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Abstract. Let Ω be a smooth, bounded, convex domain in Rn and let Λk

be a finite subset of Ω. We find necessary geometric conditions for Λk to

be interpolating for the space of multivariate polynomials of degree at most

k. Our results are asymptotic in k. The density conditions obtained match
precisely the necessary geometric conditions that sampling sets are known to

satisfy and they are expressed in terms of the equilibrium potential of the

convex set. Moreover we prove that in the particular case of the unit ball, for
k large enough, there are no bases of orthogonal reproducing kernels in the

space of polynomials of degree at most k.

1. Introduction and main results

Given a measure µ in Rn we consider the space Pk of polynomials of total degree
at most k in n-variables endowed with the natural scalar product in L2(µ). We
assume that the support of µ is not contained in the zero set of any p ∈ Pk, p 6= 0.
In this case, the norm of L2(µ) is also a norm for the space Pk, and the point
evaluation at any given point x ∈ Rn is a bounded linear functional. Hence, the
space Pk becomes a reproducing kernel Hilbert space. By the Riesz representation
theorem, for any x ∈ Rn, there is a unique function Kk(µ, x, ·) ∈ Pk such that

p(x) = 〈p,Kk(µ, x, ·)〉 =

ˆ
p(y)Kk(µ, x, y) dµ(y)

for every p ∈ Pk. Given a point x ∈ Rn the normalized reproducing kernel is
denoted by κk,x, i.e.

κk,x(µ, y) =
Kk(µ, x, y)

‖Kk(µ, x, ·)‖L2(µ)
=

Kk(µ, x, y)√
Kk(µ, x, x)

.

We will denote by βk(µ, x) the value of the reproducing kernel on the diagonal

βk(µ, x) = Kk(µ, x, x).

The function 1/βk(µ, x) is often called the Christoffel function. For brevity we may
omit sometimes the dependence on µ.

Following Shapiro and Shields in [16] we define sampling and interpolating sets:

Definition 1. A sequence Λ = {Λk} of finite sets of points in Rn is said to be
interpolating for the sequence of spaces (Pk, L2(µ))k≥0 if the associated family of
normalized reproducing kernels at the points λ ∈ Λk, i.e. κk,λ, is a Riesz sequence
in the Hilbert space Pk, uniformly in k. That is, if there is a constant C > 0
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independent of k such that for any linear combination of the normalized reproducing
kernels we have:

(1.1)
1

C

∑
λ∈Λk

|cλ|2 ≤
∥∥∑
λ∈Λk

cλκk,λ
∥∥2 ≤ C

∑
λ∈Λk

|cλ|2.

The definition above is usually decoupled into two separate conditions. The left
hand side inequality in (1.1) is usually called the Riesz-Fischer property for the
reproducing kernels and is equivalent to the condition that the following moment
problem is solvable: for arbitrary values {vλ}λ∈Λk there exists a polynomial p ∈ Pk
such that p(λ)/

√
βk(λ) = 〈p, κk,λ〉 = vλ for all λ ∈ Λk and

‖p‖2 ≤ C
∑
λ∈Λk

|vλ|2 =
∑
λ∈Λk

|p(λ)|2

βk(λ)
.

This is the reason Λ is called an interpolating family.
The right hand side inequality in (1.1) is called the Bessel property for the

normalized reproducing kernels {κk,λ}λ∈Λk . The Bessel property is equivalent to
having

(1.2)
∑
λ∈Λk

|p(λ)|2

βk(λ)
≤ C‖p‖2

for all p ∈ Pk. That is, if we denote µk :=
∑
λ∈Λk

δλ
βk(λ) , we are requiring that the

identity is a uniformly continuous embedding of (Pk, L2(µ)) into (Pk, L2(µk)).

The notion of sampling plays a similar but opposite role.

Definition 2. A sequence Λ = {Λk} of finite sets of points in Rn is said to be
sampling or Marcinkiewicz-Zygmund for the sequence of spaces (Pk, L2(µ))k≥0 if
each family {κk,λ}λ∈Λk is a frame for the corresponding Hilbert space Pk, and
their frame bounds are uniform in k. More precisely, if there is a constant C > 0
independent of k such that for any polynomial p ∈ Pk:

(1.3)
1

C

∑
λ∈Λk

|〈p, κk,λ〉|2 ≤ ‖p‖2 ≤ C
∑
λ∈Λk

|〈p, κk,λ〉|2.

Observe that the left hand side inequality in (1.3) is the Bessel condition men-
tioned above. If we were considering only a single space of polynomials Pk0 then the
notion of an interpolating family amounts to the independence of the corresponding
reproducing kernels. On the other hand, the notion of sampling family corresponds
to reproducing kernels that span the whole space Pk0 .

Throughout this paper, Ω denotes a smooth, bounded, convex domain. We will
restrict our attention to two cases:

• In the first case we consider measures dµ(x) = χΩ(x)dV (x) on Ω, where
dV is the Lebesgue measure.

