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1. SUMMARY 
A computational study of the possible β-D-glucopyranose conformations and energies has 

been performed using Density Functional Theory (DFT). Three different density functionals have 
been used; PBE, BLYP and HCTH. The calculations have been performed using the 
metadynamics method combined with Car-Parrinello Molecular Dynamics (CPMD). The results 
obtained show that the most stable conformation of β-D-glucopyranose corresponds to a chair 
conformation, 4C1, with B3,O as the second most stable conformation. The most reliable results 
are obtained using the PBE functional. 

Keywords: β-D-glucopyranose, Density Functional Theory, sugar conformations, 
metadynamics, Car-Parrinello Molecular Dynamics.  
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2. RESUM 
S’ha realitzat l’estudi computacional de les possibles conformacions i energies de la β-D-

glucopiranosa mitjançant la Teoria del Funcional de la Densitat (DFT). S’han usat tres 
funcionals diferents per a fer els càlculs; PBE, BLYP i HCTH.  Els càlculs s’han dut a terme 
mitjançant el mètode de metadinàmica combinat amb la dinàmica molecular de Car-Parrinello 
(CPMD). Els resultats obtinguts mostren que la conformació més estable per a la β-D-
glucopiranosa es correspon a la conformació cadira, 4C1, sent la conformació B3,O la segona 
més estable. Els resultats més fiables s’obtenen utilitzant el funcional de PBE. 

Paraules clau: β-D-glucopiranosa, Teoria del Funcional de la Densitat, conformacions dels 
sucres, metadinàmica, dinàmica molecular de Car-Parrinello.  
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3. INTRODUCTION 
A general introduction of β-D-glucopyranose, sugar ring conformations and the 

carbohydrate-active enzymes glycoside hydrolases is done in the following sections.  

3.1. β-D-GLUCOPYRANOSE 
Carbohydrates, also called sugars or saccharides, are biomolecules composed of carbon 

(C), hydrogen (H) and oxygen (O) and sometimes also contain nitrogen (N), phosphorous (P) or 
sulfur (S). They form polyhydroxy aldehydes/ketones, and if the number of C is five or more, 
they tend to cyclize. These biological molecules are the most abundant on Earth and they play a 
very important role in life. [1] Carbohydrates can be classified in function of the monomer units 
as: 

• monosaccharide (single polyhydroxy aldehyde/ketone) 
• oligosaccharides (short monosaccharide chains bonded by glycosidic bonds) 
• polysaccharides (more than 20 monosaccharides) 

Probably the most important carbohydrate is the monosaccharide D-glucose. The empirical 
formula of this sugar is C6H12O6. D-glucose exists mainly in a cyclic form, also called ring form. 
When D-glucose gets cycled can appear two anomers of glucose, as can be seen in Figure 1, 
depending on the relative positions between hydroxyl group on the carbon 1 (also called 
anomeric carbon) and CH2OH group on the carbon 5. 

Figure 1. Possible D-glucose anomers: (a) α-D-glucopyranose (b) β-D-glucopyranose. 

In this project we will focus on the β-D-glucopyranose molecule. Hereafter, its simplified 
name, β-glucose, will be used. 
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3.2. SUGAR RING CONFORMATIONS 

It has just been seen that β-glucose is a six-membered ring sugar, but what shape this ring 
adopts? Is this molecule always like the one depicted in Figure 1b? Absolutely not. 

There are many possible ways in which β-glucose organizes in space. These different 
structures of the same molecule are called conformations and each of them can be 
interconverted into another if it has enough energy (without breaking any bond).  These sugar 
ring conformations were first classified into families using the Schwartz nomenclature[2] 
(resumed in Figure 2) and later this classification was accepted and approved by the 
International Union of Pure and Applied Chemistry (IUPAC). For pyranoses, 38 main 
conformations are found, called canonical conformations. 

Figure 2. Family of pyranose ring conformations. Purple labels refer to the specific conformation 
within a given type (chair, skew, boat, envelope or half-chair). 

Stoddart proposed a schematic[3] diagrams to interconnect all conformations. These are 
called Stoddart’s diagrams (Figure 3), and they are very useful to understand the 
interconversion, i.e., all the possible conformational pathways.[4] Nevertheless, Stoddart’s 
diagram gives no information about the relative energies of each canonical conformation. 

One of the interests of this project is to complement Stoddart’s diagram with energy values 
to understand the amount of energy involved in these conformational pathways and the relative 
differences among conformations. 
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Figure 3. Stoddart’s diagram. 

3.3. GLYCOSIDE HYDROLASES 
Glycoside hydrolases or glycosidases are enzymes that catalyze the hydrolysis of the 

glycosidic bonds, i.e., depolymerize polysaccharides into smaller sugar chains. These enzymes 
are very important in biology, medicine and in many other fields of research[5], so it is important 
to understand the mechanistic action of glycoside hydrolases and study the interaction between 
them and their corresponding sugar substrates such as a glucose polysaccharide (Figure 4). 

Figure 4. Hydrolysis of a glycoside. Note that the reactive sugar adopts a skew conformation at the 
Transition State (TS) of the reaction.  

Although glycoside hydrolases are not analyzed in this project, there is a clearly close 
relationship between the activity of these enzymes and the conformations that the reactive 
sugar adopts during catalysis. In fact, glycosidases have been often seen to recognize distorted 
conformations in its active site.[6] Knowing the intrinsic conformational properties of glucose 
helps to predict the catalytic conformational pathway in the active site of the glycoside 
hydrolase. Some authors have demonstrated that the small structural and electronic changes 
observed upon distortion seem to be an intrinsic property of the substrate and the enzyme has 
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probably evolved to use these properties for a more efficient catalysis. Therefore, understanding 
the catalytic conformational itineraries is of great importance when designing selective inhibitors 
(for possible malfunctioning enzymes) as the usually more powerful inhibitors are the ones 
mimicking the properties of the TS.[29] 
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4. OBJECTIVES 
The first goal of this project is to use the metadynamics (MTD) technique combined with 

Car-Parrinello Molecular Dynamics (CPMD), a method based on Density Functional Theory 
(DFT), to study the conformational Free Energy Landscape (FEL) of the isolated β-glucose in 
the gas phase. 

The second goal of this project is to compare the results obtained with three different 
density functionals (PBE, BLYP and HCTH) in order to determine which of them is more suitable 
for sugars systems.  

The third goal is to compare the results obtained in this project with the results obtained in 
previous works. 

As a summary of the objectives: 

1. build the FEL of the β-glucose using CPMD-based MTD.  
2. compare between PBE, BLYP and HCTH functionals used in DFT calculations.  
3. compare the results obtained in this project with previous works.  

5. METHODS 
In these sections, the basic concepts to understand the calculations of this project and the 

simulation parameters are presented. Broadly speaking, a brief introduction to Ab Initio 
Molecular Dynamics (AIMD) is given, focusing on Car-Parrinello Molecular Dynamics (CPMD) 
and the uses of Density Functional Theory (DFT). Next, a technique that enhances the sampling 
of molecular dynamics, called metadynamics (MTD), is discussed. Then, the coordinates 
necessary to describe each conformation of the β-glucose ring (explained in 3.2) called sugar 
puckering coordinates are presented and plotted geometrically. Finally, the computational 
details and some simulation parameters are described. 
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5.1. AB INITIO MOLECULAR DYNAMICS  

Ab Initio Molecular Dynamics (AIMD) (ab initio means “from first principles”) combine 
classical Molecular Dynamics (classical MD) with ab initio electronic structure, i.e., Newton’s 
equation of motion and Schrödinger equation (or some approximate method in order to obtain 
the electronic energy) must be solved simultaneously (Figure 5). From another point of view, it 
is like a classical MD where electronic energy is calculated at each simulation step. 

