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Abstract

A variation in the α−β model which is a regression model that allows a deterministic prediction
of the extreme runout to be expected in a given path, was applied for calculating avalanche runout
in the Catalan Pyrenees. Present knowledge of major avalanche activity in this region and current
mapping tools were used. The model was derived using a dataset of 97 ‘extreme’ avalanches that
occurred from the end of 19th century to the beginning of 21st century. A multiple linear regres-
sion model was obtained using three independent variables: inclination of the avalanche path,
horizontal length and area of the starting zone, with a good fit of the function (R2 = 0.81). A lar-
ger starting zone increases the runout and a larger length of the path reduces the runout. The new
updated equation predicts avalanche runout for a return period of ∼100 years. To study which
terrain variables explain the extreme values of the avalanche dataset, a comparative analysis of
variables that influence a longer or shorter runout was performed. The most extreme avalanches
were treated. The size of the avalanche path and the aspect of the starting zone showed certain
association between avalanches with longer or shorter runouts.

1. Introduction

Determination of avalanche runout distances is fundamental for avalanche hazard mapping in
land-use planning. This is achieved with complementary methods and using sources of infor-
mation, such as the identification of vegetation clues, historical and eyewitness information,
dendrogeomorphological analysis and the analysis of aerial images as well as digital terrain
models (DTMs) and derived maps (Oller and others, 2015). The determination of avalanche
runout distances becomes more complex in areas where historical information is not available
and vegetation clues are lacking. Calculation models, complementary to the abovementioned
sources and methods, are particularly useful tools in these situations. Usually, dynamic mod-
els, statistical models (including the so-called statistical α−β model) or a combination of both
approaches are applied. Dynamic models generally provide information on velocity, flow
height, impact pressure and runout distances, and are especially suitable for engineering pur-
poses. The main limitation of these models is that the information, which is used to build them
(e.g. snow volume and friction coefficients) is often estimated from a limited set of available
data. Small variations in these parameters can lead to large differences in the runout distances
calculated (Lied, 1998; Ancey, 2006). α−β and statistical models determine the runout distance
from the topographic parameters of the avalanche path, but are unable to determine the other
fundamental parameters for engineering purposes.

The basic idea of the α/β and statistical models is that, having a sufficient number of well-
known avalanche occurrences, relationships among the data can be found as correlations from
the laws of probability. For avalanches, the models are constructed using objective topographic
parameters of a representative set of avalanche occurrences whose runout distances are known.
The obtained correlations can, then, be used as predictors (Ancey, 2006). Hence, statistical
characterisation of extreme avalanche runout using simple topographic inputs is able to pre-
dict maximum runout distance (Delparte and others, 2008). The two most widely used models
are (1) the α–β model (Lied and Bakkehøi, 1980), a regression model that allows a determin-
istic prediction of the extreme runout to be expected in a given path, and (2) the runout ratio
model (McClung and others, 1989), a runout ratio or density function probability model that
fits a Gumbel distribution to the runout avalanche data. Later, Keylock (2005) proposed that
the generalised Pareto distribution is a more appropriate one and since then it has been
applied by other authors (e.g. Favier and others, 2016). Eckert and others (2007) proposed
a method for computing the predictive distribution of snow avalanche runout distances
based on Bayesian modelling, and Lavigne and others (2017) implemented geostatistics
through a Bayesian hierarchical model to tackle the spatial dependence of avalanche runout
altitudes. But, apart from the runout distance, these approaches are unable to determine the
other fundamental parameters for engineering purposes. To overcome the limitations of
these calculation methods, coupled statistic-dynamical approaches have been proposed
(Eckert and others, 2010). They are based on a dynamic model, probability distributions are
chosen for the input variables and fictitious avalanches are generated using Monte Carlo simu-
lations to study the variability of the outputs (Barbolini and Keylock, 1999; Bozhinskiy and
others, 2001; Meunier and others, 2001; Maggioni, 2004). Barbolini and Savi (2001) and
Meunier and Ancey (2004) calibrated simple parametric models using the available local
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data to improve the input distributions that appropriately
represent the variability of the avalanche phenomenon at the
studied site. Ancey and others (2004) developed a coupled, con-
ceptual model that proposes a probabilistic method to deduce
the relationship between the probability distribution of input
and output variables on the used dynamics model. Eckert and
others (2008) described a general Bayesian framework for com-
puting return periods for avalanche hazard zoning; this allows
local data to be used to perform on-site calibration of an ava-
lanche propagation model and computation of design return per-
iods, and Eckert and others (2010) expanded this approach by
including a depth-averaged fluid propagation model with a
Voellmy friction law in the same Bayesian stochastic framework.

In this context of model development, often, for solving a spe-
cific problem, experts will typically combine several of these
methods in their analysis, weighting the estimates in which they
have greater confidence. Thus, the application of α−β models is
only one of the methods used for solving some avalanche pro-
blems (Jones and Jamieson, 2004).

The current study builds on the α–β regression approach,
based on a detailed extreme avalanche database to determine
the runout distance of extreme avalanches solely as a function
of topography. It is a simple statistical regression that explains
observed runout distances using various topographic covariates.
Therefore, this approach can be considered as a deterministic pre-
diction of the extreme runout to be expected in a given path, and
uncertainty considerations only concern statistical uncertainty
related to sample size limitation. Despite its simplicity, the
model is relatively successful for the prediction of extreme runout
distances (Gauer and others, 2010). The model (where α repre-
sents the runout and β the main inclination of the avalanche
track; see Section 3.1) was developed by Lied and Bakkehøi
(1980) using data from 111 avalanche paths in Norway that had
very well-defined runout distances. They found that β was the
only significant predictor and, since then, the α–β model has

been adapted to other mountain ranges in Europe, North
America and Japan (Table 1).

Using the equations of the obtained models, one can estimate
the mean value of α for a given path. Assuming the residuals to be
normally distributed, the mean can be assumed to approximate
the median (50th percentile, non-exceedance probability p = 0.5;
Jamieson, 2018). By increasing p (â = f (b)− zpSe, were zp is
the corresponding value of the normal distribution for a given
non-exceedance probability p, and Se is the standard error of esti-
mation for the regression), the probability of avalanches to exceed
the predicted α is reduced.

Furdada (1996) and Furdada and Vilaplana (1998) applied the
α–β regression model for the first time in the Pyrenees. They used
1 : 50 000 topographic maps with 20 m contours (DTMs were still
in development then). Avalanche data came from the first cartog-
raphy campaigns being carried out in the western Catalan
Pyrenees to provide information for the avalanche cadaster of
Catalonia, the forerunner of the Avalanche Database of
Catalonia (BDAC, Oller and others, 2005) that is presently main-
tained and updated by the Cartographic and Geological Institute
of Catalonia (ICGC). Furdada and Vilaplana (1998) emphasised
that the map scale of 1 : 50 000 was at the limit of the resolution
required for this type of analysis (although it was the most accur-
ate map scale at that time) and that there was a lack of knowledge
about the occurrence of the avalanches in the dataset used for
obtaining the model, which they estimated to be more than
once in 30 years. They considered that their equations only pro-
vide an approximation of the runout on very poorly known ava-
lanche paths, and do not contribute to improve the accurate
mapping of the largest avalanches due to (1) the scale of the avail-
able topographical maps, (2) the relative small dimensions of the
Pyrenean valleys and to (3) the dispersion of the residuals (α SD)
likely due to the poor knowledge of the occurrence of the ava-
lanches treated. The authors agreed with previous studies, such
as that of McClung and Lied (1987), which indicated that the

Table 1. Comparison of the α–β runout models (general equations)

Country (region) Regressive equation R2 SD N Reference

Austria (general) α = 0.946β− 0.83° 0.92 1.5° 80 Lied and others (1995)
Austria (Paznauntal) α = 0.91β + 0.81° 0.83 1.7° – Fuchs and others (2002)
Austria (Pitztal) α = 0.83β + 4.07° 0.90 1.3° – Fuchs and others (2002)
Austria (Salzburg, Styria, Tyrol, Vorarlberg, Upper Bavaria and
Allgäu)

α = 0.884β− 0.226°
α = 1.03β − 3.17λ− 3.17°
α = 0.995β + 0.00349H0− 6.99λ + 0.0133H0λ−
3.63°