• In the second case, we consider the case of the unit ball B = {x ∈ Rn :
|x| ≤ 1}, and measures of the form dµ(x) = (1 − |x|2)a−1/2χB(x)dV (x)
where a ≥ 0.

In these two cases there are good explicit estimates for the size of the reproducing
kernel on the diagonal Kk(µ, x, x), and therefore both notions, interpolation and
sampling families, become more tangible. In [2] the authors obtained necessary
geometric conditions for sampling families in bounded smooth convex sets with
weights when the weights satisfy two technical conditions: Bernstein-Markov and
moderate growth. These properties are both satisfied for the Lebesgue measure in
a convex set. The case of interpolating families in convex sets was not considered,
since there were several technical hurdles to applying the same technique.
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Our aim in this paper is to fill this gap and obtain necessary geometric condi-
tions for interpolating families in the two settings mentioned above. The geometric
conditions that usually appear in this type of problem come in three flavours:

• A separation condition. This is implied by the Riesz-Fischer condition i.e.
the left hand side of (1.1). The requirement that one should be able to
interpolate the values one and zero implies that different points λ, λ′ ∈ Λk
with λ 6= λ′ cannot be too close. The separation conditions in our settings
are studied in Section 3.1.

• A Carleson-type condition. This is a condition that ensures the continuity
of the embedding as in (1.2). A geometric characterization of the Carleson-
type condition is given in Theorem 6 for convex domains and the Lebesgue
measure, and in Theorem 7 for the ball and the measures µa.

• A density condition. This is a global condition that usually follows from
both the Bessel and the Riesz-Fischer conditions. A necessary density con-
dition for interpolating sequences on convex sets endowed with the Lebesgue
measure is provided in our first main result (see next section for precise de-
finitions):

Theorem 1. Let Ω be a smooth, bounded, convex domain in Rn, and let Λ = {Λk}
be an interpolating sequence. Then for any Euclidean ball B(x, r) ⊂ Ω the following
holds:

lim sup
k→∞

#(Λk ∩ B(x, r))

dimPk
≤ µeq(B(x, r)).

Here µeq is the normalized equilibrium measure associated to Ω.

In Theorem 8 we consider the case of the ball with the measure µa. In both
cases a matching density result for sampling sequences was proved in [2].

Finally, a natural question is whether or not there exists a family {Λk} that is
both sampling and interpolating. To answer this question is very difficult in general
(see [14, Section 9], [7]). A particular case is when {κk,λ}λ∈Λk form an orthonormal
basis. In the last section we study the existence of orthonormal bases of reproducing
kernels in the case of the ball with the measures µa. More precisely, if the spaces
Pk are endowed with the inner product of L2(µa), we prove that for k big enough
the space Pk does not admit an orthonormal basis of reproducing kernels:

Theorem 2. Let B ⊂ Rn be the unit ball and n > 1, and fix any a ≥ 0. There
exists a k0 big enough such that for any k ≥ k0 the space Pk does not admit a basis
of reproducing kernels that is orthogonal with respect to the inner product induced
by the measure dµa = (1− |x|2)a−

1
2 dV .

To determine whether or not there exists a family {Λk} that is both sampling
and interpolating for (Pk, µa) remains an open problem.

2. Technical results

Before stating and proving our results we will recall the behaviour of the kernel on
the diagonal, or equivalently the Christoffel function, we will define an appropriate
metric and introduce some needed tools.

2.1. Christoffel functions and equilibrium measures. To write explicitly the
sampling and interpolating conditions we need an estimate of the Christoffel func-
tion. In [2] it was observed that in the case of the measure dµ(x) = χΩ(x)dV (x) it
is possible to obtain precise estimates for the size of the reproducing kernel on the
diagonal:
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Theorem 3. Let Ω be a smooth bounded convex domain in Rn. Then the repro-
ducing kernel for (Pk, χΩdV ) satisfies

(2.1) βk(x) = Kk(x, x) ' min
( kn√

d(x, ∂Ω)
, kn+1

)
∀x ∈ Ω,

where d(x, ∂Ω) denotes the Euclidean distance from x ∈ Ω to the boundary of Ω.

For the weight (1−|x|2)a−1/2 in the ball B ⊆ Rn the behaviour of the Christoffel
function is well known.

Proposition 4. For any a ≥ 0, let dµa(x) = (1− |x|2)a−1/2χB(x)dV (x). Then the
reproducing kernel for (Pk, dµa) satisfies

(2.2) βk(µa, x) = Kk(µa, x, x) ' min
( kn

d(x, ∂B)a
, kn+2a

)
∀x ∈ B.

The proof follows from [15, Prop 4.5 and 5.6], the Cauchy-Schwarz inequality
and the extremal characterization of the kernel

Kk(µa;x, x) = sup

{
|p(x)|2 : p ∈ Pk,

ˆ
|p|2dµa ≤ 1

}
.