Figure 5. AIMD combine ab initio electronic structure and classical MD.[7] 

The difference between AIMD and classical MD is that the potential energy due to electronic 
structure in AIMD replaces the analytical functions used in classical MD, called force field, in 
order to approximate the interatomic energy, i.e., the interatomic energy is obtained via a 
quantum treatment of electrons in AIMD, while classical MD uses some approximate functions 
associated with bonds, angles, dihedrals, inversions, electrostatic potential and Van der Waals 
potential. Furthermore, AIMD is more accurate than classical MD but spends much more 
time.[11] 

AIMD makes use of the following approximations[14]: 

• Born-Oppenheimer approximation; it allows to separate the treatment of electrons 
dynamics of nuclei dynamics. 

• nuclei are treated classically. 

The first AIMD methods were Ehrenfest Molecular Dynamics (EMD) and Born-Oppenheimer 
Molecular Dynamics (BOMD). As explained later, both methods have drawbacks and in 1985, 
Roberto Car and Michele Parrinello developed a new procedure to enhance AIMD; Car-
Parrinello Molecular Dynamics.[12] Car-Parrinello method or Car-Parrinello Molecular Dynamics 
(CPMD) is an AIMD based on the Density Functional Theory (DFT).   

An overview of DFT, a general explanation of BOMD and EMD and the improvement by 
CPMD are presented below. 
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5.1.1. Density Functional Theory 

DFT allows approximating the ground state energy, electronic distribution and many other 
molecular properties,[9] working with an electronic density functional instead of the electronic 
wavefunction, which avoids having to solve the Schrödinger equation. It is necessary to know 
atomic coordinates and minimize the energy functional with respect to the electronic density.[10] 
Working with the density functional is easier than working with the wavefunction because it only 
needs 3 coordinates, while a wavefunction that describes N electron system needs 3N 
coordinates.[8], [9], [10] 

A general DFT energy equation is expressed in equation (1), where 𝑇![𝜌] is the kinetic 
energy calculated from the Slater determinant using non-interacting electrons, the second and 
third terms are potential energy and 𝐸"#[𝜌] is a correction term (see the following paragraph). 
Then (1) must be minimized; equation (2).[15] 

   

 𝐸[𝜌] = 𝑇![𝜌] + 𝐸$%[𝜌] + 𝐸%%[𝜌] + 𝐸"#[𝜌] (1) 

 𝐸&'( = min
)(+⃗)

𝐸+𝜌(�⃗�), 𝑅2⃗ .3 (2) 

In DFT, the correlation and exchange energy (𝐸"#[𝜌] ) are calculated by using some 
functionals. There are many kinds of functionals classified in some families, but the main ones 
are Local Density Approximation (LDA), Generalized Gradient Approximation (GGA) and hybrid 
functionals. LDA is restricted to the simple situation where orbitals are doubly occupied 
(nevertheless, there is an extension to the unrestricted case called Local Spin-Density 
Approximation, LSDA) and have limitations in describing a number of chemical bonds. Because 
LDA or LSDA approximation cannot be applied in most chemical and biological systems, the 
better approximation GGA takes into account for functional expression not only the density but 
also the gradient of the density. Hybrid functionals (mixt of GGA and Hartree-Fock exchange) 
can also be used and it is especially suited for radical system.[9] 

DFT was developed for the time-independent problem, but it was later extended for the 
time-dependent problem. The corresponding theory is called Time-Dependent Density 
Functional Theory (TDDFT), which is typically applied to describe certain excited states.[13] 
However, this project does not use the TDDFT. 



14	 Olives Salmerón, Adrià	
 
5.1.2. Born-Oppenheimer Molecular Dynamics 

BOMD can be resumed by the following flow chart: 

Figure 6. Flow chart of BOMD, an ab initio molecular dynamics based on DFT.[9] 

Firstly, the electronic energy (Eel) can be obtained by quantum calculations like solving the 
Time-Independent Schrödinger Equation (TISE) or the minimization of density functional using 
DFT at fixed atomic coordinates (BOMD is a time-independent technique). Secondly, assuming 
that Eel is the interatomic energy, Newton’s equation of motion is solved (𝑀.

	  are the nuclei 
masses) to obtain a new set of atomic positions (𝑅2⃗ .

, ) after a time increment or time step (∆t). 
Finally, it is necessary to repeat this procedure using 𝑅2⃗ .

,  instead of 𝑅2⃗ .	 . 

The equations of motion can be derived by a Lagrangian formalism. The Lagrangian is a 
scalar function that contains the properties of some physical system, and the expression is the 
difference between kinetic and potential energy, as can be seen in equation (3). 

 ℒ = 𝑇 − 𝑉 (3) 

For a given Lagrangian, the solutions of Euler-Lagrange equations give, e.g., the equations 
of motion of the system we are interested in.[16] The BOMD Lagrangian has the following 
form[17]: 

 ℒ123& =	𝐸.45$ − 𝐸%6 =9
1
2

.

𝑀.𝑅2⃗
̇
.

7
− 𝐸&'( (4) 
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NOTE: remember that Born-Oppenheimer approximation is applied. 

5.1.3. Ehrenfest Molecular Dynamics 

EMD can be resumed by the following flow chart: 

Figure 7. Flow chart of EMD, an ab initio molecular dynamics based on TDDFT.[9] 

Firstly, Eel can be obtained by quantum calculations like solving the Time-Dependent 
Schrödinger Equation (TDSE) or the minimization of density functional using TDDFT at fixed 
atomic coordinates (EMD is a time-dependent technique). Secondly, assuming that Eel is the 
interatomic energy, Newton’s equation of motion is solved to obtain the new set 𝑅2⃗ .

,  after a time 
step ∆t. Finally, this last step is repeated but using 𝑅2⃗.

,  instead of 𝑅2⃗ .	  and propagating Eel (also 
called ETDDFT) instead of minimizing again the density functional. 

The EMD Lagrangian has the following form[18]: 

ℒ83& =	𝐸.45$ − 𝐸%6 =9
1
2

.

𝑀.𝑅2⃗
̇
.

7
− 𝐸(&&'( (5) 

5.1.4. Car-Parrinello Molecular Dynamics 

In EMD, only an optimization of the initial wave function is necessary because, for the rest of 
the simulation, the movement of the electrons is given by the propagation of this initial wave 
function by applying the Hamiltonian. In BOMD, there is no electron dynamics because this is a 
time-independent technique, which means that wave function must be found at each MD step. 
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In contrast, the EMD time step must be much smaller than BOMD because electronic motion is 
much faster than nuclei motion, so BOMD allow us to do a larger MD time step. 

CPMD mix both methods in order to[7]: 

1. profit from the EMD advantage that only one wave function must be optimized (or 
the equivalence for the density functional) and its subsequent propagation. 

2. profit from the BOMD advantage of integrating the equations of motion in a longer 
MD time step. 

Car and Parrinello considered the parameters 𝑅.  and 𝜓5  in the energy functional to be 
time-dependent and proposed the following Lagrangian[7], [9], [12]: 

ℒ9:3& =	𝐸.45$ + 𝐸%645$ − 𝐸%6 +9Λ5;?@𝜓5A𝜓;B − 𝛿5;D
5;

=

=9
1
2

.

𝑀.𝑅2⃗
̇
.

