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1. SUMMARY 

Naturally occurring radionuclide materials (NORMs) are geological materials rich in 

indigenous radioactive elements. Some of these naturally occurring radionuclides (NOR) are 

present in many geological resources (e.g., mining ores and fossil fuels), whose exploitation might 

involve extracting NORs and exposing them into the surface. Then, they are more exposed to 

weathering and environmental factors that may increase their mobility. Consequently, 

understanding their mobility is important for risk assessment models involving radionuclides. 

A possible approach to study the mobility of a radionuclide is using the distribution coefficient 

(Kd). It describes the relation between the concentration of the element in the solid phase and in 

the soil solution at equilibrium. So, a high Kd implies that the radionuclide is mostly sorbed into 

the solid fraction of a soil, i.e., it has a lower mobility. 

Ideally, parametric models are to be proposed to predict the Kd as a function of soil properties. 

However, sorption involves many and complex mechanisms, which make it difficult to build such 

models. Alternatively, some variables may be used to propose Kd best estimates with a quantified 

variability for soil groups (which are to be made of intervals from those same variables). This was 

the case of this project, where a prospective analysis for radium (a NOR) was to be carried out. 

In order to do so, a Kd (Ra) database of different soils was expanded and reviewed with 

literature research, both to add new entries and to improve the soil and experimental 

characterizations. The inclusion criteria and data organization had to be rearranged to fulfill this 

goal. 

Once the dataset had been expanded, uni- and multivariant correlation analyses had to be 

carried out by creating new partial datasets for each variable, mainly to discern which soil 

properties were significant in reducing Kd (Ra) variability. Both pH and carbonate concentration 

(CO32-) in the soil solution proved significant in the univariant correlation analyses. Additionally, 

the multivariant analyses showed many more significant correlations, but most importantly two of 

them: CEC/(Ca+Mg)ss and (Caexch+Mgexch)/(Ca+Mg)ss. These las two combinations were so 

relevant to observe because they had been proven significant for other earth alkaline metals. 

Interestingly, some of the correlations found in this project are exceptionally good, which means 

that some of these variables could end up being used in establishing parametric models. 

Finally, Kd (Ra) best estimates for grouped soils according to the value of certain variables 

were proposed. These variables were pH, CO32-, and CEC/(Ca+Mg)ss. All these proposed best 
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estimates presented a smaller variability than the Kd (Ra) best estimated of the overall database. 

Thus, grouping soils according to their own properties helped to reduce the variability of the Kd 

(Ra) best estimate. 

 

Keywords: radium, distribution coefficient, Kd variability.
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2. RESUM 

Els materials que contenen radionúclids d’origen natural (NORMs, sigles en anglès) són 

materials geològics rics en elements radioactius autòctons. Alguns d’aquests radionúclids 

d’origen natural (NOR, sigles en anglès) es troben a diversos recursos naturals (per exemple, 

materials miners i combustibles fòssils), l’explotació dels quals probablement implica l’extracció 

de NORs i la seva exposició a la superfície. Llavors, aquests estan més exposats a factors 

meteorològics i ambientals que poden incrementar la seva mobilitat. Conseqüentment, entendre 

la seva mobilitat és important per a models d’avaluació de riscs que incloguin radionúclids. 

Una possible aproximació a l’estudi de la mobilitat d’un radionúclid és emprar el coeficient de 

distribució (Kd). Aquest descriu la relació entre la concentració de l’element a la fase sòlida i a la 

solució del sòl en equilibri. Llavors, una elevada Kd implica que el radionúclid està majoritàriament 

adsorbit a la fracció sòlida del sòl, és a dir, que presenta una menor mobilitat. 

Idealment, s’han de proposar models paramètrics per a predir la Kd com una funció de 

propietats del sòl. No obstant, la sorció inclou múltiples i complexos mecanismes, els quals 

dificulten construir aquests models. Alternativament, algunes variables es poden emprar per a 

proposar best estimates de Kds amb una variabilitat quantificada per a grups de sòls (els quals 

s’han de fer a partir d’intervals d’aquestes mateixes variables). Aquest va ser el cas per a aquest 

projecte, on es va dur a terme una anàlisi prospectiva per al radi, un NOR. 

Per a dur-ho a terme, es va ampliar i revisar una base de dades de Kd (Ra) de diferents sòls 

amb una cerca bibliogràfica, tant per incloure noves entrades com per millorar les 

caracteritzacions experimentals i dels sòls. A més, es va haver de modificar criteris d’inclusió i 

l’organització de les dades. 

Una vegada acabada l’ampliació de la base de dades, es va procedir a dur a terme anàlisis 

de correlacions uni- i multivariants amb la creació de bases de dades parcials per a cada variable, 

principalment per a discernir quines propietats del sòl van resultar significatives en reduir la 

variabilitat de la Kd (Ra). Ambdós, el pH i la concentració de carbonat (CO32-) a la solució del sòl, 

es van mostrar significatius a les anàlisis de correlacions univariants. Addicionalment, les anàlisi 

multivariants van mostrar van mostrar algunes correlacions significatives més, però les més 

importants essent: CEC/(Ca+Mg)SS and (Caexch+Mgexch)/(Ca+Mg)SS. Aquestes dues 

combinacions van ser tant rellevants per a l’estudi per què ja s’havien mostrat significatives per 

a altres metalls alcalinoterris. De manera interessant, algunes d’aquestes correlacions van 
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resultar excepcionalment bones, fet que implica que aquestes variables podrien emprar-se per 

establir models paramètrics. 

Finalment, es van proposar Kd (Ra) best estimates per a sòls agrupats d’acord amb el valor 

d’algunes variables. Aquestes variables eren pH, CO32- i CEC/(Ca+Mg)ss. Totes aquestes 

estimacions van presentar una variabilitat menor que la Kd (Ra) estimades per a la base de dades 

sencera. Així, agrupar sòls d’acord amb les seves propietats ha ajudat a reduir la variabilitat de 

les Kd (Ra) best estimates. 

Paraules clau: radi, coeficient de distribució, variabilitat de la Kd.  
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3. INTRODUCTION 

Naturally occurring radionuclides (NOR) are a major radiation source, contained in many 

geological materials, that are a potential hazard to human beings. Mineral exploitations of 

naturally occurring radionuclide materials (NORM) increase human exposure to them. So, it is of 

great importance to treat any waste that may contain NORMs appropriately to avoid any kind of 

environmental contamination, which is not easy at all given the number of industries that use 

materials containing NORs, e.g., fossil fuels, mining ores, etc. (Vandenhove and Hees, 2007). 

To control the disposal of NORMs is of great relevance due to the ability of most radionuclides 

to migrate. Most of them can incorporate into the trophic chain of an ecosystem because some 

plants tend to accumulate these elements (Al-Hamarneh et al., 2016). 

Consequently, knowledge regarding the mobility of the radionuclides is vital to predict human 

exposure to the radioactivity in any risk assessment model applied in the management of these 

materials. A more mobile radionuclide is to increase human radioactivity exposure once it spreads 

into the environment, as such compounds are to be more available to be incorporated by plants 

into the trophic chain, thus, increasing human internal dose (Vandenhove and Hees, 2007). 

The mobility of a radionuclide in the soil-plant system is a complex process affected by a high 

number of mechanisms. This project will focus on the radionuclide sorption using the distribution 

coefficient, which in general terms estimates the capacity of a soil to retain a radionuclide, thus 

decreasing the possibility of a NOR to be incorporated by a plant (Al-Hamarneh et al., 2016). 

3.1. SOIL PHASES AND PROPERTIES AFFECTING RADIONUCLIDE 

INTERACTION 

In a soil, three phases coexist in equilibrium: a liquid, a solid, and a gaseous phase. All 

components present in a soil are in equilibrium between its different phases. Yet, when a non-

volatile substance is being studied, like most radionuclides, the role of the gaseous phase can be 

considered as negligible. 

A radionuclide sorbed into the solid phase is not as readily available to disperse into other 

environments, whereas the fraction in the liquid phase is immediately ready to migrate. So, 

understanding soil-radionuclides interactions is key in predicting the expected sorbed fraction. 

The solid phase is made of the mineral and the organic fractions. The former includes metallic 

oxides, carbonates, silicates, and other minerals. Depending on the particle size of these 
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components, it will present a different texture according to USDA classification: sand (from 50 µm 

to 2 mm), clay (less than 2 µm), and silt (from 2 to 50 µm). Mixtures of sands and clays are to 

produce loamy soils (Yolcubal et al. 2004). So, any element is expected to behave differently 

under different soil textures, due to each texture providing different number of sorption sites 

available. Thus, textural data can be used as factor to consider when studying the interaction of 

a radionuclide in a soil (IAEA, 2010). 

On the other hand, the organic fraction is made both of organic compounds and biological 

residues that undergo a constant change and degradation, mostly done by microorganisms. Yet, 

organic matter tends to form humus, which are decomposition products and biological residues 

and tissues that tend to adopt a black-brownish color. So, the interactions of a radionuclide with 

a soil are expected to be highly sensitive to the presence of organic matter, due to the expected 

different interaction of the radionuclide between the mineral and the organic fractions (Brady, 

1984). 

The composition of the liquid phase of a soil (soil solution) affects radionuclide mobility. Some 

of its components may compete with the radionuclide for the sorption sites or may produce 

chelating or precipitation reactions that will affect the sorption degree. The main components of 

the soil solution to take into account are free cations (Ca2+, Mg2+, Na+, K+), anions (CO3-, SO42-, 

Cl-), complexed metals; and the organic matter present in the liquid phase (DOC – Dissolved 

Organic Carbon). 