0.80
0.85
0.91

2.53°
2.18°
1.70°

44 Wagner (2016)

Canada α = 0.93β 0.75 – 126 McClung and Mears (1991)
Canada (Rockies and Purcells) α = 0.956β− 0.784° 0.75 1.75° 126 Nixon and McClung (1993)
Canada (Coast Mount., British Columbia) α = 0.954β− 1.395° 0.74 1.70° 31 Nixon and McClung (1993)
Canada (Glacier Nat. Park, British Col.) α = 0.934β 0.891 1.05° 35 Delparte and others (2008)
Canada (Columbia Mountains, British Col.) α = 0.90β + 0.69 0.90 0.045° 33 Johnston and others (2012)
Canada (Fernie-Region, Canadian Rockies, British Columbia) α = 0.61β + 7.60° 0.66 1.19° 30 Johnston and others (2012)
France α = 0.82β + 2.82° 0.66 2.69° 168 Adjel (1995)
Italy (Bacino del Cordevole) α = 0.89β + 0.66° 0.73 1.62° 53 Barsanti (1990)
Italy (Val di Rabi) α = 0.87β + 1.71° 0.85 1.46° 54 Castaldini (1994)
Iceland α = 0.85β 0.52 2.2° 44 Johannesson (1998)
Japan α = 0.5β + 0.35θ− 1.01° 0.63 3.8° 66 Fujisawa and others (1993)
Norway (general) α = 0.97β − 1.4° 0.88 3.5° 111 Lied and Bakkehøi (1980)
Norway (general) α = 0.96β − 1.4° 0.85 2.3° 206 Bakkehøi and others (1983)
Norway (Western) α = 0.90β 0.87 – 127 McClung and others (1989)
Slovakia (Western Tatras) α = 0.91β − 0.04° 0.90 1.1° 30 Biskupic and Barka (2010)
Spain (Catalan Pyrenees) α = 0.97β − 1.20° 0.87 1.74° 216 Furdada and Vilaplana

(1998)
USA (Rocky Mountains, Colorado) α = 0.1558° +

0.8739β− 0.1243λβ
0.74 1.48° – Martinelli (1986)

USA (Coastal Alaska) α = 0.74β + 3.67° 0.58 – 52 McClung and Mears (1991)
USA (Coastal Mountains) α = 0.90β 0.74 1.70° 31 Nixon and McClung (1993)
USA (Colorado Rockies) α = 0.63β + 4.68° 0.50 – 130 McClung and Mears (1991)
USA (Sierra Nevada, California) α = 0.67β + 2.50° 0.60 – 90 McClung and Mears (1991)

Completed and updated form Wagner (2016). R2, Pearson correlation coefficient; SD, standard deviation; N, number of paths used to obtain the model.
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independent variable β was the one that best explained the
dependent variable α. They also pointed out that the morphology
of the topographic profile significantly influences the runout dis-
tance and obtained four regression models according to the topo-
graphic characteristics of the terrain profile. Furdada and
Vilaplana (1998) recommended that for future studies, (1) the
avalanche cadastre should be improved to provide more reliable
data, (2) the accuracy of topographic bases should be improved
and (3) DEMs should be used.

Since the study of Furdada (1996), there have been important
advances in digital cartography (e.g. topographic bases, high-
resolution DEMs and digital orthoimagery). Furthermore, the
knowledge of avalanche dynamics in the Catalan Pyrenees has
also improved with the elaboration of the Avalanche Paths Map
(Oller and others, 2006), the implementation of the BDAC
(ICGC; Oller and others, 2005) and a wider knowledge on the
dynamics of major-avalanche cycles (Muntán and others, 2009;
García and others, 2010; Oller and others, 2015). On this basis,
the current study updates the equations obtained by Furdada
and Vilaplana (1998), because more accurate base information
is now available.

The current study aimed to (1) update the α–β model for the
Catalan Pyrenees, using the cartographic tools currently available
and the latest knowledge on avalanche dynamics in this area, par-
ticularly the extreme-avalanche occurrences during the last period
of ∼100 years, (2) analyse the factors that influence the runout
distance, taking into account the morphometric and dynamic
characteristics of the avalanches of the dataset and (3) to investi-
gate whether particular characteristics of the paths can have an
influence on the fact that the extreme avalanches do not reach
the β point, as is the case in 21% of the extreme avalanche occur-
rences in the dataset (see Section 3.2), and if on the other hand,
the particular characteristics of the paths can influence the largest
runout distances.

2. Study area

The study area corresponds to the Catalan Pyrenees, which is at
the southeast of the Pyrenees mountain range (Fig. 1). It spans
130 km in the E–W axis and 50 km in the N–S axis. Elevations
range from 600–1000 m in the valley bottoms to heights hardly
exceeding 3000 m for the highest mountain peaks. The timberline
varies between 2100 and 2500 m a.s.l. (Carreras and others, 1996).
Three different climates have been identified (García and others,
2007; Fig. 1). The northwestern part has a humid oceanic climate
with regular winter precipitation. In winter, the total amount of
snowfall is ∼500–600 cm and the average temperature is −2.5°C
at 2200 m a.s.l. Towards the south, the climate gains continental
traits and winter precipitation decreases. In winter, the average
new snow precipitation at 2200 m a.s.l. is 250 cm and the average
temperature is −1.3°C. The prevailing winds are from the north
and northwest, and they are more intense than in the oceanic
region, often with gusts that are over 100 km h−1. In the eastern
Pyrenees, the Mediterranean influence predominates. Winter pre-
cipitation increases but is irregularly distributed and is linked to
Mediterranean cyclogenesis. In winter, the total amount of new
snow at 2200 m a.s.l. is ∼350–450 cm and the average temperature
is −0.8°C. The prevailing winds come from the north and the
strongest gusts often exceed 200 km h−1 at 2200 m a.s.l.

Seven regions have been defined (Major Avalanche Nivological
Regions, MANR) according to the frequency and spatial distribu-
tion of major avalanche episodes (MAE) or cycles (Oller and
others, 2015; Figure 1). The oceanic climate regions include
Garona (GA) and Pallaresa Nord (PN). This climate produces
the highest frequency of occurrence of MAEs, with northern
and northwestern advections being the most frequent. The

transition zone comprises the Ribagorçana-Pallaresa region
(RP), Pallaresa Est (PE) and Segre Nord (SN). This area shows
a decrease in the frequency of MAEs from W to E, SN having
fewer MAEs. This large area is considerably influenced by advec-
tions coming from the north and northwest, combined with
southern-southwestern advections. Finally, the area with the
Mediterranean influence comprises Segre-Llobregat (SL) and
Ter-Freser (TF). The frequency of MAEs is higher here than in
SN, but the origin of the advections that generate MAEs is
more varied and characteristically come from the east and
southeast.

3. Materials and methods

3.1 The α–β model

The α–β model is based on a large number (>30) of runout posi-
tions of the so-called ‘extreme’ avalanche occurrences (avalanches
with return periods of ∼100 years). As these data originate from
destructive avalanches, it is reasonable to assume that most of
these occurrences correspond to dry-mixed avalanches, relatively
large to their path, partially fluidised and accompanied by a pow-
der cloud (Gauer, 2014) and therefore with similar behaviours
(Lied and Bakkehøi, 1980; McClung and others, 1989; Gauer
and others, 2010).

Lied and Bakkehøi (1980) recorded the maximum known
extent for each avalanche path. They considered the frequency
of occurrence of those avalanches near their maximum extent
may be of the order of 1 in 100 years or lower. In general, authors
considered the extreme runout positions with the same criteria
(McClung and Lied, 1987; Mears, 1988; McClung and others,
1989; Gauer and others, 2010; Wagner, 2016), or even occurring
less than once in 100 years (Sinickas and Jamieson, 2014), but
bearing in mind that the true return period probably ranges
from 30 to 300 years (Jones and Jamieson, 2004; McClung and
others, 1989).

Lied and Bakkehøi (1980) obtained data of ten topographic
parameters, identified through topographic maps, aerial images
and fieldwork. In 1983 Bakkehøi and others extended the previ-
ous analysis by increasing the number of avalanche occurrences
to 206 and adding new predictive variables. They found that the
best equation to predict α was function of β and Hα (vertical
drop of the avalanche path), and also included the parameters
y′′ (shape factor or curvature of the path) and θ (inclination of
the starting zone; see next paragraph). Nevertheless, the only sig-
nificant one was β. Nixon and McClung (1993) obtained, with
other combinations of parameters, similar results.

In Figure 2, the main parameters used for the derivation of the
α–β model are plotted. Various combinations of H, β, θ and y′′

have been used in regression models for estimating α around
the world (Table 1). α (alpha angle, runout angle) is the inclin-
ation of the line connecting the upper end of the avalanche
path with the maximum observed runout position (α point); α
corresponds to the energy-line parameter defined by Heim
(1932) to estimate the average coefficient of friction of a mass
that moves from its initial position to its stopping position,
being a measure of the energy dissipation along the path for
each avalanche, and it was introduced as a simple measure of run-
out (Heim, 1932; Scheidegger, 1973; Körner, 1980). It may be
used as a criterion or index for empirical avalanche reach (Lied
and Bakkehøi, 1980; McClung and Gauer, 2018). β (beta angle)
is the inclination of the line connecting the upper point of the
avalanche starting zone to the point of the topographic profile
where the slope reaches 10° (β point, used by the model as a ref-
erence point). Gauer and others (2010) included the condition
that the corresponding β angle should be ≥15° in order to
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avoid unrealistically low β angles. The reason for using the β
angle, or line, is to generate a simple, best description of the
main inclination of the avalanche starting zone and track (Lied
and Bakkehøi, 1980; Bakkehøi and others, 1983; Gauer and
others, 2010). Even though in early studies it was thought that
10° represents the transition zone between the track and the run-
out zone for large, dry-mixed avalanches, which start to slow-
down and begin depositing at 10° (de Quervain, 1972; Buser
and Frutiger, 1980), it is certainly not the case (Gauer and others,
2010; Sovilla and others, 2010; Gauer, 2014, 2018). Almost all dry-
mixed avalanches start to decelerate farther upslope (Gauer and
others, 2010). θ (theta angle) corresponds to the slope of the
upper 100 m of the starting zone (θ100, Bakkehøi and others,
1983). Some studies consider the lower end of the starting zone
to be the point where the slope reaches 28° (Lied and Toppe,
1989; Furdada and Vilaplana, 1998). Recently, Wagner (2016)
applied θ100, but reducing the length of the measurement if the
25° point was in between the upper 100 m. y′′ is the second
derivative of the polynomial function that better fits the terrain
profile. It is a shape factor that describes the whole profile
(Bakkehøi and others, 1983). The second-degree polynomial