7
+9

1
2

5

𝜇@�̇�5A�̇�5B − 𝐸<! +9Λ5;?@𝜓5A𝜓;B − 𝛿5;D
5;

 

(6) 

If we take a look at BOMD and EMD Lagrangians, equations (4) and (5) respectively, the 
CPMD Lagrangian has similar terms like the kinetic energy of nuclei and potential energy of 
electrons (in this case called as 𝐸<! ) but incorporate some new terms, as can be seen in 
equation (6). The last terms are the Lagrangian multipliers, and they are introduced in order to 
satisfy the orthonormal condition of orbitals. However, the most important difference is the 
second term, corresponding to fictitious kinetic energy associated with electronic functions, 
where	𝜓$ are the Kohn-Sham (KS) orbitals and 𝜇 is the fictitious electronic mass. This fictitious 
kinetic energy does not have a real physical meaning like nuclei kinetic energy term, but it is an 
excellent mathematical tool to perform the MD because using it, the simulation allows electrons 
and nuclei to evolve simultaneously. The small electronic mass and the corresponding small 
fictitious energy ensures the adiabatic behavior of the nuclei-electrons system, i.e., there hardly 
any interaction between them, avoiding significant energy transfer from nuclei to electrons that 
could affect the forces on the atoms. If there were an energy transfer, electrons would be 
excited, and the simulation would not describe the ground state.[19] 

Solving the Euler-Lagrange equations with CPMD Lagrangian, the following equations of 
motion are obtained[14]: 

 𝑀.𝑅2⃗
̈
. = −

𝜕𝐸<!

𝜕𝑅2⃗ .
 (7) 
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 𝜇�̈�5 = −
𝜕𝐸<!

𝜕𝜓5∗
+9Λ5;

;

𝜓; (8) 

NOTE: if 𝐸!" is minimized with respect to single-electron orbitals 𝜓#, 𝐸$%& is obtained. CPMD uses 
DFT, so in the following equations, 𝐸$%& is used instead of 𝐸!". 

CPMD can be resumed by the following flow chart: 

Figure 8. Flow chart of CPMD, an improved ab initio molecular dynamics over BOMD and EMD and 
based on DFT.[8] 

Firstly, Eel is obtained by minimization of the Kohn-Sham equations using DFT at fixed 
atomic coordinates. Secondly, assuming that Eel is the interatomic energy, Newton’s equation of 
motion is solved for nuclei and electrons to obtain the new set 𝑅2⃗ .

,  and a new set of orbitals (𝜓5
, ) 

after a time step ∆t. Finally, repeat this procedure from solving Newton’s second law for nuclei 
and electrons but using 𝑅2⃗ .

,  instead of 𝑅2⃗ .	  and 𝜓5
,  instead of 𝜓5. 

Now, it can be understood the improvement that CPMD brings with respect to the other 
AIMDs: CPMD “propagates” wave function throughout the simulation (like EMD) and the 
electronic energy is calculated by using DFT instead of time-dependent technique in order to 
increase the time step (more close to the one used in BOMD). 
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5.2. METADYNAMICS 

MTD is an enhanced-sampling MD technique that allows exploring some regions that would 
not be possible to explore, or it would spend much time, using conventional MD, i.e., it allows to 
accelerate MD processes and study rare (i.e., short-lived) states like TSs or high energy 
conformations. In addition, it allows obtaining the Free Energy Landscape (FEL) of our chemical 
system.[20] The FEL, sometimes called Free Energy Surface (FES) despite not being entirely 
correct, is the set of free energy values as a function of some coordinates.  

Two important aspects of MTD are[8], [19]: 

1. dimension reduction. 
2. forcing the system to explore not yet visited states.  

Dimension reduction means finding some coordinates as a function of system coordinates 
that can correctly describe the desired process and thus work in a low-dimensional space. 
These coordinates are called Collective Variables (CVs) and they must be selected in such a 
way that they differentiate the states of the system that we are interested in (e.g., the 
conformations). In the next point (5.3), it is seen which CVs are chosen in this project. 

Forcing the system to explore means forcing the CVs to have other values and thus explore 
the FEL. The problem is that there are energetic barriers that prevent FEL exploration. So, this 
procedure is accomplished by adding a biasing potential in the form of small repulsive 
Gaussian-like potentials functions, called hills, every certain time intervals. When a minimum is 
completely filled with the additional Gaussians, the molecule can “fall” into a new minimum, 
where Gaussians are placed again. This is schematically depicted in Figure 9. 

Figure 9. MD (a) explores only one minimum while MTD (b) explores all of them. 
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It is important to use hills of appropriate size, i.e., the height (w) and the width (σ) (Figure 
10) of these should be carefully selected because, e.g., if the Gaussian is too high, the FEL will 
lose resolution and it will probably be wrong but, if the Gaussian height is too low, the simulation 
time will be very long	despite its high resolution. 

Figure 10. Gaussian potential or hill; w is the height and σ is the width. 

This process is repeated until all minima are filled. The FEL is considered converged when 
the system can change states without passing through an energetic barrier (diffusion regime). 
When this “scanning” through the FEL is finished, all the Gaussians can be converted to free 
energy and the FEL can be obtained. 

From a mathematical point of view, we are adding an extra potential called bias potential 
(𝑉>5?@) to the electronic energy 𝐸%6  obtaining a new total potential, equation (9), i.e., CPMD 
Lagrangian (6) is changing and therefore equations of motion too, (7) and (8). [19] 

The expression of bias potential is shown in equation (10) and has a Gaussian form (s is the 
CV position where a hill is added). 

Because we are adding hills and therefore modifying the total potential, MTD is not an 
equilibrium process (it is an out-of-equilibrium dynamics), so it is necessary to wait some time 
before a new Gaussian is added (deposition time) to help the system to return to the 
equilibrium. Moreover, electronic thermostats are added to ensure that the velocities distribution 
(related with the temperature) remains constant at the simulation temperature[8] (see 5.4.2). 

Once the final value of 𝑉>5?@(𝑠, 𝑡) is computed, the FEL can be obtained from (11). If the 
correct values of w and σ have been chosen, the free energy is related to the sum of all hills as: 

 𝑉( = 𝑉>5?@ + 𝐸%6 (9) 

 
𝑉>5?@(𝑠, 𝑡) =9𝑤𝑒A

!"($)&"'$()*
+

+,+

B(

 
(10) 

 lim
B→D

𝑉>5?@(𝑠, 𝑡) ≈ −∆𝐺(𝑠) (11) 
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5.3. SUGAR PUCKERING COORDINATES  

We previously saw in section 3.2 that distinct families of pyranose conformations are 
interconnected through Stoddart’s diagram. Nevertheless, if we take a look at Figure 3, there 
are two different diagrams that coincide by the edges (like two hemispheres), so if we overlap 
both diagrams and separate the centers of each one away, Cremer and Pople’s sphere is 
obtained (Figure 11). 

Figure 11. Cremer and Pople’s sphere. 
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Cremer and Pople introduced this concept and the mathematical description in 1975 to 
describe these sugar conformations quantitatively using only the atomic coordinates of ring 
atoms.[21] All conformations lie on the surface of a sphere of radius Q and can be described by 
spherical coordinates Q, q, and f. So, to each sugar conformation, it can be assigned a given 
value of (Q, q, f), that are a function of the coordinates of the atoms that form the sugar ring. 

A mathematical description of a pyranose ring is presented below[8], [21]: 

Figure 12. Pyranose ring system. 

