditions comparison 

was determined for parametric tests by two-tailed Student t-test with Welch's 
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correction when necessary and for non-parametric tests, by Mann-Whitney U 

test. For multiple condition comparison, one-way or two-way ANOVA when 

required were used. Results were considered statistically significant at p < 

0.05. 
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4.1 CRYOGEL FABRICATION 

 

4.1.1 Cryogels as a scaffold casting technique 

 

Scaffold selection has a big relevancy in tissue engineering, as it has the 

objective to mimic the extracellular matrix of each tissue. By selecting the 

appropriate biomaterials, casting technique, crosslinking method or different 

surface functionalization, we could provide the scaffold with unique and 

specific properties for the proper tissue generation. Among others, properties 

as stiffness, permeability or bioactivity can be modulated by combining all 

these parameters.   

Nowadays, hydrogel encapsulation is the scaffolding gold-standard 

technique. However, limitations in pore size and nutrient diffusion, turn into 

a non-suitable scaffold for the generation of volumetric tissues as pancreatic 

tissue engineering. 

To solve this drawbacks cryogelation technique was the chosen fabrication 

process to generate scaffolds for pancreatic and skeletal muscle tissue 

engineering. This technique allows the generation of sponge-like scaffolds 

with high water content and with a microporous structure that allow high 

nutrient and oxygen diffusion (Figure 27). Also, by changing cooling rate, 

temperature, or freezing directionality, different pore architecture, and pore 

sizes can be achieved. Moreover, the unnecessary use of UV-light and the 

possibility to crosslink the biomaterial prior cell seeding, allow to generate 

more mechanically stable and easy to manufacture scaffolds.  

Sponge-like structurePrepolymer solution Freezing Defreezing

Crosslinker

Biomaterial fiber

Figure 27: Scheme of cryogelation process. Prepolymer is placed at sub-zero temperatures, 

where while it freezes its acuose part, the fibers of the polymer crosslinks. After thawn, sponge-

like microporous scaffold is fabricated. 
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4.1.1.1 Biomaterials used 

 

One of the most relevant scaffolding parameters is the biomaterial selection. 

Biomaterials will be the main responsible for interacting with the cells, being 

cell-adhesive, bioactive or biocompatible. Moreover, physicomechancial 

properties of each biomaterial, as stiffness or swelling may favour the tissue 

formation.  

Among all the possible biomaterials, cellulose and gelatin has been selected. 

Gelatin is a derivate of collagen. With high biocompatibility and cell activity 

promoters, as the polypeptide Arginine-Glycine-Aspartic acid (RGD), a cell-

binding motif (Figure 28A). Also, it is cheap, easy to obtain, and temperature-

dependent [24]. On the other hand, it has low mechanical properties, low 

viscosity, and is degradable by mammalian cells [22]. Gelatin is a well-

stablished and widely used biomaterial  in tissue engineering [55], [164], 

[165]. 

Cellulose is one of the most common polymers in the nature. It has good 

biocompatibility and better mechanical properties than the ECM-derived 

biomaterials. Also, it is cheap, and it is non-temperature-dependent. It lacks 

cellular interactions and it is not degradable by mammalian cells. However, 

cellulose is not water soluble, so Carboxymethyl cellulose (Figure 28B) was 

used, as it have same properties as pristine cellulose but it is water-soluble. 

Furthermore, the presence of carboxyl groups allows the carbodiimide 

crosslinking, making CMC a suitable biomaterial for tissue engineering and 

scaffold generation [166], [167]. Moreover, the generation of a biocomposite 

Figure 28: Biomaterials used for cryogel fabrication, A) Chemical structure of the gelatin. 

B) Chemical structure of the Carboxy methyl cellulose. 

B)A)
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combining both biomaterials will be a promising scaffold for tissue 

engineering. Combining gelatin and cellulose we could achieve a good 

bioactive and mechanically stable cryogel with tunable stiffness, modulable 

pore structure and with high water content.  

 

4.1.1.2 Crosslinking principle 

 

For Carboxymethyl cellulose and gelatin cryogels a carbodiimide chemical 

crosslinking was used (Figure 29). Adipic acid dihydrazide was selected as a 

Figure 29: Crosslinking process of the gelatin-CMC fibers. A) Adipic Acid Dihydrazide. B) 

EDC. C) Scheme of the carbodiimide crosslinking chemistry. (1) would represent polymer fibers, 

(2) would represent AAD molecule. Adapted from Thermofischer’s Crosslinking Technical book 

[261]. D) Schematic of the crossliking network of the gelatin-CMC cryogels. 

A) B)
EDC

C)

D)
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linker because the presence of amine groups in both sides of the molecule 

(Figure 29A), and ECD as an activating agent (Figure 29B). The main reason 

for this crosslinking is the EDC-activation of the carboxyl groups from both 

polymers. With this activation and with the help of the linker molecule, we 

were able to generate a polymeric network (Figure 29C). This amine groups 

will react with the carboxyl EDC-activated groups from the polymer, 

achieving a good fiber crosslinking (Figure 29D). Moreover, this reaction can 

succeed while prepolymer solution freezes, being a successful method to 

generate fiber meshes and, for instance, cryogels for tissue engineering.  

 

4.1.1.3 Scaffold prerequisites for tissue formation 

 

For generating different tissues, scaffolds must have similar properties as the 

EMC of each specific tissue. Hence, depending on the tissue we wanted to 

generate, a specific scaffold with unique properties has to be generated. Each 

scaffold was designed in based the prerequisites of each tissue: 

Pancreatic tissue was generated by seeding pancreatic islets inside the 

cryogel or generating pseudoislets by aggregating β-cells inside the scaffold. 

Both pancreatic approaches needed a pore architecture with a wide range of 

porosities, similar to the pancreatic islets [97]. This parameter is essential to 

ensure pancreatic islets infiltration or resemblant pseudoislet formation. 

Another important feature is that pancreas is a relatively soft tissue, so the 

scaffold should have similar stiffness to the physiological. All this has to be 

made taking into account that pore interconnectivity and permeability of the 

scaffold should be high to avoid lack of nutrient and oxygen supply. 

For the skeletal muscle similar features of pore interconnectivity, 

permeability and swelling must be achieved. However, pore architecture 

highly differs from pancreatic tissue requirements. Skeletal muscle is a highly 

aligned tissue, formed from the fusion of myoblast into multinucleated cells 

called myotubes. This cell fusion is enhanced when cells are aligned. Taking 

the profit that the cells can sense the topography of a substrate, an anisotropic 

pore architecture was generated. With this, cells will be all guided in the same 

direction, prompting its fusion and maturation. Another important property 

is the skeletal muscle stiffness, so the scaffold should be stiffer than the 

pancreatic approach. Finally, skeletal muscle improves its myogenic 

maturation when electrical pulse stimulation was applied. However, none of 

the biomaterials proposed has good electrical properties. Different particles 
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can be added to the structure of the scaffold to enhance this property and 

generating a more conductive scaffold. Carbon nanotubes were added to the 

scaffold structure to enhance electrical conductivity based on literature and 

for its easy acquisition and proved conductivity. 

 

4.1.2 Cryogel fabrication and optimization 

 

Different parametes were studied to fabricate cryogels. Firstly, different 

molecular weight cellulose were tested: 700 kDa Carboxymethyl cellulose 

(CMC) and 90 kDa CMC. Due to its solubility and viscosity, 90 kDa CMC was 

chosen. Moreover, 700 kDa crosslink before freezing difficulting the 

obtention of mechanically stable cryogel.  

Once chosen the pristine biomaterial, other variables were modulated to 

optimize the protocol. Different biomaterial percentages, AAD and EDC 

concentrations were tested to check the mechanical stability of the cryogels. 

First, different CMC percentage cryogels were tested. We  could observe that 

crosslinking reagents needed to be directly scaled up when more 

concentrated CMC cryogels were fabricated. However, when CMC percentage 

was decreased AAD and EDC where in excess and there was no need to 

downscalate it. Second, Maintaining CMC and EDC percentage constant, 

different concentrations of AAD were modulated. Here, we could observe that 

AAD concentrations has no apparent effect in cryogel mechanical stability. 

Finally, studying EDC concentrations we could observe that when EDC was 

increased, early polymerization occurs, not generating mecahcnically stable 

cryogels. On the other hand, when EDC was highly decreased, crosslinking 

underperform and no mechanically stable cryogels were fabricated either. 

After determining the appropriate crosslinking concentrations for each 

cryogel, different CMC percentage cryogels were fabricated. Starting at 5% 

(w/v) and by decreasing the amount of material, we could observe that the 

crosslinking effectivity of the cryogels strongly decrease when the material 

concentration goes under 1%, as they breake when demolding, probably due 

to the unefective crosslinking and low material concentrations. Despite this, 

when crosslinking process succeed, cryogels present a good mechanical 

stability and a good handling (Figure 30). Moreover, cryogels present an 

interesting capability to pass through tinny constructs, for example a syringe. 

A resume of the final reagent concentrations for different cryogel fabrication 

can be found in Materials and methods, Section 3.1. Table 1. 
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Cryogel porosity is mainly dependant on ice nucleation and so, highly related 

to temperature. Different temperatures were studied and checking its 

polymerization and mechanical stability to understand this parameter and 

generate the desired pore architecture. In here, -20ºC freezer, over carbonic 

ice, -80ºC freezer, and over liquid nitrogen were tested. In the beginning, -

20ºC were the only cryogels that crosslinked. However, if cryogels placed at -

80ºC or over carbonic ice were then placed at -20ºC for an overnight, the 

cryogel crosslinked properly and had good mechanical stability. Although 

both approaches crosslinked, smaller pores were formed at lower 

temperatures. 

A) B)

C)

Figure 30: Different properties of the cryogels. A) Different cryogels with variable material 

concentrations. 1% at left, 5% at center and 0,5% in the right side. B) Cryogels can be 

absorved by a syringe, while maintaining its strucutre. C) Cryogels are easy to handle, and 

they can recorver easy its shape. 
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For the skeletal muscle approximation, temperature optimization was also a 

key factor. Freezing directionality was needed to generate pore alignment. 

This happens because ice nucleation and growing are forced to succed only in 

one axis (Figure 31). Here, two temperature set-ups were tried: crosslinking 

the prepolymer solution with liquid nitrogen or over carbonic ice. After 

placing at -20ºC, the liquid nitrogen approach did not crosslink. However, 

carbonic ice set-up cryogels crosslinked, forming a good tubular pore 

architecture. 

 

The last step of anisotropic scaffolds was incorporating carbon nanotubes 

(CNT) into the fiber structure to generate an electrically conductive 

biomaterial. The finallity of this is to stimulate the scaffold electrically to 

improve myogenic maturation [168]. We could observe that CNT could be 

incorporated in the scaffold matrix by mixing it inside the prepolymer 

solution (Figure 32A). After demolding, the mechanical stability of the 

scaffolds did not change when CNT were added. During the fabrication 

process, CNT tent to form small aggregates not distributing uniformly 

through the whole scaffold (Figure 32B). We could observe by optical 

microscopy that CNT clusters were aligned following the pore structure 

despite these aggregations. Moreover, by taking images with a Scanning 

Electron Microscope (SEM), we could observe that not all CNT formed 

clusters, but other CNTs can be found dispersedly in the scaffold (Figure 32C).  

Freezing directionallity

Pore architecture

Figure 31: Scheme of the different pore architectures depending the freezing 

directionallity applied. If temperature freezes the water without no directionality, random 

pores were formed. However, if water is freezed in one specific directionality, highly aligned 

pores can be formed.  
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4.1.3 Generation of PDMS molds for cryogel fabrication 

 

Two different set-ups were optimized to fabricate cryogels depending on the 

tissue we wanted to engineer. Every tissue has its specific requirements, so 

the fabricating set-up, the biomaterials used, the material concentration, and 

many other variables changed to acquire the needed scaffold properties. Both 

cryogels were cast inside a polydimethylsiloxane (PDMS) molds with specific 

conditions for the generating of the desired cryogel structure. 

 

4.1.3.1 Random pore architecture set-up 

 

 For pancreatic scaffolds or random pore scaffolds, the mold was cylindrical, 

with a diameter of 10 mm and a height of 1 mm. Different heights were 

studied, but more than 1 mm heigh was too much as it has an excessive 

volume/area ratio for the desired amount of pancreatic islets/pseudoislets 

seeded inside. For fewer heights, the demolding and manipulation of the 

cryogels were complicated. Finally, the set-up was optimized by placing the 

PDMS mold in the middle of two cover slides, a squared 24x24 mm at the 

bottom and a 12 mm diameter. For filling the prepolymer solution, small 

entries were made in the cylinder sides, so filling the mold by capillarity with 

the prepolymer solution was the easiest way (Figure 33). With this molding 

Figure 32: Incorporation of carbon nanotubes (CNT) with the cryogel scaffold. A) 

Example of highly CNT-concentrated anisotropic scaffold. B) Example of the alignment of the 

CNT clusters White dot line shows the pore directionality, Scale bar = 100 µm  C) Scanning 

electron microscopy of a CNT. 

5 μm

A) B) C)
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set-up we could achieve a easy to fabricate method with high reproducibility 

and cryogels with desired pore architecture, dimensions and mechanical 

stability. 

 

4.1.3.2 Anisotropic pore architecture  set-up 

 

For the skeletal muscle scaffold or anisotropic pore scaffold, a different set-

up was prepared. Differently, in this approach, we needed to generate a 

temperature directionallity. After determining casting temperature placing 

the cryogels over carbonic ice, different molds and approximations were 

studied. The use of 1 mm heigh molds were not enough to generate a proper 

anisotropic distribution, so first step was to generate higher molds. Here, the 

mold was cylindrical with 6 mm in diameter and 6 mm in height (Figure 34). 

This taller scaffold is necessary to generate the ice nucleation and the tubular 

ice growing for generating the anisotropic structure. This heigh was enough 

to generate the anisotropy. However, not a straight-forward architecture was 

achieved. To improve the freezing directionality, a polypropylene thermal 

isolator was placed around the PDMS mold, and a metallic sheet was placed 

over the carbonic ice to homogenize temperature and get more replicable 

scaffolds. 

A) B)

C) D)

A) B)

C) D)

Figure 33: Random pore architecture cryogel fabrication process. A) PDMS mold, B) 

Filling the mold with the prepolymer solution. C) The mold was placed at -20ºC freezer for an 

overnight. D) Final image of the cryogel after demolding. 
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4.2 CRYOGEL CHARACTERIZATION 

 

Once we optimized the cryogel fabrication process, the proper pristine 

biomaterial concentrations, the temperatures we needed, and optimized the 

fabrication set-ups, we could characterize scaffold properties, such as pore 

sizes, stiffness, swelling, or diffusion rate.  These scaffold properties has high 

relevance as are key factors for the proper tissue generation. 

 

4.2.1 Pore diameter 

 

We analyzed the pore diameter and architecture to understand how all the 

parameters mentioned above affect the cryogels. This variable may be a 

limitation in the pancreatic approach as we need a specific pore size 

distribution to seed or generate pancreatic tissue. Moreover, the pores should 

have similar sizes as physiological pancreatic islets to generate pseudoislets 

in an approximate range of sizes compared to in vivo pancreatic islets, 

A) B)

C) D)

Figure 34: Anisotropic pore architecture cryogel fabrication process. A) PDMS mold, 

covered with a thermo isolator. B) Filling the mold with the prepolymer solution. C) The 

mold was placed on a metallic sheet over carbonic ice. D) After 1 hour in carbonic ice, and 

overnight at -20ºC freezer, cryogel can be demolded and sliced. 
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ranging from few micrometers up to 200 μm approximately [169], [170]. The 

biggest pores possible for the skeletal muscle tissue are needed to ensure the 

maximum cell infiltration while maintaining the anisotropy and the scaffold's 

mechanical stability. 

 

4.2.1.1 Random pore quantification 

 

The first variable we checked is the variability of the pore size when material 

concentration fluctuates. By fabricating cryogels with the fibers stained, we 

could quantify the minimum diameter of each pore. Confocal images were 

taken with a confocal microscope to quantify the pore diameter. Different 

images of pores in different depths of different cryogels were acquired and 

quantified. ImageJ software was used to analyze the images. Firstly, images 

were thresholded into black and white. After, all the pores were 

reconstructed manually to avoid miscounting of the diameters. Finally, 

MinFeret's ImageJ was quantified. MinFeret is the closest distance between 

two diametrical points of a pore. The main reason for analyzing MinFeret 

instead and typical diameter is because this distance is the limitation 

threshold to seed pancreatic cells.  

First different CMC cryogels were analyzed (Figure 35A). Here, we observed 

that pore disparity is big, ranging from few micrometers to 100-200 µm 

depending on the material concentration. In 5% CMC cryogel, the pores range 

between few microns up to 100 µm. By decreasing the material concentration, 

this pore distribution enlarges. In 1% CMC cryogel maximum pore sizes 

reaches 150 μm, in 0,5% up to 200 micrometers and in 0,25% the porosity 

reaches almost 250 μm. Even some pores bigger than 300 µm were found 

(Figure 35B). Despite the enlarging of the pore distribution, its mechanical 

stability decreases when material concentration decreases. Indeed, 0,25% 

and 0,5% CMC cryogels had good porosity distribution, but the fabrication 

success ratio was low due to its low material percentage as many of the 

scaffolds break when demolding, not accomplishing the easy-manufacturing 

requisite. Knowing the sizes of the pancreatic islets, we determined that 1% 

CMC cryogel has the pore distribution that fits better with our needs.  

After setting the amount of material at 1% for random porosity, the gelatin 

integration was studied. Here, we fabricated different 1% cryogel with 

different gelatin:CMC ratios (Figure 35C). We could appreciate that the 

porosity range did not vary significantly if the material concentration remains 
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constant. We can also appreciate that all the pore distribution ranges from 

few microns to 150 microns approximately, as expected (Figure 35D). We can 

conclude that gelatin incorporation did not affect the pore range distribution 

while the material concentration remains constant.  

 

 

 

 

Figure 35: Pore quantification for the random pore architecture crygel. A) Confocal 

image of the 1% CMC cryogel stained with aminofluorescien. Scale bar = 100 µm . B) Pore 

distribution of different material concentrations. C) Confocal image of the 1% gelatin cryogel, 

with the fibers stained in green. Scale bar =100 µm.  D) Pore distribution of different 1% 

cryogels with different percentages of gelatin and CMC. 
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4.2.1.2 Anisotropic scaffold pore quantification 

 

We take the previously acquired knowledge for the skeletal muscle approach 

and directly fabricated different gelatin:CMC cryogels, from 1% to 5% total 

material concentration. In here, we wanted the pores as big as possible, 

implying the less amount of material possible. Nevertheless, lower 

percentage cryogels were not stable enough to manipulate it, as cryogel 

collapses as fibers were not stiff enough to support the structure. Thus, 3% 

material concentration (2% gelatin:1% CMC) was the chosen material 

proportions, as the lower material concentration but mechanically stable 

Figure 36: Pore distribution for the anisotropic approach. A) Confocal image of the 

anisotropic pores. Top view were the tubular structure can be appreciated. B) Confocal image of 

the anisotropic structure of the cryogel. Side view. For this, cryogel was sliced vertically. C) Pore 

distribution for 3% cryogel (2% gelatin:1% CMC). Most of the pores are found between 30 and 75 

µm. D) Different concentrations of AAD were tested. Pore distribution did not change. 
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cryogel (Figure 36A-B). The percentage of gelatin was determined because 

we wanted to be sure to promote cell adhesion in the cryogel. By analyzing 

the pore distribution, we can observe that small pores are always present. 

Interestingly, most of the pores are in a specific range between 30 and 75 μm 

in diameter (Figure 36C). This pore range is appropriated to seed the cells 

over the cryogel as it allows cell infiltration, cell growth, and migration of the 

cells. Moreover, we could prove that cells were found through the whole 

cryogel. To note, this pore size should allow the myotube formation as 

myotubes are not bigger than 30 μm in width [165], [171], [172]. 

Despite 3% Gelatin:CMC cryogel has promising pore distribution, we wanted 

to know if this could be enlarged for better cell infiltration. Here, we changed 

AAD concentrations to assess the AAD's effect during the crosslinking 

process. For this, different 3% stained cryogels with different AAD 

concentrations were fabricated. As we could quickly appreciate, mechanical 

stability did not change, remaining stable even when AAD was decreased. 

After analyzing pores of all the AAD concentrations, we could appreciate that 

no significant porosity changes were achieved (Figure 36D). Finally, knowing 

that the myotubes are in a similar range to our tubular pores, the final 

concentration of material was chosen as 3%, without changing the initial 

concentration of AAD for the skeletal muscle pore approximation.  

 

4.2.1.3 Scanning electron microscope (SEM) 

 

Scanning Electron Microscope (SEM) images were taken to support 

previously confocal imaging and pore acquisition and to have a general 

overview of how is the internal structure of the cryogels. SEM images were 

acquired after dehydration and critical point dry. In the random pore 

approximation, can be observed that pore distribution is heterogeneous, and 

pores from many different sizes were formed (Figure 37), supporting the 

previous data shown (Figure 35-Figure 36). This wide variance of pore size, 

similar to the size of pancreatic islets, should help the islets infiltration and 

the generation of physiologically resemblance pseudoislets.  

On the other hand, in anisotropic cryogel, scanning electron microscope 

images showed this same distribution, with less variability among all the 

pores. Also, we can appreciate the tubular shape of these pores. This feature 

is an essential to engineer skeletal muscle tissue, as skeletal muscle tissue 

needs high alignment and super organization to differentiate from myoblast 
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to myotubes. With this technique, we achieved a good pore distribution and 

pore sizes that allows a good infiltration of the cells. Moreover, the pores of 

the cryogel have a high alignment that enhances the fusion and differentiation 

of the skeletal muscle myotubes.  

 

4.2.2 Stiffness 

 

Mimicking tissue's physiological environment is another essential property 

to consider when designing scaffolds for tissue engineering. Every tissue has 

its specific and characteristic environments. Thus, the resemblance with the 

in vivo ECM is an essential feature for proper tissue formation. ECM has the 

objective to support cells and plays a vital role in cell viability and 

functionality by doting the cells of specific biochemical and physical signals 

[173]. As cells behave differently when scaffold stiffness changes [174], [175] 

obtaining scaffold stiffness resembling the in vivo is fundamental for tissue 

engineering. A compression assay was performed to analyze the bulk stiffness 

of the cryogels. Young's modulus was the curve's slope between 20% and 

30% of strain compression. 

 

 

300 μm 200 μm

B)A)

Figure 37: Scanning electron microscope images from both pore architecture approaches. 

A) Random pore approach. Scale bar = 300 µm.  B) Anisotropic pore architecture approach. Scale 

bar = 200 µm. 
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4.2.2.1 Random pore scaffold 

 

For the random approach, 1% CMC cryogel has a stiffness of 0,66 ± 0,08 kPa. 

Besides we knew that gelatin did not change significantly the pore 

distribution of the cryogels, we wanted to know if the incorporation of it, can 

change other important properties as the stiffness. For this full gelatin cryogel 

and 50:50 gelatin:CMC cryogels were studied. In here, we could observe that 

gelatin random cryogel is much softer than CMC cryogel (0,27 ± 0,13 kPa). For 

gelatin:CMC cryogel, as expected, the stiffness is in-between its raw material 

cryogels (0,5 ± 0,09 kPa) (Figure 38). To note, CMC stiffness achieved 

correlates well with the proper stiffness defined for pancreatic tissue. As the 

pancreas is a soft tissue, its stiffness ranges from 0.1 kPa to 10 kPa [176].  

Moreover, pancreatic cells seem to respond properly to this low stiffness 

interval, as cells can increase insulin mRNA expression and glucose sensitivity 

[124]. In other approaches, the stiffness of native healthy pancreas was set as 

approximately 1 kPa when measured by magnetic resonance elastography 

(MRE) [177], [178], a similar value with the scaffold stiffness achieved. Also, 
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Figure 38: Stiffness change when different materials were used, despite percentage 

remains constant. CMC appears to be more stiffer thant the gelatin, being closer to 

physiological results. Results are mean ± SD. * p-valor = 0.05 
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soft scaffolds favor cell coalescence and preserve the cluster-like 

organization, while in stiff substrates, the extracellular-cell interactions cause 

cell scattering and loss of islet-like structure [179].  

 

4.2.2.2 Anisotropic pore scaffold 

 

The anisotropic cryogel has stiffer properties than the random cryogel 

because the increasing of material concentration and fiber architecture. 

Moreover, because of its anisotropic structure, stiffness can vary depending 

on the axis directionality that the compression is applied (Figure 39A). If the 

compression is applied in the same axis that the pores are aligned, the Young 

modulus is 11,21 ± 6,22 kPa. If the compression is applied perpendicularly to 

these pores, the stiffness decreases to 6,52 ± 3,74 kPa (Figure 39B). This 

happens because, in parallel compression, fibers oppose resistance to this 

compression. However, in perpendicular compression, some empty spaces 

from the pores that allow the cryogel to compress. Same tendency can be 

observed in the CNT-doped cryogels (9,23 ± 4,45 kPa vs 3,90 ± 2,70 kPa). 

Comparing the compression directionality of CNT-doped against non-doped 

cryogel, we can observe that the values remain similar (Perpendicular: 11,21 

± 6,22 kPa and Parallel:  6,52 ± 3,74 kPa), meaning that the addition of CNT 

did not significantly affect the stiffness of our cryogel. Remarkably, the 

Figure 39: Stiffness results for anisotropic pore architecture scaffolds with and 

without carbon nanotube incorporation. A) Compression directionallity scheme. B) 

Stiffnes results. Carbon nanotubes did not change the stiffness. Moreover, stiffness changes 

depending the compression directionality, indirect measurement of anisotropy. Results are 

mean ± SD. * p-valor = 0.05 
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stiffness of the cryogel shows in vivo similarity mechanical properties [174], 

[180] to the skeletal muscle ECM, which is around 12 kPa.  

 

4.2.3 Swelling 

 

4.2.3.1 Random pore scaffold 

 

Another feature that we wanted to improve is the diffusion of nutrients 

through the scaffold. Swelling is the water uptake capability of a hydrogel, an 

indirect measurement of pore interconnectivity [181]. The pore diameter 

distribution and the high pore interconnectivity, typical of cryogels, enhances 

this swelling property [51]. After only 24 hours, our cryogel reached 

equilibrium because its high interconnected porosity structure (Figure 40A). 

Swelling ratio of CMC cryogels was 98.14 % ± 0,32 and 96.30 ± 0.38 % for 

gelatin cryogel. As happens with the stiffness, the 50:50 gelatin:CMC scaffold 

has an intermediate swelling ratio of  97,17 ± 0,34 % (Figure 40B). Although 

this property is higher in CMC cryogels than in gelatin, both ratios are higher 

than 95%. This high percentage indicates that the scaffold's structure is highly 

interconnected, as PBS could colonize all the scaffold structure minutes after 

to submerge the scaffolds in. 
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Figure 40: Swelling property of the random pore scaffolds. A) Change in weight of the cryogels 

during 5 days. Equilibrium is reached after 1 day. B) Values of the swelling ratio of different 

cryogels. Results are mean ± SD. * p-valor = 0.05 
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4.2.3.2 Anisotropic pore scaffold 

 

In the anisotropic scaffold, this swelling ratio is inferior compared to the 

random scaffold, probably due to less pore interconnectivity. However, the 

water uptake capability remains higher than 80% (84,81 ± 3,52 %), indicating 

that the anisotropic cryogel also has good porosity and good 

interconnectivity. On note, the addition of CNTs into the cryogels did not 

affect the swelling characteristic (81,58 ± 2,78 %) (Figure 41) 

This water uptake capability found in both cryogel approaches indicates high 

pore interconnectivity, which leads to high nutrient diffusion rates. However, 

to understand better how solvents diffuse among the random scaffold, 

diffusion and permeability test were performed. 

 

4.2.4 Diffusion 

 

Nutrient diffusion is an essential feature for scaffolds in tissue engineering 

and even more in volumetric scaffolds or tissues. Pancreatic islets have to 

continuously sense the amount of glucose in the blood [182]. This triggering 
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Figure 41: Swelling ratio of the anisotropic pore structure approach. Carbon nanotubes 
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or the stop of secreting insulin should be done faster to avoid hypoglycemia 

or hyperglycemia. For this, checking how the scaffold allows diffusion is a 

critical point to consider. Although swelling can approximate how a liquid 

diffuses through the scaffold, we perform a small assay to support these 

results. Here, 3 different conditions were prepared: CMC cryogel, gelatin 

cryogel, and a single transwell as a control. Using aminofluorescein by its easy 

colorimetric read-out, we observe how it passes through the cryogels among 

time.  

In this experiment, we could appreciate that the fluorescein diffuses faster in 

the transwell alone as it reaches equilibrium earlier (Figure 42). In 

comparison, cryogels permeates lower, but gelatin and CMC cryogels reached 

equilibrium equally after 240 minutes. Moreover, since the first acquisition at 

3 minutes, aminofluorescein is already found at the bottom compartment, 

meaning a fast permeation.  

Also, in this experiment, the permeability of the scaffold may be set. Following 

the permeability equation and taking the linear part of the curve (from 0 to 

30 minutes), we could set the scaffold permeability as 0,42 mm/s in CMC 

cryogels and 0,34 mm/s in gelatin cryogels. This difference in diffusion 

indicates that CMC cryogels are more permeable than gelatin cryogels [51]. 

