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Abstract 

Maintaining cooperation in large societies has been a challenging puzzle to economists for 

decades. Some of the concerning problems our society is facing nowadays like global warming 

or air pollution stem from the existence of weak local and global cooperation. New policies to 

promote cooperation involve social mechanisms to reinforce the behaviours needed to extend the 

public goods. These mechanisms locally address a wide variety of externality problems. 

However, the increasingly complex interactions in society pose a new challenge. This work aims 

at contributing to address such a challenge by exploring the effect of peer pressure over individual 

decisions in social networks. Specifically, based on previous models, we analyse the role played 

by degree heterogeneity (i.e. diversity of individuals’ number of peers) on PGG scenarios with 

peer-pressure. Those considerations emphasize how network position causes sensitiveness in the 

capacity of decision of the agents. Specifically, pressure cost unequally harms the agents in the 

network, negatively affecting the highly connected ones. This gap in behaviour between highly 

connected agents and low-connected agents do not favour the model cohesiveness. Our results 

suggest that heterogeneous connectivity must be considered when designing efficient and 

egalitarian policy tools to solve problems of externalities. These findings encourage future 

structural considerations in PGG with peer-pressure. (JEL: C71, H41, D62, D85) 

Keywords: Public Good Games, peer-pressure, cooperation, social networks, social 

diversity. 

  



2 | P a g e  

 

1. Introduction and background 

Self-interest behaviour can lead to abusive consumption of common good resources negatively 

affecting society. This is well known as the tragedy of the commons. Passive smoking, air pollution or 

the use of common-pool resources (e.g., a lake, forest, or road) are all examples of negative externality 

creation produced by the aggregate actions of all agents. The issue is that society bears the cost. 

Consequently, since individuals share the externality triggered by their excessive consumption, 

incentives to cooperate are low. Those behaviours lead to the depletion of the common resources, 

worsening the total social welfare.  

Most common policies to address this problem involve punishment and Pigouvian taxation or 

subsidies. Punishment adoption is an effective mechanism to ensure cooperation in public goods 

interactions. It reduces the defector’s payoff in populations where free-riding individuals do not 

contribute (Hauert, C. et al., 2006). However, the cost of punishment usually outweighs the welfare 

obtained through cooperation (Puurtinen, M. and Mappes, T., 2009). Institutions regularly consider 

Pigouvian taxation or subsidies as an alternative. Taxation is introduced to discourage activities that 

impose adverse effects onto third parties. One example would be the carbon tax applied in many cities 

to make visible the hidden social cost of carbon emissions. On the other hand, Pigouvian subsidies are 

introduced to encourage activities involving positive externalities. For example, subsidies for recycling. 

Nevertheless, both enforcement policies result imprecise in heterogeneous societies (Bicchieri and 

Dimant, 2019; Bramoullé et al., 2020) due to two main reasons. First, the existence of significant 

transaction costs and secondly the homogeneity of decisions they assume. Commonly both approaches 

wrongly assume that decisions do not depend on peer’s actions. But not all behave the same and peers’ 

behaviour must be considered. Social class, age, ethnicity, or other population differences causes 

heterogeneity in social structures. This accentuates the externality effects some individuals may 

experience. Some agents may try to reduce the negative externalities created and care about the action 

their peers undertake, while others not. Peer effects has been studied carefully to identify policies to 

correct those negative externalities. They allow to focus on the individual action rather than in the whole 

population action, creating higher efficiencies in policy making. By studying peer effects, the 

interaction between individual’s patterns of behaviour is better understood. 

In this context peer effects, as a support for Pigouvian taxation, have also gained strength (Huang, 

L. and Xiao, E., 2021). But in many cases Pigouvian taxation and subsidies overestimate the external 

cost involved reducing their effectiveness. Alternative approaches introduce social mechanisms based 

on peer effects to encourage pro-social behaviours. This method reduces the overestimation created 

under the Pigouvian mechanism and allows greater concretion. Among those mechanisms, the study of 

peer-pressure as a mechanism in social networks is of considerable interest.  

The idea is to reduce the actions that account for the existing externality via peer-pressure. Broadly 

speaking, peer-pressure can be defined as the pressure to behave along certain peer-prescribed 
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guidelines (Clasen R. and Brown B., 1985). An agent exerts some pressure over his or her peers with 

the aim to alter their actions, modifying the final externalities. For example, an agent may reduce its 

fuel consumption if relatives and friends tell him to use public transport. If everyone endeavours to raise 

awareness of the problem, promoting a more sustainable consumption, these problems could be solved. 

On this basis, our interest resides on the impact of peer-pressure on public good consumption as 

an action of personal and social benefits. Peer pressure positively affects reciprocity when all agents 

can affect the other’s payoff (Mittone, L. and Ploner, M., 2011). Therefore, peer pressure is closely 

related to the ties formed between individuals. Actor’s pressure directly affects their closest peers. 

Those more distant individuals are affected through the social welfare but not directly by the actor’s 

decision. This scenario illustrates the importance of immediate interactions. In this sense, social network 

structures require a deep study since connectivity plays a central role in the pressure exerted by an actor 

and the final externalities. Externalities involved end up being the fundamental reason to care about the 

social structure (Jackson, M. et al., 2016).  

The study of networks using games theoretic models has stood out as the main way to understand social 

interactions and how the payoff an individual receives depends on the actions his or her neighbours take 

(Bala, V. and Goyal, S., 2000; Bloch, F. and Jackson, M., 2007; Acemoglu, D. et al., 2010). There is a 

growing evidence about how powerful social influences are and their use in games theory. Dawes 

(1980) studies norm compliance under human behaviour interaction reformulated as a prisoner’s 

dilemma game (PDG). Other authors, compiled evidence to demonstrate “the tragedy of the commons” 

can be formulated as prisoner’s dilemma game, since over-consumption is of the interest of every agent 

but also decisive in the maintenance of social welfare (Kareva, I. et al., 2013). Additionally, a 

considerable body of empirical evidence in evolutionary theory reveals that social behaviour can be 

affected by the actions of the neighbours. Chao and Elena (2017) analyse the robustness of the social 

mechanism against the Pigouvian one in two evolutionary games based on the PDG. Social mechanisms 

exhibit some advantages with respect to Pigouvian taxes. However, stability strongly depends on the 

relationship between peer pressure and the advantage of defectors to cooperate. He et al. (2020) 

identifies a convergence in actor’s decisions under an increasing and unbounded peer pressure space. 