Firstly, all nuclei of the atoms ring are characterized by Cartesian coordinates Xj, Yj and Zj 
(where j ∈ {1,2,⋯,6} for pyranoses). Furthermore, position vectors can be defined respect some 
origin and the most comfortable to work is the geometrical center, point P in Figure 12. So, 
position vectors are rj and they satisfy the following condition: 

Secondly, to define a system of puckering coordinates is better to specify each nuclei 
displacement with respect to a mean plane, the plane p in Figure 12. Plane p passes through 
the geometrical center and new Cartesian coordinates can be defined as xj, yj and zj, where z 
axis is perpendicular to p and y axis passes through the nuclei 1 projection over p. Now, a new 
condition appears, 

but more conditions are needed in order to define and fix the mean plane in the space. These 
conditions are: 

 
9�⃗�;

E

;FG

= 0 
(12) 

 
9𝑧;

E

;FG

= 0 
(13) 
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Now, we can express p orientation as a function of 𝑟; defining two new vectors (two linearly 
independent vectors define a plane in space), (16) and (17), and obtaining the unit vector of 
their cross product (18), which is perpendicular to p.  

Now, we can choose this vector 𝑛U to define z axis. The displacements of nuclei from the p are 
given by the scalar product of each 𝑅2⃗; with 𝑛U (19). Equation (19) satisfy conditions (13), (14) 
and (15). 

Finally, as puckering coordinates are a function of 𝑧;, these ones can be obtained by solving 
the following system of equations: 

 

 
9𝑧;

E

;FG

cos
2𝜋(𝑗 − 1)

6 = 0 
(14) 

 
9𝑧;

E

;FG

sin
2𝜋(𝑗 − 1)

6 = 0 
(15) 

 
𝑅2⃗ H =9𝑅2⃗;

E

;FG

sin
2𝜋(𝑗 − 1)

6  
(16) 

 
𝑅2⃗ HH =9𝑅2⃗;

E

;FG

cos
2𝜋(𝑗 − 1)

6  
(17) 

 𝑛U =
𝑅2⃗ H × 𝑅2⃗ HH

A𝑅2⃗ H × 𝑅2⃗ HHA
 (18) 

 𝑧; = 𝑅2⃗; · 𝑛U (19) 
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Q is the total puckering amplitude and is also defined as the equation (21). The amplitude is 
greater than 0 and tells us about how much flattened our system is. 

q  and f are the coordinates that differentiate between possible conformations, and they 
can be obtained by solving (20). 

Furthermore, we can express these coordinates in the Cartesian system: 

These last coordinates (qx, qy and qz) are the ones that are used in this project as CV. Note 
that doing this procedure, our initial system of 6·3=18 coordinates are transformed to a 3 
coordinates problem, that is easier to apply MTD. 

To do metadynamics, the CVs used must fulfill certain conditions[19]: 

1. they must be an explicit function of the atomic positions. 
2. they must be able to distinguish each relevant state of the system, i.e., all 

conformations of Stoddart's diagram. 
3. they must include the slow movements (low frequency modes) of the system. This 

means that the faster movements can be described as long as the slow 
movements are well described by CVs (they quickly follow the movements of 
these slow CVs). 

4. the number of CVs used must be small in order to decrease the computational 
cost. 

The selected CVs (puckering coordinates) fulfill all the above requirements and therefore 
are good CVs to do metadynamics. 
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(21) 

 
𝑞" = 𝑄 sin 𝜃 sin𝜙 (22) 

𝑞J = 𝑄 sin 𝜃 cos𝜙 (23) 

𝑞K = 𝑄 cos 𝜃 (24) 
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5.4. COMPUTATIONAL DETAILS 

The procedure and its different computational parameters are detailed below and resumed 
in Table 1. The procedure of this project is divided into system preparation, equilibration and 
production. The software used have been: CPMD 3.15.1[22], Plumed driver[23], VMD[24], 
Gnuplot[25] and matplotlib[26]. 

5.4.1. System preparation 

System preparation consist on defining and minimizing the system to be ready for the next 
steps, i.e., minimizing the density functional and then performing a geometry optimization (this 
simulation is in the gas phase, so no solvent is needed to add). Density functional minimization 
(also called “wavefunction optimization” in CPMD jargon) is used to obtain the electronic 
structure of a given system with fixed nuclei. Of course, since the nuclei are fixed, this structure 
is not relaxed (ring tension…), but this is the first step needed for the description of our system. 
Geometry optimization is used to “relax” a little bit the structure obtained in the wavefunction 
optimization, and it consists of searching the positions of the nuclei that have the minimum 
energy. 

The molecule initial geometry used is shown in Appendix 1, Table 6, and has 4C1 
conformation. In this project, only GGA-type functionals have been used, particularly PBE, 
BLYP and HCTH; therefore, the entire procedure has been done with each functional. 
Regarding the basis set size, a large and conservative kinetic energy, Ecut, of 70 Ry (Rydberg) 
has been taken because it is the largest Ecut value needed for any of the atoms in each 
functional. The simulation box has been calculated as the difference between the maximum and 
minimum value of each axis plus a margin of 7.5 Å (angstrom) and the result has been 15.2 Å x 
14.1 Å x 10.3 Å (rounded values). The system has been considered as isolated, i.e., no periodic 
boundary conditions have been applied. 

5.4.2. Equilibration 

To relax the structure completely and bring it to desired conditions for production, a few 
picoseconds (ps) of MD were done changing these conditions slowly otherwise the system can 
adopt undesired and unrealistic geometry or, in extreme cases, the simulation can crash. This 
procedure is commonly referred as system equilibration.  

NOTE: picoseconds is the typical AIMD simulation timescale. 
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As we are using CPMD, new parameters must be introduced. We defined 250 steps as 1 
frame of the simulation. Also, the MD time step has been defined as 5 a.u. (atomic units) or 0.12 
fs (femtoseconds). The equilibration time has been taken as 13 ps (see next paragraph). Finally, 
the fictitious electron mass needed for the electronic equation of motion, equation (8), is taken 
as 850.0 a.u. The timestep and fictitious electron mass values should be tested and see their 
fluctuations in order to determine them, but these values have been taken as reference values 
from a previous study of the group on the same system.[8] 

The equilibration time has been taken as 13 ps. This value can be justified if we analyze the 
Root-Mean-Square Deviation (RMSD), which is an average value of the distance that each 
atom of the molecule has moved with respect to initial position and helps us to see if the 
simulation has been able to reach an equilibrium position. Therefore, if the average RMSD 
remains stable, it means that we have already reached the equilibrium. E.g., equilibration using 
the PBE functional has given the RMSD of Figure 13. It can be seen that the RMSD value does 
not change too much (around 0.15 Å), thus 13 ps is enough. Using BLYP and HCTH, the 
obtained RMSD are shown in Appendix 1, Figures 31 and 32. 

Figure 13. RMSD of the 13 ps equilibration using the PBE functional. 

Since we plan to work at 300 K (Kelvin), equilibration must be done bringing the molecule 
from 0 K to 300 K. In order to stabilize this temperature and prevent it from fluctuating too much, 
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a Nosé thermostat has been added for nuclei at 300 K, with a frequency of 1000 cm-1 (this last 
value has been taken from previous work[8]). 