Other parameters that will affect the soil-radionuclide interaction are pH and the CEC. The 

former is a measure of the concentrations of protons in which a soil is naturally found, and it is 

likely to influence the sorption process of a substance. The cationic exchange capacity (CEC) is 

a parameter that quantitatively defines the ability of a soil to exchange cations. Therefore, its units 

are cmolc kg-1. Soils with a high organic and/or clay fractions contents are expected to present a 

higher CEC (Brady, 1984). 

Nonetheless, there are even more parameters that may influence the soil-radionuclide 

interaction. Perhaps, one of the most relevant would be the soil mineralogy. The affinity of a 

radionuclide for a soil definitely depends on knowing the sort of minerals that it contains. But 

providing an exhaustive soil mineralogy is usually not easy and it is not as widely reported in 

literature as other parameters. 
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Likewise, another relevant soil property is the redox potential, as it may cause a change in 

the oxidation state of the element under study. If the radionuclide can form different species at 

different oxidations states, the redox potential is to be of paramount importance because these 

species may have very different chemical properties and produce different sorption behavior 

(Subdiaga et al., 2019). 

3.2. THE SOLID-LIQUID DISTRIBUTION COEFFICIENT (KD) 

The solid-liquid distribution or partition coefficient (Kd) can be understood as the ratio between 

the concentration of a target analyte (in this case, a radionuclide) in the solid phase (sorbed) and 

its concentration in the solution in equilibrium conditions: 

𝐾𝑑 =
Sorbed concentration

Concentration in solution
     Eq. 1 

The units of the distribution coefficient are usually expressed as L kg-1. 

This coefficient provides a very general picture of the interaction of the substance with the 

soil. It describes the sorption of a substance, regardless of the mechanism. As a result of this, the 

Kd can be used to assess potential risks in case of an environmental contamination (Vandenhove 

and Hees, 2007). 

Still, sorption is a process that depends on the target element and the soil-substance 

interactions. So, soil characterization is extremely important in establishing prediction models for 

proposing best estimate Kd in new soils. However, sorption measurements are also sensitive to 

the experimental method used in a determination (Vandenhove and Hees, 2007). Thence, it is 

important to identify all variability sources, as it is shown in Figure 1: 

Figure 1. Kd variability sources. 

However, the concept of Kd includes several assumptions and hypothesis that ought to be 

mentioned: 
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- Regardless of the method used to measure the Kd, it is assumed that the experiment is 

carried out under equilibrium conditions. So, all determinations that imply spiking or 

artificially contaminating a controlled soil are to be provided with a reasonable amount of 

time to achieve equilibrium. The term reasonable implies that in most cases it is going to 

be a pseudo-equilibrium (Vandenhove and Hees, 2007).  

- Most experiments are to be planned to obtain a reversible Kd. Nonetheless, each 

radionuclide interacts differently with a soil, and some might irreversibly sorb a fraction if 

enough time is provided (Vandenhove and Hees, 2007).  

Furthermore, the Kd can be obtained from long- and short-term experiments. The former are 

to be carried out to analyze an anthropogenic or indigenous elements, while the latter usually 

consist on spiking soils to measure the coefficient after a short equilibration period. For a few 

elements, like Cs, it has been proven that long-term experiments lead to the quantification of 

higher Kd values than short-term experiments (Ramírez-Guinart, 2020b), although this pattern has 

not been observed for other radionuclides, sometimes due to the lack of sufficient data (Ramírez-

Guinart et al., 2020a; Ramírez-Guinart et al., 2020c). Table 1 summarizes the methodological 

approaches for the determination of Kds. 

Summarizing, short-term experiments are usually performed at a laboratory level, which 

implies the control over most of the soil and experimental parameters. Thus, they can better be 

used to study the effect of a limited set of variables, e.g., pH, OM, etc. Whereas long-term 

experiments are usually performed on contaminated aged samples, where the main focus is to 

obtain a Kd without going deeper in studying any properties in depth. (These are usually 

desorption experiments.) In contraposition, in situ experiments involve samples with little 

subsequent manipulation (the soil solution tends to be the pore water or river water, depending 

on the sample). 

So, it is going to be of great relevance to relate any Kd not only to the soil properties, but also 

to this methodological approach, as it is crucial for risk assessment models to know whether the 

time of exposure of the contaminant to a soil will influence the Kd. If the time of exposure proves 

of significance, several Kd values are going to be needed to assess the effect of a radioactive 

deposit in the long-term. 
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Experimental 
approach 

Description 

Short-term  

 in situ Kd of an anthropogenic element in a recently contaminated soil, determined as the 
ratio between the concentration in the solid phase and in the pore water.  

 

Sorption Kd determined using batch experiments by means of spiking soil samples at a known 
concentration and waiting an equilibration time before doing the measurements. The 
Kd is obtained from the relation between the known initial concentration and the final 
concentration in the contact solution, after the equilibrium was reached.  

 

Desorption Kd of an anthropogenic element determined using extraction batch experiments in 
recently contaminated soils. The Kd is obtained from the relation between the known 
initial concentration and the final concentration in the contact solution, after the 
equilibrium was reached. 
Kd of an indigenous element in a contaminated area determined as the ratio between 
the concentration in the solid phase (obtained by performing a mild extraction) and in 
the contact solution.  

Long-term  

 
in situ Kd of an indigenous element, or an anthropogenic element in a soil contaminated at 

least a year before, determined between the ratio in the solid phase and in the pore 
water. 

 

Desorption Kd of an anthropogenic element determined using extraction batch experiments in soils 
contaminated at least a year before . The Kd is obtained from the relation between the 
known initial concentration and the final concentration in the contact solution, after the 
equilibrium was reached. 
Kd of an indigenous element determined as the ratio between the concentration in the 
solid phase (obtained by performing a strong extraction) and the contact solution.  

Table 1. Experimental approaches for measuring distribution coefficients. 

3.3. PROPOSING KD BEST ESTIMATES 

As a result of the assumptions that the Kd implies, modelist approaches to predict the sorption 

of a substance using the distribution coefficient are to have high inherent variability, as it is in itself 

a variable parameter. Especially, considering that soils are very complex matrixes and it is 

unrealistic to think that all its defining variables are to be available for any analysis. Thence, the 

building of these models is to be made by generating large Kd databases, measured in different 

soils with very detailed soil and methodological characterizations (Ramírez-Guinart et al., 2020a). 

Given the complexity of soils and the different experimental approaches, it is unrealistic to 

think that all variables can be simultaneously studied. Although, the more exhaustive the soil 

characterization is, more parameters can be studied. Thus, in absence of a complete soil 

characterization, parametric predictive models use whatever properties (previously identified as 

significant) are available to describe much of the variability of the Kd, which must satisfactorily 
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relate to experimental Kds (high correlations and and low ordinate). However, this has been 

achieved for very few radionuclides before. 

In case the previous scenario is not feasible, at least these variables can be used to group 

soils in intervals of these same variables, aiming at building probability function to describe 

variability associated with Kd best estimates for each group. These best estimates are to be 

calculated for each interval of a categorized variable and with quantified variability (Ramírez-

Guinart et al., 2020a). 

Whether a parametric model is build or best estimates are proposed for intervals of different 

variables, it will greatly increase the predicting capabilities to infer a Kd in other soils, which may 

be of great importance in an environmental short- and long-term assessments, i.e., evaluating the 

impact of a recent accidental radionuclide spillage or the long-term management of a radionuclide 

deep geological repository (Vandenhove and Hees, 2007).  

3.4. RADIUM 

 Radium (Ra) is target radionuclide that is studied in the current project. It is the heaviest of 

the alkaline earth metals and it is a natural radionuclide as radium-226 (half-life of 1600 years), 

although other isotopes can be artificially made. In addition, it is a decay product of uranium-238 

(see Figure 2) and it is also an alpha particle producing radionuclide. Hence, it can be considered 

as a potential hazard due to its radiological impact on ecosystems (Bordelet et al., 2013). 

Figure 2. Uranium-238 decay chain and half-lives. From the U.S. Geological Survey. 
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On the other hand, Ra-226 ends up generating Rn-222, which is an even more dangerous 

radionuclide because it is a gas that may affect humans directly through the respiratory tract and 

accumulating itself in the lungs. According to the National Institutes of Health (NIH) indoor radon 

exposure is the second cause of lung cancer in the U.S., just after cigarette smoking (NIH, 2021). 

Despite the danger posed by radium contamination, there is not much published literature 

regarding its distribution coefficient in different soils. The existing published Kd compilations are 

scarce and with not so many entries, as in much of the published literature radium is usually a 

more secondary element studied in parallel to others, like Sheppard et al., 1984. Therefore, there 

is a special need to create an expanded database of Kd (Ra) to deal with all these deficiencies. 

Especially, given that some of these previous compendiums have presented Kd (Ra) differing in 

up to 5 orders of magnitude, which forecast an immense variability in any analyses of this 

radionuclide (Kumar et al., 2020). 

3.4.1. Variables influencing the distribution coefficient of radium 

As an alkaline earth element, Ra is found in +2 oxidation state. Hence, it ought to be 

influenced by any parameter that would affect the sorption of any other cation, like the superficial 

charge of a soil or the presence of other competing cations (Kumar et al., 2020; Nathwani and 

Philips, 1979b). 

Given that a sandy soil usually provides less sorption sites than a clayey soil, sandy soils are 

expected to produce lower Kd (Ra) (Sheppard et al., 1984). As marine sediments have a mostly 

sandy texture and they are very washed up, they are also expected to produce lower coefficients 

than soils. So, textural properties are expected to be of relevance in studying Kd (Ra) variability, 

although some contradicting information exist regarding on this matter: clay content may be 

expected to present a weak correlation with Kd (Ra) (Vandenhove and Hees, 2007; Simon and 

Ibrahim, 1990). 