The asymptotic behaviour for the case of the ball was established in [4]. See also
[1] for the general case.

To define the equilibrium measure we have to introduce a few concepts from
pluripotential theory, see [10]. Let L ⊂ Rn ⊂ Cn be a non pluripolar compact set.
Given ξ ∈ Cn, the Siciak extremal function is defined by

GL(ξ) = sup

{
log+ |p(ξ)|

deg(p)
: p ∈ P (Cn), sup

L
|p| ≤ 1

}
,

where P (Cn) is the space of holomorphic polynomials. The pluricomplex Green
function is the semicontinuous regularization of GL defined for z ∈ Cn by

G∗L(z) = lim sup
ξ→z

GL(ξ).

The pluripotential equilibrium measure for L is the Monge-Ampère Borel (proba-
bility) measure

dµeq = (ddcG∗L)n.

In the general case, when Ω is a smooth bounded convex domain the equilibrium
measure is very well understood, see [3] and [5]. It behaves roughly as dµeq '
1/
√
d(x, ∂Ω)dV . In particular, the pluripotential equilibrium measure for the ball

B is given (up to normalization) by dµ0(x) = 1/
√

1− |x|2dV (x).

2.2. An anisotropic distance. The natural distance to formulate the separation
condition and the Carleson-type condition is not the Euclidean distance. Consider
in the unit ball B ⊂ Rn the following distance:

ρ(x, y) = arccos
{
〈x, y〉+

√
1− |x|2

√
1− |y|2

}
.

This is the geodesic distance between the points x′, y′ in the sphere Sn defined
as x′ = (x,

√
1− |x|2) and y′ = (y,

√
1− |y|2). If we consider anisotropic balls

B(x, ε) = {y ∈ B : ρ(x, y) < ε}, they are comparable to a box centered at x (a
product of intervals) which are of size ε in the tangent directions and size ε2 +

ε
√

1− |x|2 in the radial direction. If we want to refer to a Euclidean ball of center
x and radius ε we would use the notation B(x, ε).

The Euclidean volume of a ball B(x, ε) is comparable to εn
√

1− |x|2 if (1 −
|x|2) > ε2 and εn+1 otherwise.



NECESSARY CONDITIONS FOR INTERPOLATION BY MULTIVARIATE POLYNOMIALS 5

This distance ρ can be extended to an arbitrary smooth convex domain Ω by
using Euclidean balls contained in Ω and tangent to the boundary of Ω. This can
be done in the following way. Since Ω is smooth, there is a tubular neighbourhood
U ⊂ Rn of the boundary of Ω where each point x ∈ U has a unique closest point x̃
in ∂Ω and the normal line to ∂Ω at x̃ passes through x. There is a fixed small radius
r > 0 such that any point x ∈ U ∩Ω it is contained in a ball of radius r, B(p, r) ⊂ Ω
and such that it is tangent to ∂Ω at x̃. We define on x a Riemannian metric which
comes from the pullback of the standard metric on ∂B̃(p, r) where B̃(p, r) is a ball
in Rn+1 centered at (p, 0) and of radius r > 0 by the projection of Rn+1 onto the
first n-variables. In this way we have defined a Riemannian metric in the domain
Ω ∩ U . In the core of Ω, i.e. far from the boundary we use the standard Euclidean
metric. We glue the two metrics with a partition of unity.

The resulting metric ρ on Ω has the relevant property that the balls of radius
ε behave as in the unit ball, that is a ball B(x, ε) of center x and of radius ε
in this metric is comparable to a box of size ε in the tangent directions and size
ε2 + ε

√
d(x, ∂Ω) in the normal direction.

2.3. Well localized polynomials. The basic tool that we will use to prove the
Carleson-type condition and the separation condition are well localized polynomials.
These were studied by Petrushev and Xu in the unit ball with the measure dµa =
(1− |x|2)a−

1
2 dV, for a ≥ 0. We recall their basic properties:

Theorem A (Petrushev and Xu). Let dµa = (1− |x|2)a−
1
2 dV on B for a ≥ 0. For

any k ≥ 1 and any y ∈ B ⊂ Rn there are polynomials Lak(·, y) ∈ P2k that satisfy:

(1) Lak(x, y) as a variable of x is a polynomial of degree 2k.
(2) Lak(x, y) = Lak(y, x).
(3) Lak reproduces all the polynomials of degree k, i.e.

(2.3) p(y) =
1

µa(B)

ˆ
B
Lak(x, y)p(x) dµa(x), ∀p ∈ Pk.

(4) For any γ > 0 there is a cγ such that

(2.4) |Lak(x, y)| ≤ cγ
√
βk(µa, x)βk(µa, y)

(1 + kρ(x, y))γ
.

(5) The kernels Lak are Lispchitz with respect to the metric ρ. More concretely,
for all x ∈ B(y, 1/k)

(2.5) |Lak(w, x)− Lak(w, y)| ≤ cγ
kρ(x, y)

√
βk(µa, w)βk(µa, y)

(1 + kρ(w, y))γ
.