This rapid equilibrium reached shows that the cryogel has barely any 
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Figure 42: Permeability assay profile. Concentration of fluorescein that passed through the 

cryogel scaffold at consecutive times. Results are mean ± SD.  
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interaction as a diffusion barrier. This high permeability ensures that we 

generate a microporous cryogel able to sustain cells in all the scaffold's depths 

with no hypoxia or nutrient problems. Moreover, it shows that generating 

pancreatic tissue inside the cryogel should not limit insulin secretion's fast 

triggering. 

 

4.2.5 Conductivity 

 

Skeletal muscle tissue can be stimulated by electrical pulse so it can mature 

faster [183] or contract when fully mature bundles are formed [184], [185]. 

Unfortunately, most of the scaffolds used for tissue engineering have low 

conductivity, and therefore this electrical stimulation to enhance myogenic 

maturation is poorly effective. To increase the conductivity of our scaffolds, 

we incorporate carbon nanotubes (CNTs). We expected to generate a more 

conductive interface with this incorporation,, so improving Electrical Pulse 

Stimulation (EPS) for better myogenic maturation.  

Dra. Luisa Neves performed measurements at Multiwave facilities. In there, 

they have an equipment that allows measuring the conductivity and the 

dielectric properties of the samples by tapered transmission line method 

from a cylindrical scaffold (Figure 43A-B). However, the range of frequencies 

they could measure goes from MegaHeartz to GigaHeartz. After analyzing the 

results, we could observe that from 1 x 107 to 2.5 x 108 Hz, the conductivity 

ranges are around 1 S/m for both cryogels, without and with CNTs. However, 

by increasing the frequency, the conductivity of CNT cryogels increases more 

than the ones without CNT incorporated. The CNT-doped scaffolds have 

higher conductivity in higher frequencies, where it reaches 5,71 S/m. On the 

other hand, cryogels without CNTs has a conductivity of 4,08 S/m (Figure 

43C).  The conductivity achieved with our scaffolds is similar or higher to 

other scaffolds used for the maturation of myotubes [186], [187].  

With this technique, we could observe an improvement in the electrical 

properties of the CNT-doped scaffold compared to the non-doped CNT 

scaffold, meaning that the addition of CNT has a positive effect on electrical 

conductivity. In previous electrically stimulated scaffolds for skeletal muscle 

maturation studies, conductivities from 10 mS/m to 6,4 S/m were achieved, 

and maturation of the tissue was enhanced [186], [187]. In our case, we can 

not only enhance the electrical properties of the scaffold, but we are also able 

to modulate the frequency and so modulate the conductivity of these 
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scaffolds. In this way, we can get different conductive values, but always in 

the range of previous studies. To note, the conductivity could also be 

modulated by changing the concentration of CNT [188]. However, there is a 

significant disparity in the literature about the ideal conductivity of a scaffold 

to engineer and enhance myogenic differentiation. This disparity gives a real 

advantage to our scaffold as we can modulate the conductive properties of it. 

The conductivity achieved in our cryogels may make them suitable for many 

EPS needed assays as maturation or even contraction of skeletal muscle 

tissue. 
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Figure 43: Conductivity measurements. A) Scheme of the sample holder used to permorm the 
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4.3 PANCREATIC TISSUE  

 

For pancreatic tissue, two different approximations were studied. First, a CMC 

scaffold was designed to support mouse primary pancreatic islets. To this aim, 

pancreatic islets were manually seeded inside the cryogel. However, due to 

some scaffold limitations, (e.g. very similar size distribution of the cryogel 

pores and the pancreatic islets) this approximation was ineffective.  

To generate pancreatic tissue, we take profit from the aggregation ability of 

beta-cells. We generated a scaffold that allow the formation of controlled cell 

aggregations. These pseudoislets are morphologically resemblant to the in 

vivo pancreatic islets. Moreover, after forming, these pseudoislets will be 

anchored inside the scaffold.  

 

4.3.1 Pancreatic islets 

 

Pancreatic islets were obtained from Institut d'Investigacions Biomèdiques 

Agust Pi I Sunyer (IDIBAPS). Mouse pancreatic islets were islotated from 8-

12 weeks-old C57BL/6 mice and were allowed to recover for 24h at 37ºC and 

5% CO2 in RPMI-1640 medium with 11 mM of glucose and supplemented with 

10% FBS (v/v), 2 mM glutamine and 1% penicillin/streptomycin.  

 

4.3.1.1 Islet seeding 

 

Before seeding, cryogels were dried at room temperature for 20 minutes. For 

islets seeding, 30 islets from different ranges were picked up within 20 µl of 

11mM glucose RPMI-1640 medium. After seeding, we waited 20 minutes so 

the islets can infiltrate inside the scaffold. While waiting, constant monitoring 

of the infiltration of the pancreatic islets was done with a magnifying glass 

(Figure 44A). In case that the pancreatic islets did not infiltrate properly, 

reseeding of the islets or weak medium flow turbulences were performed to 

help the islets infiltrate inside the scaffold. These steps were necessary 

because not all the islets find a pore with bigger diameter to infiltrate inside 

the scaffold. 

As pancreatic islets present a similar range in size to the 1% CMC cryogel 

porous, we performed the initial experiments with this material 

concentration. Although some islets were found inside the cryogel (Figure 
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44B-D), having the same pore size-islet diameter distribution entailed some 

difficulties. The main problem was the low infiltration ratio for bigger islets 

due to probabilistic, as bigger islets can only infiltrate through bigger pores. 

Besides, some of the smaller islets pass through the cryogel without 

200 µm

A) B)

C) D)

Figure 44: Pancreatic islets in interaction with the cryogels scaffold. A) Images of the 

magnifying glass where the pancreatic islets are just seeded over the cryogel. Scale bar = 200 

µm.. B) Pancreatic islet inside the cryogel fiber matrix stained in green. Nuclei are stained in blue 

and actin in red. Scale bar = 100 µm. C) Image of the center of a pancreatic islet immunostained 

for insulin (green) and caspase-3 (red), a preapoptotic marker. Nuclei are stained in blue. Scale 

bar = 100 µm. D) 3D volumetric reconstruction of a pancreatic islet, were can be observed that 

the spherical architecture of the pancreatic islet is maintained. Stainings are nuclei (blue), actin 

(red) and insulin (green).  



Results 

119 
 

anchoring in it. These two problems act as a limitation to have pancreatic 

islets anchored inside. 

 

4.3.1.2 Bilayer cryogel 

 

A bilayer cryogel was purposed to solve the small pancreatic islet retention. 

This bilayer cryogel is formed by a denser layer at the bottom, with 5% CMC 

cryogel, and over it, generate 1% CMC cryogel with the appropriate pore 

morphology. With this approach, we could not achieve a good infiltration of 

bigger pancreatic islets, but we could avoid losing the smaller ones. The point 

of this approximation is that small pancreatic islets (<75 μm) are necessary 

for good insulin regulation, as they have higher beta-cell percentage and 

higher insulin secretion per volume than the biggest ones (>150 μm) [189]. 

Moreover, large islets can easier suffer from hypoxia, therefore small islets 

may stay alive inside the cryogel for a longer time. 

B)A)

Figure 45: Bilayer cryogel approximation. A) Scheme of the fabrication of the bilayer 

cryogel. Following the normal protocol to fabricate cryogels, once the first dense cryogel was 

fabricated, another cryogel was fabricated above it. B) Confocal images of the fibers of the 

cryogel stained in green. A 3D reconstruction of the bilayer cryogel (left), where the different 

layers can be observed. In the right, two images of the denser cryogel (Bottom) and the normal 

cryogel (top). Scale bar = 100 µm. 
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The above-mentioned explained protocol for cryogel fabrication was 

followed to fabricate these bilayer cryogels,. Briefly, 250 μm heigh 5% CMC 

cryogel was generated. In this case, before demolding, 500 μm heigh 1% CMC 

cryogel was fabricated over this first 5% cryogel (Figure 45A). Notably, 1% 

CMC cryogel fibers also mixed with previously fabricate 5% cryogel fibers, 

generating a very dense layer. After, the same protocol of washing and 

sterilizing was applied. 0,5% cryogel were also fabricated as a top layer to 

increase the big islet infiltration. 

Different experiments were performed to prove that this approach was well 

fabricated and could retain small pancreatic islets.  Firstly, images from both 

sides of the cryogel were taken. In these images, it can be appreciated that the 

bottom face of the cryogel is much denser than the upper face (Figure 45B).  

Confocal images with pancreatic islets seeded inside were also obtained. In 

this case, we stained pancreatic islets with Dapi for nuclei and Rhodamine-

Phalloidin for F-actin. Images were acquired at the "density" layer. Here, it can 

be appreciated that all the pancreatic islets are in the 0,5% cryogel (Figure 

46), meaning that this layer retained the islets.  

Despite the promising retention of smallest islets, the infiltration of large 

pancreatic islets is still a challenge to overcome. However, the technical 

difficulties in the fabrication of this this bilayer cryogel did not compensate 

for the low improvement in small islet retention. Finally, for further 

Pancreatic 
islets

Figure 46: Confocal reconstruction of the bilayer cryogels. Here, we could apprecitate that 

the pancreatic islets were retained in the bigger pore cryogel. 
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experiments, normal 0,5% cryogels were used. This decision was taken 

because we wanted to maximize cell infiltration inside the cryogel. The slight 

improvement in cell infiltration, prompted by the increased pore diameter 

distribution, compensate the technical fabrication limitations of the 0,5% 

cryogel. Moreover, the non-anchorage of the small islets could be improved 

by reseeding them.  

 

4.3.1.4 Viability and functionality of islets 

 

These experiments were part of ORGANSENSE project done in collaboration 

with Institut d'Investigacions Biomèdiques Agust Pi I Sunyer (IDIBAPS) and 

Institut de Ciències Fotòniques (ICFO). Therefore, the following results were 

performed in collaboration with Dra. Ortega from our group, Dra. Rodríguez-

Comas from IDIBAPS, and Dra. Yavas from ICFO. In this project a Localized 

Surface Plasmon Resonance (LSPR) sensing platform was combined with a 

microfluidic chip to monitor insulin secretion continuously. Beside this final 

goal, interesting results were obtained regarding viability and β-cell health of 

the pancreatic islets inside the cryogel. The results from this project that has 

a direct relevance with this thesis are following exposed.  

Once determined the cryogel material and protocol, and optimizing the 

seeding method, in collaboration with Dra. Júlia Rodríguez-Comas, we 

checked the viability of the pancreatic islets inside the cryogels by analyzing 

pancreatic beta-cell identity markers and stress transcription factors by 

qPCR. Pdx1 (pancreatic-duodenal homeobox factor 1), MafA (V-maf 

musculoaponeurotic fibrosarcoma oncogene homologue A), and NeuroD1 

(Neurogenic differentiation 1), three transcription factors essential for β-cell 

function were used to determine the β-cell health. Chop/Ddit3 (C/EBP 

homologous protein / DNA damage inducible transcript 3), Trib3 (Tribbles 

Pseudokinase 3) and Atf3 (Activating transcription factor 3) were studied as 

cell stress markers. We found no differences regarding the expression of these 

markers when comparing the results from the pancreatic islets seeded inside 

the cryogels and the pancreatic islets in suspension. These results indicate 

that seeding islets inside cryogels did not affect either functionality or the 

viability of the cells, and no stress was produced during all the seeding 

process or consecutive culture days. All these data indicates that our 

cellulose-based cryogel provides a physiologically relevant environment and 
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facilitates the diffusion of oxygen and nutrients, demonstrating that islets do 

not suffered stress when integrated inside the CMC-scaffold (Figure 47). 

Besides, a glucose stimulation insulin secretion (GSIS) assay in continuous 

flow was performed to check the cell functionality. For this experiment, a 

microfluidic chip developed by Dra. Maria Alejandra Ortega was used. The 

cryogel with pancreatic islets was placed inside the chip, and the cell culture 

medium was pumped continuously. Different glucose concentration mediums 

were recirculated with this set-up to see if pancreatic islets inside the scaffold 

could sense and respond accordingly to these changes of glucose (Figure 48). 

Initially, the islets were incubated with 2.8 mM glucose, which decrease the 

insulin secretory capacity of the β-cells, followed by incubation with 16.7 mM 

glucose that highly stimulates the insulin secretion of the islets. Here, 30 

minute recirculated medium was stored and further quantified by 

conventional enzyme-linked immunosorbent assay (ELISA). Our results show 

that islets remain functional as they can sense the glucose in the medium and 

secrete insulin according to it. After proving that islets are functional in 

microfluidic conditions, real-time sensing was studied by using a Localized 

Surface Plasmon Resonance (LSPR) sensing platform in collaboration with 

ICFO and performed by Dra. Ortega and Dra. Yavas.  

Figure 47: Gene expression of the pancreatic islets when seeded inside the cryogel vs in 

suspension. A-C) Beta-cell health markers. D-E) Cell stress cell markers. Results are mean ± SD. 

* p-valor = 0.05 
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Briefly, LSPR sensing platform is an optic sensor with an array of gold 

nanorods where antibodies were attached. To quantify the amount of insulin, 

the refractive index is analyzed, so knowing how this shift displaces in 

different insulin concentrations, the amount of insulin of the experiment can 

be extrapolated. For GSIS assay, KRBH buffer was continuously pumped 

through the chip, and then flown inside the LSPR sensing platform. LSPR 

sensing chip has 8 different channels, so 7 cycles were determined for the 

experiment. Each cycle consists in 30 minutes of continuously pumped buffer. 

After the cycle, LSPR sensing channel was changed, so another cycle can be 

measured. 

As expected, we could observe that islets seeded inside the cryogel responded 

to an increased glucose concentration in the medium, as insulin released was 

increased (Figure 48B). This study concludes that microfluidic technology 

and LSPR sensing platforms are valuable tools to sense small glucose changes 

in microfluidic conditions. 

Specifically, and focusing on cryogel development, we could seed pancreatic 

islets inside a cryogel and prove they are functional and viable. Moreover, we 

could prove that the cryogel can be easy handled and integrated inside a 

microfluidic chip. With this integration, we observed no apparent loosing of 

pancreatic islets due to the flow generated inside the chip. Also, even though 

cryogel floats a bit, there was not obstruction of the microfluidic channels.  
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Figure 48: Insulin quantification from a GSIS assay using different sensing platforms. A) 

Non-continuous assay analyzed by sandwich ELISA. B) Continuous sensing using LSPR sensing 

platform. In both sensing platforms we could observed an increasing of insulin secretion when 

high glucose mediums are dispensed. Results are mean ± SD. * p-valor = 0.05 
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With this, we could say that our cryogel has a good potential scaffold for 

different microfluidic assays as organ-on-a-chip technology.  

However, as it has been mentioned before, this approach presents significant 

limitations. The infiltration ratio of the pancreatic islets, prompted by the 

difficulties to generate higher pore distribution, fostered us to search for 

other alternatives to generate pancreatic tissue in vitro.  

 

4.3.2 INS1E cells 

 

To overcome all the previous exposed limitations we decided to generate 

pseudoislets using pancreatic β-cell lines. The rat insulinoma cell line INS1E 

is a well-stablished model to study pancreatic β-cell function. This cell line 

presents the positive factor that is responsiveness to glucose, similar to a 

physiological range, cells possess high insulin contents, high proliferative 

ability, and the capacity to form cell clusters in the appropriate environment, 

mimicking the primary pancreatic islets [190]. Moreover, there is no need of 

animal sacrifice to study and generate pancreatic tissue. With the ability of 

these cells to form cell aggregations is where our cryogel can have a positive 

impact, as its porosity may enhance and control cell clustering ability. For 

these reasons, INS1E pancreatic β-cell line was used to engineer pancreatic 

pseudoislets as an approximation for pancreatic tissue engineering to study 

type 2 diabetes mellitus and its crosstalking with skeletal muscle under 

diabetic conditions. 

 

4.3.2.1 Cell seeding 

 

After fabricating and autoclaving, 1% CMC cryogels were placed in a 48-well 

plate and dried at room temperature during cell trypsinization. In the end, 

cells were resuspended at a concentration of 1x107 cells/ml. Among this 

concentration, only 200.000 cells into a 20 µl drop were seeded in each 

condition. This amount of cells was determined as an approximation for the 

generation of around 200 pseudoislets per cryogel. CMC cryogels and gelatin 

cryogels were studied, comparing the results with cells seeded in traditional 

culture well-plates. Experiments were performed on days 1, 4, and 7. 
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4.3.2.2 Pseudoislet formation  

 

To generate a functional 3D structure able to support β-cells, we seeded 

INS1E cells onto the scaffolds. After cell seeding, INS1E morphology was 

evaluated in gelatin and CMC-based scaffolds at days 1, 4, and 7. Interestingly, 

at day 1, after seeding, instead of the typical monolayer architecture is seen 

in culture flasks, cells cultured in 3D CMC cryogel scaffolds formed round-

shaped clusters, morphologically resembling pancreatic islets (Figure 49). In 

contrast, a dispersed organization was observed in gelatin-based cryogels. 

Similar cell architecture was found in the following days of culture. The 

difference in cell organization observed in CMC and gelatin scaffolds can be 

explained by the presence or absence of the cell adhesion motifs in these 

structures. Gelatin is known to contain RGD (arginine-glycine-aspartic acid) 

motifs, cell adhesion sites found in several ECM proteins [191]. Hence, gelatin 

has a profound effect on the ability of cells to adhere to this material. On the 

other hand, CMC cryogels do not present cell-binding motifs, so it displays 

shallow adhesion properties for anchorage-dependent growth of INS1E cells, 

promoting cells to interact between them and cluster together, forming islet-

like structures.  

To study better these cell aggregations, pseudoislets proliferative ability, and 

pseudoislets sizes were analyzed. For the proliferation ratio of the cells, we 

counted the cells expressing Ki-67 proliferation marker in the cell nuclei 

against the total amount of nuclei. In both cryogels we could observe that this 

ratio is high at day 1 (51,34 ± 17,08 % for CMC vs 66,63 ± 16,02 % for gelatin) 

(Figure 50). Moreover, this high proliferative profile is also seen in a plate 

(82,99 ± 12.81 %). However, as longer in time was the culture, lower the 

proliferation rate is. At day 4, in CMC cryogels proliferation ratio was 17.10 ± 

18,75 % and at gelatin cryogels 46,74 ± 16,70 %. Similar decrease of 

proliferation ratio is seen in plate cultures at day 4 (11,23 ± 11,06 %).  

Consistently with this decrease in the 4th  day, there was barely 

nonproliferation in the cultures at one week of culture, neither CMC nor 

gelatin cryogels or flat cell cultures (7,98 ± 10,16 % vs 10,83 ± 8,61 % and 

14,63 ± 7,31 %). In rodent islets, the proliferative capacity of β-cells is 

confined to the early stages of life, linked to an immature functional 

phenotype [192], [193]. Thus, reduced proliferative capacity is one of the 

characteristics of mature β-cells, and maturation of β-cells defines their 

functional identity. In this experiment, high errors were found, mainly due to 

the disparity of the proliferation ratios between different pseudoislets in the 

same cell cultures, mainly depending on the cells' confluency. We could 
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Figure 49: Different cell distributions achieved in gelatin or CMC cryogels. In CMC cryogels, 

cells formed spherical architecture aggregations, or from now, pseudoislets. On the other hand, in 

gelatin cryogels, due to RGD cell binding motifs, cells form a dispersed distribution, not forming 

spherical cell aggregations. This happens because cells  prefered to interact with the material 

instead of themselves. In here, material fibers are stained in green, nuclei in blue, insulin in red and 

Ki-67, a proliferation marker, in white. Scale bar = 100 µm. 
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observe that as more cell confluency in the culture, less proliferation ratio. 

However, cell proliferative behavior in each biological replicate and in each 

pseudoislet entangles an intricate point to determine a specific proliferation 

ratio for each condition. Besides this, the low proliferative capacity of our 

pseudoislets is approximate to the in vivo proliferative ability of the 

pancreatic islets, taking this point as a positive and resemblant property of 

our approach.   

Interestingly, as this proliferation ratio decreases, the pseudoislets enlarges. 

As expected, in gelatin cryogels nor in plate no pseudoislets were formed. 

However, in CMC cryogels, pseudoislets were formed. Moreover, the 

pseudoislet size increases correlating to the proliferation ratio. On day 1, 

pseudoislets has a diameter of 60,64 ± 32,87 µm, and on day 4, the diameter 

of it increases up to 68,98 ± 29,95 µm. On day 7, pseudoislets generated in 

CMC cryogels are 74,56 ± 38,23 µm in diameter (Figure 51A). Again, 

comparing the mean of many pseudoislets with different sizes and different 

proliferation ratios, as seen previously, entangles big error bars. However, 

this wide disparity in the sizes of the pancreatic islets is a favorable point. 

Primary rodent pancreatic islets present a considerable heterogeneity in size 

and shape, varying from small cell clusters to larger islets [194], [195]. Several 

studies have revealed that islet heterogeneity influences the insulin secretory 

response of β-cells, so heterogeneity should be an essential consideration 

when understanding T2D pathogenesis, both at a single-cell and islet level 

[196]–[198]. Our approach is capable of replicating this wide cell cluster 

heterogeneity seen in physiological environments.  
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Figure 50: Proliferation ability of the cells cultured in different substrates. Cell 

proliferation decreases upon the days of culture. Results are mean ± SD. * p-valor = 0.05 
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More appreciations can be made by observing the sizes of the islets in a 

histogram. Here, we can observe that the small islets decrease during the 

culture days. On day 1, up to 12% of the clusters ranged from 0-25 µm, 

whereas on days 4 and 7, aggregations smaller than 25 µm represented less 

than 3%.  On the other hand, middle and big islets percentage increases 

during the culture days. Islets bigger than 200 μm were found only on day 7 

(Figure 51B).  Finally, we can compare this pseudoislet size histogram with 

the pore size distribution of the CMC cryogels (Figure 51C). In here we could 

appreciate some similitude, where small pores and pseudoislets (0-75 μm) 

are more common, and as the pore frequency increases, it also decreases the 

pseudoislet size population. This may indicate that the pores of our cryogel 

can have a positive impact in controlling cell clustering.  

 

4.3.2.3 Cell viability 

 

Since 3D pseudoislets may have less access to nutrients, it was of interest to 

establish cells viability along one week of culture. Cell viability was assessed 

at culture days 1, 4, and 7 by a live/dead assay and Alamar blue metabolic 

assay.  

The first assay was a Live/dead assay up to day 7 of cell culture. This assay 

allows us to see the percentage of live cells at different days of cell culture. 

The viability ratio was designed as the number of live cells compared to the 

total amount of it. Both cryogels (CMC and gelatin) and traditional well-plate 
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Figure 51: Diamter of the pseudoislets increases during culture days and highly 

correlates with the pore size distribution. Results are mean ± SD. * p-valor = 0.05 
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were studied at day 1, day 4, and day 7 after seeding. Images were obtained 

by confocal imaging and analyzed with ImageJ software (Figure 52). 

Comparing the viability of each cryogel in different days we can appreciate 

that this viability remains elevated during the 7 days of culture. In CMC 

cryogels, viability decreases during days of culture. Specifically, day 1 has 

98,55 ± 1,86 %, compared to 89,09 ± 8,08 % that is viable at day 4. Also, 

compared to day 1, at day 7 viability also decreases (98,55 ± 1,86 % vs 92,83 

± 7,05 %). Although this decreasing, by comparing day 4 against day 7, we 

100 μm

CMCGelatinPlate

Live / dead

100 μm100 μm

D1

D4

D7

100 μm

100 μm 100 μm

100 μm

100 μm

100 μm

Figure 52: Live/Dead images of cells cultures in both cryogels (CMC and gelatin) and 

traditional well plate. In green, live cells were marked with calcein AM. in red, dead cells marked 

with EthD-1. Interestingly, pseudoislet configuration ca be appreciated in CMC images, contrarly 

to dispersed architecture found in gelatin cryogels or traditional well plate. Scale bar = 100 µm. 
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saw a slight increase. Despite this variability in the viability ratios, the live cell 

ratio is high in all the days, remaining over 90% of viable cells. This high rate 

implies excellent cell viability during 7 days of culture. These high values of 

viability are also observed in gelatin cryogels, where a slightly decrease is 

observed, despite the +92% of viability ratio among all the cell culture period 

(95,48 ± 4,06 % at day 1, 94,70 ± 3,49 % at day 4, and 92,45 ± 2,86 % at day 

7) (Figure 53). These high viability ratios observed in CMC and gelatin 

cryogels confirms that cells are viable when seeded in cryogels.  

To prove that these cells did not lose viability when seeded inside cryogels, 

we can compare the viability of it with cells seeded over a plate, where they 

are traditionally cultured for cell culturing and cell passaging. Plate cultures 

has also high viability ratios during cell culture (96,86 ± 1,50 % at day 1, 97,95 

± 0,81 % at day 4 and 93,99 ± 3,74 % at day 7). Comparing different 

substrates, in same days, there are no big differences either. Interestingly, on 

day 7, last day of culture, there is no statistical significance between all the 

substrates. All this may  indicate no change in cell viability when cells cultured 

inside the cryogels, meaning that cryogels did not affect cell survival (Figure 

53).  

Another different assay for determining cell viability is alamarBlue assay. 

This assay determines the metabolic activity of the cells. Assays were also 

performed at days 1, 4, and 7. Its important to highlight taht alamarBlue test 

is highly dependent on number of cells, as more cells, more metabolic activity. 

For this, we normalized every result to the plate result of the same day. The 

normalization was performed to avoid accumulating errors. On day 1, we saw 

that the cells cultured in cryogels have almost the same metabolic activity that 

D1 D4 D7

60

70

80

90

100

V
ia

b
il
it

y
 (

%
)

✱✱✱

✱

CMC

D1 D4 D7

60

70

80

90

100

V
ia

b
il
it

y
 (

%
)

Gelatin

✱

D1 D4 D7

60

70

80

90

100

V
ia

b
il
it

y
 (

%
)

Plate

✱✱

✱✱✱✱

Figure 53: Cell viability percentages of cells seeded in different substrates. 

Independently of the cryogel or plate, cell survival remains higher than 90%, representing a 

very good cell viability. Results are mean ± SD. * p-valor = 0.05 
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the cells cultured in the plate (82,07 ± 3,61 % in CMC vs 87,56 ± 4,55 % in 

gelatin) (Figure 54). At day 4, metabolic activity slightly decreases, however 

remain constant between cryogels (83,05 ± 27,87 % in CMC vs 83,08 ± 10,44 

% in gelatin). However, at day 7 there is a gap in this metabolic activity (66,94 

± 4,27 for CMC vs 83,78 ± 5,18 % for gelatin). As the cell viability seen by 

Live/Dead assays show no differences is cell viability, these differences may 

come from the number of cells in each cryogels. Correlating with the 

proliferation results shown previously (Section 4.3.2.2 Pseudoislet 

formation), we could observe that the proliferation ratio of cells seeded in 

gelatin cryogels is higher than CMC cryogels at day 4. This proliferation ratio 

means that almost 50% of the cells in gelatin cryogels are still proliferating at 

day 4. Consequently, on day 7, more cells will be found in gelatin cryogels than 

in CMC cryogels, and so more metabolic activity was found due to this cell 

population increase. As seen previously, cells in plate grow faster and reach 

earlier confluency than cells seeded in cryogels. For this, we considered 

normal the decrease in metabolic activity if comparing the plate with the 

cryogels. 
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Figure 54: Metabolic activity of cells seeded over different substrates. Results were 

normalized to plate metabolic activity of each day. Because this normalization, the 

decrease of metabolic activity is expected. Results are mean ± SD. * p-valor = 0.05  
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4.3.2.4 Gene expression analysis 

 

The ability of CMC scaffolds to efficiently aggregate single cells into 

engineered pseudoislets, with round-shaped structures similar to native 

islets, prompted us to examine the gene expression profile of these 

pseudoislets over time compared to gelatin-based monolayer INS1E cells. We 

first focused on the genes encoding MafA, Pdx1, and NeuroD1, three β-cell 

specific transcription factors involved in β-cell functionality. Although many 

transcription factors (TF) have been involved in the maintenance of the β-cell 

identity, these specific transcriptional regulators have been demonstrated to 

play a crucial role in maintaining the function of the insulin-producing cells. 

Indeed, it has been demonstrated that this TF activates the insulin gene 

expression in a coordinated and synergistic manner in response to increased 

glucose levels. Furthermore, the fine-tune regulation of these TF ensures β-

cell identity [199]–[201].  

Interestingly, cells supported within the cellulose-based scaffold presented a 

gradually increased expression level of the β-cell specific marker Pdx1 

concerning cells cultured in a gelatin cryogel. This beta-cell identity was also 

checked with MafA. Here, we could not appreciate any gradually increasing, 

but there is no decrease of β-cell identity. Finally, studying NeuroD1, we can 
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Figure 55: Gene expression of the pseudoilets comparing with dispersed cell 

distribution of gelatin cryogels. MafA, Pdx1 and NeuroD1 as a beta-cell health and 

functionality markers. Ki67 and Pbk correspond to proliferation markers. Results are mean 

± SD. * p-valor = 0.05 
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appreciate an increase compared to day 1 in both gelatin and CMC cryogels. 

Interestingly, NeuroD1 expression increases at day 4 for the cells seeded in 

CMC cryogels compared to gelatin cryogels (Figure 55). The results obtained 

are consistent with previous works demonstrating how reaggregating cells to 

form 3D spheroids significantly enhances the gene expression profile of β-

cells [123].  