Sharing a common fate in the interaction seems to foster peer pressure among agents (Mittone, L. and 

Ploner, M., 2011). Those facts suggest that actor’s decisions can be strongly conditioned by their peer’s 

action. 

This paper aims to analytically explore how heterogeneity affects social interactions on scenarios 

described by Public Goods Games (PGG) with peer-pressure. In particular, we are interested in the 

effect of degree heterogeneity (i.e. diversity on the number of peers each individual is connected to). 

The starting point of our research is an existing PGG model introduced by Mani et al. (2013). We 

selected this model because it integrates peer-pressure through social networks in a quite realistic way. 

The authors illustrate a new social mechanism for policy makers to face the problem created by 
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externalities in a connected society. This model focuses on the actor’s peers in the social network, giving 

incentives to exert pressure over them. Beyond considering a binomial scenario (as usually considered 

in other models), the selected model deems continuous action and pressure sets. This implies a wider 

definition of the pressure effects. In addition, the model provides a more realistic framework with a 

more interesting approach, since cooperation dynamics in networked population are localized. Every 

actor can observe the action their peers execute for a given pressure level. Contrary to punishment 

methods this model locally addresses the problem of externalities. Nevertheless, the authors only tested 

the model under homogeneity assumption, and opens a perfect work line for us to address our research 

goals. 

As in the selected model, simple network structures are commonly articulated in the literature on 

PGG. This results in a minimisation of the influence that agent’s interaction has for explaining the social 

cooperativeness. We posit that some network positions exhibit strategic advantages over others as 

Markovsky et al. (1988), showed in “Power Relations in Exchange Networks”. To understand the 

implications agents’ interactions have, we embark on an in-depth study of network structures. Our work 

concentrates on heterogeneous structures to disentangle the underlying consequences connectivity has. 

This extends previous research in PGG, providing new insights into the cooperativeness processes.  

In network theory connectivity patterns are graphically represented by a set of nodes, which 

represent the agents in the network, and the edges, placing the potential contacts along which the 

pressure spreads. In the last two decades the network structure of a large range of natural and man-made 

system were studied. Structures as the Internet (Pastor-Satorras R. and Vespignani, A., 2004), 

collaboration networks (Newman, M. E., 2001; Barabási, A., et al., 2002), the World-Wide Web 

(Huberman, B., et al., 2000) webs of sexual contacts (Liljeros, F., et al., 2001) and others were 

represented by networked structures. A relevant range of literature in complex networks (Barabási A. 

L. and Albert R., 2002; Dorogovtsev, S., et al., 2003) has uncovered similar characteristics in many of 

the mentioned structures. The most remarkable common characteristic is the presence of a fat-tailed 

degree distribution 𝑃(𝑘) ∼ 𝑘−𝛾. The component 𝛾 usually comprises a range interval 𝛾 ∈ [2, 3] 

(Dorogovtsev, S and Mendes, J, 2002) imposing the existence of heterogeneity in the population 

structure. This peculiarity of scale free networks (SF) refers to the distribution principle of how many 

edges equal to the integer 𝑘 are per node. The existence of edges conditions whether individuals can or 

cannot exert pressure among each other. Using this topology, we can deal with a heterogeneous 

hierarchy of vertices closest to real life, expanding both breadth and depth of our study in peer 

interaction.  

Generally, interactions are marked not only by the number of connections an agent has, the degree 

distribution, but also by the interrelationship with other’s contacts, degree correlation. Drawing on the 

available literature most studies has only focused on the first, however social networks are strongly 
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characterised by the existence of degree correlation (Krapivsky P. and Redner, S., 2001). This means 

that the degree of any vertex is not independent. On SF populations, most of the agents have a low 

number of connections, whereas a low number of highly connected agents guarantee the total 

connectivity of the whole population. The network displays a hub and-spoke character in those cases 

(Barabási, A. L., 2014), showing the disassortative structure we are interested on. An actor linked to a 

high-connected actor in the network may manifests remarkable differences with respect to one 

connected to a low-connected actor. This importantly identifies patterns presented in heterogeneous 

society that we consider decisive in our study of the chosen model in PGG. Those structures possess 

the appropriate features to uphold our insights. 

The main challenge one faces in studying strategic interaction is the intrinsic complexity of 

heterogeneous networks. Without focusing on a concrete structure in terms of PGG, it is difficult to 

point out any conclusion. To capture the implications heterogeneous structures have on PGG, we 

disentangle the analytical method development outlined in the model by Mani et al. This thesis aims at 

performing an in-depth, detail examination of the analytical procedure in combination with a numerical 

analysis as it is usual in network sciences. We firstly study the effect of node degree on pressure profiles 

based on the analytical approach of the model. As a consequence, we observe a significative impact 

associated with degree heterogeneity. Exploring how degree disparities perform in the model, we find 

that not only degree heterogeneity affects the model, but also negative degree-correlation creates 

inequalities in the model. We recognize this as a unique opportunity to study the performance of the 

model under those conditions. Potential evidence of our findings is illustrated through numerical 

simulations in simple, yet heterogeneous, networks. We can advance that significant differences arise 

under degree heterogeneity, particularly in what concerns to the peer-pressure cost. As a third step, we 

introduce a more complex heterogeneous network to shed important light on what negative degree-

correlations imply.  

The paper is organized as follows. Section II introduction of the model proposed in Mani et al (2013). 

Section III exploration of the effect of heterogeneity and negative degree correlation. Section IV testing 

of observations on actual networks applying usual procedures in Network Science. Section V suggests 

directions for policy makers to provide more egalitarian measures.  Section VI summarises the 

contributions made by this paper and introduces possible methodological extensions to further explore 

the effect of population heterogeneity on cooperation scenarios described by PGGs. 

2. A PGG model with peer-pressure played in a social network 

As already explained, the starting point of this work is a PGG model incorporating peer-pressure 

and structured interactions among actors (i.e., a social network). This section delves into the main 

insights of the model and the reasons behind our choice. 
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2.1 Model selection 

Traditional punishment and taxation methods were well studied and complemented under generic 

population conditions in the existing literature. Recent of the mentioned research focused on the 

importance the population structure. Prisoner dilemma games, a useful (yet simple) model, illustrates 

the cooperation and defection behaviour in population. Some of the already cited evolutive analysis 

through the use of PDG explains the evolution of cooperation over time under diverse social norms. 