Besides texture, the following general parameters are expected to affect Kd (Ra): 

- pH. A higher pH has been directly linked to higher Kd (Ra) (Kumar et al., 2020). 

- Organic matter content (OM). Higher OM has been linked to higher Kd (Ra) (Vandenhove 

and Hees, 2007). 
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- Sulphate. A co-precipitation reaction with BaSO4 as Ba(Ra)SO4 has been extensively 

described in literature. So, they ought to be directly correlated to the Kd (Ra) (Sheppard et 

al., 1984; Grandia et al., 2008). 

- Carbonate. Radium is likely to present lower mobility in presence of carbonates due to 

precipitation reactions as RaCO3 (Sheppard et al., 1984; Grandia 2008). 

- Cationic Exchange Capacity (CEC). It is expected to be directly correlated with the Kd (Ra) 

(Sheppard 1984). So, given that the organic matter is to produce a higher CEC, organic 

matter might also be expected to be directly correlated with the Kd (Ra) (IAEA 2014). 

- Calcium and magnesium. Radium is expected to be free and competing with other divalent 

cations for sorption sites from pH 4 to 8. (Sheppard et al., 1984). Ca has been proven to 

be inversely correlated to the Kd (Ra) by Nathwani and Philips, 1979b. An explanation for 

this fact would be that these cations are smaller than radium, so they can access the 

sorption sites more effectively than Ra.  

More recent experiments have proven that the ratios 
CEC

(Ca2++ Mg2+)𝑠𝑠
  and 

Caexch
2+ + Mgexch

2+

(Ca2++ Mg2+)𝑠𝑠
 

might be used to better explain variability of Kd (Sr) (Gil-García et al., 2011). So, given that 

both Ra and Sr are earth alkaline metals, they are expected to present a similar sorption 

behavior. 

Establishing prediction models with the previous parameters might have some success. 

However, before doing so, the evidence to back the previous statements ought to be reinforced, 

which is one of the goals of this project. 
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4. OBJECTIVES 

The main goal of this project was to expand a database of distribution coefficients of radium 

(Kd (Ra)), and in its turn make a prospective study of which methodology and soil factors can help 

reduce the variability of Kd (Ra). To achieve this, a set of more enclosed goals was established: 

- To perform an extensive bibliographic research to expand and critically review a database 

created by a fellow peer of radium distribution coefficients from published literature and 

grey literature. 

o To add new entries to the database and describe important soil parameters, e.g., pH 

texture, etc. 

o To review and adapt the previously included entries, with the purpose of checking their 

fulfillment of the inclusion criteria and to adapt the entries to the new criteria, if 

necessary. 

- To study the main factors involved in radium sorption process in soils and, thus, in Kd 

variability. 

- To perform a statistical analysis aiming to establish how each studied variable contributes 

to reduce the variability of Kd (Ra). 

o To assess if the grouping of distribution coefficients of radium according with the 

experimental method by which they were obtained is a valid strategy to reduce the 

variability of a proposed Kd (Ra). 

o To perform univariant and multivariant correlation analyses of the studied variables. 

- To create partial datasets with the significant variables according to the correlation 

analyses, designed according to newly defined intervals for each variable. So, they can be 

used to produce and calculate best estimates (PCT50: 50th percentile and GM: Geometric 

Mean) and visualize the variability of the Kd (Ra) with probability functions, i.e., cumulative 

distribution functions (CDFs). 
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5. METHODS 

This project was divided into 5 clear phases from the beginning. All of them are going to be 

detailed in this section. But the following diagram provides as a summary of them all, and provides 

a quick sum up of the processes involved in this project and the methodology: 

Figure 3. Diagram summarizing the methodology and steps followed in this project. 

5.1. BIBLIOGRAPHICAL RESEARCH 

A systematic bibliographical research was done regarding distribution coefficient data of 

radium in soils. The database used for the search was Web of Science, using only the Core 
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Collection. For the purpose of keeping a record of the consulted literature, an export of the results 

and keywords used to an Excel spreadsheet was made. 

After making several testing searches, it was decided that the group of keywords to be used 

were: ‘radium’, ‘soil’, and ‘distribution’; ‘radium’, ‘soil’, and ‘kd’; and ‘radium’, ‘soil’, and ‘partition’. 

Thus, after having all the results for a particular search in a spreadsheet, a consult through the 

Web of Science was made for each of the titles and abstracts. If after reading both, the article 

was deemed worthy, the original source was consulted. Otherwise, it was discarded before 

continuing down the list.  

Additionally, after consulting the paper, a systematic classification was made. So, a paper 

could be tracked whether if it had been included into the database, or if relevant sources were 

obtained from it, or simply if it had been discarded. The tags used to keep the results ordered 

were: ‘newly included into the database’, ‘already included’, ‘lead to other literature’, ‘consulted 

but discarded’, ‘discarded’, and ‘not found’. This last one is where all the papers that were 

considered worthy of consulting but could not be found were included; either because they were 

quite old and there was not an available online copy, or simply because it could not be found. The 

sources classified as ‘discarded’ were the ones for which only the abstract and titles were read 

and were directly dismissed. 

All the papers classified as ‘newly included into the database’ were properly incorporated into 

the database and all available information was extracted. Afterwards, these sources were stored 

in a bibliographic manager: Mendeley. 

5.2. DATA COLLECTION AND FILTERING 

The main inclusion criterion for the database for any Kd (Ra) was that it had to emanate from 

an experimental source. Therefore, the database does not include neither Kd (Ra) derived from 

parametric equations nor averaged values from other data compilations; no data from mass-

transport experiments was to be used either. Furthermore, pure phases distribution coefficients 

were neither accepted into the database, as this approach is out of the scope of the stated 

objectives of this project.  

On the other hand, measurements under extreme soil conditions that would be unfeasible or 

unlikely in nature were also discarded. So, only Kd (Ra) between the pH range of 2 and 12 were 
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accepted. Yet, measurements of different isotopes were accepted because there ought not to be 

any differences between them in relation to their sorption degree. 

Besides, entries providing Kd (Ra) by altering operational variables regarding the experimental 

approach were to be grouped as a single entry by means of the geometric mean (GM), e.g., solid-

to-liquid ratio or equilibration time. All such factors were deemed as not relevant in the scope of 

this project. Thus, only individual Kd (Ra) values which differed in relevant soil properties were 

considered, like soil pH or organic matter content. 

Summarizing, the database was only to include coefficients from soils, subsoils (>1m in 

depth), water sediments, gyttjas (which are a mud made of organic and mineral matter found 

close to certain lakes), and tills (which are a mixture of unsorted and non-stratified materials 

deposited by glacial ice). Nonetheless, all these geological materials were to be considered as 

soil analogues. Which was especially relevant for those coefficients which had to come from direct 

experimental determinations in the lab, under conditions in which they were expected to be found 

in nature. 

So, all the reviews containing Kd (Ra) databases found during the forementioned systematic 

search were categorized as ‘consulted but discarded’. They were consulted to get to the original 

sources to include them into the database if they ended up providing suitable information. 

5.3. THE DATABASE 

At the beginning of this project, a previous Excel database was provided that included 143 Kd 

(Ra) values of 17 different sources, both of published literature and technical reports. So, the task 

ahead was to expand it and review the present data to assert their inclusion into the database. At 

its initial state, there were only 36 columns to fill information in. However, modifications were 

made in order to improve the database and include further information. Some variables were 

renamed and readapted, others were newly added, and some simply removed. So, 26 new 

variables were added in addition to the original ones, making a total of 62 columns in the definitive 

database, each of them storing different kinds of information, e.g., bibliographical or soil 

characterization. Table 11 (see Annex 1 page 43-45) displays all the variables that the definitive 

database contained. 

There were important differences between both the present and the original database, which 

are henceforth summed up. Firstly, despite not changing the bibliographical parameters, soil 
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parameters were greatly modified. The biggest change was the reorganization of soil parameters 

to include data from: the solid phase, the liquid phase or pore water, and the contact solution. The 

original database made only distinction between solid and liquid phases. Nonetheless, many 

sources provide both, data from the original pore water and from the contact solution of their 

experiment. Although the concentration in the contact solution is usually more relevant when 

provided, it was very important to include all the possible data for a future use of the database. 

Secondly, the distinction of sorption and desorption coefficients was eliminated, as it was 

redundant considering the addition of the variable named as ‘Experimental tag approach’. Here, 

all entries were classified according to their experimental approach, which they are explained in 

Table 1. 

Thirdly, another soil classification strategy was used, which grouped them according to their 

organic matter content (OM) and textural data. So, for a soil to be included in the ‘organic’ group, 

it had to contain more than 20% of OM. Thus, all excluded soils were classified as ‘mineral’ soils; 

which could again be subdivided in ‘sandy’ soils (sand fraction ≥ 65% and clay fraction < 18%), 

‘clayey’ soils (clay fraction > 35%), and ‘loamy’ soils (those that were neither ‘sandy’ nor ‘clayey’) 

(Ramirez-Guinart et al., 2020a). If one source did not provide enough information to establish to 

which category it should be included, it was classified as ‘unspecified’. Although, if it was stated 

as a mineral soil, but it was not possible to subclassify the soil, the entries were just tagged as 

‘mineral’ or ‘mineral unspecified’. 