This better-differentiated phenotype of β-cells when cultured within a 3D 

extracellular matrix, is consistent with the decreased proliferation markers, 

Ki67 and Pbk (Figure 55) corroborating the balance between an increased β-

cell identity and a reduced ability to proliferate of these cells [192]. Moreover, 

the decreasing of Ki67 transcription factor highly correlates with previously 

shown results of cell proliferation. 

 

4.3.2.5 Glucose stimulation insulin secretion assay (GSIS) 

 

Several findings indicate that islet architecture has a pivotal role in 

determining β-cell functionality as cell-cell interactions are fundamental for 

the correct cellular function [6], [202], [203]. Indeed, it has been described 

that the secretory response of structurally coupled β-cells is higher than that 

of insulin-producing β-cells not arranged within the islet architecture [122]. 

INS1E cells traditionally seeded in a monolayer do not present reproducible 

responses to dynamic glucose stimulations.  

To determine whether pseudoislet formation within the cryogel correlates 

with increased β-cell function, we tested the dynamic response of 

pseudoislets to glucose. To check islet functionality, a glucose-stimulated 

insulin secretion (GSIS) assay, which defines the ability of β-cells to secrete 

the suitable amount of insulin in response to proportional extracellular 

glucose stimuli, was performed in all conditions. As shown in Figure 56, cell 

clustering improved the insulin secreted stimulation index under high 

glucose stimulation concerning the basal insulin secreted in low glucose 

conditions. This result demonstrates the benefit of cell aggregation in islet 

functionality as often monolayer β-cell lines do not reach this threshold level 

or display a reproducible behavior [204]. Indeed, at day 1, INS1E cells seeded 

in 48 well-plate presented a 2.51±0.6-fold increase of insulin secretion when 

cells were challenged with 16.7 mM compared to cells incubated with 2.8 mM 

glucose. Cells seeded in gelatin cryogels showed a 6.47±1.8-fold increase. 

Interestingly, we reached a fold increase of 7.52±1.6 of insulin secretion when 

CMC-based pseudoislets were challenged with 16.7 mM glucose (Figure 56). 
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This trend was repeated along the week, indicating that the stimulation index 

for insulin response to glucose is significantly higher in pseudoislets than 

dispersed and non-organized cells.  

Like other tissues, β-cell functionality is greatly influenced by cell-cell and 

cell-matrix interactions, controlling basal and stimulated insulin secretion. 

Remarkably, GSIS defects in monolayer INS1E cell cultures arise from an 

increased insulin release under basal conditions (2.8 mM glucose) in addition 

to a decreased insulin secretory response under stimulatory glucose 

conditions.  These results are consistent with other studies showing that 

aggregating β-cells enhances the secretory responsiveness to nutrients than 

compared with cells configured as monolayers [111], [121]. Moreover, it also 

suggests that β-cells interactions might be sufficient to sustain a normal 

glucose response.  

Therefore, our study validates that a correct structural arrangement is 

essential for appropriate insulin response, demonstrating a robust glucose-

stimulated insulin secretion by pseudoislets formed within a cryogel. 

Moreover, CMC cryogel is a very viable option to generate heterogeneous 

population of β-cell clusters, with appropiate viability and functionallity for 

in vitro studies. 
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Day 1 Plate Gelatin CMC

Mean 2.51 6.47 7.52

SEM 0.6 1.8 1.6

Stimulation index (fold-change increse)

Day 4 Plate Gelatin CMC

Mean 3.11 4.19 6.08

SEM 0.7 0.5 2.5

Day 7 Plate Gelatin CMC

Mean 3.79 5.34 8.20

SEM 0.8 2.4 2.3

A)

B)

Figure 56: Glucose Stimulation Insulin Secretion assay. A) Insulin released in GSIS assay 

under different glucose concentrations. B) Stimulation index of each cryogel in different days. 

Results are mean ± SD. * p-valor = 0.05 
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4.3.2.6 Diabetic conditions 

 

After optimizing the biomaterial and prove its pseudoislet aggregation 

capability, excellent cell viabiltity and promising insulin secretion, we wanted 

to go one step further in the research. As one of the possible applications of 

the scaffold its is incorporation inside Organs-on-a-chip, we wanted to study 

its possible potential to generate a model for type 2 diabetes mellitus. Here, 

we wanted to simulate elevated concentrations of free fatty acids and high 

blood glucose levels found in diabetic or obese patients. For this, different 

glucose concentrations (11 mM  glucose medium (G11) and 25mM glucose 

medium (G25)) and the addition of free fatty acids were studied by adding 

palmitic acid. Beta-cell funtionallity was analyzed by Glucose Stimulation 

Insulin Secretion assay (GSIS) and cell viability and beta-cell health was 

analyzed by qPCR.  

All experiments were perfomed at 7 days of culture. For type 2 diabetic 

conditions modelling, Ins1 cells were cultured with complete RPMI-1640 

medium up to day 4, where pseudoislets are already formed. On day 4, the 

medium was changed to simulate diabetic conditions. Here, combinations of 

G11 or G25 with or without 400 μM of palmitic acid was studied.  

For cell functionality, GSIS assay was performed. Briefly, this experiment 

consist in challenging the cells by stimulating them with higher 

concentrations of glucose concentrations (16.8 mM of glucose, G16) after a 

relaxing period under low glucose concentrations (2.8 mM of glucose, G3). 

Results of this experiment shows the insulin released against the insulin 

content in both glucose concentrations. We observed that insulin secretory 

response when cells were challenged with G16, decreases when cultures were 

treated with palmitic acid (Figure 58). Interestingly, we could observe that 

the plate cultures treated with palmitic acid did not present an increasing of 

insulin releasing (Plate/G11/+PA: 1.59 ± 0.87 for G3 vs 1.99 ± 0.44 for G16; 

Plate/G25/+PA: 2.43 ± 0.37 for G3 vs 2.67 ± 0.34 for G16) (Figure 58A). On 

the other hand, plate cultures non-treated with palmitic present a slight 

increase of insulin releasing (Plate/G11/-PA: 1.89 ± 0.42 For G3 vs 2.82 ± 1.12 

for G16;  Plate/G25/-PA: 2.20 ± 0.26 for G3 vs 3.49 ± 1.15 for G16). Contrarly, 

in the pseudoislet cultures we observe a increasing of insulin releasing in all 

the challenging G16 conditions indistinctly.   
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However, clear results can be obtained by studying the stimulation of this 

assay. Stimulation index is the fold change between insulin secreted at G16 

against the insulin secreted at G3. Here, we could observe the results 

mentioned above, as palmitic treatments has a negative effect, as fold sligthly 

decreases (Figure 57) (Table 16-Table 17). Also, we could observe that insulin 

secretion assays in cryogel present a higher stimulation index than 
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Figure 58: Insulin released under different glucose concentrations. Theoretically, cells 

challenged with higher glucose concentrations should secrete more insulin. A) GSIS assay of cells 

cultured in a plate. B) GSIS assay of cells cultures in pseudoislet architectures. Results are mean 

± SD. * p-valor = 0.05 
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monolayer cultures, indistinctly of the treatment or glucose concentration 

(Table 17). Furthermore, we could observe that cultures non treated with 

palmitic acid present similar stimulation indices in both plate conditions. 

Even, seems that cryogel with G25/-PA present higher fold change than the 

other conditions. However, the interesting data in here is the appreciation of 

how the treatment with palmitic acid decreases all the insulin secreting 

capability of the cells if compared to non-treated. Interestingly, this situation 

happens in both cultures, cryogel and plate, and in both glucose 

concentrations.  

 

 Fold-change (Mean) Standard desviation 

Plate/G11/-PA 1.52 0.62 

Plate/G25/-PA 1.58 0.51 

Plate/G11/+PA 1.57 0.39 

Plate/G25/+PA 1.13 0.18 

Table 16: Stimulation index of plate cultures 

 Fold-change (Mean) Standard desviation 

Cryogel/G11/-PA 1.94 0.20 

Cryogel/G25/-PA 2.35 0.77 

Cryogel/G11/+PA 1.64 0.32 

Cryogel/G25/+PA 1.79 0.45 

Table 17: Stimulation index of CMC cryogel cultures 

However we could observe that palmitic acid has a negative impact in cell 

functionality, we wanted to check how viable and stressed are the cell 

cultures under diabetic conditions. For this, a gene expression at day 7 of cell 

culture was studied by qPCR. Here, previously studied beta-cell health 

transcription factors MafA, Pdx1 and NeuroD1 were analyzed. Moreover, 

markers for cell stress as Chop, Trib3 and Atf3 were also analyzed. All results 

were normalized against plate G11 conditions, used as a control, for its better 

understanding. 

Supporting previous gene expression assay, we could observe that all cell 

health-markers present a slightly increase of expression when pseudoislets 

were formed inside the cryogel. Interestingly, a dowregulation of these β-

health markers could be observed when cells cultured in high glucose 

concentrations in MafA and Pdx1. Although no clear results are found, there 

is a tendency in many conditions were palmitic acid treatmens slightly 

decrese beta-cell health markers. However, treatments with palmitic did not 
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show any remarkable downexpression in this markers, as expected after GSIS 

results (Figure 59).  

However, stress and pre-apoptotic markers were also analyzed and showed 

some light in the previous results (Figure 60). Firstly, we could observe that 

cells cultured in the cryogel without palmitic treatment did not increase 

stress markers compared to the plate cultures, meaning that cells are viable 

and functional. However, when palmitic treatment was applied, these stress 

Trascription Factors (TF) showed an upregulation in most of the conditions. 

But always higher in plate than in cryogel.  

The hypothesis for these results is that palmitic reached easily the cells 

cultured in monolayer than the pseudoislets cultured inside cryogels. This is 

because the formation of micelles by the palmitic acid, due to its 
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Figure 59: Beta-cell health and functionallity markers. A) MafA. B) Pdx1. C) NeuroD1. 

Results are mean ± SD. * p-valor = 0.05 
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Figure 60: Stress and pre-apoptotic markers of pseudoislets after palmitic treatment. A) 

Chop. B) Trib3. C) Atf3. Results are mean ± SD. * p-valor = 0.05 
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hydrophobic/hydrophilic configuration. Some of this uncontrollable-sized 

micelles may not go inside the cryogel, and so, not being metabolized by the 

cells. Another hypothesis for this lower decreasing ratio is the self 

architecture of the pseudoislets, that as spherical-shaped aggregation, 

palmitic acid could not reach core cells, and so not damaging it. In contrast, in 

monolayer, the palmitic could reach all the cells and so stressing them all 

equally.  

Finally another interesting point to consider is that cells presented more 

stress markers when high glucose and palmitic treatments are combined. 

These results can be appreciated in Trib3 and Atf3. 

 

4.4 SKELETAL MUSCLE  

 

The possibilities in pore distribution and architecture that offers the 

cryogelation technique, allows us to search for other exciting approaches with 

other tissues. One tissue that highly fits with one of the pore architectures we 

achieved is the skeletal muscle tissue. Anisotropic scaffold structure is an 

important prerequisite to engineer skeletal muscle tissue, as the alignment of 

the cells prompts myoblast fusion into myotubes and enhances myogenic 

maturation.  

After developing a promising scaffold to engineer this tissue, we studied its 

viability to engineer skeletal muscle tissue. We evaluated cell interaction with 

the scaffold, by studying cell infiltration, cell alignment and cell viability. 

Finally, by applying and electrical pulse stimulation, we studied the fusion of 

the cells and the maturation of the formed myotubes.   

  

4.4.1 Cell seeding 

 

Before cell seeding, the first step was slicing the top and the bottom of the 

cryogel to avoid small porosities formed by ice nucleation. With this, the 

scaffold has the porosity range quantified previously, and we only seed the 

cells in the anisotropic part, previously characterized. After slicing, cryogels 

were dried at room temperature during cell trypsinization. Briefly, for cell 

trypsinization, cell mediums were washed with PBS, and 2 ml of 0,25% 

trypsin-EDTA were added to the flask. After 2 minutes, 8 ml of fresh medium 



Results 

140 
 

Depth Number of cells (nuclei)

Top 284

Intermediate 1 426

Intermediate 2 291

Intermediate 3 300

Bottom 289

100 μm

A)

B)

C)

100 μm100 μm

200 μm

CRYOGEL

Figure 61: Cell infiltration inside the scaffold. Cells could colonize all depth of the scaffold. 

A) Images of 3 different depths of a cryogel. In here it can be observed that cells are found in 

all the depths. Staining of cryogel fibers (green), cell nuclei (blue) and F-actin (red). Scale 

bars = 100 µm. B) Quantification of the amount of nuclei in 5 different images of different 

depths of a cryogel. Only one cryogel were analyzed. C) If cell density is highly increased, cells 

form a monolayer at the top of the cryogel, preventing cells infiltrate inside the cryogel. Cells 

were stained for F-actin (red) and nuclei (blue). Scale bar = 200 µm. 
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was added to the trypsin to stop the reaction and placed into a falcon for 

centrifuging. During centrifugation, cells were counted. C2C12 cells (mouse 

skeletal muscle immortalized myoblasts) were seeded inside the cryogel by 

gravity, placing a drop of medium and cells over it and waiting 30 minutes.  

An essential point to engineer skeletal muscle is the cell density seeded inside 

the scaffold, as myoblasts need to be confluent to fuse into myotubes. We have 

optimized the cell density in 9 x 106 cells/mL to allow proliferation and 

colonization through all the biomaterial. Cell colonization was check by 

counting nuclei in different depths of one scaffold after seeding. Here, we 

could appreciate that there were not many differences of cells in different 

depths (Figure 61A-B). Confirming these good infiltration results, cells were 

found in all the scaffold indistinctively in all experiments. Other models for 

engineering skeletal muscle tissue use similar or higher densities [42] [205]. 

Nevertheless, at higher concentrations, the cells do not colonize our cryogel 

by forming a layer on the top (Figure 61C). On the other side, lower 

concentration difficulties cell fusing.  

After cell depositing, cryogel was left at room temperature for 30 minutes. 

With this, we achieved a good cell infiltration as cells infiltrate inside the 

scaffold by gravity. Also, the liquid inside the cryogel dries a bit, helping cell 

infiltration through the cryogel. After 30 minutes, the cryogel was submerged 

into a well-plate with the DMEM medium. Cells were cultured for 10 days in 

growth medium (GM) to promote cell proliferation and scaffold colonization. 

The medium was then replaced with differentiation media (DM) to promote 

myotube formation for 12 days more. Electrical pulse stimulation was applied 

on day 11 of DM (21 of total culture days) at 1V p-p squared pulse, at 1 Hz of 

frecuency and 10 ms of stimulation width. 

 

4.4.2 Cell viability 

 

One of the most important things is to determine if the cells are alive after cell 

seeding process, if they can survive seeded dept in the scaffold, and to check 

if CNT dopped cryogel allows cell survival and functionality. To solve these 

doubts we decide analyze cell viability using a Live/Dead assay to determine 

the viability of the C2C12 cells during one week of culture. We analyze cell 

viability at days 1, 5, and 7 by confocal imaging. Viability was determined by 

live cell counting using imageJ software (Figure 62A). Briefly, cell viability 

was determined as the amount of live cells against the total amount of cells. 
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Here, we could appreciate that cell viability is always higher than 88%, and 

there is no statistical significance between any day and condition (Figure 
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Figure 62: Viability of the cells when seeded inside the scaffold. A) Confocal images of the 

Live/Dead assay. Live cells stained in green (Calcein AM), dead cells stained in red (Ethd-1) and 

nuclei stained in blue. Scale bar = 100 µm.  B) Viability ratio of the cells determined as the 

amount of live cells against the total amount. Results are mean ± SD. * p-valor = 0.05  
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62B). Specifically, on day 1, 94,14 ± 5,64 % of the cells were alive in non-

dopped cryogel.  

In longer cell culture days, we can appreciate that cell viability decreases 

slightly but being around 90% of cell viability (91,84 ± 5,60 % at day 4 and 

88,49 ± 4,29 % at day 7). 

On the other hand, similar results were observed in the CNT-dopped scaffold. 

At day 1, 89,80 ± 11,33 % of the cells were alive. Consistently, at day 4, this 

percentage increases up to 93,49 ± 3,75 %, and finally, at day 7, the cell 

viability was 92,45 ± 4,65 % (Figure 62B). Comparing the cell viability among 

days, we could observe similar results, always around 90% of cell survival, 

meaning that scaffold did not affect cell viability. Moreover, we can appreciate 

that CNT did not affect cell survival and functionality (Table 18). An increase 

of dead can be appreciated during the whole experiment, but this cell viability 

ratio did not decrease, as the cells proliferate. These high viability results may 

be because of the crosslinking technique that allows to seed cells without 

suffering any damage due to the crosslinking process. The pore size and the 

high pore distribution, which leads to high nutrient diffusion, also positively 

affects the high cell viability. Importantly, as reported previously, the CNT has 

no toxic effect [150] [206]. The results compared at the same day with and 

without CNT are non-statistically significant, also meaning good viability in 

the CNT scaffolds. 

 

 

4.4.3 Cell alignment 

 

Skeletal muscle is a very aligned tissue, as it is formed from the fusion of 

myoblasts into myotubes. This alignment is a requisite to generate skeletal 

muscle tissue in vitro, as it improves cell fusion, alignment and subsequent 

the maturation of the myotubes [165] . By generating anisotropic cryogels, we 

induced the cells to grow in the same directionality, facilitating their fusion.  

Days of culture CNT(-) (% Viability) CNT(+) (%  Viability) 

1 94,14 ± 5,64 89,80 ± 11,33 

4 91,84 ± 5,60 93,49 ± 3,75 

7 88,49 ± 4,29 92,45 ± 4,65 

Table 18: Resume of cell viability percentage of different scaffolds at different days of culture 
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After seeding cells inside the cryogel, cell distribution and alignment were 

analyzed by F-actin immunostaining. As the fibers of the cryogel were stained, 

we could also compare pore architectures with cell alignments. The alignment 

of fibers and cells were analyzed with ImageJ PlugIn "OrientationJ."  By 

comparing the cell distribution in random pore morphology against the 

Figure 63: Anisotropic cryogels improve cell alignment. (A – F) Confocal microscopy 

images showing aminofluorescein marked cryogel in green (a, d), cells marked with 

phalloidin in red (B, E) and cell nuclei counterstained in blue with DAPI. (C, F) Images 

showing merged channels. Scale bars = 100 µm. (G, H) Quantification of fibers an cells 

orientation. Graphs show frequency of fibers in each orientation degree. 
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anisotropic pore morphology scaffolds, we can appreciate that the cells in the 

anisotropic architecture aligned much more clearly than the cells seeded in 

the random pore architecture (Figure 63A-F). Moreover, the random pore cell 

alignment distribution has more variability among all the angles than the 

anisotropic structure (Figure 63G, H). Also, it can be appreciated that in both 

pore morphologies, the alignment distribution for the cryogel fibers and the 

cell distribution are very similar. These results indicate that the cells sense 

the pore morphology, and they can distribute and align following the pores' 

directionality.  The cells' alignment is proved that enhances the fusion of them 

[207], so these results point to our cryogels could improve the myogenic 

maturation. 

 

4.4.4 Myogenic maturation 

 

Myogenic maturation is related to the fusion of the myoblasts into myotubes 

and its posterior maturation. Electrical Pulse Stimulation (EPS) was applied 

to prove that this new electrically improved composite enhances the 

myogenic maturation of the C2C12 myoblasts. To check the myotube 

formation, we analyze the expression of the muscle maturation marker 

Myosin Heavy Chain (Mhc) by immunostaining at day 22 of culture (10 in GM 

and 12 in DM). EPS was applied on day 11 of DM culture. The fusion index was 

calculated from confocal images and later analyzed with ImageJ. Fusion index 

was determined as the ratio of nuclei co-stained with myosin heavy chain 

against the total nuclei (Figure 64A). 

By analyzing the images, we could appreciate that cryogels with EPS has a 

higher fusion index (51.84 ± 5.30 %), compared with non-EPS cryogels (25.54 

± 5.06 %), indicating that the electrically stimulated cryogel enhances the 

fusion of the cells into myotubes [168], [208], [209] (Figure 64B). This assay 

also indicates that the myoblasts are already fusing into myotubes, the first 

step of the myogenic process. The ratio of 50% of myotubes also points out 

that half of the cells are still not fused.  
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Figure 64: Electrical Pulse Stimulation (EPS) enhances myogenic maturation. A) Confocal 

merged images showing cells marked with phalloidin in red, cell nuclei counterstained in blue with 

DAPI and Mhc marked with Alexa-488 in green. Scale bars = 100 µm. B) Graphs showing fusion 

index of CNTs(-) cryogels in light grey and CNTs(+) cryogels in dark grey. C) Graphs of myogenic 

maturation markers expression relative to the housekeeping gene ActB. Myogenin (Myog), Myosin 

heavy chain (Myh2), and Troponin T1 (Tnnt1). Results are mean ± SD. * p-valor = 0.05 
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Complementary, we study the gene expression of some myogenic markers by 

qPCR to further analyze the effect of EPS in myogenic maturation. We select 

three  genes whose dynamic expression changes during the muscle 

maturation: Myogenin (Myog), Myosin heavy chain 2 (Myh2), and Troponin 

T1 (Tnnt1). Myog is a marker that is expressed in early maturation steps 

when myotubes are fusing. Myh2 is a middle-late maturation marker, and 

Tnnt1, a very late maturation marker.  

By gene amplification, we could observe that Myogenin is still expressed in 

the EPS(+) cryogels (Figure 64C). On the other hand, Myh2 and Tnnt1, 

markers from late myotube maturation, are downregulated. These results 

may indicate that the cell constructs are in a very early stage of myogenic 

maturation, as Myog is still expressed, and Myh2 and Tnnt1 are less 

expressed.  

These results can be correlated with fusion index results to confirm this 

hypothesis. Although we did not detect an increase of late maturation 

markers by qPCR, we found Mhc expression by immunostaining, a marker of 

myotube formation. Mhc is a cell fusion indicative, so this marker is expressed 

since cells started to fuse. However, it does not give any information on which 

step of this maturation cells are. Knowing that cells already started to fuse, we 

can say that cells started the myogenic differentiation, as myotubes are 

formed. Supporting this information, we could observe that Myog is 

expressed, meaning that this myogenic maturation is in a very early stage. 

This expression supports the point that not all the myoblasts fused into 

myotubes as the fusion index in EPS(+) is 51.84 ± 5.30 %. These results 

corroborate that cells are still in an early phase of maturation. Moreover, in 

late myogenic maturation steps, the expression of Myh2 and Tnnt1 is 

expected. In our assays we could observe a downregulation of this markers, 

pointing that our constructs are not fully mature. 

With fusion index analysis and qPCR, we could conclude that the maturation 

process of the tissue already started. Taking this point as a mature step, 

because myogenic maturation already started, we can conclude that our 

scaffold enhances the cell maturation when EPS is applied. 

 



 

148 
 

  



 

149 
 

 

 

5. DISCUSSION   



 

150 
 

 



Discussion 

151 
 

Hydrogel encapsulation is the most common technique to engineer tissues. It 

is mainly because of its beneficial properties: high water content, mechanical 

adaptability, and moldability to generate desired architectures [2]. These 

properties allow the generation of a wide variability of matrices to generate 

many different tissues [44], [144], [210], [211]. However, their main 

limitation is their small porosity that limits nutrient and oxygen diffusion [3]. 

Cells encapsulated inside hydrogels in depths more than ~150 μm start to 

suffer from hypoxia, and its viability strongly decreases [25]. It is important 

to note that when pancreatic islets are encapsulated inside hydrogels [47], 

this problem is exponentially increased due to its sizes [212]. These 

pancreatic islets are cell aggregations of ~100 µm in diameter composed of 

many different cells as the insulin-secreting cells (β-cells) and the glucagon 

secreting cells (α-cells). Encapsulating these cell clusters limits more oxygen 

and nutrient diffusion, highly decreasing cell survival.   

On the other hand, skeletal muscle tissue is generally encapsulated in small 

hydrogel bundles. Skeletal muscle is a highly aligned and multinucleated 

tissue that is formed from the fusion of single cells, called myoblasts, into 

multinucleated cells, called myotubes. One of the prerequisites to engineer 

skeletal muscle tissue is the alignment of the cells to prompt the myogenic 

maturation [40]. Generating a geometrically cued scaffold to prompt cell 

alignment in volumetric constructs is again highly difficult due to the 

scaffolds' narrow porosity that leads to low cell survival. 

For generating skeletal and pancreatic tissues, cryogels have been proposed 

as a valid alternative to be used as scaffolds. Cryogels are microporous 

structures with high interconnected porosity, high diffusivity, modulable 

mechanical properties, and adaptable internal pore architecture [46]. 

Moreover, cryogels are crosslinked at sub-zero temperatures and before cell 

seeding. This attractive feature allows avoiding other cell dead factors related 

to hydrogel encapsulating, as UV light or the use of crosslinkers.  

This thesis hypothesizes that cryogels will be a suitable alternative to 

engineering volumetric tissues, e.g., skeletal muscle and pancreatic tissue. 

The simple fabrication method and its interesting mechanical properties 

convert cryogels into a promising scaffolding option for posterior 

incorporation into organs-on-a-chip. 
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5.1 PANCREATIC TISSUE 

 

Encapsulation of pancreatic islets is a common technique to study pancreatic 

tissue and β-cell function. Traditionally, pancreatic islets were encapsulated 

inside hydrogels, generating a scaffold with fitting properties [31], [116], 

[213], [214], but hindering oxygen and nutrient diffusion and having low 

stimulation folds. Cryogels appeared a promising alternative to overcome 

these limitations, due to their large pore sizes and permeation ability [74].  

Despite this possible improvement, pancreatic tissue engineering entangles 

other essential drawbacks. Most recent studies use cadaveric or animal islets 

with wide variability among experiments due to the metabolic state of the 

animal or fluctuations in cell percentage. For this, cell lines or stem cells 

appeared as a valid alternative to study pancreatic tissue. Further, these 

studies proved that cells aggregated in spherical pseudoislets improve insulin 

secretion compared to monolayer cultures [111], [121], [123], [215]–[217]. 

To note, in this thesis, we used mouse pancreatic islets as a cryogel potential 

proof of concept and Ins1 β-cell line due to its proliferation ability, similar 

morphological characteristics, glucose-depending insulin responsivity, and 

well-characterized behavior [105]. Besides the promising pseudoislet 

formation and insulin secretion, these studies hinder the role of the 

pancreatic islets 3D microenvironment, not mimicking the physiological 

environment found in the pancreas [113], [126], [218], [219]. Here, the 

cryogel technique and its microporosity structure have a strong potential as 

a scaffolding technique to generate resemblant pseudoislets in a controlled 

and resembling ECM-like 3D microenvironment.  

As mentioned, microporous cryogelation was the casting technique selected 

to engineer pancreatic tissue. Besides its large pore sizes and pore 

interconnectivity, cryogelation also allows controlling the pores distribution, 

size, and morphology. By generating a scaffold with a similar pore 

distribution as the pancreatic islets, we expected the pancreatic islets to 

infiltrate inside the scaffold and generate resemblant-sized pseudoislets. 

We chose carboxymethylcellulose (CMC) as the main biomaterial For 

generating the scaffold to engineer pancreatic tissue,. Using CMC, the point is 

to avoid cell interaction with ECM cell-binding motifs that some ECM-derived 

biomaterials have. Avoiding this interaction, we ensure that pancreatic islets 

did not disaggregate due to cell attachment but anchor inside the scaffold 

matrix. Moreover, to generate pseudoislets is crucial to avoid cells interacting 

with the scaffold, enhancing cell-cell interaction and promoting cell 

clustering.  
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The first scaffold property analyzed was the pore size of the cryogels. By 

changing the biomaterial concentration, we could achieve different porosity 

size distributions. Correlating with previous results, we could observe that 

larger pore distributions could be achieved by decreasing the biomaterial 

concentration [220], [221]. So, after analyzing pore distributions of different 

biomaterial concentrations, 1 % CMC cryogels were chosen. In these cryogels, 

pore diameter ranges from few micrometers up to 150-200 μm. Besides other 

cryogelation materials that endorse achieving similar or even higher pore 

sizes [74], [222]–[224], we considered that fitting the pore size distribution 

with the distribution of the pancreatic islets would improve islet retention 

and pseudoislet size resemblance. Knowing that the pancreatic islets have an 

approximate diameter of 100 μm, we expected a good infiltration of both cells 

and islets.  

Importantly, to resemble ECM pancreatic environment, the mechanical 

properties of the scaffold should match. Interestingly, 1% CMC cryogels has a 

stiffness of 0,66 ± 0,08 kPa. As the pancreas is a soft tissue, its stiffness ranges 

from 0.1 kPa to 10 kPa [176]. Pancreatic cells seem to respond properly to 

this low stiffness interval, as cells can increase insulin mRNA expression and 

glucose sensitivity [124]. Also, soft scaffolds favor cell coalescence and 

preserve the cluster-like organization, while in stiffer substrates, the 

extracellular-cell interactions cause cell scattering and loss of islet-like 

structure [179]. Interestingly, previous studies with magnetic resonance 

elastography (MRE) showed that the stiffness of the pancreas is around 1kPa 

[177], [178].  

Another important mechanical property to study was the swelling ratio. 