function is of the type: y = ax2 + bx + c and, as previously
described by other authors (e.g. McClung and Lied, 1987); this
polynomial provided an excellent fit to the avalanche terrain pro-
files, obtaining determination coefficients (R2) >0.99. H is the ver-
tical drop, measured as the difference between the upper end of
the avalanche path at the y intercept and the minimum point
on the second-degree polynomial function where y′ = 0. In gen-
eral, it is assumed that H is very close to the vertical drop of
the avalanche (Hα), and both values are assimilable given the
proximity to the real slope of the avalanche path (McClung and
Lied, 1987). Hβ is the corresponding vertical drop measured
between the upper end of the avalanche path at the y intercept
and the β point. L is the horizontal length of the avalanche
path from the starting point to α point. Lβ is the corresponding
horizontal length from the starting point to β point.

In general, avalanche occurrences considered by most authors
had a minimum vertical drop of 350 m, a terrain profile with little
or no run-up or irregularities in the runout area, a differentiated
and unique starting zone, and no anthropogenic modifications.

McClung and Lied (1987) and Nixon and McClung (1993)
found that short slopes (<350 m vertical drop) tend to run pro-
portionately farther than larger slopes, and therefore the models
developed for particular mountain ranges using the α–β runout
method may not be applicable to short slopes, and that a particu-
lar need was the analysis of short avalanche paths with a vertical
drop minor than 350 m. Jones and Jamieson (2004) developed a
regression model specifically for short slopes in Canada.
However, Wagner (2016) investigated 49 avalanche occurrences
in Austria some of which with drop heights <300 m and found
that the model still works also for those drop heights.

The α–β model is not intended to include run-up. In contrast
to the study of Lied and Bakkehøi (1980) and Bakkehøi and
others (1983), as part of the calibration of the model of the
Austrian alpine region (Lied and others, 1995), avalanches reach-
ing small run-ups were also considered for the first time. Delparte
and others (2008) included avalanches with a maximum observed

Fig. 1. Study area. The MANR are: GA (Garona), PN (Pallaresa Nord), RP (Ribagorçana-Pallaresa), PE (Pallaresa Est), SN (Segre Nord), SL (Segre-Llobregat) and TF
(Ter-Freser). The coloured areas correspond to the areas susceptible to avalanche activity. MANRs with oceanic influence are shown in violet, MANRs in the tran-
sition zone are shown in blue and MANRs with Mediterranean influence are shown in red. The intensity of the colour indicates the frequency of MAE (% in brackets).
Yellow dots correspond to the location of the paths with avalanche occurrences used in the current study.

Fig. 2. Main parameters of the α–β model (after Lied and Bakkehøi, 1980).
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runout that involved a run-up the opposing slope of <25 vertical
meters, from the valley bottom up to the recorded stopping point.
They considered that in the avalanche paths that do run up the
opposing slope <25 vertical meters, this difference is lessened as
the winter progresses and the deposition of snow fills the depres-
sion and reduces the run-up amount. In their research, all the
paths that include some run-up had measured run-up that
accounted for <2.5% of their total vertical drop. In the current
study, we have applied the same criteria.

Considering the use of DEMs, Delparte and others (2008)
demonstrated that variations in DEM resolution (5–25 m hori-
zontal resolution) did not significantly affect α–β regression
equations.

3.2 The avalanches’ database

Extreme avalanche occurrences used in the current study were
extracted from the Major Avalanches Database (MADB), which
stores major avalanche (MA) data (avalanches that exceeded the
size of usual avalanches; Schaerer, 1986) or destructive avalanche
data (Laternser and Schneebeli, 2002). As defined in Gauer
(2018), ‘major avalanches’ are avalanches that can be considered
as R4, large relative to the path, or R5, major or maximum relative
to the path (Greene and others, 2016, 3.6.5.2. Size-relative to the
path). Information collected in this database comes from the
BDAC managed by the ICGC, whose sources of information
and characteristics are described in detail in Oller and others
(2015), as well as from additional research performed by the
authors. The MADB includes the release date, snow and weather
conditions, morphometries, flow characteristics and the damage
caused by these major avalanches. This information was obtained
from 30 years of avalanche observations (winter surveillance),
photointerpretation (orthoimages available from 1946 to present),
dendrogeomorphology (covering approximately from 1800 to
present; Muntán and others, 2004, 2009, 2010), eyewitnesses
(20th century mainly) and historical data (since 15th century).
Currently, the MADB stores information on 897 major avalanches
(MA), mapped in 551 avalanche paths. Only one avalanche occur-
rence per path was selected and it was considered to be the largest
in, at least, 100 years (see next paragraph). The quantity and good
quality of the information available enabled us to apply some con-
straints in the selection of the data (discussed below) used to
obtain the best possible model.

MA occurrences since the end of the 19th century were classi-
fied by comparing the distribution of the runout distances in each
avalanche path (Oller and others, 2015) and selecting the largest
one. In a few of the avalanche paths it is known from historical
documents that avalanches occurred before the 19th century.
These occurrences were considered not to correspond to the
same set and were discarded. The reason was that all these ava-
lanches occurred during the Little Ice Age (LIA; from 1300 to
the end of 1800s; Mann, 2002; Oliva and others, 2018). This cli-
matic period, different to the present one and characterised by
cycles with large temperature falls and considerable increases in
precipitation, had increased numbers of severe catastrophic
meteorological-related phenomena (e.g. floods, strong snowfalls,
sea storms, persistent rain and droughts). In Catalonia, a concen-
tration of catastrophic floods was identified during the periods
1580–1620, 1760–1800 and 1840–70 (Barriendos and Martín
Vide, 1998; Barriendos and Llasat, 2003; Llasat and others,
2003; Blöschl and others, 2020). All the avalanches occurring dur-
ing these periods, therefore, probably occurring under climatic
conditions that are different to the present conditions, as it has
been described in 1888 snow avalanche cycle in the Spanish
Cantabrian Mountains (García-Hernández and others, 2018) or
in 1803 and 1855 snow avalanche cycles in the Pyrenees

(García and others, 2005; Oller and others, 2020), were separated
from the dataset.

The goal of the α–β method is to work with ‘extreme’ occur-
rences. However, the α angles measured in this work are deter-
mined from the distal (downslope end) of the individual
avalanche deposits or effects and not necessarily for maximum
runout positions for the paths, that is, in a similar way that
McClung and Gauer (2018) do and point out in their work.
This means that the dataset includes both, dense flow and powder
runouts, probably from dry-mixed avalanches, as explained in
Section 3.1. Given the uncertainty of the available data, the return
period is likely to vary from 30/50 to 300 years, introducing
unavoidable random variation in the data (McClung and Mears,
1991). Besides, Mears (1992) considers that when many 50 to
200-year-old trees are destroyed by an avalanche, this damage
provides convincing evidence that the avalanche has, about, an
estimated return period of 100 years. In our study, considering
the characteristics of the data in the MADB, we decided to
work with well-estimated avalanches whose occurrence has been
the largest in 100 years, or ‘extreme’ occurrences henceforth.

For the determination of the extreme occurrences, photointer-
pretation was essential. The ICGC website contains orthoimages
of 18 flights covering the whole of the Catalan Pyrenees from
1946 to the present (1946, 1956, 1990, 1993, 1996/97, 2003,
2005, 2007, 2008, 2009, 2011, 2012, 2013, 2014, 2015, 2016,
2017 and 2018). This enables the state of the forest to be com-
pared and analysed between 74 years ago and now. A well-
developed forest in 1946 indicate a minimum previous period
of 30 years necessary for its development without disturbances
(in dendrogeomorphologycal research of several avalanche
paths, the age of the oldest-affected trees was more than 200
years; Muntán and others, 2004, 2009, 2010). The identification
of a major subsequent destructive avalanche through the identifi-
cation of a new path in the forest, together with the analysis of the
occurrences recorded in the same avalanche path, can be used to
qualify this occurrence as extreme in 100 years. In our database,
for avalanche paths with information from winter surveillance,
eyewitness accounts, historical data or dendrogeomorphological
analysis, the time window is longer. In any case, we can affirm
that the extreme avalanches considered in this study were the lar-
gest occurrences at least in 100 years in their corresponding ava-
lanche path.

The selected avalanches had to meet the necessary require-
ments for the α–βmethod, i.e. a differentiated and unique starting
zone and no anthropogenic modifications (Sinickas and
Jamieson, 2014). The goal was to work with very well-defined
individual and unmodified avalanche paths. This reduced the
number of avalanches in the dataset used to 97 avalanche occur-
rences (12% of the dataset homogeneously distributed in the
study area; Fig. 1).