Another thing that must be avoided is a large fluctuation of the fictitious electronic kinetic 
energy of the CPMD Lagrangian. Because as CPMD assumes that the electron system is like 
fictitious particles (propagating electronic orbitals via Newton's law), this energy must be 
(approximately) the same throughout the MD. To stabilize the electronic kinetic energy and 
prevent it from fluctuating too much, another Nosé thermostat has been added for electrons. Its 
parameters were determined as described below. The electronic thermostat has been added 
from picosecond 9 onwards. Therefore, the electronic kinetic energy of the first 9 ps is less 
stable than that after 9 ps. In order to know the energy value “preferred" by the system to 
introduce it in the thermostat, reoptimization of the wavefunction at the beginning of MD is done, 
i.e., a quench of electronic wavefunction onto the Born-Oppenheimer surface.[22] Applying this 
trick, one can see that just when the reoptimization is done, the electronic kinetic energy 
reaches its minimum, the stable value that is wanted. To do this, two wavefunction 
reoptimization have been necessary, at times 4 ps and 8 ps. The electronic kinetic energy 
evolution during this first 9 ps of equilibration is shown in Figure 14 for PBE functional. For 
BLYP and HCTH functionals, the obtained results are shown in Appendix 1, Figures 33 and 
34. 

Figure 14. Electronic kinetic energy of the first 9 ps equilibration using the PBE functional. 
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It can be seen in Figure 14 that when a quench of the wavefunction is done, the energy 
stabilizes. Taking the last quench (picosecond 8) and doing a linear regression of this last 
picosecond to see its destabilization, a 9.09816·10-8 a.u.·step-1 slope and 0.005 a.u. y-intercept 
is obtained. On the one hand, if the slope is of the order of 10-5 – 10-4 a.u.·ps-1·atom-1, it can be 
said that the equilibration is succeeding; the smaller, the better. On the other hand, the y-
intercept tell us about the energy minimum of the quench and thus, this value is the energy of 
the electronic thermostat. For PBE, the slope is 3.2·10-5 a.u.·ps-1·atom-1 (with the corresponding 
units) and the interception is 0.005 a.u. or Eh (Hartree). For BLYP, 2.8·10-5 a.u.·ps-1·atom-1 and 
0.005 a.u. And for HCTH, 2.6·10-5 a.u.·ps-1·atom-1 and 0.007 a.u. Finally, a 10500 cm-1 
frequency for the electronic thermostat has been chosen because it is the value that is usually 
used in sugar simulations. 

5.4.3. Production 

Production refers to the MTD simulation (described in 5.2). 

The simulation time chosen has been 60 ps, based on the time simulated by Biarnés et al.[4] 
in 2007. To assess whether 60 ps time is enough for convergence, the explored regions must be 
analyzed, as is done in 6.1. In the simulation of Biarnés et al.[4], only qx and qy were used as 
CVs, thus only the northern hemisphere of the puckering sphere was sampled. In this work, we 
are extending the phase space to include also the southern hemisphere. For this reason, the 
CVs used are qx, qy and qz (see 5.3). Gaussians height and width have been taken from Biarnés 
et al.[4]: 0.3 kcal·mol-1 and 0.15 Å respectively. To know the values of width, we should do tests 
doing a few ps of MD to see the oscillation of each CV, e.g., if qx oscillate between -0.075 and 
0.075 Å, so σx=0.15 Å. The height value is usually a tenth of barrier energy, e.g., 4C1 to S 
energy is around 3 kcal, so w=0.3 kcal. Finally, for Gaussian pace or deposition has been used 
a larger (more conservative) value than the value used by Biarnés et al.[4] because of the 
current computational power. 
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 Parameter Value/Description 
Sy

st
em

 p
re

pa
ra

tio
n Initial geometry 4C1 conformation (Appendix 1, Table 6) 

Functional PBE/BLYP/HCTH 

Basis size 70 Ry 

Box size 15.2 Å x 14.1 Å x 10.3 Å (rounded values) 

Eq
ui

lib
ra

tio
n 

1 step 5 a.u. or 0.12 fs 

Equilibration time 13 ps  

Fictitious electron mass 850 a.u. 

Temperature 300 K 

Thermostats for nuclei Nosé, 300 K, 1000 cm-1 

Quench of wavefunction  At 4 ps and 8 ps 

Thermostats for electrons 

Nosé, 0.005 a.u., 10500 cm-1 (PBE) 

Nosé, 0.005 a.u., 10500 cm-1 (BLYP) 

Nosé, 0.007 a.u., 10500 cm-1 (HCTH) 

Pr
od

uc
tio

n  

MTD time 60 ps 

CVs qx, qy, qz 

Gaussian height 0.3 kcal·mol-1 

Gaussian width 0.15 Å 

Gaussian pace 250 steps 

 Deposited Gaussians 1980 

Table 1. Summary of the computational details. 



Computational Study of the Conformational Free Energy Landscape of b-D-Glucopyranose 29	
 
6. RESULTS AND DISCUSSION  

In these sections, the metadynamics trajectory and conformation space sampled, some β-
glucose properties and the conformational FELs obtained using different functionals are 
discussed. 

Firstly, the metadynamics trajectory and the conformational FEL results are analyzed using 
the PBE functional, as it is the one used in previous works of the group.[4], [29] Within the 
trajectory analysis, puckering amplitude is analyzed. Intramolecular hydrogen bonds are also 
analyzed to justify the relative stability of each conformation. Then, a comparison between the 
conformational FEL using PBE and those obtained using two other functionals, BLYP and 
HCTH, is done. The energetic results obtained are compared with those of others works. 

6.1. TRAJECTORY ANALYSIS 
To analyze the trajectory, Stoddart’s and Mercator's representations are used to observe 

the explored regions and when they have been explored. These types of plots are very useful to 
evaluate if our simulation needs to be extended in order to reach convergence. Mercator’s 
representation is a cylindrical projection of the Cremer and Pople’s sphere (equivalent to the 
typical representation of the Earth maps). 

6.1.1. Explored conformations using the PBE functional 

Stoddart’s and Mercator's representations are respectively shown in Figures 15 and 16. 

Figure 15. Conformations sampled in the MTD simulation in Stoddart’s representation (PBE, 60 ps). 
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Figure 16. Conformations sampled in the MTD simulation in Mercator’s representation (PBE, 60 ps). 

The explored regions in our simulation are plotted in both representations color coded 
between purple, 0 frames or 0 ps, and yellow, 2000 frames or 60 ps. Stoddart’s representation 
in both poles uses the cartesian coordinates qx and qy and Mercator’s representation uses polar 
coordinates q and f of the Cremer and Pople’s sphere.  

NOTE: because both representations give no information about the puckering amplitude Q, in the 
following section, 6.1.2, it is analyzed. 

In Figures 15 and 16 it can be seen that the northern hemisphere is more explored than the 
southern hemisphere because it has a higher concentration of points. The southern hemisphere 
has been explored at the end of the simulation as the points inside it tend to the yellow color. 
The results indicates that the most stable conformers are located in the northern hemisphere. 

Since the behavior of MTD is not entirely diffusive, i.e., the yellow points that are at the end 
of the simulation are practically not in the northern hemisphere (see Figure 15), more 
picoseconds of simulation are needed to ensure convergence of the FEL. Therefore, the MTD 
has been extended to 200 ps but still does not have a diffusive behavior (see Appendix 2, 
Figures 35 and 36). More simulation time is needed, but it is out of the scope of this project. 

NOTE: despite having computed 200 ps of simulation, the posterior treatments are done with the 60 

ps simulation to be able to compare with the other functional results, not extended due to limitations of 
time. 
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6.1.2. Puckering amplitude evolution using the PBE functional 

Since Stoddart’s and Mercator’s representation give no information about Q, the evolution 
and its frequency throughout the simulation are shown in Figures 17 and 18, respectively. 