Swelling is the scaffold's water uptake capability, an indirect measurement of 

pore size and pore interconnectivity. Due to its bigger and more 

interconnected porosity, the swelling ratio of 1% CMC cryogel is 98.14 % ± 

0,32. It is essential to highlight that the cryogel reaches swelling equilibrium 

in less than 30 minutes, implying a fast permeation. This high and fast ratio is 

very promising for pancreatic tissue generation. As pancreatic islets are cell 

aggregation of ~100 μm in diameter, and rapidly respond to the glucose 

changes, having a very interconnected structure, and high-water content will 

improve the protein diffusion through the scaffold. Moreover, nutrient and 

oxygen diffusion is a critical point in encapsulated pancreatic tissue, affecting 

cell survival.  

Although the fast water uptake of the scaffold points to an excellent diffusion 

among all the scaffold, a permeability assay was performed to demonstrate it. 
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Using aminofluorescein for its easy read-out, we dispensed it over the cryogel 

on a transwell and quantified its amount that passes through in different time 

points. Here, we could observe that cryogel barely interacts with the 

fluorescein, allowing a high permeation. Combining all these parameters, we 

could prove that we generated a scaffold with microporous structure, highly 

interconnected and with good permeation properties, overcoming one of the 

traditional hydrogel limitations [31], [116]. Moreover, combined with the 

stiffness resemblance, we could prove that our scaffold highly resembles the 

3D microphysiological environment of the pancreatic islets.  

Once the scaffold fabrication process was optimized and characterized, the 

next step was to engineer pancreatic tissue and check cell behavior. Here, two 

different approaches were determined to study scaffold behavior and its cell 

interaction to engineer pancreatic tissue. 

The first approach consists of seeding pancreatic islets inside the scaffold for 

posterior incorporation into organ-on-a-chip technology and sensing 

platforms. The importance of generating an organ-on-a-chip for pancreatic 

tissue has significant relevance in studying many insulin-released diseases. 

Insulin-glucose homeostasis is highly dependent on the fast triggering of 

insulin by the pancreatic islets. Sensing the insulin secreted continuously 

could give exciting information and get a bigger picture of this homeostasis 

between the pancreas and other tissues [12], [132]. By incorporating the 

scaffold with pancreatic islets inside an organ-on-a-chip, we proved that the 

cryogel could be easily handled to be incorporated inside microfluidic devices 

without suffering any damage. Moreover, we could prove that pancreatic 

islets maintained their beta-cell health, and cell stress markers were not 

overexpressed. This point was important as we could prove that cells can be 

anchored inside without suffering any adverse effects. Hence, a functionality 

experiment was performed to check if cells responded adequately to the 

glucose and if this insulin secretion can be sensed using different sensing 

platforms as traditional sandwich ELISA or an LSPR sensing platform. A 

glucose stimulation insulin secretion assay was performed inside a 

microfluidic chip to study pancreatic islets functionality. This study proved 

that our scaffold did not affect cell functionality, as cells responded 

adequately to the glucose stimulations, proving that cryogels have solid 

possibilities for organ-on-a-chip applications. 

However, the low infiltration ratio of the islets inside the scaffold encourages 

us to search for other approximations to generate pancreatic tissue. To 

overcome the limitation in the infiltration ratio, we decided to seed single 
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cells inside the scaffold to generate pseudoislets by aggregating them in cell 

clusters. For this approximation, we used Ins1 cells due to their proliferative 

ability and their insulin responsivity similar to physiological [105]. The non-

animal derived cells used here would be a first proof to use other cells 

obtained from different sources. 

For this approximation, 1% CMC scaffold was also used because of the similar 

pore-pancreatic islets size distribution. By achieving this similarity, we 

expected that cells aggregate inside the pores. So, if the pores have similar 

sizes to the physiological pancreatic islets, a high resembling pseudoislet 

architecture could be achieved. In that way, we would be able to control the 

pseudoislet size distribution.  

After seeding the cells on the cryogel, we could observe that they can infiltrate 

inside the scaffold and aggregate in spherical pseudoislets. To better value the 

decision of using CMC cryogels, we also seed cells in gelatin cryogel, where a 

dispersed monolayer was obtained.  This point proves our hypothesis of using 

a non-ECM-derived biomaterial to avoid cell-binding motifs found in its 

structure. As gelatin presents RGD motifs, cells prefer to interact within the 

fiber matrix instead of themselves [225]. This behavior is not found in CMC 

cryogels. Moreover, we could observe that pseudoislets were found in a wide 

disparity of sizes, matching with the pore diameters. With this, we could 

accomplish the objective of obtaining similar-sized pseudoislets to the 

distribution of pancreatic islets found in vivo [97], [170]. Having this wide 

variability of pseudoislets is essential for glucose-insulin homeostasis as 

islets of different sizes behave differently [189], [226], but all are essential for 

the proper insulin regulation. Also, we could observe that clustered cells stop 

proliferating during a week of culture. Although pancreatic islets have a 

meager percentage of proliferation [227], [228], pseudoislets generated 

inside the scaffold progressively decrease this ability, generating 

physiologically similar cell behavior to the mature pancreatic islets found in 

the body.  

Once we proved that we could generate pseudoislets with a proper cell 

architecture, we wanted to check their cell viability, identity, and 

functionality. A metabolic assay determined by alamarBlue test and a cell 

integrity study determined by Live/dead assay were used to analyze cell 

viability. Complementary, a gene expression performed by qPCR was studied 

to determine beta-cell health. Here, we could determine that our cells were 

highly alive inside the cryogel and maintain their beta-cell health and identity, 

improving previous viability results obtained with cells encapsulated inside 
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hydrogels [31], [116], [213]. Furthermore, a GSIS assay was performed to see 

if β-cell clusters can respond appropriately to glucose stimulations. As 

previously seen in the literature and confirming our hypothesis, we could 

observe that pseudoislet responses better to a glucose stimulation than 

monolayered distributions [122], [126], [215], [216]  

Finally, we wanted to simulate diabetic conditions in our tissue by 

augmenting the glucose concentration of the cell culture and treating them 

with free fatty acids [123]. For this, mediums and palmitic treatments were 

applied on day 4 of culture, when pseudoislets were already formed. GSIS 

assay and gene expression were analyzed to analyze cell behavior. 

After a GSIS assay, we could appreciate a decrease in the insulin secretory 

response when palmitic acid was added. This may indicate that cells 

metabolize palmitic acid, not responding correctly to the insulin secretions 

[229]. Although the folds obtained were low, we wanted to know if this lower 

folding when cells treated with palmitic affected the β-cell health or induced 

cell stress. We could appreciate an apparent loss of cell viability by analyzing 

the β-cell health transcription factors when cells were cultured with higher 

glucose levels and treated with free fatty acids. This downregulation of cell-

viability expression may indicate that cells suffer some damage induced by 

high glucose mediums or palmitic treatment.  

Cell-stress markers were analyzed by qPCR to confirm this hypothesis. Here, 

we could observe an evident upregulation of these stress and apoptotic 

markers. Interestingly, stress markers were less upregulated in cryogels than 

in plates. The hypothesis for these results is that palmitic easily reached the 

cells cultured in monolayer because of its dispersed distribution. Moreover, 

palmitic acid has a hydrophobic and a hydrophilic site, prompting micelles 

formation when dissolved in the medium. Besides palmitic is a small 

molecule, different sized micelles were found, and some were bigger than the 

pores, being a limitation for palmitic acid micelles to distribute through all the 

cryogel uniformly. This factor, combined with the low surface/area of the 

pseudoislets, leads us to think that palmitic acid did not reach equally to all 

the pseudoislets. Another hypothesis for this lower decreasing ratio in 

cryogels is the spherical architecture of the pseudoislets formed inside the 

cryogels. This spherical distribution protects the core cells from the palmitic 

acid avoiding damaging these cells. In contrast, in monolayer, the palmitic 

acid could reach all the cells and stress them equally. Finally, another 

interesting point to consider is that cells are more stressed when high glucose 

and palmitic are combined but being palmitic acid the primary stress 
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condition. These results show some correlation with previous studies [12], 

[123], pointing that our approach could be a promising platform to simulate 

diabetic conditions for further studies.  

In summary, we proved that by fabricating CMC cryogels, we could generate 

a promising scaffold to engineer pancreatic tissue. The easy fabrication 

method, its tunable properties, and its mechanical stability show a promising 

technique to generate a scaffold for its possible incorporation into organ-on-

a-chip applications. Moreover, cryogel prompts resemblant pseudoislet 

formation with high cell viability of the pseudoislets and enhanced cell 

functionality when pseudoislets were generated inside the scaffold. Finally, 

this whole platform has strong potential to simulate diabetic conditions.  

 

5.2 SKELETAL MUSCLE 

 

Unlike pancreatic islets, skeletal muscle tissue is a highly aligned tissue, 

formed of multinucleated and highly aligned cells called myotubes that came 

from the fusion of singe cells, called myoblasts. A prerequisite to engineering 

skeletal muscle is to prompt this cell fusion. Different studies promote it by 

generating geometrically cued and highly aligned scaffolds [25], [146], [165]. 

Taking profit that the cells can sense the topography of the scaffold, we 

generated a highly aligned pore architecture in our scaffolds, so we enhanced 

the ability of the myoblasts to fuse into myotubes. For this, generating a pore 

anisotropy architecture in our scaffold has considerable relevance. For 

generating this anisotropy, a freezing directionality was applied, so the ice 

nucleation and growing occurs only in one axis [230]. Different set-ups were 

studied to achieve this directionality, but finally, cryogels were cast over 

carbonic ice and with a thermal polypropylene isolator around the PDMS 

mold. 

Another interesting point to enhance cell directionality was the biomaterials 

used. One common approach in scaffolding is combining naturally-ECM-

derived biomaterials with mechanically stable biomaterials [231]–[236]. The 

first ones are used to dote to the cells of critical biochemical cues. In skeletal 

muscle, where cell guidance has significant relevancy, the cell attachment 

property has a vital role in enhancing cell fusion. However, ECM-derived 

biomaterials have poor mechanical stability. Non-mammalian cell-

degradable biomaterials were used to solve this drawback. Here, gelatin was 

used as an ECM-derived biomaterial, combined with CMC, to improve the 
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gelatin's scaffolds durability and low mechanical properties. Mainly gelatin is 

one of the most used biomaterials in tissue engineering and has cell-binding 

motifs in its structure [24]. On the other hand, cellulose is less studied, but its 

easy obtention turns it into a promising biomaterial to be used as a 

mechanical supporter. Moreover, previous studies in the laboratory [25] 

showed good biocompatibility and good bioactivity of these biomaterials for 

skeletal muscle tissue engineering. The promising features of this 

biocomposite for hydrogel encapsulation make us think of the potential use 

of this combination of biomaterials for cryogel fabrication. 

Skeletal muscle is also an electrically active tissue, as it can contract for 

motion and support of the whole body. However, natural biomaterials lack 

this essential property as they are not electrically conductive. As proven in 

previous studies, generating an electrically conductive biomaterial and 

applying electrical pulse stimulations [77], [237], [238] improves cell 

maturation and contraction. These improved electrical properties are often 

achieved by incorporating some conductive particles into the scaffold matrix. 

Different particles have been studied, as gold nano-wires or carbon 

nanotubes [146], [239].  In this thesis, we decided to incorporate carbon 

nanotubes because its widely proved biocompatibility and non-toxicity [150].  

To engineer skeletal muscle using cryogels, 3% gelatin:CMC cryogel (2% 

gelatin:1% CMC) was fabricated. This percentage of biomaterial was chosen 

as the lowest mechanically stable material concentration. Due to the freezing 

directionality, these cryogels have a pore diameter distribution that ranges 

from few micrometers up to ~130 μm micrometers. However, most of the 

pores are between 30 μm up to 75 μm in range, and pores out of this interval 

are much less common. This pore range is enough for cell infiltration. 

Moreover, we could appreciate that tubular pores are formed uniaxially, 

generating a very aligned pore architecture. This feature is an essential 

feature to engineer skeletal muscle tissue, as skeletal muscle tissue needs high 

alignment and super organization to differentiate from myoblast into 

myotubes. Despite there are other techniques to achieve this alignment to 

enhance cell fusion, like bioprinting [240], stamping [174], [241], or 

stretching [242], our technique allows us to enhance this alignment using 

surface directionality, as some 2D approaches used to generate this alignment 

without encapsulating [242]–[245]. Combining 3D directionality plus 

millimeter sized-scaffold, we could obtain a good scaffold to engineer highly 

organized tissue, like skeletal muscle. Moreover, the pore architecture will 

not limit myotube formation, as myotubes are not wider than 30 μm [165], 

[171]. Cryogelation shows a strong and non-harmful technique to generate 
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scaffolds, with higher pore distribution, a synonym of higher nutrient 

diffusion, and low confinement of the cells that implies fewer difficulties in 

proliferation and migration. 

Once determined and optimized the fabrication set-up and biomaterial 

concentrations, we could characterize the mechanical properties of the 

cryogels. One of the meaningful properties of a scaffold is stiffness. This 

property is attractive as the scaffold aims to be as more similar as possible to 

the extracellular matrix properties. Here, because of the pore architecture, 

different stiffness may be achieved depending on the directionality of the 

compression. When the compression is applied parallelly to the anisotropic 

structure, the stiffness is higher as all the fibers challenge the compression. 

However, if compression is applied perpendicular to the fiber architecture, 

the stiffness decreases, as there are empty spaces due to pore morphology 

that can be compressed easily. Also, the addition of carbon nanotubes (CNT) 

did not change this axial property. All this data shown is another indirect 

measurement of the well-formed pore anisotropy. Remarkably, the stiffness 

of the cryogel shows in vivo similarity mechanical properties [174],[180], 

around 12 kPa stiffness, while traditional hydrogels with the same amount of 

material have less in vivo resemblance [240],[246]. However, previous 

studies proved that stiffness from 1 kPa up to 10 kPa is suitable for engineer 

skeletal muscle [247].  

Another essential feature of the scaffolds is their high water content. This 

property is highly correlated with pore interconnectivity. It informs how 

water can colonize all the accessible pores of our scaffold. High swelling ratios 

are found in anisotropic scaffolds, both with and without CNT. Besides 

indicating that the scaffold has high-water content, this property also 

indicates that it can rapidly reach all the pores, meaning good 

interconnectivity. These results are promising as the high interconnectivity 

will allow the cell culture medium to reach all the scaffold pores, enhancing 

cell viability. 

Electric stimulation improves in vitro myotube maturation [183]. 

Unfortunately, most of the scaffolds used for tissue engineering have low 

conductivity, and therefore applying electrical stimulation to enhance 

myogenic maturation is poorly effective. We incorporated CNTs into our 

cryogels to enhance their electrical properties. Here, we could prove that 

incorporating CNT enhanced the scaffold's conductivity without affecting 

other essential features. However, there is a significant disparity in the 

literature about electrically conductive scaffolds. In previous electrically 
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stimulated scaffolds for skeletal muscle tissue engineering studies, 

conductivities from 8 mS/m up to 6 S/m were achieved, and all enhanced the 

maturation of the tissue [67]–[70]. 

Once we proved that the scaffold has the desired properties, we generated the 

tissue inside it. Nevertheless, first, different cell behavior experiments were 

performed. Despite the adequate pore sizes, the colonization of the cells 

through the scaffold was determined by taking confocal images in different 

depths. Equally, cell alignment was tracked because, as mentioned, it is one of 

the trivial points in skeletal muscle tissue engineering [248] [249]. In our 

case, by generating a highly anisotropic structure forcing ice nucleation in 

only one axis, the scaffold has highly aligned tubular pores, and cells can 

infiltrate inside it, colonize all the scaffold and align following the pore 

directionality.  

Previous studies proved that gelatin is a well-established biomaterial [25], 

[250]–[253], CMC is biocompatible [254]–[256], and CNT does not show any 

toxicity [150]. Despite these facts, we wanted to check cell viability inside the 

scaffold due to the novelty of the casting and seeding techniques. It is 

important to highlight, the viability ratio remains over 90% of live cells in 

both cryogels, proving that gelatin:CMC composite allows cell culturing and 

that CNT did not have any cytotoxic effect [257],[206]. These high viability 

results are also due to the casting technique that allows to seed cells without 

suffering any damage due to the crosslinking process. Usually, encapsulation 

of the cells inside hydrogels implies the polymerization of the matrix using 

external crosslinkers like UV light, chemical reagents, or temperature 

changes. This exposition to different crosslinkers could damage these cells. 

Cryogelation technique can solve this main drawback, as scaffold 

polymerization occurs before seeding. Moreover, the pore size and the high 

pore distribution, which leads to a high nutrient diffusion, also positively 

affects the high cell viability. Remarkably, viable cells were found in all the 

scaffold, meaning that the cells could infiltrate deeply inside it.  These results 

points the possibility to engineer bigger engineered muscles taking profit 

from the microporous architecture of the scaffold.  

Finally, Electrical Pulse Stimulation (EPS) was applied to prove that this new 

electrically improved composite enhances the myogenic maturation of the 

C2C12 myoblasts. On the last day, 12 hours of EPS were applied to improve 

the myogenic maturation of the cells. We could observe that the cells fused 

better in EPS(+), meaning that the myogenic differentiation process started 

and was improved when EPS was applied. However, if we check late 
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maturation transcription markers we do not see an increase in expression, 

meaning that cells are not fully mature. One hypothesis regarding this results 

is the possible insufficient stimulation regime applied, due to limitations of 

the function generator used. However, as cells fused better when EPS was 

applied, we can conclude that our scaffold supports an improvement of the 

early myogenic maturation steps. 

In summary, we have generated a scaffold with highly anisotropy 

microporous architecture and electrically conductive that allow cell 

alignment and survival for skeletal muscle tissue engineering. Moreover, we 

could prove that applying an EPS enhances the primary steps of the myogenic 

differentiation process.  
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6.1 CONCLUSIONS 

An increasing need to engineer advanced 3D scaffolds for tissue engineering 

has emerged to provide cellular structural support and mimic the 

complicated physical and biochemical properties of the native extracellular 

matrix. With this improvement, more resemblance tissues can be engineered 

for many applications as drug screening or disease modeling. Many tissues 

have been generated in the laboratory, but the main limitation for tissue 

engineering is the lack of proper nutrients and oxygen diffusion in 

micrometers size tissues. In this thesis, a novel scaffolding approach was 

established based on microporous size scaffolds to fit skeletal muscle and 

pancreatic cells. The research core was developed in a consistent part of this 

Ph.D. project that was organized in two complementary phases. 

Pancreas, (i) particular attention must be paid when engineering islet-like 

structures as an adequate round-shaped islet architecture to maintain and 

improve β-cell functionality. Besides, the scaffold's diffusion and permeability 

are crucial features for islets secretion and survivability. Skeletal muscle, (ii) 

to engineer skeletal muscle in a volumetric size is crucial to control the 

scaffold's external morphology and the internal pore morphology and size in 

a highly controlled way. 

The resulting conclusions and perspectives for future investigations are 

detailed below. 

 

• We have developed new cryogel composites with specific pore 

architecture to engineer pancreatic and skeletal muscle tissue. We 

studied the mechanical properties of both cryogels. We could prove 

that changing material concentrations or freezing set-up different 

properties can be modulated. Moreover, we demonstrate that our 

cryogels have high pore interconnectivity and high permeability. We 

could also demonstrate that our cryogels have proper stiffness, 

resembling the extracellular matrix of both tissues. Finally, we could 

demonstrate that the incorporation of carbon nanotubes increases 

scaffolds conductive properties without affecting other essential 

properties for skeletal muscle tissue.  

 

 

• For pancreatic tissue, we demonstrate that our CMC cryogel with 

random pores allows and enhances cell aggregation in pseudoislet 

forms. Moreover, our cryogel pores favor the formation of pseudoislets 
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in resemblant sizes as the pancreatic islets. Furthermore, cell viability 

is not negatively affected when cells seeded inside the scaffold, and 

beta-cell identity is improved compared to monolayer distributions. 

Finally, pseudoislets respond better to glucose stimulations proving an 

enhanced functionality compared to cells seeded in monolayer 

distributions in gelatin cryogels. 

 

• For skeletal muscle, we developed a new set-up to generate 

gelatin:CMC scaffolds with highly aligned structure and with pore 

dimensions that allow cell infiltration. We proved that our scaffold 

prompts cell alignment following the pore architecture. Moreover, we 

could demonstrate that seeding cells inside the scaffold did not affect 

cell viability, and cells could colonize all the scaffold structure. Finally, 

we demonstrate that by applying an electrical pulse stimulation, we 

achieved a better fusion index and improved the early stages of 

myogenic maturation.  

 

• Our results proved that cryogels are a suitable technique to generate 

microporous scaffolds with high potential in tissue engineering. 

Cryogels exciting properties, as adjustable pore architecture, elevate 

pore interconnectivity, stiffness, or high swelling ratio allows the 

generation of volumetric tissues without affecting cell viability.  

Moreover, its easy handleability and its simple and cost-effective 

fabrication method make this casting technique an attractive method 

to generate scaffolds for volumetric tissue engineering for multiple 

applications as organ-on-a-chip. 

 

6.2 FUTURE WORK 
 

The obtained results encourage us to exploit this model as a tool for 

disease modeling, such as type 2 diabetes. Moreover, the possibility to 

generate co-coltures opens a wide possibility of options to study how 

this two tissues crosstalk. These experiments could be done in static, 

or in organs-on-a-chip, as we proved the feasibility of this 

incorporation. The integration inside organs-on-a-chip, combined with 

possible biosensing approaches would allow to study the metabolism 

of these tissues in real time. Another option to continue this thesis 

should be to explore our system with primary human cells or tissues, 

for final validation. 
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And last but not least, another possibility would be using the 

cryogelation technique to generate other important tissues related 

with T2D as fat tissue or hepatic tissue, for posterior studies as the ones 

proposed above. 
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La incidència de la diabetis ha augmentat considerablement en els últims 

anys. Segons l’IDF (International Diabetes Federation), al 2019 hi havia 463 

milions de persones que patien diabetis i les estimacions estimen un augment 

considerable de casos, arribant als 700 milions de persones diabètiques cap 

al 2045 [1]. Entre els diferents tipus de diabetis, la diabetis tipus 2, és la que 

té major incidència en la població, corresponent al 90% dels casos de pacients 

amb diabetis. Aquest tipus de diabetis, succeeix quan el cos es torna resistent 

a la insulina. 

Aquesta resistència a la insulina per part dels teixits perifèrics ens prova que 

la diabetis no és només una malaltia del pàncreas, sinó que hi ha altres teixits 

relacionats, com el fetge, el teixit adipós o el múscul esquelètic. Aquest últim 

té un factor molt rellevant en la homeòstasi de la insulina i la glucosa, ja que 

és un dels principals teixits consumidors de glucosa.  La interacció, però, entre 

aquest dos teixits encara presenta molts interrogants. 

Actualment, per estudiar com dos teixits interactuen entre ells, el testeig 

animal és el mètode més confiable. No obstant, presenta certes limitacions, 

com la poca similitud en quan a l’activitat dels illots, la variabilitat fisiològica 

entre diferents animals, dilemes ètics o la necessitat d’encarar la recerca cap 

a una medicina més personalitzada. Aquesta finalitat és el que ha portat als 

científics a buscar alternatives a l’experimentació animal. Entre moltes, una 

de les més prometedores són els anomenats Òrgans-en-un-xip, plataformes 

3D de cultiu cel·lular combinades amb microfluídica i biomaterials que 

permeten simular les funcions específiques d’un òrgan. 

 Per tal de generar el teixit dins d’aquesta plataforma, l’encapsulació de 

cèl·lules dins de hidrogels és la tècnica més utilitzada, degut al seu alt 

contingut d’aigua, la seva adaptabilitat mecànica o la possibilitat de generar 

una certa estructura geomètrica [2]. No obstant, la seva petita porositat, limita 

la difusió homogènia d’oxigen i de nutrients dins seu [3]. 

Aquest problema creix quan es volen encapsular illots pancreàtics en bastides 

d’hidrogel, degut a la seva mida (~100 μm de diàmetre). Els illots pancreàtics 

són agregacions de varis tipus diferent de cèl·lules, on destaquen les cèl·lules 

secretores de insulina (cèl·lules beta) i les secretores de glucagó (cèl·lules 

alfa). Per altre costat, el teixit muscular s’encapsula en petits constructes per 

tal d’imitar l’estructura d’aquest. El múscul esquelètic és un teixit altament 

alineat, amb cèl·lules multi nucleades, anomenades miotubs, que s’obtenen a 

partir de la fusió de cèl·lules soles, anomenades mioblasts.   

Per tal de solucionar aquests problemes, els criogels han aparegut com a 

alternativa. Els criogels, estan fabricats a temperatures sota zero, així mentres 

el polímer crosslinca es formen cristalls de gel. Un cop formada la matriu, la 
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bastida es descongela i aquests cristalls es desfaran, deixant pas a espais buits, 

anomenats pors. Aquests, seran els que posteriorment li donaran la 

l’estructura porosa, altament interconnectada, amb alta permeabilitat i amb 

una arquitectura de pors determinada a la nostra bestida. 

En aquesta tesi s’han desenvolupat dos bastides de cel·lulosa 

carboxymetilada diferents seguint la tècnica de la criogelificació. Cada bastida 

ha estat dissenyada per tenir una distribució i una arquitectura de pors 

diferent d’acord amb la necessitat i propietat del teixit que es vulgui generar. 

A més, les propietats físiques i mecàniques de les dos bastides tenen alta 

semblança amb les propietats físiques i mecàniques de la matriu 

extracel·lular de cada teixit. 

Per el teixit pancreàtic, s’ha generat una bastida amb un diàmetre de pors 

similar als illots pancreàtics, per tal que, sembrant cèl·lules beta, aquestes 

formin pseudoillots similars als illots fisiològics. A més, s’ha demostrat que 

aquests illots tenen el diàmetre i la arquitectura desitjada, són viables i 

capaços de respondre a diferents nivells de glucosa. A més, s’ha demostrat 

que aquestes cèl·lules agregades en forma de pseudoillots responen millor a 

la glucosa que les cèl·lules configurades en distribució dispersa.  

En el cas del múscul esquelètic, s’ha desenvolupat una bastida amb una 

arquitectura de pors altament alineada per promoure l’alineament cel·lular i 

la fusió cel·lular. A més, s’han pogut incorporar nanotubs de carboni per 

millorar les propietats elèctriques de la vestida. D’aquesta manera, aplicant 

pulsos elèctrics per estimular el teixit, s’han pogut millorar les etapes 

primerenques de la maduració miogènica. 
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New volumetric CNT-doped gelatin–cellulose
scaffolds for skeletal muscle tissue engineering†

Ferran Velasco-Mallorqúı,a Juan M. Fernández-Costa, a Luisa Nevesb

and Javier Ramón-Azcón *a

Currently, the fabrication of scaffolds for engineered skeletal muscle tissues is unable to reach the

millimeter size. The main drawbacks are the poor nutrient diffusion, lack of an internal structure to align

the precursor cells, and poor mechanical and electric properties. Herein, we present a combination of

gelatin-carboxymethyl cellulose materials polymerised by a cryogelation process that allowed us to

reach scaffold fabrication up to millimeter size and solve the main problems related to the large size

muscle tissue constructs. (1) By incorporating carbon nanotubes (CNT), we can improve the electrical

properties of the scaffold, thereby enhancing tissue maturation when applying an electric pulse stimulus

(EPS). (2) We have fabricated an anisotropic internal three-dimensional microarchitecture with good pore

distribution and highly aligned morphology to enhance the cell alignment, cell fusion and myotube

formation. With this set up, we were able to generate a fully functional skeletal muscle tissue using

a combination of EPS and our doped-biocomposite scaffold and obtain a mature tissue on the

millimeter scale. We also characterized the pore distribution, swelling, stiffness and conductivity of the

scaffold. Moreover, we proved that the cells were viable and could fuse in three-dimensional (3D)

functional myotubes throughout the scaffold. In conclusion, we fabricated a biocompatible and

customizable scaffold for 3D cell culture suitable for a wide range of applications such as organ-on-a-

chip, drug screening, transplantation and disease modelling.

Introduction

Nanomaterials have recently gained signicant attention as
tools to improve the electrical and mechanical properties of
biomaterials.1 For instance, alginate hydrogels impregnated
with gold nanostructures improved the electrical conductivity
and cellular excitability of both cardiomyocytes and neural
cells.2,3 Nanomaterials encapsulated in scaffold materials could
also enhance the sensitivity of engineered tissues mimicking
the native nervous system,4 which can be used in fundamental
cell biology and diagnostics. For example, carbon nanotubes
(CNTs)5 and nanowires6 have been used to sense the extra- and
intra-cellular activities of cells or to tailor the delivery of ther-
apeutic molecules to cells.

The aim of tissue engineering is to fabricate, repair, and/or
replace tissues and organs using cell technology, medicine,
advanced materials, and engineering approaches.7,8 Nanotech-
nology and microtechnology have made signicant contribu-
tions to the eld of tissue engineering in recent years. In

particular, nanotechnology provides novel tissue engineering
fabrication techniques and nano-composed biomaterials.