The mapping of the avalanches was performed using the
orthoimages described above, on the ICGC 1 : 5000 topographic
map with 5 m contour distances, and a 5 m × 5m DEM. The β
point was placed on the topographic map at the point where
the slope between the contours falls below 10°. In avalanche
paths where the slope oscillates ∼10°, benches shorter than 3%
of Lβ (Fig. 2) were ignored during the selection of the β point
because, according to Sinickas and Jamieson (2014) judgement
and field experience, they are considered negligible compared to
the length of the path. For benches larger than the 3% limit,
other path characteristics were used to inform the decision
based on expert criteria, as also applied by Furdada and
Vilaplana (1998).

During the preparation of the data, we realised that not all the
selected extreme avalanches reached the β point, with 20 ava-
lanches (21%) in our dataset not reaching it. Other studies have
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also reported similar cases, as the pioneer one of Lied and
Bakkehøi (1980), who found that 25% of the well-known ava-
lanches that they used did not reach the β point. As they fitted
the observed runout of the avalanches by linear regression, it is
reasonable to assume that the error around the fit is approxi-
mately normal distributed (it has to be therefore expected that
at least ∼16% of the observed avalanches do not reach β). In
order to distinguish the most extreme (smallest) α angle of each
single avalanche, which might be regarded as a random variable
and the expected value according to the regression model, in
Section 4.2 the parameters that can explain these differences are
explored.

For the selected avalanches, in addition to the morphometric
parameters that were formerly used to evaluate α : β, H, L, y′′

and θ (Lied and Bakkehøi, 1980; Bakkehøi and others, 1983)
(Fig. 2), we measured other parameters that are also considered
to affect runout distances (Table 2).

The variables H and L were substituted by Hβ and Lβ because
when applying the regression analysis in an unknown avalanche
path, only these variables can be measured (H and L are
unknown). The topographical profiles (PTs) were classified
according to the topography of the transition track – runout
zones in order to group some usual shapes that can be classified
similarly by different experts as (1) gradual: the slope of the track-
runout zones decreases gradually; (2) abrupt: there is an abrupt
transition from a relatively steep slope to a slope at or near 0°
in the runout zone (hockey-stick, Jones and Jamieson, 2004);
(3) run-up: there is an abrupt transition from a relatively steep
slope to a negative slope; (4) gradual/abrupt run-up: there is a
gradual or abrupt transition ending in a negative slope and (5)
complex (irregular): the slope in the transition track-runout is
irregular (e.g. rocky bars and mounds). The area of the starting
zone (Azs) of each avalanche path was measured on the horizon-
tal projection. The area was defined by the highest estimated ele-
vation of the starting zone, an average width, and for the lower
side, the elevation where the slope decreases below 28°, or
where the morphology of the terrain suggested it (e.g. confine-
ment and cliffs). The mean aspect of the starting zone (Ozs) of
each avalanche path was measured in degrees. Confinement
(Con) was determined by measuring the % of the horizontal
length (L) of the avalanche, confined. It was considered as con-
fined, a relation width/depth of the channel <10. The climate
region (Cli) in which the avalanche path is located (also consid-
ered by Lied and Bakkehøi, 1980; Furdada and Vilaplana, 1998;
Jones and Jamieson, 2004) was assigned to: (1) oceanic, (2) tran-
sition or (3) Mediterranean (Fig. 1). Another parameter that
could affect avalanche runout distances is the area of the forest

devastated by the avalanche, since this was an important area
affected by many of the registered avalanche occurrences. The
deforestation was measured by comparing aerial images before
and after the avalanche occurrence. Although it was only possible
to survey 24 cases, two variables were measured according to
Anderson and McClung (2012): the length of the deforested
track (Def) was determined by measuring the percentage of the
horizontal length of the avalanche, deforested. The horizontal dis-
tance to forest penetration (L_For) was measured from the highest
point of the starting zone until the beginning of the forest.

Table 2 presents the descriptive statistics of each parameter, as
well as the Pearson coefficient of determination (R2) and the stat-
istical significance ( p-value) of the correlation of each variable
with α.

4. Analysis and results

4.1 Application of the α–β runout model

In order to know the variables that may influence the runout of
the avalanche (α) and their weight, a prediction model was per-
formed by using multiple linear regression. Previously, all partial
bivariate correlations between the dependent variable (α) and the
independent variables of the terrain that have an influence on the
runout distance (Table 2) were carried out. Every variable was
tested for normal distribution using the Kolmogorov–Smirnov
test at 5% confidence level. Not normally distributed variables
were normalised through log-transformation. Thus, to know the
association between α and the rest of the independent variables
of continuous quantitative scale, the Pearson correlation (for
those that follow a normal or parametric distribution) and a
rho of Spearman (for those non-parametric) was performed.
From the results obtained from the bivariate correlations, the vari-
ables associated with α with levels of statistical significance >0.05
were included in the multiple linear regression model.

Given the limited size of the dataset, a general model was con-
structed with 83 avalanche occurrences. From the initial dataset
(97 avalanche occurrences), 14 avalanches (15% of the dataset)
were separated randomly (one of every seven avalanches was
selected according to its position listed by its code) to check the
reliability of the model and validate it later.

The multiple regression model was derived from the variables
β, Azs (log) and Lβ, all of them associated with α, with levels of
statistical significance >0.05, and very significant for the function
with p-values <0.001; for all the other measured parameters, the
correlation was very poor (Tables 2 and 3). The non-standardised
B (beta) regression coefficients are positive for the β and Lβ

Table 2. Descriptive statistics of the main topographic and morphometric parameters considered, and the correlation between the response variable α and the
predictor variables used to develop the α–β model

Variable N Mean SD Range R2 p-value

α (°) 97 25.6 3.7 17.6–33.9 – –
β (°) 97 26.7 3.8 18.9–36.0 0.71 <0.001
θ (°) 97 34.5 4.0 25.2–44.4 0.02 0.158
y′′ (m−1) 97 2.77 × 10−4 1.56 × 10−4 1.20 × 10−5–8.00 × 10−4 0.03 0.079
Hβ (m) 97 877 270 355–1595 0.03 0.115
Lβ (m) 97 1770 600 728–3193 0.07 0.009
PT (ordinal) 97 1.4 0.9 1–5 0.03 0.084
Azs (ha) 97 5.70 5.44 0.38–24.68 0.06 0.014
Ozs (°) 97 204 100 2–360 0.03 0.072
Con (%) 97 48.9 25.0 0.0–87.6 0.03 0.080
Cli (ordinal) 97 1.8 0.7 1–3 0.00 0.859
Def (%) 24 31.7 22.3 0–67.2 0.12 0.606
L_For (m) 24 644 550 0–2,430 0.00 0.860

N, number of paths where the variable was measured; SD, standard deviation; R2, Pearson coefficient of determination; p-value, statistical significance. The variables that show the best
correlation with α are highlighted in bold.

6 Oller and others

Downloaded from https://www.cambridge.org/core. 23 Jul 2021 at 07:52:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


variables (Table 3). Thus, when increasing the value of the β and
Lβ variables, the α value increases. The negative value of the B
coefficient for the variable Azs (log) indicates an inverse associ-
ation with the α variable. The standardised function coefficients
help to determine the weight or influence of each of the variables
included in the model. Thus, the β variable, with a value of 0.923
(standardised coefficient), is the one that shows the most influ-
ence on the runout of the avalanches through the α variable

The goodness of the fit of the regression model to the observed
data has been checked using the coefficient of determination (R2).
The latter indicates that the percentage of variance explained by
the regression line of the model is 81%. When applying the
Fisher’s test, by means of the analysis of variance (ANOVA),
the result with a significance value of <5% confirms the goodness
of the obtained model. The confidence interval (CI) at 95% is pre-
cise enough for each one of the function coefficients, confirming
the robustness of the model. The values of tolerance (percentage
of variance not explained by other predictors) is >0.65, with VIF
values (variance inflation factor) lower than 2, thus so weak that
collinearity of the explanatory variables can be considered inexis-
tent and doesn’t affect the results (Thompson and others, 2017).

Finally, an analysis of the residuals was performed, which con-
firmed that the basic assumptions of normality and non-existence
of heteroscedasticity were met. For the diagnosis performed on
the goodness of the fit and the analysis of the residuals, it can
be confirmed that the model is good and robust.

Equation (1), obtained by multiple linear regression is:

a = 0.90 b+ 0.001Lb–1.33 Ln(Azs)+ 0.61◦,

R2 = 0.81, SD = 1.63◦, N = 83
(1)

The model was then applied to the 14 avalanche occurrences
selected to check their reliability. The values obtained were
located within the 95% CI (Fig. 3, blue dots), indicating a satisfac-
tory fit of the model.

In Table 4, descriptive statistics of α and error (α observed − α
predicted) values obtained after applying to the 97 extreme ava-
lanches Eqn (1), and those obtained by Furdada and Vilaplana
(1998) and Oller and others (2018) are shown. Using the general
equation obtained by Furdada and Vilaplana (1998; α = 0.97β−
1.20°, R2 = 0.87, SD = 1.74°, N = 216), we obtained the same
mean α angle (24.7°) as the one obtained with our own equation.