Figure 17. Puckering amplitude throughout the simulation. 

Figure 18. Frequency of puckering amplitude.	The 4C1 conformation is represented for two different 
values of Q. 
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The puckering amplitude is useful to know how much the conformations are to the center of 
Cremer and Pople’s sphere. It measures how much “puckered” the ring is.  If the Q value is 0 Å, 
the ring is totally planar, a situation very high in energy and never sampled. The other extreme 
is 1 Å since Q has been normalized to take values between 0 and 1. When Q is close to 1 Å, the 
glucose ring is more bent. 

As can be seen in Figure 17, the value of Q is around 0.6 Å throughout the simulation. Still, 
it is observed that there is a tendency to oscillate between higher and smaller Q ranges as the 
simulation progresses, probably because as bias potential Gaussians are added, i.e., energy is 
provided to the system, it can adopt more unstable conformations. Therefore, the value of Q can 
vary much more by forcing the ring to be flatter or more bent. 

In Figure 18, it can be confirmed that Q is usually between 0.65 and 0.70 Å. The ring shape 
has been depicted for Q = 0.15-0.20 Å (more flattened) and 0.65-0.70 Å (more bent). 

6.1.3. Comparison using different functionals 

The explored conformations of the β-glucose molecule using BLYP and HCTH functionals 
are shown below using Stoddart’s and Mercator’s representations. BLYP results are shown in 
Figures 19 and 20 and HCTH results are shown in Figures 21 and 22. 

 

Figure 19. Conformations sampled in the MTD simulation in Stoddart’s representation (BLYP, 60 ps). 
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Figure 20. Conformations sampled in the MTD simulation in Mercator’s representation (BLYP, 60 ps).  

Figure 21. Conformations sampled in the MTD simulation in Stoddart’s representation (HCTH, 60 ps). 

Figure 22. Conformations sampled in the MTD simulation in Mercator’s representation (HCTH, 60 ps). 



34	 Olives Salmerón, Adrià	
 

Beforehand, comparing Stoddart’s representation of each functional it can be seen that 
using BLYP, a more diffusive behavior is obtained, i.e., it would seem that convergence would 
be reached earlier. 

The frequency of each glucose conformation throughout the simulation is plotted in Figure 
23 for the three different functionals. The plots are similar for each functional since the most 
visited conformations are chairs (C), boats (B), and skews (S), while envelopes (E) and half-
chairs (H) are the less visited ones. It is not surprising that these results have been obtained 
because E and H are more energetic (see 6.2), and the simulation has taken a longer time to 
visit them. 

Figure 23. Frequency of the glucose conformations throughout the 2000 frames of the simulation. 
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6.2. FREE ENERGY LANDSCAPE 

The Free Energy Landscape (FEL) informs of the free energy values (∆𝐺) as a function of 
some coordinates (in this project, it would be the CVs qx, qy and qz). This is useful to know the 
free energy barriers of interconversion and the relative energies among the stable ring 
conformations. A FEL can be built using the MTD method which applies equations (10) and 
(11), as explained in point 5.2.  

To compute a conformational FEL for 60 ps simulation, 1980 Gaussians have been needed. 

6.2.1. Conformational FEL using the PBE functional 

Since the conformations of the whole Cremer and Pople’s sphere are studied, the 
conformational FEL would have four dimensions: qx, qy, qz, and ∆𝐺. For visualization purposes, 
we separate the sphere in two Stoddart’s diagram corresponding to the northern and southern 
hemisphere. To do so, we cut the sphere in a certain qz value and integrate all the energies 
from each hemisphere. However, if the sphere is cut by its equator (qz = 0	 Å), some information 
from it could be lost. Therefore, the northern hemisphere must be cut by qz values smaller than 
0 Å, while the southern hemisphere, with qz values greater than 0 Å, to ensure not losing any 
information from the equator.  

For the northern hemisphere, at the qz values chosen were -0.1, -0.2, and -0.3 Å, while for 
the southern hemisphere, they were 0.1, 0.2, and 0.3 Å. The chosen conformational FELs are 
the ones with |qz| = 0.2 Å and are shown in Figure 24. The discarded conformational FELs are 
shown in Appendix 3, Figures 37 and 38. 

Figure 24. Northern (left) and southern (right) hemispheres conformational FELs that have been 
obtained cutting at |qz| = 0.2 Å (using PBE). The minima are labeled according to their relative stability. 
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The minima with their coordinates, conformations and energies, are resumed in the Table 2.  

Minima Hemisphere Coordinates 
qx, qy (Å) Conformation Energies 

(kcal·mol-1) 
Relative energies 

(kcal·mol-1) 
M1 North 0.05, 0.01 4C1 -25.2659 0.0000 

M2 North -0.69, -0.05 B3,O -21.6755 3.5904 

M3 North -0.01, -0.69 1S5 -20.7785 4.4874 

M4 South 0.02, -0.02 1C4 -20.7016 4.5643 

M5 North 0.67, 0.17 3,OB/3S1 -16.3568 8.9091 

M6 North -0.04, 0.64 5S1 -15.444 9.8219 

Table 2. Properties of the FEL (using PBE). The relative energies are with respect to 4C1. 

The relative stability of each conformation can be discussed considering two main 
aspects[27]: 

1. electrostatic interactions (e.g., hydrogen bonds) and steric effects. 
2. electronic effects (e.g., anomeric effect). 

On the one hand, hydrogen bonds (HBs) are electrostatic interactions that stabilize the 
potential energy of a system, i.e., the more HBs a conformation has, the more stable it will be. 
On the other hand, the anomeric effect helps to stabilize conformations by hyperconjugation, 
i.e., interaction between non-bonding electron pair of the oxygen and the anti-bonding orbital of 
the anomeric carbon, C1. 

Figure 25 shows the four most stable conformations with their most important interactions; 
HBs. 4C1 is the most stable conformation as it can create a stabilizing "clockwise" hydrogen 
bond pattern between the hydroxyls of C1, C2, C3, C4 and with smaller frequency also with the 
hydroxyl of C6, thus a total number of 4 hydrogen bond interactions. B3,O is the second most 
stable conformation due to the loss of the hydrogen bond between the hydroxyls of C1 and C2 
while the hydroxyl group of C6 interacts with OH group from C1 instead of C4. 1S5 has still one 
less hydrogen bond interaction, a hydrogen bond interaction between the hydroxyls of C1 and 
C3 and another one between the hydroxyls of C3 and C4. Finally, 1C4 is not as stable as 4C1 
even though it has the same number of hydrogen bond interactions due to how the exocyclic 
groups are placed, in an axial orientation; less stable due to steric reasons, not even 
compensated with the anomeric effect. The study of HBs is shown in Appendix 3, Table 7. 
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Figure 25. HBs (green) justify relative stability. The HBs considered have been taken smaller than 3.3 Å. 

Furthermore, it can be seen in Figure 24 that envelope and half-chair conformations are 
found between chair minimum and the other minima, therefore, are more energetic than C, B 
and S conformations, which justifies that E and H have been visited less during the simulation 
(see Figure 23).  