Scaffolds are the key part in the development of engineered
tissues. They support the growth and differentiation of
progenitor cells in 3D environments. Hydrogels are oen used
as scaffolds due to their high water content, biocompatibility,
and biodegradability.9,10 However, they generally have poor
mechanical properties and low conductivity, which limit their
application in regulating the behaviour of electroactive cells,
such as skeletal, cardiac, and neural cells.2 Therefore, control-
ling the mechanical and electrical properties of hydrogels is
desirable in regulating cell behaviours. Electrically conductive
and mechanically strong hydrogels have other important
applications, such as the real-time monitoring of cellular
activities11,12 and developing hybrid three-dimensional (3D)
electronics-tissue materials13 and as bioactuators.14

To date, scaffolds for skeletal muscle tissue engineering have
been generated mostly by the encapsulation of cells inside
hydrogels,15 both by bioprinting16–18 or stamping19,20 techniques.
However, it is difficult to obtain a single hydrogel that meets all
desirable properties. As mentioned above, these hydrogels are
not conductive, and they lack optimal mechanical properties. In
vivo, skeletal muscle cells are constantly triggered to contract by
nerve signals that are transmitted to the muscle tissue through
the neuromuscular junctions.21,22 Without these nerve signals,
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muscle development is impaired. Therefore, controlling the
mechanical and electrical properties of hydrogels is desirable to
facilitate the regulation of muscle cell behaviours (Fig. 1a). The
positioning of cells, delivery of molecules, and design of scaf-
folds from the nanoscopic scale to the macroscopic scale can be
achieved using novel nanotechnologies.7,23–27 In order to
enhance the electrical properties of the scaffolds, some
approaches have integrated nanoparticles as graphene,28 gold,29

silver,30 iron oxide31 or CNTs.32,33 However, these fabrication
approaches cannot be scaled up to engineer scaffolds in the
centimeter or millimeter range, because the porosity is small
and the low nutrient diffusion makes them inadequate for long-
term cell culture. Another issue is the pre-alignment of cells to
obtain long and functional differentiated tissues. To overcome
these limitations and in order to generate a bigger 3D func-
tional aligned muscle tissue, the cryogel approach technology
has been proposed in this work. This technique allows the
generation of a millimeter range scaffold, with high pore
interconnectivity and a better mechanical stability than the
hydrogel-based scaffolds for generating skeletal muscle tissue
by mimicking its 3D environment.

Cryogels are microporous scaffolds34–36 with a pore range
from a few micrometers up to hundreds of micrometers. The
pores are a consequence of water ice crystallization aer
freezing the polymer solution (Fig. 1b). Once the cryogel is
thawed, the ice crystals leave behind empty pores. We were able
to modulate the pore morphology by applying different freezing
directionalities.37,38 As the skeletal muscle needs a highly
aligned morphology to enhance its alignment and fusion, we
generated an anisotropic morphology by forcing the

directionality of the freezing from one single axis. In that way,
the ice crystallization allowed us to fabricate a mechanically
stable scaffold for skeletal muscle tissue engineering.

Here, we present a new gelatin–microcellulose biomaterial
composite (Fig. 2) doped with CNTs with mechanical stability,
anisotropic pore morphology and electrical properties applied
in skeletal muscle tissue engineering. We have fabricated
a scaffold based on the combination of a natural degradable
biomaterial with a non-biodegradable material by mammalian
cells using gelatin and carboxymethyl cellulose. Gelatin has
good properties for tissue regeneration, such as pore structure,
permeability, and hydrophilicity, with natural cell binding
motifs, such as the tripeptide Arg-Gly-Asp (RGD) and it is stable
in vivo.37,39 However, to improve its mechanical stability, the
incorporation of carboxymethyl cellulose (CMC) has been
proposed. CMC is a linear, long-chain, water-soluble, anionic
polysaccharide that is taken from the cellulose and can be
degraded by non-mammalian cells.40 This new doped bio-
composite has an anisotropic pore distribution, high ber
alignment and good pore diameter that allow for highly efficient
nutrient diffusion. The formation of nanober web-like struc-
tures of CNTs within hydrogels resulted in hybrid hydrogels
with enhanced mechanical properties compared with the
unmodied hydrogels. An anisotropic conductive scaffold is
highly benecial for the fabrication of functional skeletal
muscle tissue constructs with the aid of electrical stimulation.
All of these features combined with the technique of cry-
ogelation allow us to generate millimeter-range scaffolds. In
this work, we demonstrated that myoblasts could be aligned
following this pore structure, colonizing the whole 3D structure,

Fig. 1 General overview of the study. (a) Myogenic differentiation process. Muscle precursor cells and myoblasts were fused to form immature
myotubes, while the myogenin (Myog) expression increased. Myotube maturation implied an upregulation of Myosin Heavy Chain 2 (Myh2) and
tropomyosin (Tnnt1) genes. (b) Principle of the cryogelation technique. (c) Protocol to generate a highly anisotropic cryogel.
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and fusing into myotubes. We also proved that the electrical
stimulation, in combination with this scaffold, enhances the
maturation of these cells. All of these features make this new
CNT-doped gelatin-CMC biomaterial composite a promising
scaffold to engineer millimeter-range skeletal muscle tissue for
many applications.

Experimental procedures
Cryogel fabrication

To fabricate carboxymethyl cellulose (Sigma Aldrich) at 1% (w/
v), gelatin from porcine skin (Sigma Aldrich) and 2% (w/v) cry-
ogels were dissolved into Milli-Q water under stirring condi-
tions. Once the CMC and gelatin were dissolved, the
crosslinking reagents were prepared. Adipic acid dihydrazide
(AAD, Sigma Aldrich) at 50 mg mL�1, MES buffer from MES
hydrate (Sigma Aldrich) at 0.5 M and pH at 5.5 and N-(3-dime-
thylaminopropyl)-N0-ethylcarbodiimide hydrochloride (EDC,
Sigma Aldrich) at 1 mg mL�1 all dissolved in Milli-Q water and
were vortexed to ensure homogeneity throughout the solution.
To fabricate the prepolymer solution, 0.5 mL of CMC was mixed
with 0.5 mL of gelatin, 100 mL of MES buffer, 100 mL of Milli-Q
water, 21 mL of AAD and 4 mL of EDC. The mixture was then
vigorously pipetted to avoid early crosslinking before freezing.
For the stained cryogels, 12 mL of 1 mM uoresceinamine
(Sigma Aldrich) was added to the prepolymer solution. In the
case of the doped cryogels with carbon nanotubes, 100 mL of
CNT (Sigma Aldrich) at 2 mg mL�1 dissolved in Milli-Q water
was added in substitution of the 100 mL of Milli-Q water. Then,
the molds, which consisted of a circular pool of PDMS (5 mm
height � 6 mm diameter) surrounded by a polypropylene
thermal isolator and a square cover glass (24 � 24 mm2) on the
top, were lled with the nal prepolymer solution. Once lled,
the mold was quickly placed over a metallic sheet above
carbonic ice and allowed to freeze for 1 hour (Fig. 1c). Then, the
molds were placed into a �20 �C freezer for 24 hours. The next
day, the crosslinked cryogels (Fig. 2) were removed carefully
from the cover glass and PDMSmold, and subsequently cut. For
the 3D approach, the top and bottom parts were cut to avoid the
regions with small porosity. Aer slicing the cryogels, they were
submerged in cleaning solution for 5 minute consecutive
cleaning steps. The cleaning solution was composed of 1�Milli-
Q water, 1 � 100 mM NaOH (Panreac), 1 � 10 mM EDTA (Sigma

Aldrich), 1� MilliQ and 3� PBS (Sigma Aldrich). Once the
cleaning protocol was nished, the cryogels were sterilized in an
autoclave for further cell seeding experiments.

Mechanical and electrical properties of the GelMA-CMC and
GelMA-CMC-CNTs cryogels

Pore analysis. For the pore analysis, we used stained cry-
ogels. Once autoclaved, the z-stack images were examined with
a confocal microscope. The different pore diameters were
quantied with ImageJ soware. We analyzed 20 different
images per cryogel, with 20 mm of distance in the z-axis between
the images, and 3 cryogels. For the diameter quantication, the
minFeret approximation was used in order to calculate the
small diameter of each pore. The small diameter was used as
the minimal distance of the pore, so it was a good indication to
see if the cells could inltrate the cryogel.

The cryogels were fabricated for the SEM images. Aer
sterilizing, ethanol dehydration was done to substitute the
water for ethanol. Starting at 50% ethanol, consecutive wash-
ings were done by increasing the percentage of ethanol up to
70%, 80%, 90%, 96% (�2) and 99.5% ethanol. Once all of the
water was substituted with ethanol, a critical point dry was done
in order to remove all the ethanol and replace it with CO2. Then,
carbon sputtering was performed, and the SEM images were
taken using a JEOL JSM-7001F at 10 kV.

Conductivity. To measure the dielectric properties of the
samples, a tapered transmission line method was used. The
conical feature of the cell allows the insertion of a watertight
sample-holder (SH), providing a signicant increase of the net
sample volume. This modication permitted the evolution of
the coaxial line in terms of the types of materials measured,41,42

in addition to the speed and ow of acquisition.43

In this study, the cell was connected to a calibrated Anritsu
MS46122B VNA, which enabled the extraction of the S-param-
eters S11, S12, S21, and S22 of the cell and sample. Knowing the
intrinsic electric distances between the connectors and sample,
and considering the attenuation of the cell, it is possible to carry
out a de-embedding process, where the S-parameters of the
sample are extracted through the S-parameters of the cell and
sample.

The acquisition method of the complex permittivity is based
on the Nicolson–Ross44 &Weir45 algorithm. Through the sample

Fig. 2 Chemical structure of the reagents and final structure after crosslinking.
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S-parameters, it is possible to determine the reection (G) and
transmission (T) coefficient, as seen in eqn (1)–(6),

G ¼ 1þ S11
2 � S21

2

2S11

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ S11

2 � S21
2

2S11

�2

� 1

s
(1)

T ¼ S11 þ S21 � G

1� ðS11 þ S21ÞG (2)

zr ¼
�
1þ G

1� G

�
(3)

where zr is the reduced impedance of the system. A condition
that must be respected at this point is that the magnitude of |G|
must be equal or inferior to the unit. Thus, it is possible to
determine the complex permittivity (3*), the complex perme-
ability (m*), and the conductivity (s), expressed in S m�1.

mr ¼ j
c

2pfL

�
1þ G

1� G

�
ln

�
1

T

�
(4)

3r ¼ j
c

2pfL

�
1� G

1þ G

�
ln

�
1

T

�
(5)

s ¼ 2pf 3
00
30 (6)

Here, L represents the sample length, c is the speed of light in
a vacuum, and 30 is the permittivity of the free space, 8.85 �
10�12 F m�1.

An SH of length 6mmwas used tomeasure the samples from
10MHz to 8 GHz, at room temperature (RT) conditions (26.8 �C,
31% humidity).

The cylindrical samples have a similar diameter and length
as the SH, so the samples were simply introduced into the SH.
In this conguration, the CNTs were aligned with the axis of the
cell.

Swelling. Swelling is the water uptake capability of a bioma-
terial. In order to measure this capability, cryogels were fabri-
cated as explained previously, sterilized, dried at RT and
weighed. Next, the cryogels were submerged into Milli-Q water
for up to 5 days when they reached equilibrium, and weighed
again. The swelling ratio was calculated as follows:

Swelling ratio ¼ Weq �Wd

Weq

� 100

whereWeq is the weight in equilibrium andWd is the dry weight.
3 cryogels per condition were measured in this assay.

Stiffness. Compression assays were performed to determine
the stiffness of our samples. The compression was applied both
in the x- and y-axis in order to check the correct anisotropy of
the cryogels. Biaxial compression assays were performed in
a Zwick Z0.5 TN instrument (Zwick-Roell) with 5 N load cell. The
experiment was performed with samples at room temperature
at up to 30% of the nal compression range at 0.1 mN of the
preloading force, and at 20%/minute of the strain rate. Finally,
the Young modulus was calculated from the slope of the range
from 10% to 20% of the nal compression. In these experi-
ments, we tested 3 measurements per cryogel and axis and 3
cryogels per condition.

Culture of C2C12 myoblasts in the GelMA-CMC and GelMA-
CMC-CNTs cryogels

Cell culture. The C2C12 myoblasts (American Type Culture
Collection (ATCC)) were cultured in growth medium (DMEM,
high glucose with L-glutamine (Gibco, Thermosher) supple-
mented with 10% FBS (Thermosher) and 1% Pen/Strep
(Thermosher)). When 70–80% conuence was reached, the
C2C12 myoblasts were trypsinized using 0.25% trypsin/0.1%
EDTA and subsequently plated in a 1 : 4 density ratio. The cells
were maintained in a cell culture incubator (Sanyo) with a 5%
CO2 atmosphere at 37 �C.

C2C12 seeding into the cryogel. First, the cryogel pores were
kept dry for 30 minutes at RT. For cell seeding, a concentration
of 9 � 106 cells per mL was used. Upon achieving this concen-
tration, a drop of 20 mL was seeded into the upper part of the
cryogel. Aer 10 minutes, we collected the medium from the
bottom that could pass through the cryogel, and we reseeded it
at the top of the cryogel again. Aer cell inoculation, the cry-
ogels were in the growth medium for 10 days, and then the
medium was changed to a differentiation medium (DMEM high
glucose with L-glutamine (Thermosher) supplemented with
2% horse serum (Thermosher) and 1% Pen/Strep (Thermo-
sher)) for up to 22 days of culture in order to promote myotube
formation.

Immunostaining protocol. For confocal analysis, stained
cryogels were used. Aer culturing the cells, the cryogels were
washed with PBS and xed with a 10% formalin solution (Sigma
Aldrich) for 30 minutes. Then, the cryogels were washed with
Tris Buffered Saline (TBS, Canvax Biotech) and permeabilized
with 0.1% v/v Triton X-100 (Sigma Aldrich) solution in TBS for
15 minutes. Following this procedure, the blocking of the cry-
ogels was done with a blocking solution of 0.3% v/v Triton X-100
and 3% v/v Donkey serum (Sigma-Aldrich) in TBS for 2 hours.
Then, 100 nM Rhodamine-Phalloidin 480 (Cytoskeleton Inc)
and 5 mg mL�1 MF20 Alexa Fluor 488 (eBioscience) in blocking
solution was incubated overnight at 4 �C. Rhodamine-
Phalloidin 480 was used for F-actin and MF20 Alexa Fluor 488
for Myosin Heavy Chain (red and green staining, respectively).
The following day, the cryogels were washed with per-
meabilization solution (3�, 10 minutes each). Subsequently,
the cryogels were incubated with 1 mM DAPI (Thermosher) for
nuclei counterstain into the blocking solution for 15 minutes.
Finally, the cryogels were washed with TBS for 15 minutes and
stored at 4 �C until acquired for confocal microscopy. Images
were taken using a LSM 800 confocal microscope from Zeiss.

Viability assay. Viability assays were performed using the
Live/Dead assay kit (Thermosher), in accordance with the
manufacturer's instructions. The assays were performed at days
1, 5 and 7 of culture aer seeding in both types of cryogels with
or without CNTs. Briey, the cryogels were washed for 5minutes
with PBS (Phosphate Buffered Saline, 0.01 M phosphate buffer,
0.0027 M potassium chloride and 0.137 M sodium chloride, pH
7.4, Sigma-Aldrich) ve times to replace the culture medium,
and subsequently incubated with the nal dye solution. This
solution consisted of 12 mL of 12 mM EthD-1, 3 mL of 4 mM
calcein AM and 6 mL of Hoechst for the dead cells, live cells and
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nuclei, respectively, into 6 mL of PBS. Then, the solution was
vortexed, and 2 mL of this solution was added to each cryogel
and incubated for 25 min at 37 �C. Then, the cryogels were
washed 3 times with PBS. Finally, confocal images were taken
using a Zeiss LSM 800 confocal microscope. The quantication
of the live/dead ratio was calculated using ImageJ soware, and
was determined as follows:

Live ratio ¼ #Nuclei�#ðNuclei� EthD areasÞ
#Nuclei

� 100

Cell alignment. To calculate the alignment of the bers,
uorescein-stained cryogels were used. In addition, nuclei and
F-actin for the cells were stained following the immunostaining
protocol. Confocal images were obtained using a Zeiss LSM 800
confocal microscope. For this quantication, 5 images per cry-
ogel were taken. The ImageJ PlugIn “OrientationJ” soware was
used to see the distribution of the aligned bers and the
alignment of the cells in a random ber distribution of the
cryogel against the anisotropic cryogels.

Electrical stimulation. An electric pulse stimulation (EPS)
was applied at day 11 aer induction of the myogenic differ-
entiation. The stimulation was performed by placing the cry-
ogels inside a 6-well plate C-dish from IonOptix connected to
a multifunction generator (WF 1948; NF Co.) with a specied
regime (1 Hz of frequency, 1 V p–p and 10 ms of width) for 12
consecutive hours.

Fusion index. For differentiation of the myoblast into myo-
tubes, the cells were seeded as previously explained in the cry-
ogel and cultivated for 22 days. For those that were stimulated,
EPS was applied to the cryogels at day 21 of culture. Cryogels
were inmunostained as described above, and sliced vertically to
improve the image acquisition. Then, the confocal images were
taken at 5 random areas over the cryogel, and 3 cryogels per
condition were used. From these images, the fusion index was
calculated. The index fusion consisted of the number of cells
that were differentiated and fused. To calculate the fusion
index, the following equation was used:

Fusion index ¼ #Green&blue areas

Total #nuclei
� 100

For the index fusion analysis, 5 images per sample and 3
samples per condition were taken and analysed.

RNA isolation, retrotranscription and real-time quantitative
polymerase chain reaction (qRT-PCR)

For the total RNA isolation of the single cryogels, a standard
organic extraction using TriReagent (Sigma) was performed.
Briey, single cryogels were homogenized with 1 mL of TriRe-
agent at room temperature and mixed with 200 mL of chloro-
form. Samples were centrifuged at 12 000 rcf for 15 minutes at
4 �C and the aqueous phase was collected. Finally, RNA was
precipitated using isopropanol and GlycoBlue (Invitrogen) as
the carrier. One microgram of total RNA was digested with
DNAse I (Invitrogen), and retrotranscribed with SuperScriptII

(Invitrogen) using random hexanucleotides. For each biological
replicate, qRT-PCR reactions from 10 ng of cDNA were carried
out per triplicate using HOT FIREPol EvaGreen qPCR Mix Plus
(SolisBiodyne). The primers used were: 50-CATTGCTGA-
CAGGATGCAGAAGG-30/50-TGCTGGAAGGTGGACAGTGAGG-30

for ActB, 50-GCTGGAAGATGAGTGCTCAGAG-30/50-TCCAAAC-
CAGCCATCTCCTCTG-30 for Myog, 50-GCGACTTGAAGTTAGCC-
CAGGA-30/50-CTCGTCCTCAATCTTGCTCTGC-30 for Myh2 and
50-GAGCAGAGGATGACGCCAAGAA-30/50-TTCATCTCCCGAC-
CAGTCTGTC-30 for Tnnt1. Expression levels were measured
using an Applied Biosystems StepOnePlus Real Time PCR
System. The expression level relative to the ActB endogenous
genes and the control group was calculated using the 2�DDCt

method. Pairs of samples were compared using the two-tailed t
tests (a ¼ 0.05), applying Welch's correction when necessary.
The statistical differences were estimated by the Student's t tests
(p < 0.05) on normalized data. At least three cryogels per
condition were evaluated.

Statistical analysis. For pore analysis, we analysed 20
different images per cryogel, with 20 mm of distance in the z-axis
between images, and 3 cryogels. For swelling, 3 cryogels per
condition were assessed. This was performed similarly for the
stiffness, where we tested 3 measurements per cryogel and axis,
and 3 cryogels per condition. In the case of the alignment image
quantication, 3 samples per condition and 5 images per
sample were taken and evaluated. For the viability and fusion
index analysis, 3 cryogels per condition and 20 images per
sample were taken and evaluated. For the qPCR, 2 different
experiments were done. In each experiment, 3 cryogels per
condition and 2 replicas per sample were performed. For
statistical analysis, the two-tailed Student t-test (a ¼ 0.05) was
used to check the statistical signicance of all samples.

Results and discussion
Cryogel fabrication and mechanical characterization

The protocol to fabricate cryogels (Fig. 1c) was taken and
modied from a previous study.36 The size of the scaffold (6 mm
of diameter � 6 mm of height) was chosen as a good area for
seeding in the x-axis and a good length in the y-axis. This was
enough to form the desired anisotropic structure. 2% gelatin –

1% CMC (w/v) cryogels (Fig. 2) was chosen as the ideal one. This
was because it is the lowest possible material concentration
with enough stiffness to hold and handle the scaffold without
breaking it. In addition, results not shown in this study proved
that as the material concentration was decreased, a bigger pore
size could be achieved.37 According to the approach used, big
tubular pores were expected to facilitate the cell seeding and
migration through the cryogel. We have obtained volumetric
constructions in the range of millimeters. Previous scaffolds
made by encapsulation into hydrogels could not reach these
dimensions due to their low mechanical properties or pore
distribution, leading to a lack of nutrient diffusion. As we have
shown in previous works, when the cells are encapsulated in
depths of more than 200 mm, their viability decreases.46 The
pore sizes of most hydrogels described to date are small. This
characteristic feature in the hydrogels leads to difficulties in
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nutrient diffusion. This is the main reason why bioprinted
hydrogels have dimensions that are smaller than 500 mm.21,47,48

However, using our unidirectional cryogelation technique, we
obtained cryogels with enough pore size and high-water reten-
tion capability to allow for fast nutrient and medium diffusion
along the entire scaffold. Specically, our cryogel has a ow rate
of 0.034 mL min�1.

By analyzing the pore distribution, we can observe that small
pores are always present (Fig. 3a and b). However, most of the
pores are in a specic range between 30 and 75 mm of the
diameter. This pore range is appropriate for seeding the cells
over the cryogel. Moreover, this pore size range allowed for cell
growth and migration, and nally colonization throughout the
whole cryogel. Myotube maturation implied the alignment and
fusion of myoblast precursors. The mature myotubes had
a dimension that was not larger than 30 mm in width,49,50 so the
pore size of our cryogels would allow for the correct myotube
maturation. Supporting the pore distribution analysis, the
scanning electron microscope images showed this same
distribution, where most of the pores were bigger than 30 mm
diameter (Fig. 3a). In addition, we can appreciate the tubular
shape of these pores. The vertical cross-section of the
uorescein-stained cryogels taken with a confocal microscope
proved that the anisotropy of the bers was achieved (Fig. 3c).
This feature is a highly important feature for engineering the
skeletal muscle tissue, as the skeletal muscle tissue needs high
alignment and superorganization to differentiate between the

myoblasts and myotubes. With the technique, we achieved
a good pore distribution and pore size that allowed for a good
inltration of the cells. Moreover, the cryogel pores had a high
alignment that enhanced the fusion and differentiation of the
skeletal muscle myotubes. Although there are other techniques
to achieve this alignment to enhance cell fusion, such as bio-
printing,46 stamping48,51 or stretching,52 our technique allowed
us to enhance this alignment using surface directionality, as
some 2D approaches used to generate this alignment without
encapsulating.52–55 Combining 3D directionality plus millimeter
size, we were able to obtain volumetric tissue constructions. By
combining these features with our technique, we could obtain
a good scaffold to engineer highly organized tissue as skeletal
muscle. Cryogelation showed a strong and nonharmful tech-
nique for generating the scaffolds with a higher pore distribu-
tion, synonymous with a higher nutrient diffusion and low
connement of the cells. This implied less difficulties in the
proliferation and migration.

Electric stimulation improves in vitromyotube maturation.56

Unfortunately, most of the scaffolds used for tissue engineering
have low conductivity. Therefore, this electrical stimulation to
myogenic maturation is not very effective. In order to increase
the conductivity of our scaffolds, we incorporated carbon
nanotubes (CNTs) to our cryogels. In order to do this, we
incorporated the CNTs mixed in the prepolymer solution. By
doing so, when all of the process of crosslinking happens, the
CNTs stay in the ber network. Analysis of CNTs distribution by
bright eld microscopy showed that the incorporation of CNTs
was not homogeneous (Fig. 3d). The CNTs formed aligned
aggregates through the cryogel. To test if the CNTs improved the
electric properties of the cryogels, we performed conductivity
assays (Fig. 4a). This conductivity was similar in the low
frequency ranges. From 1 � 107 to 2.5 � 108 Hz, the conduc-
tivity was around 1 S m�1 for cryogels both without and with
CNTs. However, the conductivity of the CNT cryogels increased
faster with frequency than the ones without CNT. Moreover,
CNTs increased the conductivity of the cryogels at higher
frequencies up until 2 � 109 Hz, where the cryogels with CNTs
reached 5.71 S m�1 vs. 4.08 S m�1 for the cryogels without CNTs
(Fig. 4b). The conductivity achieved with our scaffolds was
similar to or higher than other scaffolds used for thematuration
of myotubes.57,58 In previous electrically stimulated scaffolds for
skeletal muscle tissue engineering studies, conductivities from
10 mS m�1 to 6.4 S m�1 were achieved, and maturation of the
tissue was enhanced. In our case, we could enhance the elec-
trical properties of the scaffold. In addition, we were able to
modulate the frequency and conductivity of these scaffolds. In
this way, we can obtain different conductive values, but always
in the range of previous studies. Notably, the conductivity can
be modulated by changing the concentration of CNT.59

However, there is a big disparity in the literature about the ideal
conductivity of a scaffold to engineer and enhance myogenic
differentiation. This disparity gives a real advantage for our
scaffold, as we are able to modulate the conductivity. The high
conductivity of our cryogels makes them suitable for many EPS
(Electrical Pulse Stimulation) assays for the maturation or even
contraction of the skeletal muscle tissue.

Fig. 3 The pore size distribution and tubular pore morphology among
the scaffold fit with the skeletal muscle tissue engineering needs. (a)
Scanning electron microscope (SEM) image of the pores of the cry-
ogel. (b) Diameter distribution of the pores among the 2% gelatin – 1%
CMC cryogel. (c) Confocal image of the cryogel anisotropic fibers
marked with aminofluorescein in green. (d) Bright field image of the
CNT distribution inside the cryogel. SEM image of a CNT is shown in
the small inset. Scale bars ¼ 100 mm.
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Nutrient diffusion is an important feature for scaffolds in
tissue engineering, and even more so for big volumetric scaf-
folds. To estimate the nutrient diffusion in our cryogels, we
analysed the swelling ratio. The swelling ratio is the water
uptake capability of a scaffold. Several features of the scaffold
could affect the swelling ratio. We observed that the main factor
is the amount of material. Also, we observed that the pore
morphology had an effect in the swelling ratio (data not shown).
A lower material concentration implies a higher pore distribu-
tion. In addition, a higher pore distribution implies more
capability for the cryogel to take up water and more nutrient
diffusion. The analyses of the swelling show that our cryogels
have a high swelling ratio (84.81 � 3.52%), indicating that the
cryogels have not only a good porosity, but also a good inter-
connectivity. This would lead to a high nutrient diffusion.
Notably, the addition of CNTs into the cryogels did not affect
the swelling characteristic of the cryogel (84.81 � 3.52% for
CNTs(�) vs. 81.58 � 2.78% for CNTs(+)) (Fig. 4c).

In addition, every tissue has its own characteristic environ-
ment. For this reason, the resemblance with the in vivo ECM is
a highly important feature for the proper tissue formation. To
generate a scaffold that mimics the physiological environment,
stiffness is another important property to consider in designing
good scaffolds for tissue engineering. As cells behave differently
when the scaffold stiffness changes,51,60 it is fundamental to
have a scaffold that most closely resembles the in vivo condition
for tissue engineering. To analyse the stiffness of the cryogels,
a compression assay was performed. The Young's modulus was
calculated from the linear part of the stress–strain curves, and
measurements from two different axes were made to prove the
anisotropy structure of the cryogel. As expected, the stiffness
changed due to the ber anisotropy when the compression was

applied perpendicularly or parallel to the bers (Fig. 4d). This
tendency of the values proved that the stiffness changed,
depending on the directionality of the applied compression
(11.21 � 6.11 kPa for parallel/CNTs(�) vs. 6.52 � 3.75 kPa for
perpendicular/CNTs(�)) against the bers (Fig. 4e). When the
compression was applied along the perpendicular axis, there
were some empty spaces from the pores that allowed the cryogel
to compress. On the other hand, when the compression was
applied in the parallel direction, it was harder to compress the
bers due to its alignment. In addition, as with the swelling
properties, the addition of the carbon nanotubes did not affect
the stiffness along any of the axes (9.24 � 4.46 kPa for parallel/
CNTs(+) vs. 11.21 � 6.22 kPa for parallel/CNTs(�), and 3.90 �
2.7 kPa for perpendicular/CNTs(+) vs. 6.52 � 3.75 kPa for
perpendicular/CNTs(�)). Remarkably, the stiffness of the cry-
ogel showed in vivo similarity mechanical properties51,61 at
around 12 kPa stiffness, while the traditional hydrogels with the
same amount of material had less in vivo resemblance.46,62 Of
importance, our results suggest that the addition of CNTs did
not change the mechanical features of the scaffolds. So, we can
improve the conductivity without losing any important feature
of the scaffold. The combination of all of these features is
a good point for engineering electrically stimulated tissues,
such as skeletal muscle.