However, those models do not study agent’s behaviour in light of social structure. We considered more 

suitable models to the proper study of heterogeneity effects in the population. In the first instance we 

studied the models proposed by Calvó-Armengol and Jackson (2010) and Marco and Goetz (2021). In 

the former all agents can exert peer-pressure on the rest of agents. However, they specify a binary action 

space. Marco and Goetz suggest under a complex pressure framework another binomial action profile, 

as agents can adhere to a social norm or not. The binary nature of these models limits their applicability 

for our research. Heterogeneity causes sensitiveness in the capacity of decision of an agent. Peer 

influence, and the role it plays in individual decision-making around behaviours, requires a further 

characterization which we do not find in those models. On the contrary, the model proposed and 

developed in the paper “Inducing Peer Pressure to Promote Cooperation” by Mani et al. (2013) provides 

a more adjusted model to our needs. The authors propose a social mechanism to address the challenge 

of negative externalities by inducing peer-pressure. The idea behind the model is the introduction of a 

new mechanism (more efficient than Pigouvian ones) for policy makers to deal with problems where 

local interaction is crucial. Energy efficiency illustrates a relevant policy where local interactions can 

boost the energy policies imposed by the institutions. In other words, their aim is to show how peer 

pressure can promote more efficient behaviours as a complement to public policies.  

In particular, the following characteristics of the model make it especially suitable for an analysis 

aiming to inform public policy design: 

 

1. Both actions taken by actors and peer-pressure intensity are not binary (i.e. yes or no), but 

defined in a range. 

2. The model offers a framework to test peer-pressure based incentive schemes against the 

classical Pigouvian one. 

 

2.2  Model description 

In the selected model, the authors formulate and study how agents would exert pressure over 

their peers in a defined network to reduce negative externalities.  They model this by using a two-

stage game theoretical framework to identify the pressure and action levels each agent exerts. In the 

following, we present the formal model. A set of N agents is considered in a social network   𝑆 =
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(𝑁, 𝐸), where 𝐸 ⊆ 𝑁 ×  𝑁. Let 𝑁𝑏𝑟 (𝑖) =  {𝑗: (𝑖, 𝑗) ∈ 𝐸} be the set of peers of the actor 𝑖. The authors 

assume that the social network is sparse, and agents have at most 𝐾 peers. An agent 𝑖 ∈ 𝑁 takes an 

action 𝑥𝑖  ∈  ℝ+ and define 𝑥 ∈  ℝ+
|𝑁|

 be an action profile of all agents. Each agent 𝑖 in the framework 

proposed by the authors experiences a raw utility from its action defined by the function 𝑢𝑖 : ℝ+  →  ℝ. 

This raw utility function is assumed as twice differentiable and strictly concave with a unique maximum 

and lower bounded first derivative that approach infinite as the action approaches zero. In the described 

framework, it is assumed that the utility of actor 𝑖 depends both on the raw utility of its own action as 

well as the externalities experienced due to the actions of the rest of agents. The externality experienced 

by agent 𝑖 due to the aggregate action of the other agents is captured by the strictly convex and 

increasing function 𝑣𝑖 ∶  ℝ+  →  ℝ. In this setting the total utility an agent 𝑖 has, given its own action 𝑥𝑖 

and other agents action 𝑥−𝑖, is defined as 𝑈𝑖(𝑥𝑖 , 𝑥−𝑖) ≔ 𝑢𝑖(𝑥𝑖) −  𝑣𝑖  (∑ 𝑥𝑗𝑗≠𝑖 ). In the game social 

surplus is defined as the sum of utilities attained by all agents, formally presented as the linear function 

𝑆(𝑥) ∶=  ∑ 𝑈𝑖(𝑥𝑖, 𝑥−𝑖)𝑖 ∈𝑁 . 

The action profile at equilibrium is given by 𝑥∗ and the action that maximizes social surplus is 

given by the Pareto-efficient profile 𝑥°. Agents have the ability to exert pressure on their peers in the 

population. This peer pressure is defined by the matrix 𝐩 ∈  𝐑+
𝑁×𝑁, where the element 𝑝𝑖𝑗 is the pressure 

the agent 𝑗 receives from agent 𝑖. If no pressure is exerted, 𝑝𝑖𝑗 = 0.  As a particularity of this model, 

we deal with an infinite action space, opposed to usual binary choice models. Once the pressure profiles 

are defined, the extended utility function is given by: 

 𝑈𝑖(𝑥𝑖, 𝑥−𝑖, p ) 

=  𝑢𝑖(𝑥𝑖) − 𝑣𝑖  (∑ 𝑥𝑗

𝑗 ≠𝑖

) − ( ∑ 𝑝𝑗𝑖

𝑗 ∈𝑁 𝑏𝑟(𝑖)

) (𝑥𝑖 −  𝑥𝑖
°) −  ( ∑ 𝑝𝑖𝑗

𝑗 ∈𝑁 𝑏𝑟(𝑖)

)  𝑐 

 

 
(1) 

The final utility function describes, in addition to the raw utility and the externality, a disutility 

experienced by the agent 𝑖 that is bilinear in the total pressure from the peers of the agent and its own 

chosen action. Additionally, the pressure an agent exerts screens a cost -𝑐- (as the last term of the 

function indicates).  