Oller and others (2018) obtained a model (α = 0.85β + 2.10°,
R2 = 0.76, SD = 1.87°, N = 63) by censoring a dataset similar to
the one used in the current study, although not including the ava-
lanches that did not reach the β point, as Furdada and Vilaplana
(1998) did. In spite of this, results are quite similar (α and error
values, Table 4). Hence, Eqn (1) would be recommended to esti-
mate runout distances for avalanche return periods of the order of
100 years, in this region, like the one obtained by Furdada and
Vilaplana (1998).

As a broader exercise of regression equations comparison, the
results of our Eqn (1) were compared with the results obtained
when applying other equations from other mountain chains to

our avalanche occurrence dataset. In Figure 4, the descriptive sta-
tistics of error and α angle obtained with equations (1 to 11) from
Table 1 are plotted. Equations are ordered from lower (left) to
higher (right) mean α error, being 1, the equation obtained in
this research (Table 3). It can be observed that the mean value
of the error increases as the mean value of α decreases, although
some error values are close to those in Eqn (1) (Canada, 2; France,
3; Norway, 4; Japan, 5; Austria, 6). The dispersion, however, is
much greater, and especially in Japan (5). With the exception of
Canada (2) and France (3), the mean α values obtained are
lower than that obtained with other equations, especially from
Slovakia (7) to the right side of the graph. Despite the exception
of Canada (2) and Norway (4), in general in continental regions
and at higher latitudes, the mean α angles are smaller (longer run-
out, right sector of the graph), and in maritime regions and at

Table 3. Coefficients of the multiple linear regression model with three variables

Non-standardised
coefficients 95% CI (B) Collinearity statistics

Variable B SD Standardised coefficients t p-value Lower Higher Tolerance VIF

(Constant) 0.614 1.575 0.390 0.698 −2.514 3.741
β 0.901 0.048 0.923 18.728 <0.001 0.805 0.996 0.836 1.196
Lβ 0.001 <0.001 0.242 4.362 <0.001 0.001 0.002 0.658 1.519
Ln(Azs) −1.329 0.189 −0.364 −7.045 <0.001 −1.703 −0.954 0.761 1.314

B, beta non-standardised correlation coefficient; SD, standard deviation; t, t statistic; p-value, statistical significance; CI, confidence interval; VIF, variance inflation factor.

Fig. 3. Plot of the observed α values with respect to those obtained with regression
Eqn (1). The outside lines indicate the 95% confidence bands. Red dots: training sam-
ple (to construct the model); blue dots: test sample (to validate the model).

Table 4. Descriptive statistics of α predicted and error (α observed − α
predicted) values obtained after applying to the 97 extreme avalanche
occurrences Eqn (1), and those obtained by Oller and others (2018) and
Furdada and Vilaplana (1998), respectively; Eqn (1) is more accurate (lower
error values)

α predicted
°

Error (α observed− α
predicted)

°

Equation Mean SD Range Mean SD Range

(1) 24.7 3.4 17.3–33.5 0.9 1.6 −4.5 to 4.6
Furdada and Vilaplana (1998) 24.7 3.7 17.1–33.8 0.9 2.1 −6.4 to 7.9
Oller and others (2018) 24.8 3.2 18.2–32.8 0.8 2.0 −6.4 to 7.3
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lower latitude α angles are higher (shorter runout, left side of the
graph).

4.2 Analysis of the extreme values obtained

To study the variables that influence a greater or lower runout of
the avalanches (i.e. that exceed or do not reach the α predicted), a
comparative analysis of the data was performed. As a first step, the
data were grouped into two sets. From the dataset, 64 (66%) ava-
lanche occurrences had a positive error (the observed runout was
shorter than that predicted by the model) and 33 (34%) avalanche
occurrences had a negative error (the observed runout was longer
than that predicted by the model). This suggests that the model
tends to favour longer runout distances. The end values of the dis-
tribution (positive or negative values beyond a SD, 25 and 8 ava-
lanches, respectively) were separated in order to highlight main
differences between the extreme values of the avalanche dataset.
The 20 avalanche occurrences not reaching the β point were
included in the 25 positive occurrences group (Table 5). No dif-
ferences were found between independent datasets based on T,
Mann–Whitney or ANOVA tests, according to the types of vari-
ables analysed.

Analysing comparatively the parameters corresponding to each
population, despite the reduced number of cases of the two data-
sets, there are some differences to be mentioned. On the one
hand, for a similar mean β angle (between 26° and 27°), α angles
are logically lower for avalanches with a negative error (larger
runout). On average, avalanches with a positive error are larger
(larger Hβ, Lβ and Azs) than the one’s with a negative error.

The mean aspect of the starting zone of the avalanches with posi-
tive error is NW, whereas for avalanches with a negative error is
SE (Table 5). No tendencies were found in relation to climate
divisions.

5. Discussion

5.1. Considerations about the obtained model

Our update of the α–β model for the Catalan Pyrenees has pro-
duced a general equation with three significant variables. The
parameters of the model (variance, tolerance and CI) confirm
its robustness, with a coefficient of determination R2 = 0.81. The
97 avalanches of the dataset took place mainly during the 20th
century, under climatic conditions that are similar to current con-
ditions. Therefore, the equation provides estimates of the runout
distances for avalanches occurring about once in 100 years. If the
SD is subtracted, the non-exceedance probability factor increases,
providing a boundary to the uncertainty.

Gauer and others (2010) found that there was neither volume
nor fall height dependency with runout. However, Eqn (1) shows
a slight relation with Lβ (horizontal length of the avalanche until β
point), and Azs, an indirect measure of the size of the avalanche at
the starting zone, result that conceptually contradicts the results
obtained by these authors. They explained that erosion and
entrainment of snow seem to be crucial for avalanches to reach
long runout distances, which feed and grow through snow
entrainment at the head of the avalanche, but long runouts are
not dependent on the total mass. In our case, we have not

Fig. 4. Boxplots of α predicted and error values
obtained after applying to the 97 extreme avalanche
occurrences the general equations listed in Table 1,
ordered in increasing order of mean error (from left to
right). 1, Eqn (1); 2, Canada (McClung and Mears,
1991); 3, France (Adjel, 1995); 4, Norway (Lied and
Bakkehøi, 1980); 5, Japan (Fujisawa and others, 1993);
6, Austria (Lied and others, 1995); 7, Slovakia (Biskupic
and Barka, 2010); 8, USA Coastal Mountains (Nixon
and McClung, 1993); 9, USA Coastal Alaska (McClung
and Mears, 1991); 10, Iceland (Johannesson, 1998); 11,
USA Colorado Rockies (McClung and Mears, 1991).
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considered entrainment and neither avalanche mass at the start-
ing zone or runout zone, because they are not parameters that
can be directly derived from the topography of the path. We
used indirect variables of the size of the avalanche (Lβ and Azs)
which counteract: larger Azs provide longer runouts and larger
Lβ provide shorter runouts. This result may be explained because
the longer is the track, the longer act the frictional forces
(approximately when slope decrease below 24°, Gubler and
others, 1986; McClung and Mears, 1995), and also the higher
are the friction forces due to channelisation, roughness (forest
and terrain) and densification of the flow (Bakkehøi and others,
1983), especially for dense flow avalanches (Wagner, 2016).
This can be related to shorter slopes tendency to provide larger
runouts compared to longer slopes, as explained in Section 3.1.
In relation to the area of the starting zone, the largest it is, the
longer is the runout because of the higher mass incorporated,
involving the size effect indicated by Pudasaini and Hutter
(2007). Thus, the larger is the avalanche, the higher may be its
capacity of snow erosion and entrainment.

5.2. Comparison with the former model

The equation obtained (1) provide similar runout distances than
those obtained more than 20 years ago by Furdada and Vilaplana
(1998). Furdada and Vilaplana (1998) reported that the results
obtained with their equations were probably undervalued given
the uncertainty about the return period of the avalanches in the
dataset, estimated higher than 30 years. As the goal was to register
extreme avalanches, only avalanches that surpassed the β point
were registered, with the damage caused by past avalanches in
the forest and eyewitness information being the main criteria
used to identify these runout distances. Therefore, according to
the dataset, the Furdada and Vilaplana (1998) equation should
provide more conservative results, that is, lower α angles than
for a non-censored dataset. However, the results were likely to
correspond to avalanches that include some more frequent
ones, given that the model produced similar runout distances des-
pite the use of a censored dataset, and some few less frequent and
rarer ones. Compared to the dataset used in the current study,
which considers avalanche occurrences of the order of 100
years return period, including all avalanches, reaching and not
reaching the β point (non-censored dataset), the dataset used by
Furdada and Vilaplana (1998) should correspond to a lower
return period, as they also suggested. Their high coefficient of
determination (R2) value (0.87) was probably due to a more
homogeneous dataset, by not including avalanches not reaching
β. Therefore, despite obtaining similar results, the datasets used
in both studies had significant differences, that can be due to:
(1) a different criterion in the selection of the avalanche

occurrences that feed the model (i.e. censoring of avalanche
occurrences not reaching the β point); (2) the smaller geographic
area involved in the former analysis (only western Catalan
Pyrenees, in the oceanic and western transition climatic areas
that have a higher MAE – major avalanche episode or cycle – fre-
quency, Fig. 1; see next section) and (3) a less precise mapping
tools.