CNT-doped cryogels allow cell alignment and viability for long
term cultures

C2C12 cells (mouse skeletal muscle immortalized myoblasts)
were seeded inside the cryogel by gravity, as they cannot be
encapsulated like hydrogels. To be able to form tissue without
cell encapsulation is another important point to consider.
Normally, encapsulation of the cells inside hydrogels implies

Fig. 4 Mechanical characterization of the scaffold sets. Its features are the ideal ones for generating skeletal muscle tissue. (a) The conical coaxial
adjustment of the EpsiMu transmission line. (b) Conductivity (S m�1) of the cryogels. (c) Swelling ratio of each cryogel. (d) Compression axis from
the stiffness assay of the cryogel. Vertical arrows are the parallel condition and horizontal arrows are the perpendicular condition. (e) Stiffness
results for cryogels in both directions. (b, c and e) CNTs(�) in light grey and CNTs(+) in dark grey. All results are mean � SEM. *p-value ¼ 0.05.
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the polymerization of the matrix using external crosslinkers like
UV light, chemical reagents or temperature changes. This
exposition to different crosslinkers could damage these cells.
The cryogelation technique can solve this main drawback, as
the scaffold polymerization occurs before seeding. An impor-
tant point for engineering skeletal muscle is the cell density for
seeding into the scaffold, as myoblasts need to be conuent in
order to fuse into myotubes. We optimized the cells density at 9
� 106 cells per mL to allow for proliferation and colonization
throughout the biomaterial. Other models for engineering the
skeletal muscle tissue use similar or higher densities.19,63

Nevertheless, at higher concentration, the cells did not properly
colonize our cryogel because they formed a layer on the top
(data not shown). Aer seeding, cells were cultured for 10 days
in growth medium to promote cell proliferation and scaffold
colonization. Then, the medium was replaced to differentiation
media to promote myotube formation for 12 additional days. By
immunostaining and confocal microscopy analysis, we could
prove that the cells were found throughout the scaffold and they
were distributed homogenously through the cryogel, demon-
strating that the cells could colonize the entire depth of the
cryogel (Fig SI1†).

To determine if the CNT-doped cryogel could be toxic for the
cells, we decided to analyse the viability of the cells and if they
could proliferate in the rst few days. A Live/Dead assay was
performed, and we determined that the viability of the C2C12
cells was always higher than 88%. In addition, there was no
statistical signicance between any day and condition (Fig. 5).
However, an increase of the dead cells could be seen throughout
the entire experiment. As the cells also proliferated, this ratio
did not increase statistically. These high viability results are due
to the crosslinking technique that allow us to seed the cells
without suffering any damage due to the crosslinking process.
The pore size and high pore distribution, which led to a high
nutrient diffusion, also positively affected the high cell viability.
More importantly, as reported previously, the CNT had no toxic
effect.64,65 The results compared on the same day with and
without CNT were non-statistically signicant, meaning there
was also a good viability in the CNT scaffolds.

As mentioned, another important feature for engineering
skeletal muscle is the cell alignment to enhance myogenic
maturation. For this reason, one of the properties we wanted for
our scaffold is the high anisotropy of the pores to promote cell
alignment and fusion. Comparing the random pore

Fig. 5 Cells are viable when seeded inside the cryogel. (a–f) Confocal merged images of Live/Dead assay on different days. Live cells are marked
in green with calcein AM, dead cells are marked in red with EthD-1, and cell nuclei are counterstained in blue with DAPI. (g) Graphs of the viability
results. CNTs(�) in light grey and CNTs(+) in dark grey. Results are mean � SEM. *p-value ¼ 0.05.
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morphology versus the anisotropic pore morphology (Fig. 6), we
can appreciate that the cells in the anisotropic aligned much
more clearly that the random one. Analysis with the ImageJ
soware demonstrated that the distribution obtained for the
random pore distribution hadmore variability among all angles
compared with the anisotropic structure one. In addition, it can
be appreciated that in both pore morphologies, the alignment
distributions for the cryogel bers and cells were very similar
(Fig. 6b). These results indicate that the cells sensed the pore
morphology, and they could distribute and align following the
morphology of the pores. The alignment of the cells was proved
by the enhancement of their fusion;50,66 thus, these results
indicate that our cryogels could improve the myogenic
maturation.

Electric stimulation of C2C12 cultured in CNT-doped cryogels
enhances myoblasts fusion and myogenic maturation

Electrical Pulse Stimulation (EPS) was applied to prove that this
new electrically improved composite enhanced the myogenic

maturation of the C2C12 myoblasts. To check the myotube
formation, we analysed the expression of the muscle matura-
tion marker Myosin Heavy Chain (Mhc) by immunostaining
(Fig. 7a and b and ESI Fig. 2†). Cryogels with EPS applied had
a higher fusion index (51.84 � 5.30%) in comparison with non-
EPS stimulation (25.54 � 5.06%) (Fig. 7c), indicating that the
electrically stimulated cryogel enhanced the fusion of the cells
into myotubes.56,67,68 We performed a complementary study on
the gene expression of some myogenic markers by qPCR to
further analyze the effect of EPS in myogenic maturation. We
selected three genes whose dynamic expressions would change
during the muscle maturation: myogenin (Myog), myosin heavy
chain 2 (Myh2) and troponin T1 (Tnnt1) (Fig. 7d–f). Myog is
a marker that is expressed in the early maturation steps, when
the myotubes are fusing. By gene amplication, we could
observe that myogenin was still expressed in the EPS(+) cry-
ogels. These results are in correlation with the obtained fusion
index results. We observed that the cells started the myogenic
differentiation as the myotubes were formed. However, this

Fig. 6 Anisotropic cryogels improve cell alignment. (a–f) Confocal microscopy images showing an aminofluorescein-marked cryogel in green (a
and d), cells marked with phalloidin in red (b and e) and cell nuclei counterstained in blue with DAPI. (c and f) Images showing merged channels.
Scale bars ¼ 100 mm. (g and h) Quantification of fibers and cell orientation. Graphs show frequency of fibers in each orientation degree.
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might indicate that they were still in an early phase of the
maturation. To conrm our hypothesis, we also analyzed both
Myh2 and Tnnt1, which are late maturation markers. These
markers are expressed when the tissue is fully mature. However,
in our assay, these markers from a later myotube differentiation
were downregulated, conrming that most myotubes in EPS(+)
were in the rst steps of the maturation process. Although we
did not detect an increase of the late maturation markers by
qPCR, we showed that the myotubes were formed and expressed
Mhc (Fig. 7a and b). Moreover, the fusion index was higher in
the EPS(+) cryogels and Myog was still expressed, meaning that
the maturation process of the tissue already started. Taking this
point as a mature step, we can conclude that our scaffold
enhanced the cell maturation when EPS was applied. However,
more research would be necessary to further enhance the
myotube maturation.

Conclusion

Here, we present a new methodology to fabricate volumetric
scaffolds to generate skeletal muscle in vitro. The technique
used allows us to control not only the external morphology of
the scaffold, but also the internal pore morphology and size in
a highly controlled way. Our protocol shows a micro-porosity
range scaffold with highly aligned bers. In addition, its
mechanical properties match well with the needs to engineer

skeletal muscle. Moreover, the addition of CNT to our scaffold
has enhanced its electrical properties. All of this is possible
without the loss of any other important properties of the scaf-
fold to generate volumetrically larger skeletal muscle tissue.
Herein, we proved that these composite scaffolds with inte-
grated CNT are non-toxic, as the cells were viable, and enhanced
the fusion of the cells due to its high alignment. Once the cells
fused, taking advantages of the improved electrical properties of
our doped-biomaterial scaffold, we could stimulate the cells.
We proved that they could mature faster and better. In
conclusion, our protocol shows a new doped-biomaterial
composite scaffold that enhances the fusion and maturation
of the cells by applying EPS, leading to a complete skeletal
muscle generated in vitro with strong possibilities in tissue
engineering, organ-on-a-chip technology or drug screening.
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Abstract 

The limitations of obtaining pancreatic islets from different sources as animal models or human donors complicate the study 

of type 2 diabetes (T2D) in vitro. Immortalized cell lines as the insulin-producing INS1E β-cells appeared as a valid 

alternative to model insulin-related diseases. The formation of 3D structures to promote cell aggregations from single cells is 

a handy tool to generate resemblance islet-like pseudoislets. Traditionally used hydrogel encapsulation methods induce a lack 

of nutrient and oxygen diffusion for pancreatic tissue engineering. Here, we use cryogelation technology to develop a more 

resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that 

carboxymethyl cellulose (CMC) cryogels prompted cells to generate β-cell clusters. The high porosity achieved with this 

approach allowed us to create specific range pseudoislets. However, gelatin-based scaffolds did not induce this cell 

organization. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 days and responded better to the 

glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the 

organization and function of insulin-producing β-cells, representing a suitable technique to generate β-cell clusters to study 

pancreatic islet function. 

Keywords: tissue engineering, biomaterial, scaffold, cryogel, β-cell, pancreatic islets 

 

1. Introduction 

The worldwide prevalence of type 2 diabetes (T2D) has 

been increasing over the last decades, attaining the status of a 

global pandemic. T2D is a chronic metabolic disorder 

characterized by hyperglycemia. It occurs either when the 

pancreas does not produce enough insulin, when the 

peripheral tissues cannot effectively use the insulin it 

produces, or both [1].  
In vitro research for the study of T2D is frequently limited 

by the availability of a functional model for islets of 

Langerhans. Pancreatic islets are responsible for maintaining 

glucose homeostasis by secreting the glucose-lowering 

hormone insulin and its antagonist, glucagon. Cell lines are a 

suitable alternative to model T2D in vitro and avoid human 

donor material or primary mouse pancreatic islets. Both 

mouse insulinoma MIN6 and rat insulinoma INS1E cell lines 

are commonly used for in vitro research. Nevertheless, 

INS1E cells have been reported to present better 

responsiveness to glucose within the physiological range and 

relatively high insulin content [2,3].  

Monolayer cell cultures have been shown to function 

differently than cells in vivo, and results of in vitro tests may 

not accurately reflect cell response occurring in vivo [2]. 

Pancreatic islets are round-shaped cell aggregations of 

around 100 µm in diameter. Their size and shape determine 

their functionality, crucial to orchestrate the metabolic 

adjustments [4]. Indeed, β-cell aggregations into pseudoislets 

have been proven to represent a more suitable model to study 

β-cell function, demonstrating a better biological response 

than cultured monolayered cells  [5,6]. However, most of 

these studies use pseudoislets in suspension, therefore not 

representing an accurate image of the in vivo environment to 

study its behavior [7,8].   

To solve this problem, biomaterials and tissue engineering 

appeared as a valid alternative to generate 3D 

microenvironments. The use of scaffolds has allowed the 

generation of a wide variety of 3D environments that have 

enabled better to mimic the in vivo situation of each tissue 

(e.g., skeletal muscle [9,10], intestine [11], or liver [12]). 
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With this purpose, hydrogel encapsulation has appeared as 

the gold standard. This technique allows modulating the 

external morphology (i.e., lines [10], pillars [11], or meshes 

[13]), the stiffness, the pore size, or the biochemical cues to 

promote cell attachment [14,15] to better fit with the needs of 

every engineered tissue. However, this approach entails 

several drawbacks that can end up in cell death. Exposure to 

the UV light or other toxic crosslinking reagents [16] or the 

small pore sizes (usually in the nanometer range) can lead to 

insufficient nutrient diffusion, clumping problems, hypoxia, 

and difficulties inducing vascularization [17,18]. These 

limitations make this approximation non-suitable for all 

kinds of tissues. These problems become more detrimental 

when cell aggregations are encapsulated [19,20] and 

explicitly challenging with β-cells, specialized cell types 

adapted to sense rapid changes in glucose [21]. Therefore, a 

perturbation of the glucose-sensing machinery in these cells 

can entail a suboptimal insulin release. 

Extensive efforts have been made to develop the ideal 

scaffold to support these cells. Such scaffold must be 

fabricated with biocompatible polymers, suitable for 

mammalian cell growth. It must be highly porous to allow 

adequate oxygen and nutrient diffusion, and it also needs to 

be mechanically stable, with the appropriate structure to 

avoid shear-stress-induced cell damage [22]. With the 

intention to aggregate β-cells in a 3D microenvironment, we 

engineered gelatin and carboxymethyl cellulose (CMC)-

based cryogels, which enabled us to design a supportive 

material for the growth and proliferation of β-cells. Cryogels, 

are sponge-like scaffolds with micrometer pore range formed 

at sub-zero temperatures [23]. This technique entails several 

advantages compared to other approaches. It allows high 

pore diameters [24], fundamental to precisely controlling the 

cell aggregates diameter. Moreover, it provides mechanical 

support suitable to manipulate the structure easily [26]. And 

finally, it enables cell seeding after polymerization of the 

scaffold, therefore avoiding exposure to harmful crosslinking 

reagents or UV light. Additionally, both materials have been 

reported to present excellent biocompatible properties 

[25,26]. Gelatin is a derivate of collagen which displays 

weak mechanical properties and presents the tripeptide Arg-

Gly-Asp (RGD), a cell-binding motif [27]. On the other 

hand, CMC is a derivate compound from cellulose, which 

has better mechanical stability and good biocompatibility but 

without the presence of cell-binding motifs [28].  

In this study, INS1E cells were seeded onto 3D gelatin 

and CMC scaffolds to investigate the substrate architecture’s 

effect on the cell’s organization and function. We examined 

cell viability and formation of cell-clusters after 1, 4, and 7 

days of culture, and we compared them with cells seeded in a 

plate. CMC-based scaffolds promoted the formation of 

INS1E aggregations into pseudoislets, whereas dispersed 

organization was observed in gelatin-based cryogels. We also 

show that INS1E pseudoislets ameliorated their response to 

glucose stimuli and presented a more closely related mature 

β-cell phenotype than non-organized cells seeded in gelatin-

based cryogels or a traditional well-plate. 

Our results demonstrate that scaffold biomaterials can be 

used to control the organization and enhance the function of 

insulin-producing β-cells. These advantageous properties 

make this approach an ideal model for the study of pancreatic 

islet function, representing a valuable tool for 3D diabetes 

drug testing and development. 

2. Materials and methods  

2.1 Cryogel fabrication  

Carboxymethyl cellulose (Sigma Aldrich, Germany), or 

gelatin from porcine skin (Sigma Aldrich, Germany) were 

diluted into MilliQ water with stirring conditions at 45ºC. 

Once the prepolymer solution is homogeneous, the 

crosslinking reagents were prepared; MES buffer from MES 

hydrate (Sigma Aldrich, Germany) at 0.5 M and pH at 5.5, 

adipic acid dihydrazide (AAD, Sigma Aldrich, Germany) at 

50 mg/mL, and N-(3-Dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC, Sigma Aldrich, 

Germany)  at 1 μg/μl all dissolved in MilliQ water and 

vortexed to ensure the homogeneity in all the solution. 

Prepolymer solution, 1 ml of the prepolymer, 50 mM of 

MES buffer, 1.83 mM of AAD, and 18.9 μM of EDC were 

added into a tube vigorously pipetted, avoiding early 

crosslinking before freezing. For stained cryogels, 10.9 μM 

fluoresceinamine (Sigma Aldrich, Germany) was added to 

the final prepolymer solution. Then Polydimethylsiloxane 

(PDMS) molds were filled with the final prepolymer 

solution. These molds consist of a PDMS pool with 1 mm 

high and 10 mm of diameter over a squared 24x24 mm cover 

glass. After filling, they were placed into a -20ºC freezer for 

24 hours. The next day, the crosslinked cryogels were 

removed carefully from the mold and then submerged into 

consecutive 5 minutes cleaning steps; 1x MilliQ water, 1x 

100 mM NaOH (Panreac, Germany), 1x 10 mM 

Ethylenediaminetetraacetic acid (EDTA, Sigma Aldrich, 

Germany), 1x MilliQ and 3x Phosphate Buffered Saline 

(PBS, 0.01 M phosphate buffer, 0.0027 M potassium 

chloride and 0.137 M sodium chloride, pH 7.4, Sigma-

Aldrich, Germany). Once finished the cleaning protocol, the 

cryogels were sterilized for further cell seeding experiments 

in an autoclave. 

2.2 Biomaterial characterization 

2.2.1 Pore analysis  
 

For the pore analysis, the fibers of the cryogel were 

stained, adding 10.9 μM of fluoresceinamine. Once stained, 

z-stack images were taken in a confocal microscope, and the 

different pore diameters were quantified with ImageJ version 

1.52b software (National Institutes of Health). 

Scanning electron microscopy (SEM) observations were 

performed with a NOVA NanoSEM 230 microscope at 10 

kV. Before imaging, cryogel scaffolds were subjected to 
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consecutive ethanol dehydration steps, washing the cryogels 

with ethanol 50%, 70%, 80%, 90%, 96% (x2), and 99,5%. 

Once all the water was substituted for ethanol, ethanol was 

replaced by CO2, performing a critical point dry step. A final 

stage of carbon sputtering was done before SEM images 

were taken.  

 

2.2.2 Swelling  
 

Swelling experiments were performed to calculate the 

water uptake ratio by a cryogel. Cryogels were fabricated as 

explained previously, and after sterilizing, cryogels were 

dried at room temperature and weighted. Next, cryogels were 

submerged into MilliQ water for 24 hours, when they 

reached equilibrium and weighted again. The swelling ratio 

was calculated as follows:  

 

 

 

Where Weq is the weight in equilibrium and Wd is the dry 

weight. Three cryogels per condition were measured in this 

assay.  

 

2.2.3 Stiffness  
 

Compression assays were performed to determine the 

stiffness of our samples. The compression assays were 

performed in a Zwick Z0.5 TN instrument (Zwick-Roell) 

with a 5N load cell. The experiment was performed with 

samples at room temperature up to 30% final compression 

range at 0.1 mN of preloading force and 20%/minute of 

strain rate. Finally, the Young modulus was calculated from 

10% to 20% of compression from the line’s slope. In these 

experiments, three measurements per cryogel and three 

cryogels per condition were tested. 

 

2.2.4 Permeability assay  
 

Cryogels were placed over a transwell inside a 12 well-

plate. 500 ml of 1.5 mM fluorescein (Sigma Aldrich) were 

added at the transwell’s upper compartment, and 1.5 ml of 

PBS were added in the lower chamber. 100 μl of PBS from 

the well were taken out in consecutive times. The same 

amount of fresh PBS was added to the lower compartment to 

readjust the volume. This procedure was repeated during 

different times up to an overnight when equilibrium was 

reached. Finally, the concentration of fluorescein was 

obtained by absorbance measurements at 494 nm with a 

Power wave X microplate spectrophotometer.  

Permeability was calculated in the linear part of the 

diffusion curve by the following equation:  

 

 

Where Q is the milligrams of fluorescein that pass through 

the cryogel at a specific time, T is the time, A is the area of 

the cryogel, and Co is the initial concentration of fluorescein. 

Finally, the permeability of the cryogel was the difference 

between the total permeability and the permeability of the 

transwell. 

2.3 Cell culture 

Rat pancreatic β-cell line INS1E cells were cultured in 

RPMI-1640 with 11.1 mM glucose, supplemented with 10 

mM HEPES (Gibco), 2 mM L-glutamine (Gibco), 1 mM 

sodium-pyruvate (Gibco), 0.05 mM de 2-mercaptoethanol 

(Thermofisher), 10% fetal bovine serum (FBS) (v/v) 

(Thermofisher) and 1% penicillin/streptomycin (v/v) 

(Thermofisher) (complete media). When cells reached 

confluency, cells were trypsinized with 0.25 Trypsin/0.1% 

EDTA and plated in a new flask at 1:4 density. Cells were 

maintained in an incubator at 37ºC and 5% CO2. 

2.4 Cell seeding 

Cryogels were dried for 30 minutes. After trypsinization 

of the cells, 200.000 cells mixed with a drop of 20 μl of 

medium were seeded in each cryogel. After seeding the cells, 

cryogels were left at RT for 20 minutes, and a complete 

RPMI-1640 medium was added and left at the incubator until 

needed for experimental assay. 

2.5 Viability 

2.5.1 Live/dead 

Viability assays were performed with the Live/dead assay 

kit (Thermofischer) according to manufacturer instructions. 

The assays were performed at days 1, 4, and 7 of culture after 

seeding in traditional well plates and gelatin and CMC 

cryogels. Briefly, the cryogels were washed 5 minutes with 

PBS three times to replace culture medium and incubated 

with the working solution (4 μM EthD-1, 2 μM Calcein AM, 

and 16.2 μM  Hoechst) for 25 min at 37 ºC. Then cryogels 

were washed three times with PBS. Finally, confocal images 

were taken using a Zeiss LSM 800 confocal microscope.  

The quantification of Live/Dead ratio was calculated as 

follows: 

 

 

2.5.2. AlamarBlue 

AlamarBlue test was performed according to 

manufacturer specifications. Briefly, the medium was 

removed from the well plate and substituted for new RPMI-

1640 with 11.1 mM of glucose medium with 1:10 dilution of 

AlamarBlue. After 2-hour incubation, 100 μl of each 

condition was placed in a well of 96 well-plate and read in a 
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Power wave X microplate spectrophotometer at 570 nm 

wavelength. 

2.6 Immunostaining 

For confocal analysis, stained cryogels were used. After 

culturing the cells, cryogels were washed with PBS and fixed 

with 10% formalin solution (Sigma – Aldrich) for 30 

minutes. Then, cryogels were washed with Tris Buffered 

Saline (TBS, Canvax Biotech) and permeabilized with 0.1% 

Triton X-100 (v/v) (Sigma Aldrich) solution in TBS for 15 

minutes. Cryogels were blocked with 0.5% Triton X-100 

(v/v) and 3% Donkey serum (v/v) (Sigma-Aldrich) into TBS 

for 2 hours. Cryogels were incubated overnight with primary 

antibodies against Rabbit-anti Ki-67 (1:250, Invitrogen) and 

mouse anti-insulin (1:500, Origene) in a blocking solution. 

The following day, cryogels were washed with 

permeabilization solution and incubated with secondary 

antibodies for 2 hours at room temperature (Alexa-Fluor 647 

conjugate anti-mouse 1:200 and Alexa-Fluor 568 conjugate 

anti-rabbit 1:200, Invitrogen). DAPI (1:1000 Thermofisher) 

was used to stain nuclei. Finally, cryogels were washed with 

TBS for 15 minutes and stored at 4 ºC until confocal 

microscopy acquisition. Images were taken using an LSM 

800 from Zeiss. 

2.7 Confocal microscopy  

Different z-stacks were acquired for pore quantification, 

and pores were analyzed from images with 20 μm of z-gap 

between them. For quantification of live/dead and 

proliferation assays, 20 images per cryogel were taken and 

then analyzed. All images were acquired using an LSM 800 

from Zeiss. 

2.8 Gene expression analysis 

Total RNA was isolated from the sample cells using the 

RNeasy MinElute Cleanup kit (Qiagen) following the 

manufacturer’s instructions. Of total RNA, 200 ng were used 

for reverse transcription using high capacity cDNA reverse 

transcription kit (Applied Biosystems). Quantitative PCR 

reactions were run using SyberGreen (Invitrogen) in a 

7900HT fast real-time PCR system (Applied Biosystems) as 

described elsewhere [29]. Primer sequences used for gene 

expression analysis are listed in Supplementary Table 1. 

Tbp1 was used to normalize the mRNA expression of genes 

of interest. 

2.9 Glucose-stimulated insulin secretion (GSIS) 

Cells seeded within the cryogels or in a well plate were 

preincubated with Krebs-Ringer bicarbonate HEPES buffer 

solution (115 mM NaCl, 24 mM NaHCO3, 5 mM KCL, 1 

mM MgCa2·6H2O, 1 mM CaCl2·2H2O and 20 mM HEPES, 

pH 7.4) containing 2.8 mM glucose for 30 min. Then, cells 

were incubated at low glucose (2.8 mM) for 1h, followed by 

incubation at high glucose (16.7 mM) and an additional step 

at 2.8 mM. After each incubation step, supernatants were 

collected, and cellular insulin contents were recovered in 

acid-acetic lysis buffer (Glacial Acetic Acid 5.75%). Insulin 

concentration was determined by ELISA experiments.  

2.10 ELISA 

Briefly, mouse mAB insulin 26.6 nM of capture antibody 

(Novus) was diluted into coating buffer (0,05 M of Sodium 

Carbonate and Sodium Bicarbonate, pH 9.6) and placed into 

96-well plate at 4ºC O/N. Next, samples were placed into the 

plate, and a calibration curve, previously optimized, was 

performed. After protein attachment into the primary 

antibody, the biotinylated secondary anti-insulin antibody 

was placed at 0.2 nM. Next, streptavidin was added at 4.73 

nM (Thermo Scientific). Then, citrate buffer (0.04 M Sodium 

Citrate, pH 5.4, 96 ug/mL of Tetramethylbenzidine and 

0.004 % of Oxigen Peroxide) was added to start the reaction. 

Finally, 4 M Sulfuric acid was added to stop the reaction. 

The colorimetric quantification was made with a Power wave 

X microplate spectrophotometer at 490 nm of wavelength. 

2.11 Statistical analysis 

Data are expressed as the mean ± SEM of at least 3 

independent experiments with 3 replicates each. Statistical 

significance was determined by a two-tailed Student t-test 

and one-way ANOVA with post hoc Tukey test as 

appropriate. Results were considered significant at p < 0.05. 

 

3. Results and discussion 

3.1 Cryogel scaffold characterization 

The difficulty of obtaining pancreatic islets from human 

patients or rodents conceives a big deal to study T2D in 

vitro. The limited availability of primary pancreatic islets has 

prompted investigators to use cell lines to study β-cell 

function to model this disease. However, two-dimensional 

monolayer cell cultures fail to recapitulate the main key 

characteristics of primary β-cells. The lack of a 3D structure 

has been proven to be one of the main problems associated 

with decreased functionality [30]. Despite this limitation, 

many in vitro approaches focused on generating 3D 

functional pancreatic tissue using hanging-drop methods [31] 

or cell encapsulation into hydrogels [32,33]. The origin of 

the pancreatic cells is from animals, cadaveric donors, or 

immortalized cell lines. However, having cell aggregations 

of 100 µm (the average size of a pancreatic islet) drives 

encapsulation problems, such as lack of oxygen and nutrient 

diffusion [20,21].  

Thereby, it is complicated to engineer a fully functional 

pancreatic tissue. To solve the problems exposed in β-cell 

obtention and cell encapsulation, we combined clustering cell 

ability with cryogelation to generate the scaffold. We 

developed a proper scaffold for in vivo mimicking of β-cells 
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while improving its diffusion with this approximation. These 

scaffolds were generated at sub-zero temperatures. Thus, 

while the material fibers crosslink between them, water-ice 

crystals are formed. When thawed, these ice crystals lead to 

empty pores (Fig. 1a). This scaffold has a sponge-like, highly 

interconnected structure with a controllable pore size. This 

feature makes this scaffold good material to handle due to its 

elastic properties (Supp. Video 1). Moreover, the good 

mechanical stability and elasticity allowed manipulating and 

moving the scaffold from one place to another without 

breaking it or suffering any damage (Fig. 1b). 

One of the remarkable properties of cryogelation is the 

possibility to modulate the pore size. For this, we studied 

different material (gelatin and carboxymethyl cellulose) 

concentrations and quantified the diameter of each pore. 

Regardless of the material type, in the case of 5% (w/v), 

porosity ranged from 10 μm up to 100 μm of diameter while 

in 1% pores ranged from 10 to 150 μm and at 0.5% pores 

ranged up to 200 μm (Fig. 1c). By observing the fiber mesh, 

we can note this ascendant porosity range (Fig. 1d). Our goal 

was to generate β-cell aggregations that match in size with 

primary pancreatic islets, which are very heterogeneous in 

size. Therefore, the pore distribution of our scaffold should 

also present a wide range distribution. Additionally, in vivo 

small pancreatic islets are more common than big ones 

[34,35]. Knowing all this, we concluded that with 1% 

cryogels, we achieved the porosity that suited all the needs 

exposed.   

3.2 CMC cryogel has good physical properties, similar 

to the native pancreas 

We tested two different materials to develop this new 

approximation, each with various beneficial properties to 

aggregate β-cells. Carboxymethyl cellulose (CMC) is a 

biocompatible biomaterial with good mechanical stability 

and non-mammalian-cell degradable [36]. Importantly, in 

vitro and in vivo evaluations of those cellulose-based 

materials have demonstrated excellent biocompatibility 

[25,26]. The other material studied is gelatin, a 

biocompatible biomaterial, mammalian cell degradable, and 

with RGD cell adhesive points, but with low mechanical 

stability [27]. In this case, gelatin was selected as it was 

previously studied that it can enhance pseudoislet formation 

[30,37].  

To prove that the pore distribution fits our needs and does 

not vary between materials, we studied the pore distribution 

of the 1% CMC cryogels and 1% gelatin cryogels (Fig. 1a). 

We could observe that by changing the material, the pore 

distribution did not change. The pores, as expected, range 

from 10 µm up to 170 μm. Despite a high amount of small 

pores found in the cryogel, big pores are also observed. As 

previously reported, this pore distribution fits with the range 

that we want to generate cell aggregations. 

Figure 1: General overview of the study. a) Cryogel fabrication process scheme. Cylinder-like scaffolds were generated, placing the 

prepolymer solution in a PDMS mold. After, the prepolymer solution within the mold is placed at -20ºC. Thus, when material 

crosslinks, water ice crystals are formed. When thawed, this ice leads to the porosity of the scaffold. b) Images of the cryogel scaffold 

when deep in water (left) and when tweezered (right), proving the mechanical resistance of the scaffold. c) Pore distribution using 

different concentrations of the material. d) Percentage of pores in different diameter ranges according to the concentration of the 

material. Of note, the higher the concentration, the higher the percentage of pores between 0-25 μm of length. e) General magnifying 

glass images of the scaffold structure among different material concentrations. Scale bar = 100 μm 
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Additionally, the porosity was analyzed through scanning 

electron microscopy (SEM) images (Fig. 2b) and confocal 

images (Fig. 2c). In SEM images acquired after dehydration 

and critical point dry, it can be observed that pore 

distribution is heterogeneous, and pores from many different 

sizes were formed. Following the same tendency, in confocal 

images, where fibers are stained in green, many different 

pore sizes can be observed, both in CMC and gelatin 

cryogels (Fig. 2c). Also, in confocal images, it can be 

appreciated that there are no significant visual differences in 

pore size between CMC and gelatin cryogels.  