Finally, an extra column named ‘Observations’ was also added. It was made for a personal 

purpose at first, so as to keep personal notes during the data analysis. After fulfilling its purpose, 

it was decided to keep it there for the sake of the future researcher who wants to study the 

database. Yet, it still holds some information that was considered relevant to keep, but it is not 

related directly to the study of the distribution coefficient. 

There are several other columns, whose usefulness is rather doubtful due to the scarcity of 

such information in literature. Yet, it was considered that as the data of these variables had 

already been gathered, it should be left to decide to another researcher who might want to enlarge 

the database further if they should be removed or not. Some examples of them could be the ‘ionic 

strength of the contact solution’ or the ‘surface area’. Additionally, it should be considered with 

chemical criteria if these parameters are expected to be relevant in predicting the sorption process 

of radium. 
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Besides, other columns were to simply provide a general picture of the database data and the 

type of soils that they contained. A fair example would be the ‘sample tag’. Assigning a tag to a 

soil may in the future help stratify data further, but for now it just provides information about what 

sort of soils are included. 

On the other hand, there is one very important remark left to detail. When considering the 

effect of a variable like the ionic concentrations, the concept of real concentration was always 

used. Which means that when two concentrations of the same substance are given for the soil 

pore water and for the contact solution, the one to be considered was usually the latter, as it was 

representative of the actual value when obtaining the Kd (Ra). Still, if both values were available, 

both were included in their respective variable for future studies because the first one provided 

the experimental conditions and the other further soil description. Nonetheless, if the contact 

solution data was not present, the soil concentrations were used instead. 

Finally, it should be mentioned that the columns ‘Contamination level’ and ‘226Ra in solution’ 

are generally irrelevant. Yet, they were kept so as to discriminate any abnormality found in the 

partition coefficients that cannot be explained by any other variable. A huge addition of radium 

could affect its sorption degree, when compared with a sample with anthropogenic radium. 

5.4. CORRELATION ANALYSES AND DATA VARIABILITY 

Several statistical programs have been used to perform all the correlation and statistical 

analysis. An Excel spreadsheet was used to develop the database and most basic calculations. 

Yet, for more complex statistical tests SPSS 26 and Statsgraphics Centurion 18 were used. SPSS 

was used for the descriptive calculations for each variable and case, and the univariant and 

multivariant regression analysis. Nonetheless, Statsgraphics software was used to perform the 

Fisher’s Least Significant Difference test (FLSD), due to SPSS only allowing to do the test as a 

post-hoc test of an ANOVA. 

When doing all statistical analyses for a target variable, a previous data selection had to be 

done. The goal was to create subdatasets or partial datasets for each parameter, where there 

were no duplicated Kd (Ra). For example, when considering the pH variable, all Kd (Ra) obtained 

from the same soil under different pH had to be considered as separate entries for the subset. 

However, when analyzing a correlation with a soil parameter that was not modified (for instance 

the organic matter content), only one entry from the pH-varying experiments was considered 
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(specifically that entry closest to soil natural conditions when possible, or a geometric mean of all 

entries from the pH experiments). The reasoning behind such a laborious selection was to not 

overestimate a soil when studying a variable by eliminating repetitions. 

In order to study the effect of a variable in the partition coefficient, log-log linear correlation 

analyses were done, both univariant and multivariant, under the assumption that the logKd data 

array is a normally distributed variable. As a result, this project will show many correlations, which 

were checked with an F test to assess if the correlation was significant. Thus, discriminating which 

variables are relevant to study the Kd (Ra). 

On the other hand, the FLSD test was used to compare means between the overall data, and 

the long- and short-term groups, simultaneously. So, it made possible to distinguish which groups 

individually had significant differences with each other.  After performing the descriptive analyses, 

the antilog conversion had to be made to obtain desired statistical parameters. 

Additionally, a strategy was devised to further reduce the variability of the different datasets 

and improve any correlations observed. As previous bibliography suggests for other earth-alkaline 

metals (like Cs), long-term coefficients ought to be generally greater than short-term ones 

(Ramírez-Guinart, 2020b). Consequently, all analyses were carried out for each variable for the 

overall data, and the long- and the short-term groups in parallel. Preliminary results of the 

comparison between long- and short-term, although not conclusive, also advised on performing 

separate analyses for both groups. 

The variables selected to perform the univariant correlations tests on were pH, organic matter 

(OM), carbonate concentration, and CEC. So, a subdataset was to be created for each of these 

variables.  

For the multivariant analyses, which involved creating additional subdatasets, several 

combinations between the significant variables (from the univariant correlation analyses) and Ca 

and Mg status in the soil were tested: the ration between the CEC and calcium and magnesium 

concentrations (
CEC

(Ca2++ Mg2+)𝑠𝑠
) , the ratio between exchangeable and non-exchangeable 

calcium and magnesium (
Caexch

2+ + Mgexch
2+

(Ca2++ Mg2+)𝑠𝑠
) , pH and OM, pH and 

CEC

(Ca2++ Mg2+)𝑠𝑠
, pH and 

Caexch
2+ + Mgexch

2+

(Ca2++ Mg2+)𝑠𝑠
, and carbonate and OM.  



22 Sabaté Herrero, Guillem 

 

However, the multivariant correlation (
Caexch

2+ + Mgexch
2+

(Ca2++ Mg2+)𝑠𝑠
) was the only one not done between 

significant factors. This correlation was done because previous bibliography of Sr, another earth-

alkaline metal, shows a strong correlation between this parameter and the Kd (Sr) and a similar 

behavior should be expected for Kd (Ra) (Gil-García et al., 2011). 

5.5. PROPOSE KD (RA) BEST ESTIMATES AND EXPLORE DATA 

CATEGORIZATION 

After performing the correlation analyses, the significant variables from the univariant 

correlation tests were selected to propose Kd (Ra) best estimates. Firstly, the data in each of the 

newly created subdatasets was treated to create intervals for each variable, that were intended 

to be as evenly distributed as possible, i.e., with an equilibrated number of entries for each of 

subgroups. So, a categorization process was made and it again was done in parallel for the overall 

data and the long- and short-term groups as a hypothetical strategy to reduce data variability.   

Afterwards, a CDF was made for the variables pH and 
CEC

(Ca2++ Mg2+)𝑠𝑠
, as a complement of 

the later performed FLSD tests to detect any significant differences between the new subdatasets. 

CDF stands for Cumulative Distribution Function (see Figure 4) and it describes the accumulated 

frequency against a data array in a plot. To do so, an array must be increasingly reordered to get 

assigned a probability in a normal distribution. Thus, the array can be used to do a non-linear 

fitting, according to Eq. 2: 

𝑓(𝑥) =
1

2
(1 + (erf (

logKd−μ

σ √2
))) Eq.2. Fitting function to build a CDF. 

Figure 4. CDF of Kd (U) for pH groups. From Ramírez-Guinart et al. 2020. 

The statistical parameters defined in Eq. 2 are a location parameter (μ), which is the central 

value of the distribution and is calculated as the arithmetic mean of the array; and the scale 

parameter of the normal distribution (σ), which express the data dispersion and corresponds to 
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the standard deviation of the array. Whereas the logKd parameter is the variable used to iterate 

the array against the accumulated frequency. As Eq. 2 involves a complex fitting, the fitting 

package of Matlab had to be used to generate the plots, and to do so a short Matlab program for 

every CDF was written (see Annex 3 page 48 to view the program written to make Figure 7) 

(Ramírez-Guinart, 2020a). 

From a CDF, a best estimate (PCTL50) can easily be deduced and a measure of the 

dispersion of data can be interpreted with just a glance. The more the experimental data deviates 

from its fitting, greater is the variability; while the proximity between fittings indicates how similar 

the groups are. 

Afterwards, FLSD tests and descriptive parameters were performed on each subdataset for 

the most significant variables of the correlation analyses. In this case, the best estimate would be 

a geometric mean (GM) and data variability can be deduced from the geometric standard 

deviation (GSD). In addition, the descriptive analyses allowed for a comparison between the 5th 

and 95th percentiles, and the maximum and minimum ranges. All the best estimates and 

descriptive parameters that are to be provided in this project will be the antilog of the calculated 

value. 
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6. RESULTS AND DISCUSSION 

The results of this project will be divided into three sections. Firstly, a summary for the 

bibliographic search results will be provided. Secondly, a sum up of the database shall also be 

provided with some descriptive statistics. And finally, the correlation results, the categorization 

analyses and best estimates proposal based on CDFs are going to be presented. 

6.1. BIBLIOGRAPHIC SEARCH RESULTS 

Table 2 provides an overall sum up of the results of the several queries done in the Web of 

Science database. After making several tests to check the availability of results in several different 

queries, it was decided to use the stated keywords for performing the searches. In addition, it is 

provided the date of the search and the classification of the provided results, regarding their 

contribution to this project. 

Search Date Keywords Results Discarded Included CbD LtoL NF 

1 07/03/21 
“radium” AND “soil” AND 
“distribution” 

224 79 % 4 % 13 % 2 % 2 % 

2 13/03/21 
“radium” AND “soil” AND 
“kd” 

2    100 %  

3 12/04/21 
“radium” AND “soil” AND 
“partition” 

15 60 % 20 % 7 % 13 %  

  

Total 
241 77 % 5 % 13 % 3 % 2 % 

  241 186 12 30 8 4 

CbD: Consulted but Discarded 
LtoL: Lead to other Literature 
NF: Not Found or not available 

Table 2. Search parameters for Web of Science and classification of the results. 

Although the keywords were quite specific, most of the sources provided in these queries 

were directly discarded due to not having anything to do with the distribution coefficient of radium. 