(6) There is ε > 0 such that Lak(x, y) ' Kk(µa; y, y) for all x ∈ B(y, ε/k).

Proof. All the properties are proved in [15, Thm 4.2, Prop 4.7 and 4.8] except
the behaviour near the diagonal number 6. Let us start by observing that by the
Lipschitz condition (2.5) it is enough to prove that Lak(x, x) ' Kk(µa;x, x).

This follows from the definition of Lak which is done as follows. The subspace
Vk ⊂ L2(B) are the polynomials of degree k that are orthogonal to lower degree
polynomials in L2(B) with respect to the measure dµa. Consider the kernels Pk(x, y)
which are the kernels that give the orthogonal projection on Vk. If f1, . . . , fr is an
orthonormal basis for Vk then Pk(x, y) =

∑r
j=1 fj(x)fj(y). The kernel Lak is defined

as

Lak(x, y) =

∞∑
j=0

â

(
j

k

)
Pj(x, y).

We assume that â is compactly supported, â ≥ 0, â ∈ C∞(R), supp â ⊂ [0, 2],
â(t) = 1 on [0, 1] and â(t) ≤ 1 on [1, 2] as in the picture:
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k 2k

1
â(x/k)

Then, all the terms are positive in the diagonal. Recall that

Kk(µa;x, x) =

k∑
j=0

Pj(x, y).

Hence, we get

βk(µa, x) = Kk(µa;x, x) ≤ Lak(x, x) ≤ K2k(µa;x, x) = β2k(µa, x).

Since βk(µa, x) ' β2k(µa, x) we obtain the desired estimate.
�

Petrushev and Xu also proved the following integral estimate [15, Lemma 4.6]

Lemma B. Let α > 0 and a ≥ 0. If γ > 0 is big enough we haveˆ
B

Kk(µa, y, y)α

(1 + kρ(x, y))γ
dµa(y) .

1

Kk(µa, x, x)1−α .

3. main results

3.1. Separation. In our first result we prove that for Λ = {Λk} interpolating there
exists ε > 0 such that

inf
λ,λ′∈Λk,λ6=λ′

ρ(λ, λ′) ≥ ε

k
.

Theorem 5. If Ω is a smooth convex set and Λ = {Λk} is an interpolating sequence
then there is an ε > 0 such that the balls {B(λ, ε/k)}λ∈Λk are pairwise disjoint.

Proof. Consider the metric in Ω defined in section 2.2, and let r(Ω) be the width of
the tubular neighborhood. If d(λ, ∂Ω) ≤ r(Ω), then we take the ball of radius r(Ω)
that contains λ and it is tangent to ∂Ω at the closest point to λ. If d(λ, ∂Ω) > r(Ω),
then we take the ball of radius r(Ω) centered at x. To simplify the notation assume
that r(Ω) = 1, and in both cases we denote this ball by B. Note that taken B in
this way, the anisotropic distance in B is equivalent to the anisotropic distance in
Ω. So, we will denote both by ρ. Suppose that there is another point λ′ ∈ Λk ∩ B
such that ρ(λ, λ′) < 1/k. Since Λ is interpolating we can build a polynomial p ∈ Pk
such that p(λ′) = 0, p(λ) = 1 and ‖p‖2 . 1/Kk(µ 1

2
, λ, λ). In the ball B, the kernel

L
1
2

k from Theorem A, for the Lebesgue measure a = 1
2 , is reproducing. Therefore

(3.1) 1 =

ˆ
B
(L

1
2

k (λ,w)− L
1
2

k (λ′, w))p(w)dV (w).

We can use the estimate |p(w)| ≤
√
βk(µ 1

2
, w)‖p‖ ≤

√
βk(µ 1

2
, w)/βk(µ 1

2
, λ)) and

the inequality (2.5) to obtain

1 . kρ(λ, λ′)

ˆ
B

βk(µ 1
2
, w)dV (w)

(1 + kρ(w, λ))γ
,

Taking α = 1 and a = 1
2 in Lemma B we finally get 1 . kρ(λ, λ′) as stated. �
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x

Ω

Q

Figure 3.1.

Observe that considering the general case Lak in (3.1), one can prove the cor-
responding result for interpolating sequences for Pk with weight dµa(x) = (1 −
|x|2)a−

1
2 dV (x) in the ball B.

3.2. Carleson-type condition. Let us deal with condition (1.2).

Definition 3. A sequence of measures {µk}k≥0 are called Carleson measures for
(Pk, dµ) if there is a constant C > 0, independent of k, such that

(3.2)

ˆ
Ω

|p(x)|2 dµk(x) ≤ C‖p‖2L2(µ),

for all p ∈ Pk.

In particular if Λk is a sequence of interpolating sets then the sequence of mea-
sures µk =

∑
λ∈Λk

δλ
βk(λ) is Carleson.