2-stage game 

The authors study the defined model under the presence of peer-pressure as a two-stage game. In 

the first stage, agents choose the amount of pressure they would exert on their peers to reduce the 

negative externalities as a consequence of the threat of higher action in the second stage. In the second 

stage, agents observe the pressure their neighbours apply on themselves and then choose an action 

profile in response to the observed pressure. Under the model equilibrium assumptions, the optimal 

action response an actor takes is unique and the marginal raw utility of action for actor 𝑖 at the optimal 

response is equal to the total pressure exerted on 𝑖, i.e., 𝑢𝑖
′(𝑥𝑖

∗(𝑝↓𝑖)) = 𝑝↓𝑖. Because the equilibrium 
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action is reached in the second stage of the game, the agents in the first stage choose the peer-pressure 

profile that maximizes their utility function, 

 

𝑈𝑖(𝐩) = 𝑢𝑖(𝑥𝑖
∗(𝑝↓𝑖)) − 𝑣𝑖 (∑ 𝑥𝑗

∗(𝑝↓𝑗)

𝑗≠𝑖

) − 𝑝↓𝑖𝑥𝑖
∗(𝑝↓𝑖) − 𝑝↑𝑖𝑐 

 

(2) 

The model is restricted to the cases where the marginal cost of exerting pressure is neither too high 

nor too low. The restrictions mirror a realistic scenario. Agent may not exert any pressure under high 

marginal cost levels since they would find less harmful to experience the total negative externalities. 

On the other hand, if the cost is extremely low the agents may exert an excessive pressure on their peers. 

Both situations lack realism. This suggests a scenario where all agents exert pressure in a distributed 

way. We can frequently observe this situation in real life. A person may have serious difficulties to have 

the scope necessary to ban a harmful action from any neighbour. Moreover, the change in one agent’s 

action does not imply a significative improvement in any of the other agents in the society. However, 

with a moderate and distributed pressure, the total externality can be reduced affecting positively the 

agent’s total utility. Pressure on an individual to reduce his or her pollution levels is usually moderate.  

Pressure profile at equilibrium 

Last arguments are rescued by the authors to make two observations for the equilibrium pressure 

profile 𝐩∗ after applying the Karush-Kuhn-Tucker conditions (KKT). The next propositions allow 

identifying the cases in which peer-pressure is exerted and over whom. 

Proposition 1. For the actor 𝑖 ∈ 𝑁, 𝑗, 𝑘 ∈ 𝑁𝑏𝑟(𝑖) by KKT condition to the equilibrium, an actor 

puts peer-pressure on a set of agents, 𝑝𝑗𝑖
∗ > 0, if: 

 

𝑐 = −𝑣𝑗
′ (∑ 𝑥𝑘

∗

𝑘≠𝑗

(𝐩∗))
1

𝑢𝑖
′′ (𝑥𝑖

∗(𝑝↓𝑖
∗ ))

 

 

 

(3) 

In the case in which 𝑐 is higher than the marginal reduction in externalities faced from exerting 

pressure on peer 𝑖, 𝑝𝑗𝑖
∗ = 0. Notice that all the peers on whom the agent 𝑗 exerts pressure will have the 

same marginal reduction in the total externality. 

Proposition 2. For the actor 𝑖 ∈ 𝑁, 𝑗, 𝑙 ∈ 𝑁𝑏𝑟(𝑖) by KKT condition to the equilibrium, an actor 

feels peer-pressure from other agents, 𝑝𝑗𝑖
∗ > 0, if: 

 

𝑐 |𝑢𝑖
′′(𝑥𝑖

∗(𝑝↓𝑖
∗ ))| = 𝑣𝑗

′ (∑ 𝑥𝑙
∗

𝑙≠𝑗

(𝐩∗)) 

 

 

(4) 
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In the case the equality does not fulfil, and the marginal cost multiplied by the second derivative 

of the raw utility of the agent receiving the pressure is higher than the marginal externality faced by the 

enforcer, 𝑝𝑗𝑖
∗ = 0. Both propositions offer a system of equations which allow to find an equilibrium 

pressure profile, 𝐩∗, and consequently the corresponding action profile 𝑥∗. 

2.3. Main results obtained with this model 

Peer-pressure works 

In the model by Mani et al, it is highlighted that pressure exerted by individuals can help to 

maintain better levels of social welfare. Effectively, under the model assumptions, lower individual 

action profiles (i.e. lower energy consumption) are taken when peer-pressure profiles are considered. 

Notice that the mechanism, yet effective, in equilibrium does not bring the action to the optimal pursued 

level. The authors consider an illustrative example to prove their suppositions. Indeed, the action levels 

carried out by the agents in the social network remains lower with peer-pressure than without it. 

Nevertheless, the explored network structure is simple. The example considers every agent has exactly 

ten peers in the social network. This supposition implies that the pressure levels are the same for all 

agents under equilibrium.  

Social mechanism vs Pigouvian one 

Usually, externality effects are offset setting regulations or punishments to the defectors. On this 

trend, Pigouvian taxes are applied to increase social welfare, reducing negative externalities. The reward 

given to any actor 𝑖 ∈ 𝑁 for his or her action 𝑥𝑖 is 𝑟𝑖(𝑥𝑖) =  𝑢𝑖
′(𝑥𝑖

°) (𝑥𝑖
∗ − 𝑥𝑖). Therefore, under the 

Pigouvian mechanism an agent 𝑖 receives an extra reward, which incentives him or her to choose a 

lower action profile.  

To demonstrate the superiority of the social mechanism, the authors also consider the direct reward 

agents receive because of the action reduction from their peers. Concretely, 𝑟𝑗𝑖: ℝ+ → ℝ, describes the 

direct reward agent 𝑖 receives as a consequence of his peer action, 𝑥𝑗. Thus, if agent 𝑖 is connected to a 

set of peers, the aggregate reward he receives is given by: ∑ 𝑟𝑗𝑖(𝑥𝑗)𝑗∈𝑁𝑏𝑟(𝑖)
1. Social rewards let for a 

direct comparison between bot models. This mechanism compared to Pigouvian policies results in a 

larger reduction of negative externalities under the same subsidy budget. In particular, the authors prove 

that the resulting loss in social capital under the social mechanism is lower than in the equilibrium given 

by the Pigouvian one. Moreover, when the costs given by the peer-pressure action are low, the social 

surplus in the equilibrium actions increases as a consequence of an easier pressure application. 

 
1 Analytical method development available in Mani et al. (2013). 
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Summarising, the results achieved by the authors indicate the superiority of the social mechanism over 

the Pigouvian one.  

This section shows how the authors proved analytically the strengths of the model in a network 

structure in which every agent has the same number of peers. As a consequence of the model conditions 

all actions and pressure profiles are the same. However, we believe that homogeneity is an unrealistic 

assumption. Here we address a more credible scenario by analysing the effect of social networks with 

degree heterogeneity (i.e., social structures where actors present diverse numbers of peers). 