A 77% of the results were discarded; only a 3% of the results were used to access other 

documents; they consisted mostly of reviews, but also of a few previously published databases. 

Thus, just 5% of the results were suitable sources to be included into the present database.  

Some of the sources that were classified as ‘lead to other literature’ were previous databases 

of radium Kds. And even when they were useful in obtaining new original sources, some of them 

were disappointing. Some of the sources they cited, like Sheppard et al. 2006, did not really 

provide the coefficients stated in their database. The only explanation that was found plausible is 
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that the authors of the reviews contacted to the researchers cited in their projects, in order to get 

raw data or some unpublished details. Yet, a similar contact attempt with the authors from Al-

Masri et al. 2021 to get some unpublished data for this project was done, and it was unsuccessful. 

On the other hand, a review was done from the original database entries. Originally, there 

were entries from 18 different sources, from which only 9 were kept in the present database. Such 

a reduction was made due to the deleted sources not fulfilling the inclusion criteria. Mainly, the 

erased sources consisted of published Kd (Ra) compilations, which did not contain any 

experimental data. 

6.2. THE DATABASE 

A digital copy of the overall updated database can be found at the link: https://ubarcelona-

my.sharepoint.com/:x:/g/personal/gsabathe7_alumnes_ub_edu/EVD5kaeh_1ZDt3xcsFcUkr8Ba

dWjl00RPlFPn0XxeqrqQQ?e=dVdIZS.  Due to the extent of the database, a paper version could 

not be included in the annex; yet it has been made available for any consult. So, the purpose of 

this section is to provide some general descriptive information about the soils and experiment 

methodology of the included entries. 

The final selection was made after several reviews, and it contains 185 entries from 29 

sources. The disparity on the publishing formats and aims of the sources has made this database 

quite heterogeneous in its content. On the one hand, there are entries that provide an exhaustive 

soil characterization, whereas there are sources that barely provide any data but the coefficient 

and a vague description, e.g., Mishra et al., 2012, and Krest and Harvey, 2003. This heterogeneity 

will manifest itself in the statistical treatment of the data, where it will limit the entries available for 

the analyses of each variable. 

Firstly, a picture depicting the soil classification must be provided. On the ‘sample tag’ 

classification, the entries were found to belong to: sediments (33%), soils (57%), subsoils (9%), 

and tuffs (1%). This classification is not or should not be of much use to study the behavior of the 

Kd, because they do not imply inherent soil characteristics that can be quantified for any 

predictions.  

Secondly, the soil classification overview can be found in Table 3. This classification is taken 

from Ramírez-Guinart et al., 2020a and classifies soils according to their texture and the organic 

matter content as detailed in the previous section. 

 

https://ubarcelona-my.sharepoint.com/:x:/g/personal/gsabathe7_alumnes_ub_edu/EVD5kaeh_1ZDt3xcsFcUkr8BadWjl00RPlFPn0XxeqrqQQ?e=dVdIZS
https://ubarcelona-my.sharepoint.com/:x:/g/personal/gsabathe7_alumnes_ub_edu/EVD5kaeh_1ZDt3xcsFcUkr8BadWjl00RPlFPn0XxeqrqQQ?e=dVdIZS
https://ubarcelona-my.sharepoint.com/:x:/g/personal/gsabathe7_alumnes_ub_edu/EVD5kaeh_1ZDt3xcsFcUkr8BadWjl00RPlFPn0XxeqrqQQ?e=dVdIZS
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Classification Entries Entries [%] 

Mineral  171 92 % 

 Sand 73 39 % 

 Loam 27 15 % 

 Clay 28 15 % 

 Unspecified 43 31 % 

Organic  11 6 % 

Unspecified  3 2 % 

Table 3. Classification of the soils in the database according to their textural data and organic matter 

content. 

Most of the distribution coefficients are from mineral soils. With just a 6% of the data, it can 

be seen that data from organic soils are quite scarce. On the other hand, the mineral soils, which 

can be classified as loamy, clayey, or sandy, are more evenly distributed with a higher proportion 

for sandy soils, whereas the mineral group without any textural information reported is also quite 

relevant (31%). The overall unspecified group is reserved for those sources which do not provide 

any textural characterization, neither qualitative nor quantitative, or organic matter content. 

The isotope used in the sorption studies should not be a factor influencing Kd (Ra) values, 

although the radioisotope used in the experiments (mostly 226Ra) is reported in the database. 

Moreover, there is the experimental method used in obtaining the coefficient. As stated in the 

methodology, each entry had to be labelled in the variable “Experimental tag approach” as long-

term, in situ or desorption; or as short-term, in situ, sorption, or desorption. So, Table 4 provides 

a description of the database, regarding the classification of the entries according to their 

experimental method. Most distribution coefficients were obtained with a short-term methodology, 

especially from sorption experiments, whereas almost a third were classified as long-term 

experiments. This designation was of great importance, because in the forthcoming statistical 

analyses the effect of the methodology was to be examined. 

After taking perspective from the search and the review of the database, it can be stated that 

there is not much published data of radium distribution coefficients. A similar search for any other 

radionuclide, e.g., uranium, might produce a much bigger number of entries in the database. 

There is an important lack of available data. 
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Classification Entries Entries [%] 

Long-term  58 31 % 
 in situ 19 10 % 
 desorption 39 21 % 

Short-term  127 69 % 
 in situ 0 0 % 
 desorption 9 5 % 
 sorption 118 64 % 

Table 4. Counting of the variable Experimental tag approach. 

6.3. STATISTICAL ANALYSES 

6.3.1. Evaluation of the effect of the experimental approach on Kd (Ra) variability 

As a way of performing a statistical analysis, variability ought to be reduced to a minimal when 

possible. In order to do so, data was grouped according to the ‘Experimental tag approach’, as a 

means to improve any future data correlations. The reasoning for this segregation of data was 

that the expected Kd (Ra) is predicted to be greater for long-term experiments than for short-term 

ones, given that other radionuclides like Cs present such a behavior (Ramírez-Guinart et al., 

2020b). So, this section aims at elucidating the effect of the methodology to assess if such a 

grouping was appropriate; to do so, CDFs and best estimates were calculated and compared. 

Subgroups N BEa GSDb PCTL5 PCTL95 Min. Max. FLSDc 

Overall 185 977 12 13 29107 2 645654 A 

Long-term 58 2042 12 5 21503 2 23988 A 

Short-term 127 776 12 13 107647 3 645654 A 

Units: Kd (L Kg-1). PCTL: Percentile. 
a Best estimate (PCTL50). 
b Geometrical standard deviation 
c FLSD stands for Fisher’s Least Significant Difference test. Different letters among the datasets for each variable 

indicate significant differences between the groups with a 95% confidence in log scale. 

Table 5. Best estimate and group comparison between experimental approach groups. 

An FLSD test was performed on the database to observe any potentially significant 

differences between the three groups: long- and short-term, and overall data.  Table 5 shows the 

result of the test and the descriptive parameters of each group. The Best Estimate for the long-

term group almost doubles the one for the short-term experiments. There are no significant 
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differences between them, although PCTL50 LT > PCTL50 ST. That does not mean that there 

are actually no differences, it just means that variability is too great to appreciate them.  

One great factor to be considered after observing data from Table 5 is that some of the 

published data produce Kd (Ra) with great variability. Thus, confirming the initial expectations. 

Figure 5. CDF for the long- and short-term groups. 

Additionally, Figure 5 contains a plotted CDF to compare the long- and short-term groups. 

Both the CDF and Table 5 provide grounds to reinforce the hypothesis of long-term Kd (Ra) being 

greater than the short-term ones, despite not observing any statistically significant results. So, 

henceforth all the forthcoming analysis were performed for three main groups: overall, long-, and 

short-term. 

6.3.2. Evaluation of the effect of soil properties on Kd (Ra) variability: correlation analysis 

The goal of this section was to ascertain whether a soil factor can be used to group soils to 

reduce variability in the derived best estimate Kd (Ra). To do so, correlation analyses were 

performed between Kd (Ra) and selected soil variables from previous sorption studies, 

distinguishing between the overall, long-, and short-term groups. Hence, the studied variables 

were pH, organic matter (OM), carbonate concentration [CO32-], Cation Exchange Capacity 

(CEC), and Ca and Mg status in the soil. 
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6.3.2.1. Univariant linear correlations 

The univariant correlation analyses for OM (N=57) and CEC (N=68) proved to be not 

significant with the current number of entries in the database.  

On the other hand, pH and carbonate concentration did show significant correlations. Table 

6 displays the significant linear models and its correlation coefficient for both variables. Here, it 

can be seen that the strategy of using the experimental methodology as a stratifying element 

proved itself to be of great use. For instance, the carbonate correlation was only statistically 

significant in the short-term group. Neither the overall nor the long-term data showed any 

significant correlations. Nonetheless, it should not be inferred that the correlation does not equally 

affect long- and short-term experiments. In the partial database used to make these calculations, 

there were only 6 long-term entries that described a carbonate concentration. So, perhaps with 

more data, a correlation would have manifested. Yet, for now, the linear model for the short-term 

case proved an exceptionally high correlation (R2 = 0.56). The whole partial dataset created to 

study the effects of carbonate contained 26 entries, though 20 of the were from short-term 

experiments. 

Variable & Subgroup Linear equation N R2 

pH    

 Overall log(Kd) = (0.17 ± 0.11) pH + (1.87 ± 0.73) 138 0.07 

 Long-term* log(Kd) = (0.37 ± 0.13) pH 43 0.45 

[CO3
2-]    

 Short-term log(Kd) = (0.62 ± 0.44)  log[CO3
2-

] + (1.99 ± 0.57) 20 0.56 

* The slope of this equation was significant, though not the intercept. 