Knowing that the porosity is in the desired range to form 

pseudoislets with a similar size to the in vivo, the next step 

was to check our scaffold mechanical properties. As we 

wanted to mimic the extracellular matrix and the pancreatic 

islet environment, the stiffness is an essential property. The 

ECM mainly has the objective to support cells and plays an 

important role in the cells viability and functionality by 

doting the cells of specific biochemical and physical signals 

[38]. Moreover, knowing that cells modulate their behavior 

in different substrate stiffness [39–41], maintaining a similar 

stiffness as the pancreas should help the cells to function and 

differentiate better. Compression assays were performed to 

study bulk stiffness. CMC cryogel are stiffer than gelatin 

(0.67 kPa ± 0.08 vs 0.30 kPa ± 0.1) (Fig. 2d). This stiffness 

achieved correlates well with the proper stiffness defined for 

pancreatic tissue. As the pancreas is a soft tissue, its stiffness 

ranges from 0.1 kPa to 10 kPa [42]. The pancreas seems to 

respond properly to this interval’s lower stiffness, as cells 

can increase insulin mRNA expression and glucose 

sensitivity [43]. In other approaches, the stiffness of native 

healthy pancreas was set as approximately 1 kPa when 

measured by magnetic resonance elastography (MRE) 

[44,45], a value that fits with the scaffold stiffness achieved. 

Also, soft scaffolds favor cell coalescence and preserve the 

cluster-like organization, while in stiff substrates, the 

extracellular-cell interactions cause cell scattering and loss of 

islet-like structure [46].  

Another feature that we wanted to improve is the diffusion 

of nutrients through the scaffold. Swelling is the water 

uptake capability of a hydrogel, an indirect measurement of 

pore interconnectivity [47]. The high pore diameter 

distribution and the high pore interconnectivity, typical from 

cryogels, enhances this swelling property [48]. Also, as 

better are these properties, faster diffusion among all the 

scaffold. After only 24 hours, our cryogel reached 

equilibrium, and with a swelling ratio of 98.14 % ± 0,32 for 

CMC and 96.30 ± 0.38 % for gelatin cryogel (Fig. 2e). 

Although this property is higher in CMC cryogels than in 

gelatin, as expected, both ratios are higher than 95%. This 

high percentage indicates that the scaffold’s structure is 

highly interconnected, as water could colonize all the 

scaffold structure after drying.  

Moreover, one of the strong points of this approach is the 

high diffusion of oxygen and nutrients through the scaffold. 

A fluorescein diffusion experiment was performed to test 

scaffold features. We could observe that the control sample, 

where the transwell was placed without cryogel, reaches 

Figure 2: Mechanical characterization of the scaffold. a) 

Comparison of the pore distribution between gelatin and CMC 

cryogels with the same material concentration (1% (w/v)). b) 

Scanning electron microscope (SEM) images of the cryogel 

porosity. Scale bar = 300 μm. c) Aminofluorescein stained 

fibers of gelatin (left) and CMC (right) obtained with confocal 

microscopy. Scale bar = 100 μm. d) Stiffness results from 

different cryogels. e) Swelling ratio. f) Diffusion profile of 

fluorescein through the scaffold. Results are expressed as the 

mean ± SEM. *p<0.05, ****p<0.0001. 
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equilibrium faster than the cryogels. However, these 

conditions reached equilibrium equally after 240 minutes 

(Fig. 2f). Calculating the scaffold’s permeability, we 

obtained values of 5.72 mm/s in CMC cryogels and 0.61 

mm/s in gelatin cryogels. This difference in diffusion 

indicates that CMC cryogels are more permeable than gelatin 

cryogels [48]. This rapid equilibrium reached shows that the 

cryogel has barely any interaction as a diffusion barrier. 

After 3 minutes, fluorescein can be found in the lower part of 

the transwell. This high permeability ensures us to generate a 

microporous cryogel able to sustain cells in all the scaffold’s 

depths with no hypoxia or lack of nutrient problems. 

We can conclude that our scaffold satisfies all the 

mechanical and physical needs of the β-cells. Overall, these 

results show a well-defined and reproducible method to 

afford non-degradable and microporous cell supportive 

scaffold. 

3.3 CMC-based scaffold enhances INS1E pseudoislet 

formation 

To generate a functional 3D structure able to support β-

cells, we seeded INS1E cells onto the scaffolds. After cell 

seeding, INS1E morphology was evaluated in gelatin and 

CMC-based scaffolds at days 1, 4, and 7. Interestingly, at 

day 1, after seeding, instead of the typical monolayer 

architecture, cells cultured in 3D CMC cryogel scaffolds 

formed round-shaped clusters (Fig. 3b), morphologically 

resembling pancreatic islets (Fig. 3a). In contrast, a dispersed 

organization was observed in gelatin-based cryogels (Fig. 

3b). The difference in cell organization observed in CMC 

and gelatin scaffolds can be explained by the presence or 

absence of the cell adhesion motifs in these structures. 

Gelatin is known to contain RGD (arginine-glycine-aspartic 

acid) motifs, cell adhesion sites found in several ECM 

proteins [49]. Hence, gelatin has a profound effect on the 

ability of cells to adhere to this material. On the other hand, 

CMC cryogels do not present cell-binding motifs, so it 

displays shallow adhesion properties for anchorage-

dependent growth of INS1E cells, promoting cells to interact 

between them and to cluster together, forming islet-like 

structures.  

 Confocal image analysis of INS1E clusters revealed that 

at day 1, pseudoislets were about 60.6 µm in diameter, and 

they increased in size during the first 7 days, reaching an 

average diameter of 75.5 µm after 1 week of culture. At this 

point, we obtained a heterogeneous pseudoislet population in 

size, ranging from 16.8 µm to 216.7 µm (Fig. 3c). Primary 

rodent pancreatic islets present a considerable heterogeneity 

in size and shape, varying from small cell clusters to larger 

islets [50,51]. Several studies have revealed that islet 

heterogeneity influences the insulin secretory response of β-

cells, so heterogeneity should be an essential consideration 

when understanding T2D pathogenesis, both at a single-cell 

and islet level [52–54]. On day 1, up to 12% of the clusters 

ranged from 0-25 µm, whereas on days 4 and 7, aggregations 

smaller than 25 µm represented less than 3% (Fig. 3d). 

Pseudoislets bigger than 200 µm were only observed on day 

7. Of note, percentages of clusters higher than 25 µm 

diameter correlate with those of the scaffold porous sizes 

(Fig. 1d), indicating that cells keep proliferating until they 

reach the porous diameter. 

Indeed, cells within the gelatin-based cryogel presented 

high proliferation rates at day 1 after seeding (67.0% ± 3.9), 

determined by immunostaining of Ki67, but this ratio 

decreased to 46.8% ± 2.9 at day 4 and 10.8% ± 1.6 at day 7 

(Fig. 3e). This trend was also observed in cells cultured 

within the CMC-based scaffold, presenting 51.3% ± 1.6 at 

day 1, 17.1% ± 1.5 at day 4, and 8.0% ± 1.0 at day 7 (Fig. 

3f). In rodent islets, the proliferative capacity of β-cells is 

confined to the early stages of life, linked to an immature 

functional phenotype [55,56]. Thus, reduced proliferative 

capacity is one of the characteristics of mature β-cells, and 

maturation of β-cells defines their functional identity. 

Therefore, a strategy to obtain a heterogeneous population of 

islet cell clusters with low proliferation capacity offers 

excellent potential to engineer a model for the study of β-cell 

function and viability. 

3.4 CMC-based scaffold maintains cell viability and 

promotes β-cell identity 

Since 3D pseudoislets may have less access to nutrients, it 

was of interest to establish cells viability along one week of 

culture. Cell viability was assessed at culture days 1, 4, and 7 

by a live/dead assay (Fig. 4a). We found that after 7 days of 

culture, encapsulated cells retained their viability compared 

to non-encapsulated cells, and both gelatin and CMC 

scaffolds presented a similar percentage of viability (Fig. 4a, 

b). Changes in viability or cell proliferation can be easily 

detected with the AlamarBlue test. Encapsulated cells at day 

7 showed decreased metabolic activity (Fig. 4c). As no 

differences were observed in cell viability (Fig. 4a), this 

decreased metabolic activity correlates with a reduced 

proliferation ratio, confirming our previous results (Fig. 3). 

Overall, these results demonstrated that the highly porous 

cryogels were suited for engineering cell-supportive tissue 

scaffolds, facilitating the diffusion of oxygen and nutrients, 

and enabling cell viability for up to 7 days. 

The ability of CMC scaffolds to efficiently aggregate 

single cells into engineered pseudoislets, with round-shaped 

structures similar to native islets, prompted us to examine the 

gene expression profile of these pseudoislets over time 

compared to gelatin-based monolayer INS1E cells and 

INS1E cells cultured without a 3D scaffold. We first focused 

on the genes encoding MafA, Pdx1, and NeuroD1, three β-

cell specific transcription factors involved in β-cell 

functionality. Although many transcription factors (TF) have 

been involved in the maintenance of the β-cell identity, these 

specific transcriptional regulators have been demonstrated to 

play a crucial role in maintaining the function of the insulin-

producing cells. Indeed, it has been demonstrated that this TF 

activates the insulin gene expression in a coordinated and 

synergistic manner in response to increased glucose levels. 

Furthermore, the fine-tune regulation of these TF ensures β-

cell identity [57–59]. 
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Figure 3: Pseudoislets generated in the scaffold have a high resemblance with primary pancreatic islets. a) Immunostaining of mouse 

primary pancreatic islets within a 1% CMC-scaffold stained for insulin (red), Ki67 (white) and nuclei (DAPI). Aminofluorescein was used 

to stain the fibers of the cryogel (green). Scale bar = 100 μm. b) Representative images of INS1E cells inside the scaffold at days 1, 4, and 

7 stained as in a. Note that INS1E cells within CMC scaffolds aggregate forming pseudoislets already 1 day after seeding. In contrast, 

cells within the gelatin are spread out. Scale bar = 100 μm.  C) Diameter of the pseudoislets on day 1, day 4, and day 7. d) Diameter 

distribution of the pseudoislets formed inside the CMC cryogel along the week. e-f) Proliferation rate (calculated as the percentage of 

Ki67-positive β-cells concerning the total number of β-cells) of INS1E cells inside the (e) gelatin cryogel and (f) CMC cryogel. Results 

are expressed as box plots indicating the first quartile, the median, the third quartile, and the minimum and maximum values.  
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Interestingly, cells supported within the cellulose-based 

scaffold presented a gradually increased expression level of 

the β-cell specific marker Pdx1 concerning cells cultured in a 

well plate (Fig. 4d), even though results are not statistically 

significant. The results obtained are consistent with previous 

works demonstrating how reaggregating cells to form 3D 

spheroids significantly enhances the gene expression profile 

of β-cells [60]. Similarly, recapitulating endocrine cell 

clustering in culture has been demonstrated to foster the 

maturation of human stem-cell-derived β-cells [61]. 

This better-differentiated phenotype of β-cells when 

cultured within a 3D extracellular matrix, is consistent with 

the decreased proliferation markers, Ki67 and Pbk (Fig. 4d), 

corroborating the balance between an increased β-cell 

identity and a reduced ability to proliferate of these cells 

[55].  

3.5 Cell aggregation improves glucose-stimulated 

insulin secretion and can be used as a suitable cellular 

model for the study of the β-cell function  

Several findings indicate that islet architecture has a 

pivotal role in determining β-cell functionality as cell-cell 

interactions are fundamental for the correct cellular function 

[62,63]. Indeed, it has been described that the secretory 

response of structurally coupled β-cells is higher than that of 

insulin-producing β-cells not arranged within the islet 

architecture [53,64]. INS1E cells traditionally seeded in a 

monolayer do not present reproducible responses to dynamic 

glucose stimulations [6].  

To determine whether pseudoislet formation within the 

cryogel correlates with increased β-cell function, we tested 

the dynamic response of pseudoislets to glucose. To check 

islet functionality, a glucose-stimulated insulin secretion 

(GSIS) assay, which defines the ability of β-cells to secrete 

the suitable amount of insulin in response to proportional 

extracellular glucose stimuli, was performed in all 

conditions. As shown in Fig. 5a, cell clustering improved the 

insulin secreted stimulation index under high glucose 

stimulation concerning the basal insulin secreted in low 

glucose conditions. This result demonstrates the benefit of 

cell aggregation in islet functionality. For primary islets of 

Langerhans, a threshold stimulation index of at least five 

defines a functional response, and often β-cell lines do not 

reach this threshold level or display a reproducible behavior. 

Indeed, at day 1, INS1E cells seeded in 48 well-plate 

presented a 2.51±0.6-fold increase of insulin secretion when 

cells were challenged with 16.7 mM compared to cells 

incubated with 2.8 mM glucose. Cells seeded in gelatin 

cryogels showed a 6.47±1.8-fold increase. Interestingly, we 

reached a fold increase of 7.52±1.6 of insulin secretion when 

CMC-based pseudoislets were challenged with 16.7 mM 

glucose. This trend was repeated along the week, indicating 

that the stimulation index for insulin response to glucose is 

significantly higher in pseudoislets than dispersed and non-

organized cells (Fig. 5b).  

Like other tissues, β-cell functionality is greatly 

influenced by cell-cell and cell-matrix interactions, 

Figure 4: Cell viability and β-cell identity are preserved when pseudoislets are generated inside the scaffold. a) Analysis of 

Live/Dead INS1E cells at day 1, 4, and 7 seeded in a traditional plate and within the scaffolds. b) Representative fluorescent images 

were taken by confocal microscopy of cells seeded in a monolayer and gelatin and CMC-based scaffolds. Live cells are marked with 

Calcein AM in green, and dead cells are marked with EthD-1 in red. Note that cells within the CMC cryogel appear as clusters. Scale 

bar = 100 μm. c) Alamar blue test of the cells in monolayer at the plate, monolayer on the gelatin cryogel and in the form of 

pseudoislets in the CMC cryogels, at days 1, 4, and 7. Data are shown relative to cells seeded in a plate. d) Gene expression analysis of 

the β-cell identity markers, MafA, Pdx1, and NeuroD1, and proliferation markers Ki67 and Pbk. Gene expression was normalized 

against Tbp1. Results are expressed as mean ± SEM from three independent experiments. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 
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controlling basal and stimulated insulin secretion [65,66]. 

Remarkably, GSIS defects in monolayer INS1E cell cultures 

arise from an increased insulin release under basal conditions 

(2.8 mM glucose) in addition to a decreased insulin secretory 

response under stimulatory glucose conditions.  These results 

are consistent with other studies showing that aggregating β-

cells enhances the secretory responsiveness to nutrients 

compared with cells configured as monolayers [69,70]. And 

it also suggests that β-cells interactions might be sufficient to 

sustain a normal glucose response.  

Therefore, our study validates that a correct structural 

arrangement is essential for appropriate insulin response, 

demonstrating a robust glucose-stimulated insulin secretion 

by pseudoislets formed within a cryogel.  

4. Conclusions 

An increasing need to engineer advanced 3D scaffolds for 

tissue engineering has emerged to provide cellular structural 

support and mimic the complicated physical and biochemical 

properties of the native extracellular matrix. With this 

improvement, more resemblance tissues can be engineered 

for many applications as drug screening or disease modeling. 

Until now, many tissues have been generated in the 

laboratory. Particular attention must be paid when 

engineering islet-like structures as an adequate round-shaped 

islet architecture to maintain and improve β-cell 

functionality. Moreover, the formation of islet-like structures 

or pseudoislets, with the consequent β-cell communications, 

is required for an appropriate insulin secretory response 

[67,68]. 

This study reports a new CMC cryogel scaffold that favors 

pseudoislet generation and functionality. Here, we proved the 

cryogelation allows to generate a sponge-like scaffold with 

controllable structural properties. We demonstrated that we 

could create and modulate a wide range of porosity that fits 

with primary pancreatic ’islets’ size and shape. Our 

scaffold’s diffusion and permeability overcome some of the 

most problematic conditions, such as the lack of nutrient and 

oxygen diffusion through all the scaffold. Moreover, the 

mechanical properties of the cryogels match with the 

previously reported stiffness of the native pancreas ranges 

around 1 kPa.  

All these properties of cryogels favor the viability of the 

β-cells and promote their β-cell identity. In their natural 

environment, β-cells interact with each other behavior is 

strongly influenced by cell-cell and cell-matrix interactions, 

allowing better control of basal and stimulated insulin 

secretion. However, clustering formation varies depending 

on the material. As proved, in gelatin cryogels, dispersed cell 

distribution was obtained. On the other hand, in CMC 

cryogels, pseudoislets were formed. Finally, we 

demonstrated that pseudoislets generated in CMC cryogels 

respond better to glucose stimulation.  

In summary, in this study, we have generated a new 

approximation to engineer pancreatic tissue, combining the 

cryogelation technique with cell aggregation in microporous 

scaffolds. Because cell clustering improves β-cell identity 

and functionality, our results demonstrated the feasibility of 

using these microporous gel materials as 3D scaffolds 

culturing islet-like cell aggregates as an in vitro model to 

study T2D and other related diseases. 

 

Figure 5: Pseudoislet formation enhances β-cell responsiveness to glucose. a) Glucose stimulation insulin secretion (GSIS) assay at day 

1, 4, and 7 in plate monolayers, gelatin cryogels, and CMC cryogels. For the GSIS assays, cells were incubated for one hour at 2.8 mM 

glucose, followed by 16.7 mM glucose, and returning to basal condition (2.8 mM glucose). Results are expressed as the percentage of 

insulin secreted related to the corresponding sample ± SEM's total insulin content from three independent experiments, each one including 

at least 3 different replicates per condition. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. b) Stimulation index, calculated as the fold-

change increased between the insulin secreted at basal levels (first incubation with 2.8 mM glucose) and after challenging the cells with 

16.7 mM glucose. Results are expressed as the mean ± SEM. 
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Abstract: Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling
and drug discovery by providing biologically relevant models of tissues and organs in vitro with
a high degree of control over experimental variables for high-content screening applications. Yet,
to fully exploit the potential of these platforms, there is a need to interface them with integrated
non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external
stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated
technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an
OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that
is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we
developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a
cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip
LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a
powerful tool to enable the in situ response study of microtissues to external stimuli for applications
such as a drug-screening platform for human models, bypassing animal testing.

Keywords: LSPR sensors; organ-on-a-chip; in situ insulin monitoring

1. Introduction

Type 2 diabetes (T2D) is one of the most common metabolic diseases, affecting millions
of people worldwide [1]. Patients with T2D present a progressive decline in pancreatic
β-cell function, mainly characterized by impaired insulin secretion. For this reason, the
study of insulin secretion aimed at addressing islet functionality requires the ability to
monitor insulin in situ over time, and measurements of insulin secretion dynamics are
of significant clinical relevance. Traditionally, pancreatic β-cell function is assessed by
measuring the insulin released by glucose-stimulated insulin secretion (GSIS) assays. These
experiments involve manual liquid handling, static incubation of the islets, and enzyme-
linked immunosorbent assays (ELISA) that require a long processing time.

Biosensors 2021, 11, 138. https://doi.org/10.3390/bios11050138 https://www.mdpi.com/journal/biosensors

https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-4788-6668
https://orcid.org/0000-0002-6139-8177
https://orcid.org/0000-0001-7317-4907
https://orcid.org/0000-0003-0465-2949
https://orcid.org/0000-0002-1241-8004
https://orcid.org/0000-0001-8995-8976
https://orcid.org/0000-0002-3636-8013
https://doi.org/10.3390/bios11050138
https://doi.org/10.3390/bios11050138
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bios11050138
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios11050138?type=check_update&version=1


Biosensors 2021, 11, 138 2 of 14

Several approaches have emerged for engineering biomimetic, easy-to-use, and com-
patible organ-on-a-chip (OOC) microfluidic devices capable of reproducing physiological
cell responses in vitro. Indeed, numerous micro-scale engineering OOC have been fabri-
cated, modeling different tissues (e.g., muscle [2], blood vessels [3], liver [4], gut [5], or
pancreatic islets [6]). Recent advances in miniaturizing microfluidic systems and advanced
tissue fabrication procedures have enabled researchers to create multiple tissues-on-a-
chip with a high degree of control over experimental variables for high-content screening
applications [7–11].

Currently, there is a gap in the integration of these potential platforms to sensing mod-
ules, capable of monitoring in situ fast metabolic behaviors subjected to external stimuli,
such as stress or drugs. Extensive efforts have been made to integrate three-dimensional
(3D) tissue platforms with a sensing system for in situ continuous measurements of relevant
targets [2,12–14]. However, the integration and application of sensing strategies are still far
from providing a high throughput and reliable data to reveal the status and dynamics of
the OOC.

Regarding pancreatic islets, there are only few examples where microfluidic systems
have been integrated with free-labeled sensing platforms to study the dynamic of the
insulin secretion profile. These works are focused on the monitoring of electrophysiology
phenomena using complex microelectronic arrays with fluidic systems [15,16]. However,
in those studies, neither do the biological models represent the islets in a 3D environment
(biomimicking native pancreas configuration), nor can the electrochemical sensors effi-
ciently monitor in a label-free way the secretion of insulin, as they only provide a recording
of the cell activity. To fully exploit the potential of these platforms, there is a need to
interface them with an integrated sensing module capable of directly monitoring the islet
insulin response.

Among the different existing transduction methods, optical biosensors have the advan-
tage of being highly sensitive, enabling label-free, cost-effective, and real-time sensing. As
a well-studied optical sensing scheme, localized surface plasmon resonance (LSPR)-based
sensors, which exploit the unique properties of noble metal nanostructures, have shown
a great ability to detect all kinds of molecular biomarkers (proteins [17], peptides [18],
mRNA [19], DNA [20,21], and miRNA [22]) in biological samples. The ease of optical
transduction and the compact nature of LSPR sensors means their integration into fully
automated microfluidic devices to perform multiplexed quantitative detection can be
achieved [23].

In this work, we present an integrated on-chip insulin secretion study platform, com-
bining novel islet-on-a-chip (IOC) technology interfaced with an on-chip LSPR biosensing
platform (Figure 1). Unlike other IOC devices that are based on multiple tiny wells to trap
the islets [24–27], which can promote shear stress-induced cell damage, we have developed
an IOC that houses primary mouse pancreatic islets embedded in a non-biodegradable
cellulose-based scaffold that intends to biomimic the native pancreas host. The integration
of both platforms allows, for the first time, a highly sensitive and label-free monitoring
of in situ insulin secretion by pancreatic islets subjected to different glucose concentra-
tions, under physiological conditions, offering a powerful tool for future biomedicine and
pharmaceutical research related to diabetes.
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Figure 1. Schematic overview of the integration of the islet-on-a-chip (IOC) device with the on-
chip LSPR sensing platform. (a) KRBH buffer with a chosen glucose content; (b) a peristaltic pump 
to drive the buffer into the IOC device; (c) IOC device containing mouse islets embedded in a cel-
lulose-based scaffold; (d) the LSPR sensing platform to interrogate the buffer from the IOC device; 
and (e) monitoring of the insulin detection as a consequence of glucose stimulation. 

2. Materials and Methods 
2.1. Carboxymethyl Cellulose (CMC)-Cryogel Fabrication 

Carboxymethyl cellulose (CMC, 419273, Merck Life, Darmstadt, Germany) is dis-
solved in MilliQ water (DI) to the desired concentration of 0.5% and crosslinking initiated 
by adding 50 mg mL−1 of adipic acid dihydrazide (AAD, ref A0638, Merck Life, Darmstadt, 
Germany), 1 μg μL−1 of N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride 
(EDC, E7750, Merck Life, Darmstadt, Germany), and MES buffer 0.5 M, pH 5.5. To stain 
the CMC cryogels, aminofluorescein (Merck Life, Darmstadt, Germany) was added to the 
prepolymeric solution in case the fibers need to be stained. The reaction mixture is rapidly 
dispensed inside a mold and placed overnight at −20 °C resulting in ice crystal nucleation. 
Finally, the cryogels are thawed and washed consecutively by submerging them in DI, 
100 mM NaOH (Panreac, Darmstadt, Germany), 10 mM ethylenediaminetetraacetic acid 
(EDTA, 03690, Merck Life, Darmstadt, Germany), and 3 times in PBS. Once finished, the 
cryogels were autoclaved for further experiments. 

2.2. Characterization of CMC Cryogels 
The swelling ratio indicates, quantitatively, the water uptake capability of the scaf-

fold. After the cryogel fabrication, scaffolds were dried at room temperature for 2 days 
and weighted. Subsequently, the cryogel was submerged into MilliQ water for 4 days un-
til it reached equilibrium state and was weighted for a second time. For the swelling meas-
urements, Equation (1) was used: 

Swelling ratio = (Weq − Wd)/Weq × 100 (1)

where Weq represent the scaffold equilibrium weight and Wd is the scaffold dry weight. 
A total of 3 cryogels per condition were measured in this assay. On the other side, stiffness 
measurements were obtained from compression assays using a Zwick Z0.5 TN instrument 
(Zwick-Roell, Ull, Germany) with 5 N load cell. Compression assays were performed with 
samples at room temperature up to 30% final compression range at 0.1 mN of preloading 

Figure 1. Schematic overview of the integration of the islet-on-a-chip (IOC) device with the on-chip LSPR sensing platform.
(a) KRBH buffer with a chosen glucose content; (b) a peristaltic pump to drive the buffer into the IOC device; (c) IOC device
containing mouse islets embedded in a cellulose-based scaffold; (d) the LSPR sensing platform to interrogate the buffer
from the IOC device; and (e) monitoring of the insulin detection as a consequence of glucose stimulation.

2. Materials and Methods
2.1. Carboxymethyl Cellulose (CMC)-Cryogel Fabrication

Carboxymethyl cellulose (CMC, 419273, Merck Life, Darmstadt, Germany) is dissolved
in MilliQ water (DI) to the desired concentration of 0.5% and crosslinking initiated by
adding 50 mg mL−1 of adipic acid dihydrazide (AAD, ref A0638, Merck Life, Darmstadt,
Germany), 1 µg µL−1 of N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride
(EDC, E7750, Merck Life, Darmstadt, Germany), and MES buffer 0.5 M, pH 5.5. To stain
the CMC cryogels, aminofluorescein (Merck Life, Darmstadt, Germany) was added to the
prepolymeric solution in case the fibers need to be stained. The reaction mixture is rapidly
dispensed inside a mold and placed overnight at −20 ◦C resulting in ice crystal nucleation.
Finally, the cryogels are thawed and washed consecutively by submerging them in DI,
100 mM NaOH (Panreac, Darmstadt, Germany), 10 mM ethylenediaminetetraacetic acid
(EDTA, 03690, Merck Life, Darmstadt, Germany), and 3 times in PBS. Once finished, the
cryogels were autoclaved for further experiments.

2.2. Characterization of CMC Cryogels

The swelling ratio indicates, quantitatively, the water uptake capability of the scaf-
fold. After the cryogel fabrication, scaffolds were dried at room temperature for 2 days
and weighted. Subsequently, the cryogel was submerged into MilliQ water for 4 days
until it reached equilibrium state and was weighted for a second time. For the swelling
measurements, Equation (1) was used:

Swelling ratio = (Weq −Wd)/Weq × 100 (1)

where Weq represent the scaffold equilibrium weight and Wd is the scaffold dry weight. A
total of 3 cryogels per condition were measured in this assay. On the other side, stiffness
measurements were obtained from compression assays using a Zwick Z0.5 TN instrument
(Zwick-Roell, Ull, Germany) with 5 N load cell. Compression assays were performed with
samples at room temperature up to 30% final compression range at 0.1 mN of preloading



Biosensors 2021, 11, 138 4 of 14

force and at 20%/min of strain rate. Finally, the Young’s modulus was calculated from the
slope of the curve in a range from 10% to 20% of compression.

Scanning electron microscopy (SEM) characterization was performed using a NOVA
NanoSEM 230 at 10 kV. Different washing steps were performed using ethanol as a solvent,
gradually incrementing its concentration from 50% to 99.5%. Samples were treated with
critical point drying and carbon sputtering before the SEM acquisition.

2.3. Mouse Pancreatic Islet Isolation

Mouse pancreatic islets were isolated from 8- to 10-week-old C57BL/6J male mice by
collagenase (Roche, Basel, Switzerland) digestion of the pancreas followed by Histopaque
gradient (Sigma-Aldrich, St. Louis, MO, USA), as described previously [28]. Islets were
cultured for 24 h at 37 ◦C and 5% CO2 in RPMI 1640 medium (11.1 mM glucose) supple-
mented with 10% FBS (v/v), 2 mM glutamine, 100 units/mL penicillin, and 100 µg mL−1

streptomycin before performing the experiments. Experimental procedures were approved
by the Animal Ethics Committee of the University of Barcelona according to the Principles
of Laboratory Animal Care.

2.4. Gene Expression Analysis

The miRNeasy kit (ref 74204, Qiagen, Hilden, Germany) was used to extract total
RNA, and the high-capacity cDNA reverse transcription kit (ref 4368813, ThermoFisher
Scientific, Carlsbad, CA, USA) was used to reverse transcribe it. Gene expression was ex-
amined by quantitative Polymerase Chain Reaction (PCR) using SYBR Green (ref 1178401K,
Invitrogen, Carlsbad, CA, USA) in a 7900HT Fast Real-Time PCR System (ref 4329001,
Applied Biosystems, Foster City, CA, USA). The primer sequences used are listed in Table 1.
The expression levels of genes of interest were normalized to the expression of Tbp1.