3. Exploring the effect of degree correlation 

When applying game theoretical approaches on degree-heterogeneous networks, a relevant structural 

feature to consider is node degree correlation (Roca, CP. et al., 2010). Degree correlation indicates the 

relationship between node degrees in a network. If nodes with high (low) degree tend to connect to 

other nodes of high (low) degree, then we have a positive correlation. Otherwise (i.e. if high-degree 

nodes are connected to low degree ones) we talk about negative correlation. When studying peer-

pressure on realistic social networks, degree correlations between nodes result crucial because it 

determines the pressure deviation. In this section we explore theoretically the influence of node degree 

and the effect of degree correlation on pressure profiles in the model under study. 

3.1. Influence of node degree on pressure profile 

In a first phase, the model provides an initial insight about the impact a node degree causes on its 

capability to exert pressure over its peers. The authors assume that the marginal cost of exerting pressure 

is 
1

2𝐾
 times lower than the reciprocal of the absolute semi-elasticity of the marginal raw utility of an 

actor 𝑖 at the socially optimal action profile, 𝑥°. Formally, 

 
𝑐 <  

1

2𝐾 |
𝜕 log 𝑢𝑖

′(𝑥𝑖
°)

𝜕𝑥𝑖
° |

=
1

2𝐾
|

𝑢𝑖
′(𝑥𝑖

°)

𝑢𝑖
′′(𝑥𝑖

°)
| 

 

(5) 

  

This expression significatively approach the problem high-connected individuals may face. It 

illustrates how the node degree importantly influences the marginal cost an agent can afford for a certain 

pressure level. Thus, the possible pressure an actor exerts is subordinated to the number of peers the 

actor has. Concretely, it is assumed that for high marginal cost levels a high-connected actor may not 

exert peer pressure. However, the previous assumption only states that a high-connected agent affords 

lower marginal cost levels of pressure but not how the agent is harmed. Thus, given a constant marginal 

cost level, we further explore the pressure the different connected agents exert and the existing damage. 
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To do that, we initially focus on the study of the effects in a neighbourhood and the spread of 

pressures. In the interaction between agents, peer pressures are strategic substitutes. This means that the 

peer pressure that an actor 𝑖 exerts on any peer 𝑗 is strict strategic substitute of any peer pressure not 

exerted on 𝑖. We are concretely interested on the strategic substitute relationship emerged within the 

peers connected to the same node. Formally, for any actor 𝑖 and two of his peers 𝑗, 𝑘, 

 𝜕2𝑈𝑖

𝜕𝑝𝑖𝑗𝜕𝑝𝑖𝑘
=  −𝑣𝑖

′′ (∑ 𝑥𝑚
∗

𝑚≠𝑖
(𝑝↓𝑚)) 

𝜕𝑥𝑗
∗(𝑝↓𝑗)

𝜕𝑝𝑖𝑗
 
𝜕𝑥𝑘

∗(𝑝↓𝑘)

𝜕𝑝𝑖𝑘
<  0 

 

(6) 

  

Last inequality states that the externality is concave in the action profile and the action profile is 

decreasing under the presence of peer pressure. When nodes are connected in same neighbourhood 

pressures are diverted such that the externalities are offset. Similarly, for any actor 𝑖 and 𝑘 with a 

common peer 𝑗, 

𝜕2𝑈𝑖

𝜕𝑝𝑖𝑗𝜕𝑝𝑘𝑗
=  −𝑣𝑖

′′ (∑ 𝑥𝑚
∗

𝑚≠𝑖
(𝑝↓𝑚)) 

𝜕𝑥𝑗
∗(𝑝↓𝑗)

𝜕𝑝𝑖𝑗
 
𝜕𝑥𝑘

∗(𝑝↓𝑘)

𝜕𝑝𝑘𝑗
− 𝑣𝑖

′ (∑ 𝑥𝑚
∗

𝑚≠𝑖
(𝑝↓𝑚))

𝜕2𝑥𝑗
∗(𝑝↓𝑗)

𝜕𝑝𝑖𝑗𝜕𝑝𝑘𝑗
<  0 

 

the peer pressures  𝑝𝑖𝑗 and 𝑝𝑘𝑗 are strict substitutes of each other. Thereby, a set of pressures of 

two agents linked to a same node correlate negatively. Formally, 

𝜕𝑝𝑖𝑗

𝜕𝑝𝑘𝑗
< 0 ∀ 𝑘 ≠ 𝑖 

We can advance that beyond the consequences the agent’s own degree has, the exerted pressure 

strongly depends on the connections of his peers. In this context, two types of peers are defined. High 

node degree peers, who are well-connected agents, and low node degree peers, who are agents with few 

peers. Under those two dichotomies, we focus on how a well-connected agent reacts toward the 

interaction. 

The system of equations from propositions 1 and 2 derive in an equilibrium pressure profile 𝒑∗ and 

an action profile 𝑥∗.Uniqueness of action profile is showed in the two-stage game with peer pressure. 

Therefore, all agents receive the same peer pressure independently of their node degree. This suggests 

pressure differences. If a well-connected agent 𝑗 ∈ 𝑁𝑏𝑟(𝑖) decides to put pressure on the agent 𝑖, the 

pressure level must be high enough to reduce the action to the action level of the rest of neighbours that 

agent 𝑗 is pressuring. Decomposing and analysing proposition 1 in two,  

−𝑣𝑗
′ (∑ 𝑥𝑘

∗(𝑝↓𝑘
∗ )

𝑘≠𝑗

)
1

𝑢𝑖
′′ (𝑥𝑖

∗(𝑝↓𝑖
∗ ))

 

 A  B 
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we make two observations regarding both components. The first component (A) refers to the 

externality an agent 𝑗 suffers. We assume all agents exert a certain pressure level to maintain the model’s 

operation. This implies that the externality remains almost constant for every agent as 𝑁 → ∞ and the 

node degree for every agent 𝑖 is at least two, 𝑘𝑖 ≥ 2. The second equation component (B) manifest the 

possible pressure enforcement. This component suggests that a low-connected nodes cause a higher 

pressure effort by their peers to maintain the equilibrium action. Notice, those suppositions are subject 

to the marginal cost of exerting peer pressure. Last arguments suggest that agents are expected to exert 

above average peer pressure levels in a neighbourhood with several low degree nodes. This applies to 

all agents, but it specially harms well-connected agents. The existence of diversity leaves survival of 

cooperation contingent on the feasibility of more central agents to afford excessive costs due to pressure. 