Table 6. Significant univariant linear regression equations and their confidence intervals between K d (Ra) 

and pH (overall and LT) and carbonate concentration (ST). 

Likewise, pH did also show a significant correlation. Here, it can be observed that though the 

overall linear correlation is still significant, the inclusion of the short-term data into the array did 

increase the variability and the correlation coefficient was greatly reduced (R2 = 0.07).  

6.3.2.2. Multivariant linear correlations 

Table 7 provides in detail all the multivariant analyses tested, leading to significant 

correlations. 
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Variable & 
Subgroup 

Linear equation N R2 

[CO3
2-] + OM 

 Overall log(Kd) = (0.61 ± 0.56)  log[CO3
2-] + (1.59 ± 1.21)  log(OM) 13 0.60 

pH + OM    

 Overall log(Kd) = (0.26 ± 0.12) pH − (0.52 ± 0.39)  log(OM) + (1.63 ± 0.81) 69 0.26 

 Long-term* log(Kd) = (0.41 ± 0.35) pH 12 0.51 

 Short-term log(Kd) = (0.25 ± 0.13) pH − (0.59 ± 0.39)  log(OM) + (1.83 ± 0.85) 57 0.27 

CEC/(Ca+Mg)ss 

 Overall log(Kd) = (0.71 ± 0.42)  log (
CEC

(Ca2+ +  Mg2+)𝑠𝑠

) + (1.90 ± 0.48) 24 0.33 

 Short-term 
log(Kd) = (0.69 ± 0.42)  log (

CEC

(Ca2+ +  Mg2+)𝑠𝑠

) + (1.96 ± 0.49) 

 

23 0.33 

(Caexch+Mgexch)/(Ca+Mg)ss 

 Short-term log(Kd) = (0.64 ± 0.31)  log (
Caexch

2+ + Mg
exch
2+

(Ca2+ +  Mg2+)𝑠𝑠

) + (1.86 ± 0.33) 14 0.63 

pH + CEC/(Ca+Mg)ss   

 Overall* log(Kd) = (0.27 ± 0.20) pH + (0.59 ± 0.48)  log (
CEC

(Ca2+ +  Mg2+)𝑠𝑠

) 25 0.43 

 Short-term* log(Kd) = (0.64 ± 0.41)  log (
CEC

(Ca2+ +  Mg2+)𝑠𝑠

) 23 0.44 

* Some coefficients of the regression model were not significant. 

Table 7. Significant multivariant linear regression models. 

The multivariant approaches led to a great improvement in the correlation coefficient, with 

respect to the univariant ones. Multivariant correlations were initially defined based on those 

variables showing significant univariant correlations, such as [CO32-] + OM and pH + OM. The 

former combination did also produce an especially increased correlation. Therefore, the organic 

matter content should not be disregarded when studying the distribution coefficient in future 

studies, although it is required that data on Kd (Ra) from soils with a high OM content become 

available. 

The regression analysis for the relation between the CEC and calcium and magnesium 

concentrations (CEC/(Ca+Mg)ss) was quite relevant. As according to literature, an estimate of the 

Kd (Sr) can be obtained with this ratio and it was decided to test if it would produce the same 

results with Ra (Gil-García et al., 2011). However, as a result of the previous analysis, another 
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ratio was studied: the ratio between exchangeable and solved calcium and magnesium 

((Caexch+Mgexch)/(Ca+Mg)ss). Thus, a great increase in the coefficient correlation was observed, 

which confirms that Ra and Sr are chemical analogues and this ratio can be used to infer Kd (Ra). 

The correlation observed is so good, that it would allow for the construction of Kd (Ra) predicting 

models. But the problem of this ratio is that published data regarding the exchangeable cations in 

a soil is not as common as the CEC. 

Additionally, (Caexch+Mgexch)/(Ca+Mg)ss and pH were combinedly studied and did not provide 

a much better correlation when combined. 

6.3.3. Proposal of Kd (Ra) best estimates and description and reduction of Kd (Ra) 

variability for selected soil groups 

In this section it was examined if grouping soils based on soil properties proved to affect Kd 

(Ra) values in order to derive Kd (Ra) best estimates with a lower related variability. Hence, partial 

datasets were created by grouping soils according to ranges of values of variables or combination 

of variables that showed significant correlations. Ranges were created to ensure partial datasets 

had a sufficient number of entries. 

6.3.3.1. Kd (Ra) best estimates and variability from soils grouped based on pH 

pH Subgroup Intervals N BEa GSDb PCTL5 PCTL95 Min. Max. FLSDc 

Overall pH < 6 45 600 9 24 10872 3 28184 A 

  6 ≤ pH < 8 57 800 8 13 26146 9 38019 A 

  pH ≥ 8 36 4759 7 31 24033 28 23988 B 

Long-term pH < 6 10 1269 6 50 8318 50 8318 A 

  6 ≤ pH < 8 12 1323 4 212 11220 214 11220 A 

  pH ≥ 8 21 11410 2 1041 24182 933 23988 B 

Short-term pH < 6 35 540 10 14 13646 3 28184 A 

  6 ≤ pH < 8 45 800 9 10 28314 9 38019 A 

  pH ≥ 8 15 1132 7 28 4677 28 4677 A 

Units: Kd (L kg-1). PCTL: Percentile. 
a Best estimate: PCTL50. 
b Geometric standard deviation 
c FLSD stands for Fisher’s Least Significant Difference test. Different letters among the datasets for each variable 

indicate significant differences between the groups with a 95% confidence in log scale.  

Table 8. Proposed best estimates for soils at different pH ranges. 



32 Sabaté Herrero, Guillem 

 

Table 8 involved grouping soils at different pH ranges: pH < 6, 6 ≤ pH < 8, and pH ≥ 8. 

Although they were subjectively proposed, the goal was to produce ranges with as evenly 

distributed soils as possible. All the proposed best estimates of a Kd (Ra) for each soil group 

based on pH. The best estimate was not only proposed for the overall data but also for the LT 

and ST subdatasets.  

Firstly, the influence of pH was confirmed: a higher pH related to a higher Kd (Ra).  Secondly, 

above pH 8 the influence of pH is most notable, as surpassing this threshold might even produce 

an increase in the estimated Kd (Ra) of one order of magnitude, which statistically differs from the 

estimated Kd (Ra) of the other groups. Thirdly, at pH ≥ 8 further FLSD tests were performed that 

showed that above this same threshold there are significant differences between the long- and 

short-term groups, and between the overall data. Nonetheless, if only data from Table 8 is 

considered, the Kd (Ra) best estimates for the long-term categories are higher than the short-term 

ones. 

Finally, using soil grouping was proven to be useful in reducing the variability at proposing Kd 

(Ra) best estimates. If Table 8 is compared with Table 5 (which included the whole database), it 

can be inferred a much lesser variability for Table 8: the GSD is reduced, and the difference 

between the 5th-95th percentiles and the maximum and minimum ranges are greatly reduced. 

Figure 6 provides, as an illustrating example the plotted CDFs of the overall data for the three 

pH soil groups. 

Figure 6. CDF of the pH intervals of the overall data. 
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Figure 6 confirms the observations made for Table 8, but also provides a better picture at 

presenting the variability of the data. In fact, the variability of the included Kd (Ra) has decreased 

to 3 orders of magnitude and has provided lesser variability to the best estimates for each soil 

group, even some of them being significantly different from the others, i.e., for pH ≥ 8. The pH ≥ 

8 soil group is depicted as being significantly different from the other ranges, which overlap with 

each other in the 5th-95th percentile range. 

As a sum up, the pH can be used to predict Kd (Ra) best estimates with a lower variability 

than the ones obtained from the overall database, some of which are even statistically different 

between each other. 

6.3.3.2. Kd (Ra) best estimates and variability from soils grouped based on [CO32-] 

Table 9 involved grouping soils at different carbonate concentration (mg L-1) ranges: [CO32-] 

< 10, 10 ≤ [CO32-] < 50, and [CO32-] ≥ 50.  

[`CO3
2-] - Subgroup Intervals N BEa GSDb PCTL5 PCTL95 Min. Max. FLSDc 

Overall [CO3
2-] < 10 13 150 6 2 1778 2 1778 A 

 10 ≤ [CO3
2-] < 50 5 862 3 205 3020 204 3020 AB 

 [CO3
2-] ≥ 50 8 946 8 50 12023 50 12023 B 

Long-term [CO3
2-] < 10 3 60 23 2 933 2 933 A 

 10 ≤ [CO3
2-] < 50 0 - - - - - - - 

 [CO3
2-] ≥ 50 3 304 18 50 8318 50 8318 A 

Short-term [CO3
2-] < 10 10 197 4 38 1778 38 1778 A 

 10 ≤ [CO3
2-] < 50 5 862 3 205 3020 204 3020 B 

 [CO3
2-] ≥ 50 5 1869 3 543 12023 537 12023 B 

Units: Kd (L Kg-1), [CO3
2-] (mg L-1). PCTL: Percentile. 

a Best estimate: GM. 
b Geometric standard deviation 
c FLSD stands for Fisher’s Least Significant Difference test. Different letters among the datasets for each variable 

indicate significant differences between the groups with a 95% confidence in log scale.  

Table 9. [CO3
2-] best estimates for different intervals. 

Table 9 shows all the proposed best estimates of a Kd (Ra) for each soil group base on   [CO32-

]. The best estimate was not only proposed for the overall data but also for the LT and ST 

subdatasets.  
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Firstly, the influence of [CO32-] was confirmed: a higher [CO32-] related to a higher Kd (Ra).  