Also, one thing that calls our attention is that not all minimums correspond to canonical 
conformations, e.g., M5 corresponds to a conformation between 3,OB and 3S1. As reported 
Biarnés et al.[4], this fact is due to hydrogen bonds and can occur because of the ring flexibility. 
The Stoddart’s diagram was made for cyclohexane and the canonical conformations coincide 
with FEL minima[28], but glucose has exocyclic groups that interact with each other. These 
interactions, e.g., HBs, are the cause of the deviation of the minima because stabilize 
intermediate conformations. 
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Regarding the energy convergence, in Table 3 and in Figure 26 are shown the relative 
energies to the global minimum and its evolution throughout the simulation. There is no clear 
trend towards convergence, a fact that demonstrates the need to lengthen the simulation, as 
has already been seen in the previous sections. 

 

Minima Relative energies (kcal·mol-1) 
12 ps 24 ps 36 ps 42 ps 48 ps 54 ps 60 ps 

M1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

M2 5.7234 5.3809 3.8525 5.6024 3.8794 3.6115 3.5904 

M3 7.6186 7.1748 4.4289 6.8483 5.3261 5.754 4.4874 

M4 5.4842 8.1639 5.0044 7.1579 5.8165 6.7887 4.5643 

M5 1.4944 5.0025 4.6492 7.1791 8.2477 10.1716 8.9091 

M6 6.4849 8.5359 7.7844 10.6741 10.1624 11.5119 9.8219 

Table 3. Minima energy values along the simulation (using PBE). 

Figure 26. Graphical representation of the energy convergence (using PBE). 

The conformational FEL evolution in Stoddard’s representation for both hemispheres 
throughout the simulation has also be done and is shown in Appendix 3, Figures 39 and 40. 
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6.2.2. Comparing the conformational FELs using different functionals 

To compare the difference between functionals (PBE vs BLYP and HCTH) it has also been 
decided to cut at |qz| = 0.2 Å. The FELs obtained are shown in Figures 27 and 28. 

Figure 27. Northern (left) and southern (right) hemispheres FELs that have been obtained cutting at 
|qz| = 0.2 Å (using BLYP). 

Figure 28. Northern (left) and southern (right) hemispheres FELs that have been obtained cutting at 
|qz| = 0.2 Å (using HCTH). 

A table has been made to make it easier to compare the results obtained with the different 
functionals (Table 4). This table shows the comparison of the minima with their respective 
conformation and energy for PBE, BLYP, and HCTH. 

NOTE: again, the minima are labeled according to their relative stability (M1, M2, …) instead of 
labeling as has been done for PBE because new minima appear, and others change their coordinates. 
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Minima 
PBE BLYP HCTH 

Relative 
energies 
(kcal/mol) 

Conformation 
Relative 
energies 
(kcal/mol) 

Conformation 
Relative 
energies 
(kcal/mol) 

Conformation 

M1 0.0000 4C1 0.0000 4C1 0.0000 4C1 

M2 3.5904 B3,O 1.7341 1S3 2.2392 1S3/1,4B 

M3 4.4874 1S5 2.2916 1,4B/1S5 5.4927 3,OB/3S1 

M4 4.5643 1C4 2.7742 3,OB 6.5724 OS2 

M5 8.9091 3,OB/3S1 5.4838 1C4 6.6974 5S1 

M6 9.8219 5S1 6.0395 5S1 7.7760 1C4 

Table 4. Properties of each FEL. The relative energies are with respect to the global minimum (in all cases 
it is 4C1). 

It can be seen in Table 4 that the global minimum is 4C1 for all the functionals, but the other 
chair conformation, the 1C4, is more stable for the PBE functional than the other ones. 
Furthermore, the second minimum (M2) for PBE corresponds to B3,O while for BLYP and HCTH 
corresponds to 1S3.  

The fact that PBE stabilizes some conformations that the other functionals do not, is due to 
the lousy description of HBs by BLYP and HCTH because, as it has been said above (see 
Figure 25), 1C4 and B3,O present a great stabilization by HBs while 1S5, it is only stabilized by 
two HBs. Therefore, if a functional with a poorer description of HBs is used, the conformations 
that are stabilized due to HBs will be less stable,	 hence with this example we can see the 
importance of choosing the appropriate functional for a given system.  

As in this project we are working with sugars, which present many HBs, the PBE functional 
is the best option to ensure a good description of the system and, above all, obtain a reliable 
result. 

Another important factor to consider is the computational cost, i.e., how much time the 
computer spends to do the calculations. Figure 29 shows the computational cost expressed in 
seconds per step for each functional used. 
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Figure 29. Computational cost for PBE, BLYP and HCTH. 

The PBE, in addition to describing HBs much better, also requires a lower computational 
cost, and therefore for sugars, it has been a good choice in terms of accuracy and 
computational cost. 

6.2.3. Comparison with previous works 

In this section, our results in the northern hemisphere are compared with the ones obtained 
by Biarnés et al.[4] 

Figure 30. FEL obtained in this project (left) and FEL obtained by Biarnés et al.[4] (right; image taken from 
reference [28]), both using the PBE functional. The axes have been placed as in Biarnés et al. to compare. 
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From Figure 30 can be seen that: 

• the global minimum is 4C1 conformation 
• local minima and maxima are approximately in the same coordinates 
• they obtained more minima 

 
 

Minima 
Our FEL Biarnés et al.’s FEL[4] 

Relative 
energies 
(kcal/mol) 

Conformation Coordinates 
qx, qy (Å) 

Relative 
energies 
(kcal/mol) 

Conformation Coordinates 
qx, qy (Å)* 

M1 0.0000 4C1 0.05, 0.01 0.0 4C1  0.03, -0.03 

M2 3.5904 B3,O -0.69, -0.05 2.6 B3,O -0.63, -0.12 

M3 4.4874 1S5 -0.01, -0.69 3.0 B3,O /2SO -0.60,  0.15  

M4  (1C4)  5.5 B2,5  0.40, -0.53 

M5 8.9091 3,OB/3S1 0.67, 0.17 5.8 1S5  0.00, -0.58 

M6 9.8219 5S1 -0.04, 0.64 6.3 1,4B/1S3 -0.38, -0.42 

M7 - - - 7.2 3,OB  0.68,  0.08 

M8 - - - 7.9 B1,4  0.28,  0.57 

M9 - - - 9.0 2,5B/5S1 -0.18,  0.58 

Table 5. FEL comparison with Biarnés et al.[4]. The colors mark the correspondence between the minima 
of both results. Approximate values* (the original ones do not show agreement with FEL[4]). 

In Table 5 there is a more exhaustive comparison. M1 corresponds in both cases to 4C1 with 
the same coordinates. M2 is similar, but Biarnés et al. obtained two minima instead of one, and 
therefore their M2 is displaced a little bit but corresponds to the same conformation, B3,O. Our 
M3 probably corresponds to their M4 and M5 and the relative energies are similar. Our M5 and 
their M7 are clearly the same minimum, and our M6 and their M9 too. They have two minima 
that we have not obtained; their M6 and M8. It could be thought that their M6 could be part of 
our M2 but M6 has a relative energy of 6.3 kcal/mol while it should be around 3 kcal/mol. 
Furthermore, their M8 is probably not a part of our M5 because of the difference in relative 
energy. 

These slight differences between both FELs could be due to the improvements of the 
methods used. From 2007 to 2021, some parameters of the programs have been modified. 
Moreover, some simulation parameters such as the Gaussian deposition time are not the same. 
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However, both conformational FELs present the same low and high energy regions and are 
qualitatively very similar. Most importantly, the interpretation of the results does not alter the 
conclusions of the previous study of the group. 