In this sense, strategic substitute relationship strongly applies in a heterogeneous network. Under our 

assumptions, a well-connected agent prioritizes their low degree connections rather than the others. 

Thus, under equilibrium agents have the same action sets but well-connected agents acquire high 

responsibilities in the exercise of pressure when they connect many low degree agents. As a 

consequence, their final utility will be reduced. 

3.2. Effect of degree-correlation on pressure cost 

In order to illustrate the pressure differences between agents and consequently the harm an agent 

may suffer, we work with a simplification. Assume we observe two degree-measures: 

o Low degree agents, �̌�. 

o High degree agents, �̂�. 

This assumption, yet accepting certain homogeneity degree and simplicity, allows us to emphasize 

the pressure enforce needed with low degree connections. We are interested on the pressure intensity 

exerted on �̌�. As we pointed it out, the felt pressure by agents �̌�, is equal to the pressure exerted on the 

rest of agents, 𝑝↓�̌� = 𝑝↓�̂�. We can derive the degree correlation existing between both pressure sets such 

that, 

�̅�↓�̌� =
�̌�

�̌�
�̅�↓�̂� = 𝑟�̅�↓�̂� 

Further assuming all agents pressure their peers, for 𝑟 > 1, the mean pressure an agent has to exert 

on a low-connected peer is in average 𝑟 units higher than the one exerted on a high-connected peer. We 

can in advance expect that the pressure a low-connected agent receives tends to be similar from each 

agent exerting it. This is due to high pressure levels are required in the interactions with low degree 

agents, so for an agent 𝑖 ∈ 𝑁𝑏𝑟(�̌�),  �̅�↓�̌�~𝑝𝑖�̌�
 𝑚𝑎𝑥. Without loss of generality and for 𝑖 ∈ 𝑁𝑏𝑟(�̂�), we can 

expect that, 𝑉𝑎𝑟(𝑝𝑖�̌�) ≥ 𝑉𝑎𝑟(𝑝𝑖�̂�). Thus, pressure levels exerted on high-connected agents tend to be 
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more heterogeneous, relying on the strategic substitute’s relationship and propositions 1 and 2. 

Therefore, the effect of 𝑝 over the action set 𝑥 varies according to the degree correlation.  

In order to verify that we evaluate the average change on 𝑥 depending on the pressure profile, 𝑝 ∈

[0, 𝑝𝑚𝑎𝑥]. We study the action function derived from the raw utility equation, 𝑢𝑖
′(𝑥𝑖

∗(𝑝↓𝑖)). The action 

resulting from the equality between the raw utility function and the total pressure exerted on agent 𝑖, is 

a convex and strictly decreasing function in the pressure set 𝑝↓𝑖, as is shown in equation (6). Now we 

consider the first-order partial derivatives in context. To explore the required intensity of pressure on 

both types of agents, we focus on the average rate of change of 𝑥𝑖(𝑝↓𝑖) over the interval offered by an 

agent’s pressure, 𝑝. For this, recall that the different quotient 
𝑥𝑖(𝑝𝑗𝑖+ℎ)−𝑥𝑖(𝑝𝑗𝑖)

ℎ
 for 𝑥𝑖(𝑝𝑗𝑖) of the pressure 

variable 𝑝𝑗𝑖 at a point tells us the rate of change per unit of pressure over the interval [𝑝𝑗𝑖 , 𝑝𝑗𝑖 + ℎ], 

where ℎ ranges in  ℎ ∈ [0, 𝑝𝑚𝑎𝑥]. For a low-connected agent, the pressure exerted by agent 𝑗 ∈

𝑁𝑏𝑟(�̌�), 𝑝𝑗�̌�, over him to reduce his action level to 𝑥∗ requires a high intensity level. This can be 

expressed through the average rate of change of 𝑥�̌�(𝑝↓�̌�) over the interval of pressure given by agent 𝑗 

in 𝑝𝑗�̌� (see Figure (1.a)). The given average rate of change for a low connected agent is expected to be 

higher than in cases of high-connected peers. For a high-connected agent, the pressure exerted by agent 

𝑗 ∈ 𝑁𝑏𝑟(�̂�), 𝑝𝑗�̂� over him to reduce his action level to 𝑥∗ requires lower intensity levels than in the 

previous case. This is due to at least two agents will exert pressure on  �̂�. Therefore, the pressure level 

required by the agents is lower. As before, we can characterize it through the average rate of change of 

𝑥�̂�(𝑝↓�̂�) over the interval of pressure given by agent 𝑗 in 𝑝𝑗�̂�. Further assuming more than two agents 

connected to the high-connected agent �̂� exert pressure on him, the average rate of change becomes 

lower for the interval of pressure in 𝑝𝑗�̂� (see Figure (1.b)).  

 

Figure 1.a | Average rate of change of the action set of a 

low-connected agent 𝒊 under the pressure from a peer 𝒋. 

The effect is notorious when pressure is exerted toward a 

low node degree agent. 

Source: Self-elaboration. 

Figure 1.b | Average rate of change of the action set of a 

high-connected agent 𝒊 under the pressure from a peer 𝒋. 

The effect is notably lower when pressure is exerted toward 

a high node degree agent. 
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Concluding, the pressure intensity varies depending on who is receiving it. An agent must exert 

higher pressure level when he connects a low degree node in order to maintain the action equilibrium 

level. Therefore, a high-connected agent may become harmed as the quantity of low-connected peers 

increases. Nevertheless, if those agents feel punished, they may not exert the required pressure. As we 

explained in the previous section, the model sets a reward to increase peer pressure to the social 

optimum level and reduce the damage suffered. Effectively, agents become rewarded by the pressure 

they exert on their peers to reduce their corresponding action levels. It is positively reflected in their 

final utility function. However, the reward function is not enough to encourage agents to exert pressure 

when it is costly. Thus, the pressure cost must be set in a way high-connected agent can afford the 

pressure exercise to reduce the harm they suffer.  

The network structure exposes the grounds to be considered in the model. The maximum 

connection grade and the type of peers in a neighbour reveals the weaknesses and strengths of the model. 