The geometric characterization of the Carleson measures when Ω is a smooth
convex domain is in terms of anisotropic balls.

Theorem 6. Let Ω be a smooth, bounded, convex domain in Rn. A sequence of
measures {µk}k≥0 is Carleson for (Pk, χΩdV ) if and only if there is a constant
C > 0, independent of k, such that for all points x ∈ Ω

(3.3) µk(B(x, 1/k)) ≤ CV (B(x, 1/k)).

Proof. We prove the necessity. For any x ∈ Ω there is a cube Q that contains
Ω which is tangent to ∂Ω at a closest point to x as in Figure 3.1. This cube
has fixed dimensions independent of the point x ∈ Ω. Define the polynomials

Qxk(y) = L
1/2
k (x1, y1) · · ·L1/2

k (xn, yn) of degree at most kn. We test the Carleson
condition (3.2) against these polynomials that peak at B(x, 1/k) and we getˆ

B(x,1/k)

|Qxk|2dµk ≤
ˆ

Ω

|Qxk|2dµk ≤ C‖Qxk‖2L2(Q).

By property (6) in Theorem A the left hand side is bounded below by

Cµk (B(x, 1/k))

n∏
i=1

Kk(µ1/2;xi, xi)
2.

For the right hand side we split the product of integrals and use thatˆ
L

1/2
k (xi, yi)

2dµ1/2(yi) ' Kk(µ1/2;xi, xi).

Finally the estimate (2.2) applied to these one dimensional kernels and the fact
that

V (B(x, 1/k)) ' 1

kn
(
√

1− |x|2 + k−1)
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gives the necessary condition.

For the sufficiency we use the reproducing property of L
1
2

k (z, y). For any point
x ∈ Ω there is a Euclidean ball Bx contained in Ω such that x ∈ Bx and it is tangent
to ∂Ω at the closest point to x. Moreover since Ω is a smoothly bounded convex
domain we can assume that the radius of Bx has a lower bound independent of
x. In this ball we can reconstruct the square of any polynomial p ∈ Pk using the

kernel L
1
2

2k relative to the ball Bx. That is

ˆ
Ω

|p(x)|2 dµk(x) ≤
ˆ

Ω

∣∣∣∣ˆ
Bx
L

1
2

2k(x, y)p2(y) dV (y)

∣∣∣∣ dµk(x).

We use the estimate (2.4) and we get

ˆ
Ω

|p(x)|2 dµk(x) .
ˆ

Ω

ˆ
Bx

√
β2k(x)β2k(y)

(1 + 2kρ(x, y))γ
|p(y)|2dV (y) dµk(x).

We break the integral in two regions, when ρ(x, y) < 1 and otherwise. When γ is
big enough we obtain:

ˆ
Ω

|p(x)|2 dµk(x) .
ˆ

Ω

ˆ
Bx∩ρ(x,y)>1

|p(y)|2dV (y)dµk(x)+

ˆ
Ω

ˆ
Bx∩ρ(x,y)<1

√
β2k(x)β2k(y)

(1 + 2kρ(x, y))γ
|p(y)|2dV (y) dµk(x)

The first integral in the right hand side is bounded by
´

Ω
|p(y)|2 dV (y) since µk(Ω)

is bounded by hypothesis (it is possible to cover Ω by balls {B(xn, 1/k)} with
controlled overlap).

In the second integral, observe that if w ∈ B(x, 1/k) then ρ(w, x) ≤ 1/k and
therefore√

β2k(x)β2k(y)

(1 + 2kρ(x, y))γ
.

1

V (B(x, 1/k))

ˆ
B(x,1/k)

√
β2k(w)β2k(y)

(1 + 2kρ(w, y))γ
dV (w).

We plug this inequality in the second integral and we can bound it by

ˆ
Ω

|p(y)|2
ˆ
ρ(w,y)<2

√
β2k(w)β2k(y)

(1 + 2kρ(w, y))γ
µk(B(w, 1/k))

V (B(w, 1/k))
dV (w)dV (y).

We use the hypothesis (3.3) and Lemma B with α = 1/2 to bound it finally by´
Ω
|p(y)|2dV (y).

�

The weighted case in the unit ball is simpler.

Theorem 7. Let dµa(x) = (1− |x|2)a−
1
2 dV (x) for a ≥ 0 be the weight in the unit

ball B ⊂ Rn. A sequence of measures {µk}k≥0 is Carleson for (Pk, µa)k≥0 if and
only if there is a constant C, independent of k, such that for all points x ∈ B

(3.4) µk(B(x, 1/k)) ≤ C µa(B(x, 1/k)).