Furdada and Vilaplana (1998) obtained four regression models
according to the topographic characteristics of the terrain profile.
In our dataset, neither y′′, the shape factor that describes the ter-
rain profile, nor PT, a classification of the terrain shape at the
transition track-runout zones, had statistical significance with
the variable α. Probably, the dataset was not large enough to
include a statistical significant number of cases for each shape
class.

5.3. Terrain and climate influence on extreme runouts

When analysing the avalanches with the most extreme positive
and negative error, certainly there is not a clear distribution in
function of climate divisions, but there are differences related to
topography of the avalanche paths as McClung and others
(1989) indicate.

The variables that have the most influence on extreme runout,
above and below α obtained by the model, are the variables
related to the size (Lβ, Hβ and Azs) and the aspect of the starting
zone, Ozs (Table 5). Smaller and SE facing starting zones provide
longer runouts than expected, for more than 1 SD. In relation to
the aspect of the starting zone (Ozs), negative values (larger run-
out) are associated with SE starting zones and positive values
(shorter runout) are associated with NW starting zones. In SE
starting zones runout distances are larger than predicted. This
can be explained by the highest frequency of cold NW advections
(Oller and others, 2015) which accumulate drifted snow towards
SE starting zones, produce storm slabs and generate cold dry snow
avalanches within southern slopes. The atmospheric patterns that
generate avalanches in northern slopes are less frequent and
involve warmer conditions and this may explain why there are
more avalanches with a runout shorter than predicted. Forest
extent in these avalanche paths is larger due to a less avalanche
activity and it offers a higher roughness to the flow to extreme
avalanches. The available information on forest destroyed by the
avalanches of the dataset indicates that in northern slopes the
mean deforested area per avalanche is 3.59 ha and in southern
slopes is 2.23 ha, which supports this hypothesis. In SE facing ava-
lanche, paths with a negative error (larger runout), starting zones
are smaller. This would be explained by the increase of the snow
mass released because of the wind loading contribution in these
starting zones.

Table 5. Descriptive statistics of the main topographic and morphometric parameters of the avalanches with positive error >1 SD (observed avalanches don’t reach
predicted runout distances) and negative error <−1 SD (observed avalanches exceed predicted runout distances)

Avalanches with positive error (shorter runout) Avalanches with negative error (larger runout)

Variable N Mean SD Range N Mean SD Range

α (°) 25 26.9 3.1 19.9–34.0 8 22.2 3.1 18.4–27.6
β (°) 25 26.2 3.4 19.9–34.4 8 26.8 3.6 20.5–32.8
θ (°) 25 34.2 3.5 29.2–44.4 8 37.2 4.8 27.6–43.1
y′′ (m−1) 25 2.6 × 10−4 1.5 × 10−4 1.2 × 10−4–6.0 × 10−4 8 3.5 × 10−4 1.4 × 10−4 1.8 × 10−4–6.0 × 10−4

Hβ (m) 25 887 271 355–1290 8 691 180 465–950
Lβ (m) 25 1822 591 728–2996 8 1357 259 1007–1754
PT (ordinal) 25 1.2 0.6 1–3 8 1.0 0.0 1–0
Azs (Ha) 25 6.55 5.59 0.58–20.44 8 4.52 4.34 0.47–13.83
Ozs (°) 25 233 100 50–358 8 148 87 2–300
Con (%) 25 42 25 0–82 8 51 27 14–85
Cli (ordinal) 25 1.8 0.7 1–3 8 1.9 0.8 1–3
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This result becomes very relevant in terms of uncertainty.
When applying the model, the subtraction of 1 SD corresponds
to a non-exceedance probability of p = 0.84, which means that
84% of the paths should have runouts that do not exceed the pre-
dicted α, which is a high security range. In consequence, in ava-
lanche paths with such characteristics (starting zones smaller and
facing SE) it would be recommended to land-use planners to con-
sider increasing the non-exceedance probability.

5.4. Comparison with other models

Regarding the exercise of comparison of the model obtained in
this study and other models, some constraints and considerations
arise. The first, obvious one is that the database of avalanche
occurrences affects the obtained equation and the consequent
results. As an example, in the Catalan Pyrenees, censored (Oller
and others, 2018) and non-censored (this study) databases can
generate mean similar results, but censored database ultimately
produce a range of more conservative runouts and a range of lar-
ger errors (Table 4), resulting in a more imprecise estimation of
the runouts.

The comparison of the results obtained with Eqn (1), with
other equations obtained in other mountain ranges around the
world (Fig. 4), shows how in the Pyrenees runouts are shorter,
but relatively close to other European Alpine countries (e.g. the
equation obtained from France could be applied to the Catalan
Pyrenees, even though the SD error is larger). Results seem to
show some climate influence: in general, in continental regions
and at higher latitudes, the mean α angles are smaller (longer run-
out), and in maritime regions and at lower latitude α angles are
higher (shorter runout). McClung and others (1989) considered
that climate regime does not have a strong influence on extreme
runouts on a time-scale of more than ∼100 years. According to
their experience, large dry avalanches have the longest runout dis-
tances in the majority of cases. For timescales of 100 years, large
dry avalanches will occur in either climatic regions, thus the run-
out statistic models are fitted with data and correspond to this
type of avalanche. McClung and others (1989) concluded that
the tendency for long runout distances could be explained by
the profiles of the avalanche paths, but not by snow-climate clas-
sifications. We suggest another possible variable that can explain
the differences that shows Figure 4, and is the frequency of these
‘extreme dry’ avalanches. Frequency of extreme avalanches could
be different in each mountain range, as proposed in Oller and
others (2015). Therefore, for the same time period, the probability
to register a higher or lower proportion of extreme occurrences
should be different in each mountain range as a function of the
frequency of occurrence of this type of avalanche. This could
explain roughly why in a continental/higher latitude climate
mean α values are lower than those in a maritime/lower latitude
climate. Furthermore, as presented in Section 5.3, topographic
variables can capture in some way some climatic particularities
(dominant winds and subsequent snowdrifts, as Ozs in our
study), thus introducing significant differences from one moun-
tain range to another. This also supports the hypothesis that cli-
mate can have some influence on the frequency of extreme, large
dry avalanches. Farther, the main current morphology of the
mountain ranges is a consequence of the glaciations occurred dur-
ing the Pleistocene. The latitude of the mountain ranges and their
proximity to the coast are factors that influenced the glacial inten-
sity and extension and the related erosion and deposition pro-
cesses, which gave shape to the valleys and strongly influence
the morpho-topography of the current slopes. Therefore, climate
and latitude likely played an indirect role in the current avalanche
paths topography. In summary, on one hand, avalanche paths will
present morphological differences from one mountain range to

another due to each particular genesis and evolution controlled
by latitude and climate and, on the other hand, some climatic
characteristics could be captured by topographic characteristics
in each mountain range. In any case, a deeper and broader ana-
lysis should be performed in order to explain differences observed
in Figure 4.

6. Conclusions

A dataset of 97 extreme avalanches occurred mainly during past
100 years was used to update the α–β runout model for the
Catalan Pyrenees, using current digital topographic bases,
DEMs and digital orthoimagery. A general equation was obtained
with three variables (inclination of the avalanche path, β, horizon-
tal length, Lβ and area of the starting zone, Azs), with a high coef-
ficient of determination (R2 = 0.81) and high statistical robustness.
The analysis of the effects of other terrain variables on runout dis-
tances revealed no statistical significances. The equation obtained
in this study provides runout distances for a return period of
∼100 years.

Regarding the significant variables that describe the size of the
avalanche, larger Azs provide longer runouts most likely because
the larger is the starting zone, the larger is the mass and energy of
the avalanche, the capacity of snow erosion and entrainment
along the path and the resulting avalanche. Larger Lβ provide
shorter runouts probably related to the longer is the track, the
longer is the deceleration due to the friction forces acting along
the path and due to decreasing slope angle, channelisation, rough-
ness (forest and terrain) and the densification of the flow. These
two characteristics may counteract.

The analysis of the extreme values of the avalanche dataset
showed that larger avalanche paths (larger vertical drop, horizon-
tal distance and area of the starting zone) provide shorter runout
distances than predicted by the model, and starting zones oriented
towards NW too. The relation of the aspect of the starting zone
with the runout distance could be related to the frequency of
snow-drift episodes, which more frequently overload south and
southeast slopes, and therefore can produce more frequent and
larger avalanches. In northern slopes, the lower frequency of ava-
lanches allows the growth of the forest and therefore increases the
roughness of the path.

Therefore, in land-use planning, when applying the obtained
model, in order to reduce the uncertainty, it is recommended to
consider increasing the non-exceedance probability by reducing
α, especially in those avalanche paths with south and southeast
facing starting zones.