With the aim to identify the possible problems that emerge with the existing node grade differences we 

test the degree correlation in various heterogeneous scenarios. 

4. Testing the effect of degree correlation in degree-heterogeneous 

networks   

In order to test the theoretical observations made above on the effect of node degree correlation, 

we need to perform an in-depth study of the effect on the model dynamics of actual degree-

heterogeneous networks. The network structure of the population characterizes not only the individual’s 

interactions but also the structure through which pressure is applied. Population structure is defined by 

a graph; the vertices of the graph represent the actors, and the social interactions correspond to the 

edges. 

To reach our goal in this section, we will adopt two usual approaches applied in network theory to 

study the interplay between structure and dynamics. First, following works like (Santos F. et al, 2008), 

we consider the simplest possible configurations based on a single highly connected, central agent in a 

population of less connected ones. This type of network allows a simple analysis of the situation a well-

connected agent may suffer. Since we do not consider further connections, this network only gives us 

an intuitive result which is only used as an initial approach to corroborate previous statements. Second, 

we consider a wider and complex network, but still only two types of agents are considered.  Once this 

is done, we extend the analysis to a static SF network model (Goh, K.-I. et al., 2001) This network has 

two characteristics especially useful for our purposes: a) Its structure resembles the degree 

heterogeneity of real large social networks; and b) It’s main structural features (including degree 

correlation) have been analytically estimated (Catanzaro, M. and Pastor-Satorras, R., 2005).   
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4.1. Study on simple networks 

First, we test the effect of negative degree correlations in heterogeneous networks. For this, we 

begin with a simple abstraction of the Figure (2). It requires the abstraction of the connections from the 

central agent neighbours to the rest of nodes (b). This star-like network is characterised by the existence 

of only two kinds of nodes, the central agent, and the leaves. 

 

 

 

 

 

 

 

 

 

 

Consider a star of size 𝑁 – a central agent or hub (𝐻) and 𝑁 − 1 leaves (𝑙). The set of pressure to 

which the agents are exposed are given by the next expressions: 

𝑝↓𝐻 ≔  ∑ 𝑝𝑙𝐻
𝑙

= (𝑁 − 1)𝑝𝑙𝐻 

𝑝↓𝑙 ≔  ∑ 𝑝𝐻𝑙
𝑙

=
𝑝𝐻𝑙

𝑁 − 1
 

Since, by imposition of the model, every agent receives in equilibrium the same total pressure, the 

central agent, hub, becomes seriously harmed. The expected pressure each of the leaves must receive 

only depends on the hub, no agent plays the role for pressure to the advantage of the hub. In contrast, 

the leaves must exert a low pressure level in comparison with the hub. In this case, all the leaves are 

considered homogeneous so the pressure level they exert towards the central agent is the same. Under 

the consideration that all agents -hub and leaves- consume the same amount 𝑥, for any raw utility 

function the pressure the central agent exerts is approximately 𝑁 − 1 times the pressure each leaf applies 

on him, 

𝑝𝐻𝑙 ≅ (𝑁 − 1)𝑝𝑙𝐻 

b a 

Figure 2 | Population structure and local neighbourhoods. a, Scale-free graph for a large heterogeneous population. b, 

Star-like network, representing the connections between a central agent to the rest of nodes. 

Source: Self-elaboration 
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For a large N, the pressure that the hub exerts is immense compared to the leaves. This situation 

reveals a malfunctioning of the model in a star population structure. By proposition 1, the hub will not 

exert any pressure unless the cost of doing so is nearly zero. This extreme situation lacks any reality 

and is inconsistent under the grounds of the model. However, the star-like network structure allows us 

to examine how damage a highly connected agent becomes when he has such a high responsibility 

degree in the reduction of the final externality. 

The star-like network is a gross simplification of the population structure we are interested on. We 

consider a more useful, still simple, structure, with additional interactions. Let us start setting the 

dichotomy in which we consider agents with high node degree -�̂�- and with low node degree -�̌�. In 

many real-life social networks well-connected individuals are linked to peers with a low connectivity, 

so it is in several SF network models, as we will see later on. As a generalization, let us then consider 

the agents with node degree �̂� always connect agents with node degree �̌�. In this graph characterization, 

we simplify the existing ties between agents, enhancing an easier illustration of the problem. 

Relying in proposition 1 and 2, we consider the case where the high-connected agent (hub) is linked 

to all low degree node peers. Along with these propositions and by considering the relationships outside 

the neighbourhood, the peer pressure exerted by the hub on the low-connected peers must be enough to 

maintain the action level in equilibrium. By the strategic substitute relationship, the pressure the hub 𝑖 

exerts correlates negatively with the pressure 𝑗 ∈ 𝑁𝑏𝑟(�̌�) exerts on �̌�, 
𝜕𝑝𝑖�̌�

𝜕𝑝𝑗�̌�

< 0. This implies that the 

required intensity of pressure on the connected peers becomes higher as the node degree approaches 2. 

With the imposed simplification we can expose the pressure levels both type of agents put toward each 

other. Formally we observe, 

𝑝�̂��̌� =
�̂�

�̌�
𝑝�̌��̂� =

1

𝑟
𝑝�̌��̂� 

Well-connected agents still suffer the degree correlation differences between nodes. Clearly, 

pressure ties decrease, as the low node degree agent are more connected. However, this setup requires 

a very low marginal cost of exerting pressure otherwise the hub will not participate.  

4.1.1. Example 

In order to demonstrate our results, we work with a simple modification of the illustrative example 

given by the authors. We consider a set of agents 𝑁 = {1, … , 111} as a simple semi-heterogeneous 

setup depicted in Figure (3). We set the degree of the well-connected agents, �̂�, to 10. One of those as 

a central agent and the other ten connect to the ends of the network. On the other hand, low-connected 

agents possess a node degree equal to 2 when they link both types of hubs and 1 at the ends. We consider 

the same raw utility and externality functions considered by Mani et al. in the original model. The raw 

utility function is 𝑢𝑖(𝑥𝑖) = 12𝑥𝑖
0.8 − 4𝑥𝑖 for all 𝑖 ∈ 𝑁, and the externality function of all actors is 
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𝑣𝑖(𝑦) = 0.0001(𝑦)1.5 for all 𝑖 ∈ 𝑁. The marginal cost of exerting pressure must be set taking in account 

every agent pressure responsibility. This means that agents with more connections generally cannot 

afford high marginal cost of pressure. The approach given by inequality (6) sets a reasonable marginal 

cost in cases the social network includes heterogeneous connections. Since the optimal action profile 

remains the same for all agents, the marginal cost affordable by all agents is 𝑐 < 1.33. Let us consider 

the marginal cost of exerting pressure 𝑐 = 1 per unit of pressure. Following the above guidelines, the 

pressure that a central agent exerts toward an agent with low degree, 2 in this case, is five times higher. 