Secondly, at [CO32-] < 10 the influence of [CO32-] is most notable, as surpassing this threshold 

might even produce an increase in the estimated Kd (Ra) of one order of magnitude. This interval 

statistically differed from the other ranges. 

According to Table 9, data variability has also been reduced for this subdataset. In this case, 

Kd (Ra) variability was reduced to just three orders of magnitude and the 5th-95th percentile range 

is the same as the maximum-minimum range. This fact might be a consequence of studying 

categories with a reduced number of samples. 

As a sum up, the variable carbonate concentration could be used to obtain Kd (Ra) best 

estimates with lower variability, some of which would be even statistically different between each 

other. 

6.3.3.3. Kd (Ra) best estimates and variability from soils grouped based on CEC/(Ca+Mg)ss 

Table 10 involved grouping soils at different CEC/(Ca+Mg)ss ranges: CEC/(Ca+Mg)ss < 5, 5 ≤ 

CEC/(Ca+Mg)ss < 50, and CEC/(Ca+Mg)ss ≥ 50.  

CEC/(Ca+Mg)ss - 
Subgroup 

Intervals N BEa GSDb PCTL5 PCTL95 Min. Max. FLSDc 

Overall X < 5 8 88 4 18 1072 18 1072 A 

 5 ≤ X < 50 11 391 4 50 2291 50 2291 AB 

 X ≥ 50 5 974 4 520 12023 525 12023 B 

Short-term X < 5 8 88 4 18 1072 18 1072 A 

 5 ≤ X < 50 10 773 4 91 2291 91 2291 B 

 X ≥ 50 5 974 4 520 12023 525 12023 B 

X: CEC/(Ca+Mg)ss. Units: Kd (L Kg-1), CEC/(Ca+Mg)ss (L kg-1). PCTL: Percentile. 
a Best estimate: PCTL50. 
b Geometric standard deviation 
c FLSD stands for Fisher’s Least Significant Difference test. Different letters among the datasets for each variable 

indicate significant differences between the groups with a 95% confidence in log scale.  

Table 10. CEC/(Ca+Mg)ss best estimates for different intervals. 

Table 10 shows all the proposed best estimates of a Kd (Ra) for each soil group based on 

CEC/(Ca+Mg)ss. The best estimates were again not only proposed for the overall data but also 

for the LT and ST subdatasets.  

Firstly, the influence of CEC/(Ca+Mg)ss was confirmed: a higher ratio related to a higher Kd 

(Ra).  Secondly, significant differences were observed between the Kd (Ra) best estimates from 
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the extreme groups, although they did not significantly differ from the central soil group. The 

observed differences were in this case of one order of magnitude. 

According to Table 10, data variability has also been reduced for this subdataset. In this case, 

Kd (Ra) variability was reduced to just two orders of magnitude and the 5th-95th percentile range 

was the same as the maximum-minimum range. This variability was considerably low when 

compared with the six orders of magnitude observed in Table 5 from the overall dataset. 

Figure 7 provides, as an illustrating example the plotted CDFs of the overall data for the three 

CEC/(Ca+Mg)ss soil groups. 

Figure 7. CDF of the CEC/(Ca+Mg)ss ratio for the overall data. 

Figure 7 displays considerably good fittings, considering the small sample. Here, the results 

of the FLSD test can be better interpreted: significant differences exist between the highest and 

lowest soil ranges, but they do not manifest when they are respectively compared against the 

central range. That can be observed with the slight overlapping of two of the fittings. 

As a sum up, the variable CEC/(Ca+Mg)ss could be used to propose Kd (Ra) best estimates 

with lower variability, some of which are even statistically different between each other. 
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7. CONCLUSIONS 

 The main goal of this project was achieved: a Kd (Ra) database was expanded to study which 

soil parameters can help reduce the variability in predicting a Kd (Ra) best estimate for a soil.  

The database used in this project is an expanded version of a previous database, after adding 

a sizable number of entries and adjusting the parameters and variables stored within it. 

Additionally, the previously included entries were reviewed and some of them were discarded due 

to not fulfilling the main inclusion criterion: the original source had to provide an experimental Kd, 

not one from a data compilation. Despite the final number of entries being greatly increased, it is 

not as big and diverse as the ones existing for other radionuclides. Thus, it can be concluded after 

a thorough bibliographical research, that there is an important lack of published literature about 

Kd (Ra) in comparison to other radionuclides. 

The number of factors involved in radium sorption are quite great and not all of them were 

studied in this project. A previous bibliographic research showed that parameters like the textural 

data or the soil mineralogy would be expected to play an important role in any sorption process, 

although not as much information for radium is available as there is for other radionuclides. Some 

of the parameters studied in this project were made under the assumption that radium would be 

expected to present a similar behavior as other alkaline earth elements, like strontium. 

The univariant linear correlation analyses depicted considerably good correlations for pH and 

carbonate concentration in the soil solution with the Kd (Ra). No other univariant correlations were 

observed, although that may change in future studies when more data is being considered. Yet, 

the multivariant analyses did produce some exceptionally good correlations. Most interestingly, 

they did show that both the CEC/(Ca+Mg)ss and (Caesch+Mgexch)/(Ca+Mg)ss can quite significantly 

explain the Kd (Ra) variability, which is consistent with previous findings for other earth alkaline 

metals. 

Other multivariant significant linear correlations were also described, being the combination 

of carbonate concentration and OM the one that produced the best correlation. Thus, highlighting 

a major role to the organic matter, previously undetected in the univariant correlation analyses. 

On the other hand, using the experimental approach (long- or short-term) to further group 

data served its purpose: it allowed to propose smaller soil groups to study different parameters. 

This strategy reduced variability enough to observe some correlations that would otherwise have 

been missed.  
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Finally, Kd (Ra) best estimates were proposed for pH, carbonate concentration, and 

CEC/(Ca+Mg)ss. Partial datasets were again used to group soils at different intervals of a variable 

or parameter, so as to produce a significant decrease in overall variability. Some of this 

categorized groups were different enough from each other to show significant differences, e.g., 

the case of pH ≥ 8. Hence, it is important to remark that obtaining these best estimates at a 

reduced variability than those of the overall dataset is definitely good for building risk assessment 

models. 

As a sum up, all the established goals were fulfilled within the scope of a prospective analysis 

of Kd (Ra). However, before proceeding to any further data analysis, additional Kd (Ra) entries 

should be included into the database inasmuch some soil groups, like organic soils, are 

underrepresented. So, all correlations (or the lack of them) observed within this project are slightly 

susceptible to change when more data is included. 
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12. ACRONYMS 

BE   Best Estimate 

CDF   Cumulative Density Function 

CEC  Cationic Exchange Capacity 

DIC  Dissolved Inorganic Carbon 

DOC  Dissolved Organic Carbon 

FLSD  Fisher’s Least Significant Difference test 

GM  Geometric Mean 

GSD  Geometric Standard Deviation 

IAEA  International Atomic Energy Agency 

LT   Long-term experiment 

Max  Maximum 

Min   Minimum 

N   Sample population 

NIH  National Institutes of Health 

NOR  Naturally Occurring Radionuclide  

NORM Naturally Occurring Radionuclide Materials 

Kd  Distribution Coefficient 

OM  Organic Matter 

DOC  Dissolved Organic Carbon 

PCTL  Percentile 

ST   Short-term experiment 

TOC  Total Organic Carbon 
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APPENDIX 1: DATABASE DESCRIPTION 

 Variable Specifications 

Bibliographical 
data 

Reference type The kind of source, i.e., if it was either a published article 
or a technical report. 

Journal The name of the publishing journal. 

Language The language of the source. 

Authors The authors of the publication. 

Volume The volume number in the publishing journal. 

Pages The pages in the publishing journal. 

Year The year when it was published. 

 Title The title of the source. 

General 
information  

Element The element under study. 

Isotope The isotope with which the experiment was carried out. 

Climate zone The climate zone wherein the sample was obtained. 

Country The country wherein the sample was obtained. 

Sample tag Basic classification as either ‘subsoil’, ‘soil’, ‘sediment’, 
‘glyttja’, ‘till’, or ‘tuff’; as it was stated in the inclusion 
criteria. New addition to the database. 

Soil code The name or number assigned to the sample in the 
original source. 

Soil description New name for the variable Soil classification. Brief 
description of the sample as given in the source. 

Soil 
parameters 

Handbook group It specifies the soil type: ‘organic’ or ‘mineral’; where 
mineral soils can be ‘clays’, ‘sands’, or ‘loams. 

Soil pH pH of the soil in its original or natural state. 

pH contact solution Renaming of the original pH column. It states the actual 
pH under which the experiment was conducted. If the pH 
was not modified, the soil pH was the one considered as 
effective pH. 

OM (%) Organic Matter content in the solid phase 

DOC (mg L-1) Dissolved Organic Carbon. 

TOC (%) Total Organic Carbon in the solid phase. 

 Inorganic Carbon (%) Inorganic Carbon content in the soil phase. 

 DIC (mg L-1) Dissolved Inorganic Carbon. 

 CEC (cmolc kg-1) Cationic Exchange Capacity 

 Sand (%) Textural proportion of sand. 

 Clay (%) Textural proportion of clay. 
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 Variable Specifications 

 Ionic strength Ionic strength of the contact solution or the liquid phase 
in a soil. 

 Exchangable Ca2+ 
(cmolc kg-1) 

Exchangeable calcium content in the solid phase 

 Exchangable Mg2+ 
(cmolc Kg-1) 

Exchangeable magnesium content in the solid phase 

 Exchangeable Na+ 

(cmolc kg-1) 
Exchangeable Na+ in the solid phase. 