The comparison of the results obtained with Eqn (1), with the
results obtained using equations from other mountain ranges
around the world seems to show some climate and terrain influ-
ence. Differences could be explained by the frequency of occur-
rence of MAE (major avalanche episodes or cycles), and the
current morphology and topographic characteristics in each
mountain range, and can have an indirect influence on the regres-
sion equations obtained.

The α–β and statistical models are based on real-avalanche
occurrences and directly measurable parameters, and the result
of their application allows to determine the runout of extreme
avalanches in terms of non-exceedance probability. Although α–
β and statistical models do not provide continuous variables
along the terrain profile of an avalanche path like velocity or
impact pressure, as the dynamical models do, they provide valu-
able information in the practice of hazard mapping. They are
complementary to the dynamical models, which results in
terms of runout can be checked. They are fast to apply and
allow obtaining a quite good approach to the runout of an ava-
lanche path. In this sense, the update of the statistical equation
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valid for the Catalan Pyrenees represents a significant advance in
the hazard characterisation of this mountain region.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2021.50.

Acknowledgements. The authors are grateful to the PROMONTEC Project
CGL2017-84720-R° (AEI/FEDER, UE), which supported this research. We are
especially grateful to Peter Gauer, who gave very good advice that substantially
improved this paper and also to the two anonymous reviewers and the editor,
N. Eckert, who provided very useful comments and suggestions.

References

Adjel G (1995) Methodes statistiques pour la determination de la distance
d’arret maximale des avalanches. La Houille Blanche 7, 100–104.

Ancey C (2006) Dynamique des avalanches. Presses Polytechniques et univer-
sitaires romandes & Cemagref. Lausanne (Switzerland) & Antony (France).

Ancey C, Gervasoni C and Meunier M (2004) Computing extreme ava-
lanches. Cold Regions Science and Technology 39(2–3), 161–180.

Anderson G and McClung D (2012) Snow avalanche penetration into mature
forest from timber-harvested terrain. The Canadian Geotechnical Journal
49, 477–482.

Bakkehøi S, Domaas U and Lied K (1983) Calculation of snow avalanche
runout distance. Annals of Glaciology V4, 24–29.

Barbolini M and Keylock CJ (1999) A new method for avalanche hazard
mapping using a combination of statistical and deterministic models.
Natural Hazards and Earth System Sciences (NHESS) 2(3/4), 239–245.

Barbolini M and Savi F (2001) Estimate of uncertainties in avalanche hazard
mapping. Annals of Glaciology 32, 299–305.

Barriendos M and Llasat MC (2003) The case of the ‘Maldá’ anomaly in the
western Mediterranean basin (AD 1760–1800): an example of a strong cli-
matic variability. Climatic Change 61, 191–216.

Barriendos M and Martín Vide J (1998) Secular climatic oscillations as indi-
cated by catastrophic floods in the Spanish Mediterranean coastal area
(14th–19th centuries). Climatic Change 38, 473–491.

Barsanti M (1990) Calcolo della distanza di arresto delle valanghe sulla base di
parametri topografici del pendio. Neve e Valanghe 9, 86–97.

Biskupic M and Barka I (2010) Spatial modelling of snow avalanche run-outs
using GIS. In: The 2010 GIS Symposium. Ostrava, Czech Republic.

Blöschl G and 41 others (2020) Current European flood-rich period excep-
tional compared with past 500 years. Nature 583, 560–566. doi: 10.1038/
s41586-020-2478-3.

Bozhinskiy AN, Nazarov AN and Chernouss PA (2001) Avalanches: a prob-
abilistic approach to modelling. Annals of Glaciology 32, 255–258.

Buser O and Frutiger H (1980) Observed maximum run-out distance of snow
avalanches and the determination of the friction coefficients μ and ξ.
Journal of Glaciology 26(94), 121–130.

Carreras J and 5 others (1996) Delimitation of the supra-forest zones in the
Catalan Pyrenees. Bulletin de la Societe Linneenne de Provence 47, 27–36.

Castaldini R (1994) Sul calcolo della distanza di arresto delle valanghe. Neve e
Valanghe 21, 50–61.

Delparte D, Jamieson B and Waters N (2008) Statistical runout modeling of
snow avalanches using GIS in glacier national park, Canada. Cold Regions
Science and Technology 54, 183–192.

De Quervain M (1972) Lawinenbildung. In: Lawinenschutz in der Schweiz,
Bd. 9 der Reihe Bündnerwald, Beiheft, 15–32.

Eckert N, Naaim M and Parent E (2010) Long-term avalanche hazard assess-
ment with a Bayesian depth-averaged propagation model. Journal of
Glaciology 56(198), 563–586.

Eckert N, Parent E, Naaim M and Richard D (2008) Bayesian Stochastic
modelling for avalanche predetermination: from a general system frame-
work to return period computations. Stochastic Environmental Research
and Risk Assessment 22(2), 185–206.

Eckert N, Parent E and Richard D (2007) Revisiting statistical–topographical
methods for avalanche predetermination: Bayesian modelling for runout
distance predictive distribution. Cold Regions Science and Technology 49
(1), 88–107.

Favier P, Eckert N, Faug T, Bertrand D and Naaim M (2016) Avalanche risk
evaluation and protective dam optimal design using extreme value statistics.
Journal of Glaciology 62(234), 725–749.

Fuchs H and 12 others (2002) Pilotstudie: Lawinenkundliche und
Waldbauliche Analyse des Catastrophenwinters 1998/99 und Erstellung
eines Standardverfahrens zur dynamisierten Ermittlung
lawinengefährdeter Bereiche (GZ 58.110/36-VC7A/99) – Endbericht.
Unveröffentlicher Bericht der Univeristät für Bodenkultur Wien.

Fujisawa K, Tsunaki R and Kamiishi I (1993) Estimating snow avalanche
runout distances from topographic data. Annals of Glaciology 18, 239–244.

Furdada G (1996) Estudi de les allaus al Pirineu occidental de Catalunya:
Predicció espacial i aplicacions de la Cartografia. Geoforma Ediciones.
Serie Monografías Científicas. Logroño. 315 p. and 3 maps.

Furdada G and Vilaplana JM (1998) Statistical prediction of maximum ava-
lanche run-out distances from topographic data in the western Catalan
Pyrenees (northeast Spain). Annals of Glaciology 26, 285–288.

García-Hernández C, Ruiz-Fernández J, Sánchez-Posada C, Pereira S and
Oliva M (2018) An extreme event between the little ice age and the 20th
century: the snow avalanche cycle of 1888 in the Asturian Massif (northern
Spain). Geographical Research Letters 44(1), 187–212.

García C, Martí G, García A, Muntán E, Oller P and Esteban P (2007)
Weather and snowpack conditions of major avalanches in the eastern
Pyrenees. Proceedings of the Alpine & Snow Workshop: Forschungsbericht
53, 49–56.

García C, Peña JC, Martí G, Oller P and Martínez P (2010) WeMOI and
NAOi influence on major avalanche activity in the eastern Pyrenees. Cold
Regions Science and Technology 64, 137–145.

García C, Rodés P, Gavaldà J, Martí G and Barriendos M (2005) La
reconstrucción de riesgos naturales en el contexto climático de la
miniglaciación. El caso del alud catastrófico de abril de 1855 en el valle
de Toran. Boletín glaciológico aragonés 6, 61–85.

Gauer P (2014) Comparison of avalanche front velocity measurements and
implications for avalanche models. Cold Regions Science and Technology
97, 132–150. doi: 10.1016/j.coldregions.2013.09.010.

Gauer P (2018) Considerations on scaling behavior in avalanche flow along
cycloidal and parabolic tracks. Cold Regions Science and Technology 151,
34–46.

Gauer P, Kronholm K, Lied K, Kristensen K and Bakkehoi S (2010) Can we
learn more form the data underlying the statistical α-β model with respect
to the dynamical behaviour of avalanches? Cold Regions Science and
Technology 62, 42–54.

Greene E and 11 others (2016) Snow, weather, and avalanches: observation
guidelines for avalanche programs in the United States. In: Tech. rep.
American Avalanche Association.

Gubler H, Hiller H, Klausegger G and Sutter U (1986) Messungen an
Fliesslawinen. Zwischenbeicht. Mitteilungen des Eidgenössischen
Institutes für Schnee – und Lawinenforschung, 41, Davos, Switzerland.

Heim A (1932) Bergsturz und menschenleben. Geologische Nachlese Nr. 30,
Naturforschenden Gesellschaft in Zürich 77, 220.

Jamieson B (Ed) (2018) Planning Methods for Assessing and Mitigating Snow
Avalanche Risk. (contributions by Jamieson B, Jones A, Argue C, Buhler R,
Campbell C, Conlan M, Gauthier D, Gould B, Johnson G, Johnston K,
Jonsson A, Sinickas A, Statham G, Stethem C, Thumlert S and Wilbur
C). Canadian Avalanche Association, Revelstoke, British Columbia, Canada.

Johannesson T (1998) Icelandic avalanche runout models compared with
topographic models used in other countries. In: E. Hestnes (Editor),
Proceedings of the Anniversary Conference 25 Years of Snow Avalanche
Research, Voss, 12–16 May 1998. Norwegian Geotechnical Institute, Oslo,
pp. 43–52.