Proof. Suppose that {µk}k≥0 is a Carleson sequence of measures. Then for any
x ∈ B

(3.5)

ˆ
B(x,1/k)

|Lak(x,w)|2 dµ2k(w) ≤ C‖Lak(x, ·)‖2L2(µa).
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By the definition of the polynomials Lak we get

‖Lak(x, ·)‖2L2(µa) =

∞∑
j1,j2=0

â

(
j1
k

)
â

(
j2
k

)ˆ
B
Pj1(x, y)Pj2(x, y)dµa(y)

=

∞∑
j=0

∣∣∣∣â( jk
)∣∣∣∣2 ˆ

B
|Pj(x, y)|2dµa(y) by orthogonality

=

∞∑
j=0

∣∣∣∣â( jk
)∣∣∣∣2 Pj(x, x) by the projection property.

Since â(t) ≤ 1, it is equal to one on [0, 1], and its support is contained in [0, 2] we
obtain the following estimates

Kk(µa, x, x) ≤ ‖Lak(x, ·)‖2L2(µa) ≤ K2k(µa, x, x),

From this estimates and property (6) in Theorem A we get inequality (3.4). The
necessity follows exactly as in the unweighted case with the obvious changes. �

3.3. Density condition. In [2, Theorem 4] a necessary density condition for sam-
pling sequences for polynomials in convex domains was obtained. It states the
following:

Theorem C (Berman-Ortega Cerdà). Let Ω be a smooth convex domain in Rn,
and let Λ be a sampling sequence. Then for any B(x, r) ⊂ Ω the following holds:

lim sup
k→∞

#(Λk ∩ B(x, r))

dimPk
≥ µeq(B(x, r)).

Here µeq is the normalized equilibrium measure associated to Ω.

Let us see how, with a similar technique, a corresponding density condition can
be obtained as well in the case of interpolating sequences.

Proof of Theorem 1. Let Fk ⊂ Pk be the subspace spanned by

κλ(x) = Kk(λ, x)/
√
βk(λ) ∀λ ∈ Λk.

Denote by gλ the dual (biorthogonal) basis to κλ in Fk. We have clearly that

• We can span any function in Fk in terms of κλ, thus:∑
λ∈Λk

κλ(x)gλ(x) = Kk(x, x),

where Kk(x, y) is the reproducing kernel of the subspace Fk.
• The norm of gλ is uniformly bounded since κλ was a uniform Riesz sequence.
• gλ(λ) =

√
βk(λ). This is due to the biorthogonality and the reproducing

property.

We are going to prove that the measure σk = 1
dimPk

∑
λ∈Λk

δλ, and the measure

dνk = 1
dimPkKk(x, x)dV (x) are very close to each other. These are two positive

measures that are not probability measures but they have the same mass (equal

to #Λk
dimPk ≤ 1). Therefore, there is a way to quantify the closeness through the

Vaserstein 1-distance. For an introduction to Vaserstein distance see for instance
[17]. We want to prove that W (σk, νk)→ 0 because the Vaserstein distance metrizes
the weak-* topology.

In this case, it is known that Kk(x, x) ≤ Kk(x, x) and 1
dimPk βk(x) → µeq in the

weak-* topology, where µeq is the normalized equilibrium measure associated to Ω
(see for instance [1]). Therefore, lim supk σk ≤ µeq.
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In order to prove that W (σk, νk)→ 0 we use a signed transport plan as in [12]:

ρk(x, y) =
1

dimPk

∑
λ∈Λk

δλ(y)× gλ(x)κλ(x) dV (x)

It has the right marginals, σk and νk and we can estimate the integral

W (σk, νk) ≤
¨

Ω×Ω

|x− y|d|ρk| = O(1/
√
k).

The only point that merits a clarification is that we need an inequality:

1

dimPk

∑
λ∈Λk

ˆ
Ω

|λ− x|2 |Kk(λ, x)|2

Kk(x, x)
dV (x) ≤

1

dimPk

¨
Ω×Ω

|y − x|2|Kk(y, x)|2 dV (x)dV (y).

This is problematic. We know that Λk is an interpolating sequence for the polyno-
mials of degree k. Thus the normalized reproducing kernels at λ ∈ Λk form a Bessel
sequence for Pk but the inequality that we need is applied to Kk(x, y)(yi − xi) for
all i = 1, . . . , n, that is to a polynomial of degree k + 1. We are going to show
that if Λk is an interpolating sequence for the polynomials of degree k it is also a
Carleson sequence for the polynomials of degree k + 1.

Observe that since it is interpolating then it is uniformly separated, i.e. B(λ, ε/k)
are disjoint. That means that in particular

µk(B(z, 1/(k + 1)) . V (B(z, 1/(k + 1)).

Thus µk is a Carleson measure for Pk+1.
Finally in [2, Theorem 17] it was proved that

1

dimPk

¨
Ω×Ω

|y − x|2|Kk(y, x)|2 dV (x)dV (y) = O(1/k).