Table 1. Primer sequences used for gene expression analysis for qPCR.

Gene Species Fw Rv

MafA Mouse CAAGGAGGAGGTCATCCGAC TCTCCAGAATGTGCCGCTG
Pdx1 Mouse CCCCAGTTTACAAGCTCGCT CTCGGTTCCATTCGGGAAAGG

NeuroD1 Mouse GGATCAATCTTCTCTTCCGGTG TGCGAATGGCTATCGAAAGAC
Ddit3/Chop Mouse TCATCCCCAGGAAACGAAGAG GCTTTGGGATGTGCGTGTG

Trib3 Mouse CGTGGCACACTGCCACAAG TCCAGGTTCTCCAGCACCAG
Atf3 Mouse GTCCGGGCTCAGAATGGAC CGTGCCACCTCTGCTTAGCT
Tbp1 Mouse ACCCTTCACCAATGACTCCTATG ATGATGACTGCAAATCGC

2.5. Glucose-Stimulated Insulin Secretion (GSIS)

Islets housed within CMC cryogels were transferred into the microfluidic chip and
were allowed to settle to the bottom of the chamber for 24 h. Subsequently, they were
preincubated with Krebs–Ringer bicarbonate HEPES (KRBH) buffer solution (115 mM NaCl,
24 mM NaHCO3, 5 mM KCl, 1 mM MgCl2·6H2O, 1 mM CaCl2·2H2O, and 20 mM HEPES,
pH 7.4) containing 11.1 mM glucose for 30 min at 37 ◦C (basal condition). The cryogels
were then incubated at 2.8 mM glucose, followed by perfusion with KRBH solution with
16.7 mM glucose. First, supernatants were collected, and the cellular insulin contents were
recovered in an acid-ethanol solution. Insulin concentration was determined by Insulin
Mouse ELISA. For in situ and label-free detection of insulin levels, we integrated the
microfluidic chip with the on-chip LSPR platform.

2.6. Immunofluorescence

Cryogels stained with aminofluorescein (green) were fixed with 10% formalin solution
(Merck Life, Darmstadt, Germany) for 30 min and were then permeabilized with 0.5%
Triton X-100 (Merck Life, Dorset, UK) and blocked by adding 3% donkey serum (Merck Life,
Darmstadt, Germany). The cryogels were incubated overnight at 4 ◦C with the primary an-
tibody anti-insulin (mouse anti-insulin (+proinsulin) monoclonal antibody 1:500; ref BM508,
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OriGene EU, Herford, Germany) to stain the insulin from the pancreatic β-cells. Subse-
quently, secondary antibody was added for 2 h at room temperature (ref A32, AlexaFluor
555 conjugate anti-mouse 1:250; Life Technologies, Carlsbad, CA, USA). 4′,6-diamidino-2-
phenylindole (DAPI) (1:1000; ThermoFisher Scientific, Carlsbad, CA, USA) was used to
counterstain the nuclei. Fluorescent images were obtained using confocal microscopy (LSM
800 microscope model, Zeiss, Orberkochen, Germany).

2.7. Immunoreagents and ELISA Immunoassay Protocol

The 96-well plate (Polystyrene Maxisorp 96 well microplates, Nunc, Roskilde, Den-
mark) was coated with 50 µL per well of the capture antibody (also used as the capture
antibody in the LSPR measurements) mouse anti-insulin monoclonal antibody (ref NB100-
73008, clone 3A6, Novus biologicals, Littleton, CO, USA) at 4 µg mL−1 prepared in a
coating buffer (0.05 M of Na2CO3/NaHCO3, pH 9.6). The plate was washed and 8 solu-
tions of recombinant human insulin (ref 91077C, Merck Life, Darmstadt, Germany) from
580 to 0 ng mL−1 prepared in PBST (PBS = 0.01 M phosphate buffer, 0.14 M NaCl, and
0.003 M KCl, with 0.05% (v/v) Tween 20 at pH 7.5) was added as an internal calibration
curve together with the samples to interrogate (50 µL/well). The plate was incubated at
room temperature for 1 h. A second wash step was performed, and detection antibody
(Biotinylated Insulin Antibody (ref NB100-64697B, clone D3E7 (5B6/6), Novus Biologicals,
Littleton, CO, USA) prepared in PBST at 0.031 µg mL−1 was added (50 µL per well) and
incubated at RT for 30 min. Finally, 50 µL/well of streptavidin-horseradish peroxidase
(SAv-HRP) solution at 0.25 µg mL−1 prepared in PBST was added and incubated for 30 min
at RT. Following that step, 50 µL/well of the substrate solution was added and incubated
for 3–5 min, protected from light. Finally, 50 µL/well of H2SO4 4 N was added to stop the
enzymatic reaction. The absorbances were read at 450 nm. Calibration curves were fitted
using a sigmoidal fit function.

2.8. Fabrication of IOC Microfluidic Platform

The microfluidic chip was firstly designed using CleWin software and fabricated using
a standard soft lithography replica molding technique. Briefly, a silicon wafer mold was
created through a one-layer process using negative photoresist SU8-2100 (MicroChem,
Westborough, MA, USA). The microfluidic chip design was printed on a high-quality
acetate film to be used as a mask, and finally a microfeatured master mold was then
obtained by contact photolithography. To obtain a polydimethylsiloxane (PDMS) fluidic
chip, a mixture of prepolymer with curing agent (Sylgard 184, Dow corning, Midland, TX,
USA) was prepared at a 10:1 ratio, degassed in a vacuum chamber for 1 h, and poured on
the SU8 master mold. The polymer mix quantity was calculated to obtain a 3 mm layer
(Layer 2, see Figure 4(ai)). After 4 h at 80 ◦C in an oven, the PDMS replica was cured
and carefully peeled off from the mold. Holes were punched both for the entry and exit
of liquids. In parallel, a 2 mm layer of PDMS (Layer 1, see Figure 4(aii)) was prepared
(using a non-patterned silicon mold), cured, and cut out. The two layers were finally
bonded irreversibly by oxygen plasma activation (Expanded Plasma Cleaner, PCD-002-CE
Model, Harrick Scientific Corporation, Ossining, NY, USA), and chambers for the CMC-
islet scaffolds were punched. The final microfluidic chip was bound to a standard cover
slide, allowing handling and visualization under the microscope if needed (Figure 4(aiii)).
Finally, a customized glass cover (37 mm × 20 mm) was activated using oxygen plasma
and bound to the PDMS chip irreversibly in order to seal the chip (Figure 4(aiv)).

2.9. Statistics

Statistical analysis was performed using Graph Prism software (GraphPad Software,
San Diego, CA, USA). Data are expressed as the mean ± SEM, and statistical significance
was determined by two-tailed Student’s t-test. Results were considered significant at
p < 0.05.
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3. Results and Discussions
3.1. Fabrication of a 3D Effective Cellulose Matrix to House Pancreatic Islets

We developed a functional islet-on-a-chip (IOC) microfluidic device to monitor insulin
secretion under flow conditions. It is known that platforms of islet perfusion mimic in vivo
physiology better than static culture systems, therefore improving the islet health [29].
Islets of Langerhans are clusters of cells within the pancreas that are responsible for the
production and secretion of different hormones that regulate circulating glucose levels.
β-cells are the predominant cell type within the pancreatic islets in mammals and the
unique source of circulating insulin, being fundamental for the maintenance of glucose
homeostasis [30–32]. Unlike the other IOC devices that are based on multiple tiny wells to
trap the islets [24–27,33–36], we have precisely engineered a heterogeneous porous cryogel
scaffold which offers a robust approach for spatially organizing the islets, and which can
limit shear-induced cell damage. It was recently demonstrated that 3D polymeric-based
scaffolds offer mechanical and chemical properties that make them valuable in tissue
engineering applications [37].

The most extensively utilized technique to achieve in vitro tissue engineering is to use
the encapsulated hydrogels which present a high-water content and highly resembling
in vivo physical properties [38–42]. However, conventional hydrogels present several
limitations due to the small pore size. They present an inadequate diffusion of oxygen
and nutrients/waste products, as well as limited cellular mobility and cell spreading. To
address these challenges, we used the cryogelation technique, a procedure that allows the
formation of cryogels at sub-zero temperatures. Typically, the liquid prepolymer solution
is cooled at −20 ◦C. At this temperature, a large percentage of the material crystallizes due
to its water content. When thawed, the ice crystals leave behind empty spaces, allowing us
to obtain different pore diameters, as shown in Figure 2a. Following this principle, we can
generate a 3D extracellular matrix mimicking scaffolds with a specific range of porosity
(Figure 2b,c), in which the islets can be seeded, allowing the transfer of oxygen, nutrient
and waste removal, and avoiding possible apoptosis or cell death. The scaffold properties
can be modulated simply by altering the concentrations of the polymer and varying the
freezing temperature [43]. As the cryogel technique allows us to achieve a micro-range
porosity with a wide distribution range, and mouse pancreatic islets are diverse in size
(~50–150 µm in diameter) with an average size of 100 µm, we determined 0.5% of CMC
cryogel as a potential suitable niche for the islets (Figure 2b,c). The designed carboxymethyl
cellulose (CMC) cryogel presents several advantages—besides its high porosity, it also
offers the mechanical strength required for housing pancreatic islets, with a stiffness of
0.67 ± 0.1 KPa and a swelling ratio of 98.1% ± 0.3% [44] (Figure 2d), as well as being
elastic. It is a non-degradable material from mammalian cells and it also allows surgical
sterility by means of autoclaving [45]. Indeed, we have recently demonstrated that CMC
scaffolds can be used to generate functional pseudoislets from insulin-producing INS1E-
cells, representing a suitable technique to generate β-cell clusters and to study pancreatic
islets in vitro [46].

Pancreatic islets were obtained from C57BL6 wild-type mice as described elsewhere [47].
A total of 30 islets were seeded in a 0.5% CMC cryogel as shown in Figure 3a and were
allowed to recover overnight prior to performing the microfluidic experiments. Figure 3b
shows the bright field image of the pancreatic islets housed in a CMC scaffold and im-
munofluorescent confocal images of the islets integrated within the cellulose fibers. The
gene expression analysis of the three β-cell-specific transcriptional regulators and posi-
tive indicators of β-cell health and functionality, Pdx1 (pancreas/duodenum homeobox
protein 1), MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A), and
NeuroD1 (Neuronal Differentiation 1), revealed no significant differences when comparing
the islets housed within CMC-based scaffolds and isolated pancreatic islets in suspension
(Figure 3c). Additionally, the stress markers Chop (C/EBP homologous protein), Trib3 (Trib-
bles pseudokinase 3), and Atf3 (activating transcription factor 3) did not present significant
differences either (Figure 3c), indicating that our cellulose-based cryogel provides a physio-
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logically relevant environment and facilitates the diffusion of oxygen and nutrients, as well
as demonstrating that islets do not suffer stress when integrated inside the CMC scaffold.
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protocol. Real images of CMC cryogel 0.5% (w/v) before islet seeding. Dimensions are 0.5 cm in height and 1 cm in diameter.
(b) Pore diameter distribution of the cryogel at different CMC concentrations: 5%, 1%, 0.5%, and 0.25% (w/v), respectively.
A total of 3 replicates and 20 images from 5 different depths were analyzed. (c) SEM image of the 0.5% (w/v) CMC cryogel
condition after critical point drying. A confocal image of the same sample stained using 1 mM aminofluorescein (green)
is on the right. (d) Characterization of the mechanical properties of the 0.5% (w/v) CMC cryogel. Young’s modulus of
0.67 ± 0.1 KPa was obtained by compression assays with 5 N load cell. Data corresponds with 3 compressions per cryogel
and n = 3. The swelling ratio was determined obtaining values of 98.1% ± 0.3% for replicates n = 3 and 3 measures per
cryogel. Values are expressed as mean ± SD: p < 0.05.

3.2. Islet-on-a-Chip Microfluidic Platform

A microfluidic device was designed and fabricated to host the in vitro model inte-
grated by the CMC cryogel and mouse pancreatic islets. The dimensions of the device
are shown in Figure 4a. Two circular chambers with a diameter of 10 mm were designed,
where the CMC islets 3D in vitro model is located. Microfluidic channels of 1 mm width
and 0.20 mm height were designed to connect those chambers and enable the circulation of
the liquids inside the device (Figure S1a).



Biosensors 2021, 11, 138 8 of 14
Biosensors 2021, 11, x  8 of 15 
 

 
Figure 3. Development and characterization of the CMC islet construct. Gene expression analysis and immunostaining 
assays of islets were performed 24 h after being seeded within the cryogel. (a) Schematic diagram of mouse islet isolation. 
Islets inside the cryogel are also represented. (b) Left: pancreatic islets embedded within a carboxymethyl cellulose (CMC) 
cryogel under bright field (scale bar: 200 μm); middle and right: images of islets stained with insulin (red) and DAPI (blue). 
Cellulose fibers are stained with fluorescein (green). Images show islets at different depths through the cryogel (along the 
z-axis) (scale bar: 50μm). (c) Gene expression analysis of MafA, Pdx1, NeuroD1, Chop, Trib3, and Atf3 from islets in suspen-
sion and islets housed within the cryogel. Gene expression data were normalized against Tbp1 and are shown relative to 
islets in suspension. Results are expressed as the mean ± SEM from three independent experiments. A t-test was applied 
to compare the data set, evidencing no statistical differences between islets in suspension and islets in the cryogel. 

3.2. Islet-on-a-Chip Microfluidic Platform 
A microfluidic device was designed and fabricated to host the in vitro model inte-

grated by the CMC cryogel and mouse pancreatic islets. The dimensions of the device are 
shown in Figure 4a. Two circular chambers with a diameter of 10 mm were designed, 
where the CMC islets 3D in vitro model is located. Microfluidic channels of 1 mm width 
and 0.20 mm height were designed to connect those chambers and enable the circulation 
of the liquids inside the device (Figure S1a). 

The microfluidic IOC device was fabricated using a standard soft lithography replica 
molding technique as previously described in the methods section. The IOC microfluidic 
chip is integrated by two layers of PDMS with the purpose of elevating the microfluidic 
channels and creating a pool where the scaffold with the islets can be located, decreasing 
possible shear stress produced by a direct flow (Figure 4(ai,aii)). The device provides bio-
mimicking of the physiological environment of the organ, supplying nutrient and oxygen 
exchange to the 3D in vitro construct. The flow profile inside the microfluidic device was 
simulated by COMSOL Multiphysics Software. The fluid velocity field for each intersec-
tion was solved using the laminar flow physics module with a customized mesh (3327 
tetrahedral elements). The boundary conditions of the inlets were defined by the channel 
geometry, resistance of 4.8 × 1010 Pa s m−3, operational flow rate of 50 μL min−1, and an inlet 
pressure of 39.84 Pa. The remaining boundaries were specified as walls (no-slip boundary 
condition) and the material filling the channels was chosen as water under an incompress-
ible flow. A stationary solver was used for the calculations. In order to create a realistic 
approximation, a solid cylinder with the dimensions and mechanical and chemical prop-
erties of the CMC scaffold was incorporated in the simulations. Supplementary videos V1 
and V2 show the velocity profile inside the whole device. The red zones indicate a higher 
flow velocity (7 × 10−4 m s−1 at the well mouth and 3.69 × 10−2 m s−1, as a maximum velocity, 
in the center of the chamber) appearing in the boundaries of the scaffold. The study shows 
that the flow rates and geometry used during the experiments do not affect the stability 

Figure 3. Development and characterization of the CMC islet construct. Gene expression analysis and immunostaining
assays of islets were performed 24 h after being seeded within the cryogel. (a) Schematic diagram of mouse islet isolation.
Islets inside the cryogel are also represented. (b) Left: pancreatic islets embedded within a carboxymethyl cellulose (CMC)
cryogel under bright field (scale bar: 200 µm); middle and right: images of islets stained with insulin (red) and DAPI
(blue). Cellulose fibers are stained with fluorescein (green). Images show islets at different depths through the cryogel
(along the z-axis) (scale bar: 50 µm). (c) Gene expression analysis of MafA, Pdx1, NeuroD1, Chop, Trib3, and Atf3 from islets
in suspension and islets housed within the cryogel. Gene expression data were normalized against Tbp1 and are shown
relative to islets in suspension. Results are expressed as the mean ± SEM from three independent experiments. A t-test was
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Figure 4. Design and fabrication of the IOC device. (a) Schematic image showing the assembling of the IOC: (i) a 3 mm
layer of PDMS containing channels, inlet and outlet (Layer 2); (ii) a 2 mm layer of PDMS with the chambers for CMC islets
(Layer 1); (iii) two-layers of microfluidic chip is bound on a (25 mm × 75 mm) standard cover slide; and, finally, (iv) a
customized (37 mm × 20 mm) cover slide is used to sealed tissue chambers. (b) COMSOL Multiphysics® simulation of
the flow velocity and dynamics through the IOC device showing a maximum velocity of 0.03 mm s−1 (red zones) at the
boundaries of the scaffold. (c) Real picture of the IOC device with a close-up view of the CMC islets fabricated inside
the chamber. (d) A glucose-stimulated insulin secretion (GSIS) assay was performed in static conditions to evaluate the
secretory capacity of pancreatic islets housed within the CMC-based cryogel inside the device. Results are expressed as
mean ± SEM from three independent experiments.
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The microfluidic IOC device was fabricated using a standard soft lithography replica
molding technique as previously described in the methods section. The IOC microfluidic chip
is integrated by two layers of PDMS with the purpose of elevating the microfluidic channels
and creating a pool where the scaffold with the islets can be located, decreasing possible
shear stress produced by a direct flow (Figure 4(ai,aii)). The device provides biomimicking
of the physiological environment of the organ, supplying nutrient and oxygen exchange to
the 3D in vitro construct. The flow profile inside the microfluidic device was simulated by
COMSOL Multiphysics Software. The fluid velocity field for each intersection was solved
using the laminar flow physics module with a customized mesh (3327 tetrahedral elements).
The boundary conditions of the inlets were defined by the channel geometry, resistance of
4.8 × 1010 Pa s m−3, operational flow rate of 50 µL min−1, and an inlet pressure of 39.84 Pa.
The remaining boundaries were specified as walls (no-slip boundary condition) and the
material filling the channels was chosen as water under an incompressible flow. A stationary
solver was used for the calculations. In order to create a realistic approximation, a solid
cylinder with the dimensions and mechanical and chemical properties of the CMC scaffold
was incorporated in the simulations. Supplementary Videos V1 and V2 show the velocity
profile inside the whole device. The red zones indicate a higher flow velocity (7 × 10−4 m s−1

at the well mouth and 3.69× 10−2 m s−1, as a maximum velocity, in the center of the chamber)
appearing in the boundaries of the scaffold. The study shows that the flow rates and geometry
used during the experiments do not affect the stability of the 3D construct and, additionally, do
not exert shear stress to the cell system as a consequence of flow, showing a maximum velocity
of 0.03 mm s−1 (red zones in Figure 4b). Figure 4c shows a real picture of the microfluidic
device with the CMC islets fabricated inside the chamber. The fluidic system also helps the
delivery of the secreted insulin from the IOC to the on-chip LSPR sensing platform.

We examined the functionality of the islets housed within the CMC cryogel before
running microfluidic measurements by performing a glucose-stimulated insulin secretion
(GSIS) assay without flow inside the IOC device. Initially, the islets were incubated with
2.8 mM glucose, a condition that dampens the secretory capacity of the β-cells, followed
by incubation with 16.7 mM glucose. Our results show that the islets remain as functional
units in the cryogel scaffolds, validated by the release of insulin from the pancreatic
β-cells in response to glucose and quantified by a conventional ELISA (enzyme-linked
immunosorbent assay). Figure 4d shows how a high glucose concentration (16.7 mM)
causes a time-dependent insulin secretion from the β-cells, normalized by the total insulin
content of the islets. The basal condition represents the accumulated insulin released by
the islets 30 min after an overnight culture in media containing 11.1 mM glucose. Having
demonstrated that islets housed within the cryogel respond to glucose, we set up the
integration of the LSPR system into the microfluidic system in order to detect the insulin
levels in situ.

3.3. On-Chip LSPR Measurements

The on-chip LSPR platform was incorporated to quantify the insulin levels from
the IOC device. The platform is a state-of-the-art integrated opto-fluidic module that
had been previously used for the detection of several protein biomarkers [17,23]. It en-
ables parallel and controlled measurements on a single chip (2.5 × 2.5 cm2), reducing
the reagent volumes, and providing in situ and label-free detection of insulin concen-
trations in the samples. The LSPR sensing regions consist of arrays of gold nanorods,
fabricated by electron beam lithography on a glass substrate, using the optimized param-
eters of references [17,23,48]. The LSPR peak was set to be around 800 nm as measured
by a custom-built transmission microscopy set-up integrated with a spectrometer. The
optical set-up uses a galvanometric mirror to interrogate up to 32 different sensing regions
in parallel. Our data analysis software delivers both peak and centroid positions of the
sensed regions in situ [23]. To complete the assembly of the LSPR sensing platform, the
gold sensors on glass were integrated into a microfluidic environment (Figure 5a). The
latter, built by multilayer soft lithography [49], consists of two layers of PDMS networks,
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namely, flow and control layers. The flow network, hosting the LSPR sensors, is where the
insulin detection measurements are performed. In the upper layer, the control network
includes pneumatic “Quake valves” that are used to control the reagent flow through the
underneath channels. Each valve is individually managed by an external controller that
enables full automation of the successive steps of the detection bioassay. The microfluidic
architecture includes parallel channels that are individually addressable to perform, on the
same chip, eight parallel measurements with up to four replicas, which can be easily used
for multiplexed experiments.
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Figure 5. On-chip LSPR sensing platform description and detection. (a) Overview of LSPR sensing platform integrated by
functionalized gold nanoantennas couple with a complex microfluidic network. (b) Functionalization strategy applied on
gold nanoantenna sensors. (c) Optimization of capture monoclonal anti-insulin antibody. A saturation plateau is observed at
100 µg mL−1 antibody concentration (red arrow). (d) Calibration curve performed in KRBH basal glucose content (11.1 mM).
Curve shows a limit of detection of (0.85 ± 0.13) µg mL−1 (n = 3). (e) Real-time insulin detection by the LSPR sensing
platform every 30 min from the connected IOC device stimulated with KRBH buffer at low (2.8 mM) and high glucose
(16.7 mM) concentrations, respectively.

The Au sensors were biofunctionalized by immobilizing the insulin antibody to
capture the insulin from the sample. To this end, a self-assembled monolayer of MUA
(mercaptoundecanoic acid) was formed on the nanorods prior to chip assembly. The
assembled chip with a stable MUA layer was then used to immobilize a monoclonal
antibody against insulin through EDC/NHS chemistry. A scheme with the functionalization
strategy is shown in Figure 5b. Once the antibody is immobilized on the sensors from
all eight parallel channels, the separate channels are then used to detect, consecutively,
the secreted insulin from the IOC device at eight different times. The eight channels
chip design allowed us to divide the whole sensor array in individual sensing areas,
monitoring the secreted insulin from the IOC device in situ and in a continuous way.
Prior to running the sample measurements, we optimized the antibody concentration
(Figure 5c) obtaining a saturation plateau at 100 µg mL−1. Sensograms are shown in
Figure S2a,b corresponding to 2 h of functionalization of 0, 10, 50, and 100 µg mL−1, and a
functionalization of 200 µg mL−1 (which reached the saturation in a shorter time ~45 min),
respectively. Furthermore, a direct detection of a recombinant insulin solution of 5 µg mL−1

prepared in basal (11.1 mM), low (2.8 mM), and high (16.7 mM) glucose conditions were
compared to study the bulk refractive index effect on LSPR measurements. Figure S3a
reveals that there is no significant bulk refractive index effect observed for the glucose
concentrations considered here, greatly simplifying the integration of the on-chip LSPR
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platform with the IOC device. All experiments presented here were performed under direct
detection mode (without the need for a secondary antibody to amplify the signal), which
allows the continuous monitorization of secreted insulin from a connected IOC device.

For the reference of insulin detection of the IOC samples, the eight-point calibra-
tion curve of insulin in KRBH buffer with 16.7 mM glucose in eight parallel channels
was obtained. The calibration curve (Figure 5d) shows a limit of detection (LOD) of
0.85 ± 0.13 µg mL−1 and EC50 of 5.6 ± 1.2 µg mL−1. Every data point represents the
mean value of three on-chip replicas, and error bars stand for the standard deviations. The
IOC device with CMC islets was connected to the LSPR sensing platform to interrogate
the secreted insulin. Basal, low (2.8 mM), and high (16.7 mM) glucose levels in KRBH
buffer were used to stimulate the CMC islets in the IOC device for different durations in
fluidic conditions. Every 30 min was defined as a cycle, and every cycle was flown into
separate channels of the LSPR chip for the detection of the accumulative secreted insulin
concentration from the IOC device during that cycle (Figure 5e). The raw data obtained for
the LSPR measurements during these measurements are shown in Figure S3b. The insulin
secretion profile obtained by LSPR measurements shown in Figure 5e reveals that our
integrated platform was able to detect an incremental insulin secretion by the pancreatic
islets in response to high glucose stimulation over time. The basal level corresponds to
insulin accumulated for a time interval of 30 min inside the chamber. With the aim to
validate these results, a second IOC device under the same experimental conditions was
implemented and the samples were interrogated by ELISA technique. Even though the
results cannot be directly compared between both techniques, the insulin secretion profile
shown in Figure S3c reveals the same trend in insulin secretion: a remarkable increment
of the insulin levels in response to a high glucose content, which supports the results
obtained by the on-chip LSPR platform. These results are the preliminary steps to monitor,
in a continuous way, the dynamics of insulin secretion by native pancreatic islets under
physiological conditions. They demonstrate the potential of the integrated platform to
perform OOC experiments with real-time insulin detection, providing a strong tool for
drug testing, toxicity studies, and the elucidation of secretion dynamics in relevant tissues
linked to metabolic diseases, such as T2D.

4. Conclusions

In this work, we present an OOC platform integrated with an on-chip biosensing
platform, enabling in situ monitoring of the insulin secretion from an OOC device. Previ-
ously described microfluidic perfusion systems aimed at studying islet functionality are
based on the off-line quantification of insulin by ELISA or on-line insulin detection by
means of immunofluorescence, therefore labeling this hormone with antibodies. To our
knowledge, this is the first time that an IOC device has been coupled with an LSPR sensing
module to monitor, in situ and label-free, the insulin released by pancreatic islets. This
integrated platform carries the potential to investigate the different secretion dynamics
of cells, tissues, and spheroids in OOC platforms, and can be used in new applications,
especially in drug screening and personalized medicine technologies. First, we presented
here the development of a cellulose-based scaffold to embed pancreatic islets, which pro-
vide adequate mechanical properties to biomimic its native architecture. This approach
could be extrapolated to other biological systems which require a soft, biocompatible, and
non-biodegradable environment to biomimic physiological conditions. The scaffold is inte-
grated into a versatile transparent microfluidic bioreactor to provide the medium exchange,
simulate the physiological conditions, and optical monitoring of the islet morphologies.
Finally, we developed an automated modular platform that used a microfluidics-controlling
breadboard for the timed routing of fluids to interface with an LSPR biosensor chip for
measuring soluble biomarkers, such as insulin in situ. All sensing was performed in situ
in an uninterrupted and automated manner, allowing for the long-term monitoring of
insulin secretion under external glucose stimuli for up to 3 h. We believe that our integrated
modular on-line fluid routing and biosensing platform will be compatible with existing
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tissue organoid models and will promote their performance in drug screening by providing
the capability for the real-time in situ monitoring of their microenvironment.

Even though the experimental set-ups we presented here are not optimally minia-
turized, at the initial prototyping stage, such a platform has allowed us to validate our
approach to biosensor integration. Combining, for the first time, these two unique technolo-
gies will open up new avenues of research into metabolic pathologies in a bid to meet the
strong need for the combination of organ-on-a-chip system with microfluidics-integrated,
non-invasive biosensing modules to achieve continual bioanalysis of microtissue behaviors.
These themes are in line with current efforts to find new techniques to reduce the amount
of animal testing, to provide personalized medicine, and to understand the onset and
progression of diabetes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/bios11050138/s1. Figure S1: Schematic representation of dimensions of IOC device: (a) dimen-
sions of channels and chambers where CMC islets are located; (b) 3D overview of the two layers of
PDMS microfluidic IOC device. Figure S2: raw data of the sensograms obtained during optimization
of capture monoclonal anti-insulin antibody attached on LSPR gold antennas for (a) 0, 10, 50 and
100 µg mL−1 antibody concentrations and (b) 200 µg mL−1 antibody concentration respectively.
200 µg mL−1 concentration raw data curve showed a faster binding kinetics reaching saturation after
~40 min after injection. Figure S3: (a) sensograms showing the matrix effect observed for the relevant
glucose concentrations used in IOC experiments; (b) sensograms (raw data) obtained for insulin
detection every 30 min of secretion using low (2.8 mM) and high (16.7 mM) glucose-stimulation
regimes. Signals were acquired from different channels of the microfluidics LSPR chip; (c) insulin
detection profile from a second IOC device analyzed by ELISA technique every 30 min stimulated
with KRBH buffer at low and high glucose concentration, respectively. Video S1, Video S2.
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