 Exchangeable K+ 

(cmolc kg-1) 
Exchangeable K+ in the solid phase. 

 Exchangeable Al3+ 

(cmolc kg-1) 
Exchangeable Al3+ in the solid phase. 

 Exchangeable Mn 

(cmolc kg-1) 
Exchangeable Mn in the solid phase. 

 Exchangeable Fe 

(cmolc kg-1) 
Exchangeable Fe in the solid phase. 

 Na+ contact solution 
(mEq L-1) 

Actual Na+ concentration in the contact solution in the 
sorption/desorption experiment. In a short-term 
experiment it must include the concentration in the 
contact solution, though in a long term one it is the 
concentration in the soil pore water or natural soil 
solution. 

 K+ contact solution 
(mEq L-1) 

Actual K+ concentration in the contact solution in the 
sorption/desorption experiment. In a short-term 
experiment it must include the concentration in the 
contact solution, though in a long term one it is the 
concentration in the soil pore water or natural soil 
solution. 

 Ca2+ contact solution 
(mEq L-1) 

Actual Ca2+ concentration in the contact solution in the 
sorption/desorption experiment. In a short-term 
experiment it must include the concentration in the 
contact solution, though in a long term one it is the 
concentration in the soil pore water or natural soil 
solution. 

 Mg2+ contact solution 
(mEq L-1) 

Actual Mg+ concentration in the contact solution in the 
sorption/desorption experiment. In a short-term 
experiment it must include the concentration in the 
contact solution, though in a long term one it is the 
concentration in the soil pore water or natural soil 
solution. 

 Na+ (mg L-1) Na+ concentration in the pore water or liquid phase. It 
was provided separately only when the concentration of 
this element in the contact solution was provided. 

 K+ (mg L-1) K+ concentration in the pore water or liquid phase. It was 
provided separately only when the concentration of this 
element in the contact solution was provided. 
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 Variable Specifications 

 Ca2+ (mg L-1) Ca2+ concentration in the pore water or liquid phase. It 
was provided separately only when the concentration of 
this element in the contact solution was provided. 

 Mg2+ (mg L-1) Mg2+ concentration in the pore water or liquid phase. It 
was provided separately only when the concentration of 
this element in the contact solution was provided. 

 SO4
2- (mg L-1) Sulphate concentration in solution. 

 CO3
2- (mg L-1) Carbonate concentration in solution. 

 Oxalate extrac. Fe 
(mg L-1) 

Iron concentration of the extractable fraction. 

 Fe (mg L-1) Iron concentration in solution. 

 Total Fe (mg kg-1) Total iron content in the solid phase 

 Total Na (g kg-1) Total sodium in the solid phase. 

 Total K (g kg-1) Total potassium in the solid phase. 

 Total Ca (g kg-1) Total calcium in the solid phase. 

 Total Mg (g kg-1) Total magnesium in the solid phase. 

 Total Al (g kg-1) Total Al in the solid phase. 

 Total SO4
2- (mg kg-1) Total sulphate in the solid phase. 

 CaCO3 (g kg-1) Total calcium carbonate content in the solid phase 

 Surface area (m2 g-1) Superficial area of the soil. 

Sorption data Kd (L kg-1) Sorption coefficient. The previous database made a 
distinction between sorption and desorption Kds and 
used different columns. Yet, this distinction was deleted 
due to the addition of the variable ‘Experimental tag 
approach’. 

Method 226Ra in solution Radium activity at an equilibrium phase in the liquid 
phase of a soil. 

 Contamination type Specify if the experiment involved addition of radium or 
not, like an anthropogenic element. 

 
Experimental tag 
approach 

Tag to classify between long- and short-term methods. 
The tags used are ones used in Table 1. 

 
Contamination level Amount of radium in the sample, or the added amount. 

The units of the original source were the one used in 
each case. 

 
Remarks sorption Methodological specifications under which the sorption 

experiment was carried out, i.e., S/L ratio, equilibration 
time, etc. 

 Observations Personal notes regarding an entry or the source. 

Table 11. Variables included in the Kd (Ra) database. 
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APPENDIX 3: CDF MATLAB PROGRAM. EXAMPLE 

FOR CEC/(CA+MG)SS 
%************************************************************************** 

% Program: CEC_CaMg.m 

% Description: CEC/Ca+Mg categories comparison 

%************************************************************************** 

% Data and basic calculations for first Kd group 

logKd = sort(load('CEC_CaMginf5.txt')); %paste data into this file 

logKd_mean = mean(logKd); 

logKd_sd = std(logKd); 

logKd_freq = 1/length(logKd); 

distr = normcdf(logKd,logKd_mean,logKd_sd); 

logKd_freq_acum = [logKd_freq:logKd_freq:1]'; 

%-------------------------------------------------------------------------------------- 

% Fitting: less than 5 

[xData,yData] = prepareCurveData(logKd,logKd_freq_acum); 

% Set up fittype and options. 

ft = fittype( '1/2*(1+(erf((logKd-prom)./(desv*sqrt(2)))))', 'independent', 'logKd', 'dependent', 
'logKd_freq_acum' ); 

opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 

opts.Display = 'Off'; 

opts.StartPoint = [0.8002804688888 0.141886338627215]; 

% Fit model to data. 

[fitresult, ~] = fit( xData, yData, ft, opts ); 

% The following expressions are used to extrapolate (change max X value) 

Xfit = [0:0.05:6]; 

Yfit = fitresult(Xfit); 

% Plot fit with data. 

figure( 'Name', 'untitled fit 1' ); 

%h = plot( fitresult ); 

h = plot( Xfit, Yfit, 'b' ); 

hold on 

scatter( xData, yData , 5, 'b' ); 

%************************************************************************** 

%Data and basic calculations for second Kd group 

logKd = sort(load('CEC_CaMg5to50.txt')); %paste data into this file 

logKd_mean = mean(logKd); 

logKd_sd = std(logKd); 

logKd_freq = 1/length(logKd); 

distr = normcdf(logKd,logKd_mean,logKd_sd); 

logKd_freq_acum = [logKd_freq:logKd_freq:1]'; 

%-------------------------------------------------------------------------------------- 

% Fitting between 5 and 50 

[xData,yData] = prepareCurveData(logKd,logKd_freq_acum); 

% Set up fittype and options. 

ft = fittype( '1/2*(1+(erf((logKd-prom)./(desv*sqrt(2)))))', 'independent', 'logKd', 'dependent', 
'logKd_freq_acum' ); 

opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 

opts.Display = 'Off'; 
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opts.StartPoint = [0.8002804688888 0.141886338627215]; 

% Fit model to data. 

[fitresult, gof] = fit( xData, yData, ft, opts ); 

% The following expressions are used to extrapolate (change max X value) 

Xfit = [0:0.05:6]; 

Yfit = fitresult(Xfit); 

% Plot fit with data. 

%h = plot( fitresult ); 

h = plot( Xfit, Yfit, 'r' ); 

scatter( xData, yData, 5, 'r' ); 

%************************************************************************** 

%Data and basic calculations for third Kd group 

logKd = sort(load('CEC_CaMgsup50.txt')); %paste data into this file 

logKd_mean = mean(logKd); 

logKd_sd = std(logKd); 

logKd_freq = 1/length(logKd); 

distr = normcdf(logKd,logKd_mean,logKd_sd); 

logKd_freq_acum = [logKd_freq:logKd_freq:1]'; 

%-------------------------------------------------------------------------------------- 

% Fit: more than 50. 

[xData,yData] = prepareCurveData(logKd,logKd_freq_acum); 

% Set up fittype and options. 

ft = fittype( '1/2*(1+(erf((logKd-prom)./(desv*sqrt(2)))))', 'independent', 'logKd', 'dependent', 
'logKd_freq_acum' ); 

opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 

opts.Display = 'Off'; 

opts.StartPoint = [0.8002804688888 0.141886338627215]; 

% Fit model to data. 

[fitresult, gof] = fit( xData, yData, ft, opts ); 

% The following expressions are used to extrapolate (change max X value) 

Xfit = [0:0.05:6]; 

Yfit = fitresult(Xfit); 

% Plot fit with data. 

%h = plot( fitresult ); 

h = plot( Xfit, Yfit, 'k' ); 

scatter( xData, yData, 5, 'k' ); 

%************************************************************************** 

%Legends and characterization for the plot 

% Label axes 

xlabel( 'logKd (Ra)', 'Interpreter', 'none' ); 

ylabel( 'Cumulative frequency', 'Interpreter', 'none' ); 

yline( 0.95, '--' ); yline( 0.5, '--' ); yline( 0.05, '--' ); 

text( 5.5, 0.97, '95th' ); text( 5.5, 0.52, '50th' ); text( 5.5, 0.07, '5th' ); 

yticks([0, 0.25, 0.5, 0.75, 1]) 

r = '$\frac{\mathrm{CEC}}{(\mathrm{Ca^{2+}}+ \: \mathrm{Mg^{2+}})_{ss}}<5$'; 

s = '$5 \leq \frac{\mathrm{CEC}}{(\mathrm{Ca^{2+}}+ \: \mathrm{Mg^{2+}})_{ss}}<50$'; 

t = '$\frac{\mathrm{CEC}}{(\mathrm{Ca^{2+}}+ \: \mathrm{Mg^{2+}})_{ss}} \geq 50$'; 

legend( r, '', s, '', t, 'Location', 'NorthWest', 'Interpreter', 'latex' ); 

%************************************************************************** 