Computational Study of the Conformational Free Energy Landscape of b-D-Glucopyranose 45	
 

7. CONCLUSIONS 
We can conclude from our initial objectives that:  

1. the conformational FEL of the β-glucose has been obtained. The minima of the 
FEL do not correspond to the canonical conformations, as was previously 
observed in a study of the northern hemisphere conformations alone, because of 
the intramolecular interactions. The values of the relative energies of each 
conformation have been rationalized in terms of HB interactions. Furthermore, the 
trajectory analysis has been of great help to see the residence time of each 
conformation and to track the simulation.  

2. PBE is the best functional (from the ones studied) to describe β-glucose because 
it describes HBs much better than BLYP and HCTH. Moreover, the computational 
cost of PBE is far below the others. 

3. the northern hemisphere results obtained by the previous work are qualitatively 
similar but with slightly quantitative differences. These variations in results may be 
attributed to some parameters that have been modified and the increase of the 
computational power, which allows optimizing the error-computational cost ratio. 
The results for the southern hemisphere of the FEL are new thus no comparison 
with previous work applies. 
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9. ACRONYMS 
Å   angstrom 

a.u.   atomic units 

AIMD   Ab Initio Molecular Dynamics 

B   Boat 

BLYP   Becke-Lee-Yang-Parr 

BOMD  Born-Oppenheimer Molecular Dynamics 

C   Chair 

classical MD  classical Molecular Dynamics 

CPMD  Car-Parrinello Molecular Dynamics 

CV   Collective Variable 

DFT   Density Functional Theory 

E   Envelope 

Eh   Hartree 

EMD   Ehrenfest Molecular Dynamics 

FEL   Free Energy Landscape 

FES   Free Energy Surface 

fs   femtoseconds 

GGA   Generalized Gradient Approximation 

H   Half-chair 

HB   Hydrogen Bond 

HCTH  Hamprecht-Cohen-Tozer-Handy 

IUPAC  International Union of Pure and Applied Chemistry 

K   Kelvin 
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KS   Kohn-Sham 

LDA   Local Density Approximation 

LSDA  Local Spin-Density Approximation 

MD   Molecular Dynamics 

MTD   Metadynamics 

PBE   Perdew-Burke-Ernzerhof 

ps   picosecond 

RMSD  Root-Mean-Square Deviation 

Ry   Rydberg 

S   Skew 

TDDFT  Time-Dependent Density Functional Theory 

TDSE  Time-Dependent Schrödinger Equation 

TISE   Time-Independent Schrödinger Equation 

TS   Transition State 
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APPENDICES 
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APPENDIX 1: COMPUTATIONAL DETAILS 
 

Atom x (Å) y (Å) z (Å) 
C 
C 
C 
C 
C 
C 
O 
O 
O 
O 
O 
O 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 

-1.599000 
-1.032000 
 0.406000 
 1.234000 
 2.657000 
-0.694000 
-1.186000 
-2.915000 
-1.829000 
 0.971000 
 0.635000 
 3.460000 
-1.639000 
-1.038000 
 0.407000 
 1.266000 
 3.082000 
 2.632000 
-0.687000 
-0.660000 
-3.336000 
-2.755000 
 0.493000 
 4.377000 

0.273000 
-1.069000 
-1.210000 
-0.022000 
-0.124000 
 1.404000 
 2.655000 
 0.448000 
-2.135000 
-2.426000 
 1.195000 
 0.918000 
 0.290000 
-1.105000 
-1.223000 
-0.033000 
-1.092000 
-0.024000 
 1.412000 
 3.418000 
 1.279000 
-2.104000 
-3.221000 
 0.915000 

-0.228000 
 0.244000 
-0.265000 
 0.232000 
-0.322000 
 0.269000 
-0.214000 
 0.302000 
-0.276000 
 0.229000 
-0.215000 
 0.235000 
-1.317000 
 1.333000 
-1.355000 
 1.322000 
-0.056000 
-1.407000 
 1.359000 
 0.062000 
 0.043000 
 0.001000 
-0.044000 
-0.072000 

Table 6. Initial atomic coordinates of β-glucose. 
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Figure 31. RMSD of the 13 ps equilibration using BLYP functional. 

 

 

Figure 32. RMSD of the 13 ps equilibration using HCTH functional. 

 



Computational Study of the Conformational Free Energy Landscape of b-D-Glucopyranose 55	
 

 

Figure 33. Electronic kinetic energy of the first 9 ps equilibration using BLYP functional. 

 

 

Figure 34. Electronic kinetic energy of the first 9 ps equilibration using HCTH functional.
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APPENDIX 2: TRAJECTORY ANALYSIS 

Figure 35. Conformations sampled in the MTD simulation in Stoddart’s representation (PBE, 200 ps). 

Figure 36. Conformations sampled in the MTD simulation in Mercator’s representation (PBE, 200 ps).
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APPENDIX 3: FREE ENERGY LANDSCAPES 

Figure 37. Northern hemisphere FELs that have been obtained cutting at qz values of -0.1 and -0.3 
(using PBE). 

 

Figure 38. Southern hemisphere FELs that have been obtained cutting at qz values of 0.1 and 0.3 
(using PBE). 
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2.6173 

3.3192 

3.0669 

3.9836 

3.5163 

4E 

4.2320 

5.9938 

5.3516 

4.4021 

4.0747 

5.3688  

4.9611 

5.3427 

5.07  

4.2861 

3.6454 

3.2402 

2.5259 

3.2838 

2.9915 

3.7912 

3.3835 

4H
3  

4.2246 

5.7317 

5.4659 

4.2543 

3.5041 

5.2126 

5.0857 

5.5086 

5.0604 

4.3965 

4.2716 

3.3135 

2.8077 

3.0542 

2.9587 

3.6839 

3.2835 

E
3  

4.2750 

5.7486  

5.4888 

4.5479 

3.8856 

5.4521 

5.043  

5.4516 

4.9635 

4.5651 

4.5339 

3.5312 

2.7408 

3.4055 

2.6361 

3.5365 

2.8695 

2H
3  

4.3011 

5.6056 

5.4684 

4.6587 

4.5203 

5.4377 

5.0513 

5.319 

4.9611 

4.6906 

4.4819 

3.7194  

2.7558  

3.4577  

2.6331  

3.3183  

2.739 

2E 

4.3274 

5.5828 

4.9424 

4.8969  

4.5763 

5.3086  

4.9342 

5.3375 

5.1331 

4.6965 

4.4528 

3.7032 

3.1819 

3.535 

2.8313 

3.4211 

2.7047 

2H
1  

4.3731 

5.4923 

5.2173 

5.3119 

5.2165 

5.1593 

4.9849 

5.1557 

5.0708 

4.5443 

4.3991 

3.7694  

3.1502  

3.3328  

2.9457  

3.1626  

3.0569  

E
1  

4.3863 

5.6634 

4.8785 

5.4042 

4.9531 

5.0229 

4.9594  

5.231  

5.0412  

4.1958  

4.3006  

3.9069  

3.4252  

3.7815  

3.068 

3.4649  

2.8842  

OH
1  

4.3556 

6.1213 

5.6741 

5.1984 

4.5927 

5.2369 

5.1202 

5.2192 

5.2348 

4.2707 

4.191 

3.2073 

2.9245 

3.0953 

3.0884 

3.2878 

3.2264 

4C
1  

Table 7. HB interactions for each conformation expressed in Å. The nomenclature used is, e.g., HO1-HO2, 

which means the distance between the O of the C1 hydroxyl and the H of the C2 hydroxyl. 
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Figure 39. FEL evolution for the northern hemisphere using PBE (every 163 Gaussians). 

Figure 40. FEL evolution for the southern hemisphere using PBE(every 130 Gaussians). 





 

 