�

From the behaviour on the diagonal of the kernel (2.2) its easy to check that
the kernel is both Bernstein-Markov (sub-exponential) and has moderate growth,
see definitions in [2]. From the characterization of sampling sequences proved in [2,
Theorem 1] and with the obvious changes in the proof of the previous theorem we
deduce the following:

Theorem 8. Consider the space of polynomials Pk restricted to the ball B ⊂ Rn
with the measure dµa(x) = (1− |x|2)a−

1
2 dV. Let Λ = {Λk} be a sequence of sets of

points in B.
• If Λ is a sampling sequence then, for each x ∈ B and r > 0

lim inf
k→∞

#(Λk ∩ B(x, r))

dimPk
≥ µeq(B(x, r)).

• If Λ is interpolating sequence then, for each x ∈ B and r > 0

lim sup
k→∞

#(Λk ∩ B(x, r))

dimPk
≤ µeq(B(x, r)).

Remark. In the statements of Theorems 1, C and 8 we could have replaced B(x, r)
by any open set, in particular they could have been formulated with balls B(x, r)
in the anisotropic metric.

One can construct interpolation or sampling sequences with density arbitrarily
close to the critical density with sequences of points {Λk} such that the correspond-
ing Lagrange interpolating polynomials are uniformly bounded. In particular the
above inequalities are sharp. For a similar construction on the sphere see [13].
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3.4. Orthonormal basis of reproducing kernels. Sampling and interpolation
are somehow dual concepts. Sequences which are both sampling and interpolating
(i.e. complete interpolating sequences) are optimal in some sense because they are
at the same time minimal sampling sequences and maximal interpolating sequences.
In the setting of Theorem 8, such sequences satisfy

lim
k→∞

#(Λk ∩ B(x, r))

dimPk
= µeq(B(x, r)).

In general domains, to prove or disprove the existence of such sequences is a difficult
problem [14].

If Λ = {Λk} is a complete interpolating sequence the corresponding reproducing
kernels {κk,λ} form a Riesz basis in the space of polynomials (uniformly in the de-
gree). An obvious example of complete interpolating sequences would be sequences
providing an orthonormal basis of reproducing kernels. In dimension 1, with the

weight (1−x2)a−1/2, a basis of Gegenbauer polynomials {G(a)
j }j=0,...,k is orthogonal

and the reproducing kernel in Pk evaluated at the zeros of the polynomial G
(a)
k+1

gives an orthogonal sequence. In our last result we prove that in higher dimen-
sions there are no orthogonal basis of Pk consisting of reproducing kernels with the
measure dµa(x) = (1− |x|2)a−1/2dV (x).

Our first goal is to show that sampling sequences are dense enough, Proposition
10. Recall that in B(0, r), for r < 1, the Euclidean metric and the metric ρ are
equivalent. In our first result we prove that the right hand side of (1.3) and the
separation condition imply that there are points of the sequence in any ball of
B(0, r) that has a radius big enough.

Proposition 9. Let dµa(x) = (1 − |x|2)a−
1
2 dV (x) for a ≥ 0 be the weight in the

unit ball B ⊂ Rn. Let Λk ⊂ B be a finite subset and C, ε > 0 be constants such that

(3.6)

ˆ
B
|P (x)|2dµa(x) ≤ C

∑
λ∈Λk

|P (λ)|2

Kk(µa;λ, λ)
,

for all P ∈ Pk and

inf
λ,λ′∈Λk
λ6=λ′

ρ(λ, λ′) ≥ ε

k
.

Given |x0| = C0 <
1
4 , there exists A > 0 depending only on C, ε, n and a such that

Λk ∩ B(x0, A/k) 6= ∅.

Proof. By the construction of the function La` (x, y), as we have already mentioned,
for any ` ≥ 0

K`(µa;x, x) ≤
ˆ
B
La` (x, y)2dµa(y) ≤ K2`(µa;x, x).

Let P (x) = La[k/2](x, x0) ∈ Pk. Suppose that for some M > ε and k ≥ 1

Λk ∩ B(x0,M/k) = ∅.

From the property above, the hypothesis and Proposition 4 we get

(3.7) kn ' K[k/2](µa;x0, x0) ≤
ˆ
B
P (y)2dµa(y) .

∑
|λ−x0|>M/k

|P (λ)|2

Kk(µa;λ, λ)
.

From [6, Lemma 11.3.6.], given x ∈ B and 0 < r < π

(3.8) µa(B(x, r)) ' rn(
√

1− |x|2 + r)2a,
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and therefore

(3.9) µa(B(x, r)) '

{
rn+2a if 1− |x|2 < r2,

rn(1− |x|2)a otherwise,

and

(3.10) µa(B(x, r)) &

{
rn+2a if |x| > 1

2 ,

rn otherwise.

From (4) in Theorem A, the separation of the sequence, and the estimate (3.10)
we get

0 < c ≤
∑

|λ−x0|>M/k

1

(1 + [k/2]ρ(x0, λ))2γ

=
∑

|λ−x0|>M/k

1

µa(B(λ, ε/2k))

ˆ
B(λ,ε/2k)

dµa(x)

(1 + [k/2]ρ(x0, λ))2γ

.