Johnston K, Jamieson B and Jones A (2012) Estimating extreme avalanche
runout for the Columbia mountains and Fernie area Rocky Mountains of
British Columbia, Canada. The Canadian Geotechnical Journal 49, 1309–
1318. doi: 10.1139/T2012-079

Jones AS and Jamieson B (2004) Statistical avalanche-runout estimation for
short slopes in Canada. Annals of Glaciology 38(1), 363–372.

Keylock CJ (2005) An alternative form for the statistical distribution of
extreme avalanche runout distances. Cold regions science and technology
42(3), 185–193.

Körner HJ (1980) Modelle zur berechnung der bergsturz- und lawinenbeweg-
nung. Interpraevent 1980(2), 15–55.

Laternser M and Schneebeli M (2002) Temporal trend and spatial distribu-
tion of avalanche activity during the last 50 years in Switzerland. Natural
Hazards 27, 201–230, 2002.

Lavigne A, Eckert N, Bel L, Deschâtres M and Parent E (2017) Modelling the
spatio-temporal repartition of right-truncated data: an application to

Journal of Glaciology 11

Downloaded from https://www.cambridge.org/core. 23 Jul 2021 at 07:52:38, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/jog.2021.50
https://doi.org/10.1017/jog.2021.50
https://doi.org/10.1038/s41586-020-2478-3
https://doi.org/10.1038/s41586-020-2478-3
https://doi.org/10.1016/j.coldregions.2013.09.010
https://doi.org/10.1139/T2012-079
https://doi.org/10.1139/T2012-079
https://www.cambridge.org/core


avalanche runout altitudes in Hautes-Savoie. Stochastic Environmental
Research and Risk Assessment 31(3), 629–644.

Lied K (1998) Snow avalanche experience through 25 years at NGI. Proceedings
of the NGI Anniversary Conference. Norwegian Geotechnical Institute, 7–14.

Lied K and Bakkehøi S (1980) Empirical calculations of snow-avalanche run-
out distance based on topographic parameters. Journal of Glaciology V26,
165–178.

Lied K and Toppe R (1989) Calculation of maximum snow-avalanche runout
distance by use of digital terrain models. Annals of Glaciology 13, 164–169.

Lied K, Weiler S, Bakkehøi S and Hopf J (1995) Calculation methods for ava-
lanche run-out distance for the Austrian Alps. The contribution of scientific
research to safety with snow, ice and avalanche, ANENA, Grenoble, France,
pp. 63–68.

Llasat MC, Barriendos M, Barrera A and Rigo T (2003) Climatological ana-
lysis of flood frequency in Ter, Llobregat and Segre basins from 14th to 20th
century. In Thorndycraft V, Benito G, Barriendos M, Llasat MC:
Palaeofloods, Historical Data & Climatic Variability. Applications in
Flood Risk Assessment, PHEFRA Workshop Proceedings, CSIC-CCMA,
275–280.

Maggioni, M (2004) Avalanche release Areas and their influence on uncer-
tainty in avalanche hazard mapping. Chapter 2: Monte Carlo simulations.
PhD Thesis. University of Zurich.

Mann ME (2002) Little ice age. In: The Earth System: Physical and Chemical
Dimensions of Global Environmental Change. MacCracken MC and Perry JS
(eds). Encyclopedia of Global Environmental Change, 1. John Wiley &
Sons, Ltd, Chichester, 504–509.

Martinelli M (1986) A test of the avalanche runout equations developed by the
Norwegian geotechnical institute. Cold Regions Science and Technology,
Band 13(1), 19–33.

McClung DM and Gauer P (2018) Maximum frontal speeds, alpha angles and
deposit volumes of flowing snow avalanches. Cold Regions Science and
Technology 153, 78–85.

McClung D and Lied K (1987) Statistical and geometric definition of snow
avalanche runout. Cold Regions Science and Technology 13, 107–119.

McClung DM and Mears AI (1991) Extreme value prediction of snow ava-
lanche runout. Cold Regions Science and Technology 19(2), 163–175.

McClung DM and Mears AI (1995) Dry flowing avalanche run-up and run-
out. Journal of Glaciology 41(138), 359–372.

McClung DM, Mears AI and Schaerer PA (1989) Extreme avalanche run-out:
data from four mountain ranges. Annals of Glaciology, 13, 180–184.

Mears AI (1988) Comparisons of Colorado, Eastern Sierra, Coastal Alaska,
and Western Norway Runout Data. International Snow Science
Workshop (ISSW), Wistler, BC. Pp. 232–238.

Mears AI (1992) Snow-avalanche Hazard Analysis for Land use Planning and
Engineering. Denver: Colorado Geological Survey.

Meunier M and Ancey C (2004) Towards a conceptual approach to predeter-
mining high-return-period avalanche run-out distances. Journal of
Glaciology 50–169, 268–278.

Meunier M, Ancey C and Naaim M (2001) Mise au point d’une méthode de
prédétermination statistique des cotes d’arrêt d’avalanches. La Houille
Blanche 6–7, 92–98.

Muntán E and 5 others (2009) Reconstructing snow avalanches in the south-
eastern Pyrenees. Natural Hazards and Earth System Science 9, 1599–1612.

Muntán E, Andreu L, Oller P, Gutiérrez E and Martinez P (2004)
Dendrochronological study of the avalanche path Canal del Roc Roig.
First results of the ALUDEX project in the Pyrenees. Annals of Glaciology
38, 173–179.

Muntán E, Oller P and Gutiérrez E (2010) Tracking past snow avalanches in
the SE Pyenees. M. Stoffel ed. Tree Rings and Natural Hazards: A
State-of-the-Art. Advances in Global Change Research 41. Springer,
Dordrecht, Heidelberg, London, New York, 47–50.

Nixon DJ and McClung D (1993) Snow avalanche runout from two Canadian
mountain ranges. Annals of Glaciology 18, 1–6.

Oliva M and 21 others (2018) The Little Ice Age in Iberian mountains.
Earth-Science Reviews 177(2018), 175–208.

Oller P and 5 others (2006) The avalanche data in the Catalan Pyrenees. 20
years of avalanche mapping. Proceedings of the 2006 International Snow
Science Workshop, Telluride, Colorado. Pp 305–313.

Oller P and 5 others (2015) Characterizing major avalanche episodes in space
and time in the twentieth and early twenty-first centuries in the Catalan
Pyrenees. Cold Regions Science and Technology 110, 129–148.

Oller P, Baeza C and Furdada G (2018) Statistical runout modelling of snow
avalanches in the Catalan Pyrenees. Proceedings of the International Snow
Science Workshop (ISSW 2018). Innsbruck, Austria. Pp 751–755.

Oller P, Fischer JT and Muntán E (2020) The historic avalanche that
destroyed the village of Àrreu in 1803, Catalan Pyrenees. Geosciences 10,
169.

Oller P, Marturià J, González JC, Escriu J and Martínez P (2005) El servidor
de datos de aludes de Cataluña, una herramienta de ayuda a la planificación
territorial. In proceedings of: VI Simposio Nacional sobre Taludes y Laderas
Inestables. Valencia, 21–24 de Junio de 2005. E. P. 905–916.

Pudasaini SP and Hutter K (2007) Avalanche Dynamics. Dynamics of Rapid
Flows of Dense Granular Avalanches. Springer-Verlag, Berlin Heidelberg,
602 pp.

Schaerer P (1986) Winter weather. Weather patterns for major avalanches.
The Avalanche Review 4, 3.

Scheidegger AE (1973) On the prediction of the reach and velocity of cata-
strophic landslides. Rock Mechanics 5, 231–236.

Sinickas A and Jamieson B (2014) Comparing methods for estimating β
points for use in statistical snow avalanche runout models. Cold Regions
Science and Technology 104–105(2014), 23–32.

Sovilla B, McElwaine JN, Schaer M and Vallet J (2010) Variation of depos-
ition depth with slope angle in snow avalanches: measurements from Vallée
de la Sionne. Journal of Geophysical Research: Earth Surface 115, F02016,
(1–13).

Thompson CG, Kim RS, Aloe AM and Becker BJ (2017) Extracting the vari-
ance inflation factor and other multicollinearity diagnostics from typical
regression results. Basic and Applied Social Psychology 39(2), 81–90.

Wagner P (2016) Kalibrierung des α-β-Modells für das Ermitteln der
Auslauflänge von kleinen und mittleren Lawinen Institut für Alpine
Naturgefahren (IAN), BOKU-Universität für Bodenkultur, Institut für
Alpine Naturgefahren (IAN), BOKU-Universität für Bodenkultur.

12 Oller and others

Downloaded from https://www.cambridge.org/core. 23 Jul 2021 at 07:52:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

	Empirical [alpha]--[beta] runout modelling of snow avalanches in the Catalan Pyrenees
	Introduction
	Study area
	Materials and methods
	The [alpha]--[beta] model
	The avalanches&rsquo; database

	Analysis and results
	Application of the [alpha]--[beta] runout model
	Analysis of the extreme values obtained

	Discussion
	Considerations about the obtained model
	Comparison with the former model
	Terrain and climate influence on extreme runouts
	Comparison with other models

	Conclusions
	Acknowledgements
	References