 ∑
M
k <|λ−x0|< 1

2

+
∑

1
2<|λ−x0|

 1

µa(B(λ, ε/2k))

ˆ
B(λ,ε/2k)

dµa(x)

(1 + 2kρ(x0, x))2γ

.

(
k

ε

)n ˆ 3
4

M
k

rn−1

(kr)2γ
dr +

k2a+n−2γ

ε2a+n
µa(B(0, 1/2)c).

(3.11)

Now, for γ = n+ a we get

0 < c ≤ 1

kn+2a

[
− 1

rn+2a

] 3
4

r=M
k

+
1

kn
,

and then a uniform (i.e. independent of k) upper bound for M. Taking A =
A(C, ε, n, a) > M we get the result. �

Proposition 10. Let Λ = {Λk} be a separated sampling sequence for B ⊂ Rn.
Then there exist M0, k0 > 0 such that for any M > M0 and all k ≥ k0

# (Λk ∩ B(0,M/k)) 'Mn.

Proof. Let ε > 0 be the constant from the separation, i.e.

inf
λ,λ′∈Λk
λ6=λ′

ρ(λ, λ′) ≥ ε

k
.

Assume that M/k ≤ 1
2 . For λ ∈ Λk ∩ B(0,M/k) we have V (B(λ, εk )) ' ( εk )n and

therefore

(3.12) # (Λk ∩ B(0,M/k))
( ε
k

)n
.

(
M

k

)n
.

For the other inequality, take the constant A (assume A > ε) given in Proposition
9 depending on the sampling and the separation constants of Λ and n. For M > A
and k > 0 such that B(0, Mk ) ⊂ B(0, 1

4 ) one can find N disjoint balls B(xj ,
A
k ) for

j = 1, . . . N contained in B(0,M/k) and such that

NV (B(0,
A

k
)) >

1

2
V (B(0,

M

k
)).

Observe that each ball B(xj ,
A
k ) contains by Proposition 9 at least one point from

Λk and therefore

# (Λk ∩ B(0,M/k)) ≥ N &
(
M

A

)n
.
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�
We will use the following result from [9].

Theorem D. Let B ⊂ Rn, n > 1, be the unit ball. There do not exist infinite
subsets Λ ⊂ Rn such that the exponentials ei〈x,λ〉, λ ∈ Λ, are pairwise orthogonal in
L2(B). Or, equivalently, there do not exist infinite subsets Λ ⊂ Rn such that |λ−λ′|
is a zero of Jn/2, the Bessel function of order n/2, for all distinct λ, λ′ ∈ Λ.

Following ideas from [8] we can prove now our main result about orthogonal
bases, Theorem 2. A similar argument can be used on the sphere to study tight
spherical designs.

Proof of Theorem 2. The following result can be deduced from [11, Theorem 1.7]:
Given u, v ∈ Rn, consider two sequences {uk}k and {vk}k in Rn that converge to u
and v respectively, and such that uk

k ,
vk
k ∈ B for every k ≥ 1. Then

lim
k→∞

Kk(µa,
uk
k ,

vk
k )

Kk(µa, 0, 0)
=
J∗n/2(|u− v|)
J∗n/2(0)

.

Let Λk be such that {κλ}λ∈Λk is an orthonormal basis of Pk with respect to the

measure dµa = (1− |x|2)a−
1
2 dV . Then

Kk(µa, λk, λ
′
k) = 0,

for λk 6= λ′k ∈ Λk.
We know that Λk is uniformly separated for some ε > 0

ρ(λk, λ
′
k) ≥ ε

k
.

Then the sets Xk = k(Λk ∩ B(0, 1/2)) ⊂ Rn are uniformly separated

|λ− λ′| & ε, λ 6= λ′ ∈ Xk,

and Xk converges weakly to some uniformly separated set X ⊂ Rn. The limit is
not empty because by Proposition 10 for any M > 0,

# (Λk ∩ B(0,M/k)) 'Md.

Observe that this last result would be a direct consequence of the necessary density
condition for complete interpolating sets if we could take balls of radius r/n for
a fixed r > 0 in the condition. Finally, we obtain an infinite set X such that for
u 6= v ∈ X

J∗n/2(|u− v|) = 0,

in contradiction with Theorem D. �

Remark. Note that the fact that the interpolating sequence {Λk} is complete was
used only to guarantee that # (Λk ∩ B(0,M/k)) 'Md. So, the above result could
be extended to sequences {Λk} such that {κk,λ}λ∈Λk is orthonormal (but not nec-
essarily a basis for Pk) if Λk ∩ B(0,M/k) contains enough points.

References

[1] R. Berman, S. Boucksom, D.W. Nyström, Fekete points and convergence towards equilibrium

measures on complex manifolds, Acta Math. 207 (2011) 207, 1-27.
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