Conversely, the pressure that a non-central agent exerts toward the leaves at the ends will be about ten 

times higher. The network structure considers three types of node degree. We obtain a symmetric 

equilibrium under peer pressure with 𝑥𝑖
∗(𝑝↓𝑖

∗ ) = 65.4 for all 𝑖 ∈ 𝑁. The peer pressure exerted on the 

actors is also symmetric and equal to 0.16. However, as we expected the pressure exerted by the high-

connected agents is higher than the low-connected agents. Concretely, the central hub exerts a total 

pressure of 0.8, the non-central hubs exert a total pressure of 1.52, whereas low-connected agents exert 

a peer pressure of 0.032. In the increase of consumption, high-connected agents are harmed with respect 

to low-connected agents. In this case pressure differences do not alter significatively final utility 

functions since every agent is still pressuring all peers. Even so, as the action approaches the optimum 

social level 𝑥𝑖
° divergences become more important as pressure differences differ even more. This 

example, yet simple, gives us a first numerical approach to the problem. In a more heterogeneous 

networked society, the differences become more severe, since not every agent may pressure all his 

peers. The social mechanism still demonstrates its strengths. The existing divergence in results creates 

inequalities which must be considered.  

Both cases illustrate in a simple way the consequences emerging from a negative degree 

correlation. The final utility function of a well-connected agent becomes negatively affected as more 

low degree node agents are in his neighbourhood. This set a clear difference between high and low 

connected agents, but we do not know how many low degree peers an agent supports. Both social 

network structures were imposed, so both lacks reality. SF models gives a strong heterogeneous 

composition where we can test the node preferential attachment.  
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4.2. Analysis using a network model with heterogeneous structure 

As mentioned above, SF network models reproduce patterns of degree heterogeneity of real social 

structures and, therefore, they are a good tool to test the agent’s behaviour in population structure with 

degree heterogeneity. Among the SF models we focus on the static network models (SM). The election 

of SM is due to two main reasons. First, its simple definition and ability to create large and bounded 

networks. Second, its widespread use has provided further extensions and applications. In this way Goh, 

K. et al (2001) presented a static network model under SF parameterization, which was further 

generalized by Catanzaro and Pastor-Satorras (2005) based in a mapping to a hidden variables network 

model. Broadly speaking, hidden variables concept defines the probability unions between edges in a 

graph. This class of network models allows for the analytical treatment, as presented in Caldarelli, A. 

et al. (2002). Catanzaro and Pastor-Satorras took advantage of this to estimate analytically different 

structural features of a SM, including degree correlations. Consequently, we can explore the existing 

degree correlations with the objective of determining whether an agent is excessively harmed or not in 

the social mechanism. 

4.2.1. Analytical estimations 

As explained by Catanzaro and Pastor-Satorras, networks accounts for a fixed average degree 

expressed by means of 〈𝑘〉 = 2𝑚. The parameter 𝛼 is a real number in the range 𝛼 ∈ [0, 1]. Thus, since 

the parameter 𝛼 ranges in that level and the distribution parameter is characterised by 𝑃(𝑘)~𝑘−𝛾, such 

that 

𝛾 = 1 +
1

𝛼
 

Figure 3 | Population structure and local neighbourhoods. Regular graph which mimics a population structure 

composed of 111 agents and three different node degrees. 

Source: Self-elaboration 
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it is possible to generate networks with a degree exponent 𝛾 ∈ [2, ∞]. With the distribution already 

categorised, the SM generates networks with a maximum degree for the index 𝑖 = 1, given by 

 𝑘𝑖=1~2𝑚(1 − 𝛼)𝑁𝛼 

 

(7) 

Average degree. Following the steps proposed by the authors we firstly consider the behaviour of 

the overall average degree, analytically the average degree of the vertices with index 𝑖. Performing 

some approximations, the equation results in 

 
�̅�(𝑖) = 2𝑚(1 − 𝛼) (

𝑖

𝑁
)

−𝛼

(1 − 𝑁𝛼−1) 

 

(8) 

Degree distribution. For a SF distribution with a degree exponent given by 𝛾 = 1 +
1

𝛼
, the 

asymptotic behaviour of the degree distribution for 𝑘 is 

 
𝑃(𝑘)~𝑘−1−

1
𝛼 

 

(9) 

Degree correlations. With the aim to evaluate the correlation linkages, the average nearest 

neighbour degree of the vertices with degree 𝑘, �̅�𝑛𝑛(𝑘), is calculated. In the way of solving it, the 

average nearest neighbour degree of the vertices with index 𝑖, �̅�𝑛𝑛(𝑖), is computed. 

 

�̅�𝑛𝑛(𝑖) = 𝑖𝛼 ∑ 𝑗−𝛼 × [1 − 𝑒𝑥𝑝{−2𝑚(1 − 𝛼)2𝑁2𝛼−1𝑖−𝛼𝑗−𝛼}]

𝑁

𝑗=1

 

 

 

(10) 

Using the expression for  �̅�(𝑖) given in equation (8), the average degree of the nearest neighbour 

of the vertex with degree 𝑘, �̅�𝑛𝑛(𝑘), is given in the SM by the equation 

 

�̅�𝑛𝑛(𝑘) = 1 +
1

𝑁𝑃(𝑘)𝑘!
∑ 𝑒𝑥𝑝[−�̅�(𝑖)]�̅�(𝑖)𝑘�̅�𝑛𝑛(𝑖).

𝑁

𝑖=1

 

 

 

(11) 

This last expression gives us the insights for establishing the degree correlations existing in the 

network by numerical simulations.  

4.2.2. Numerical simulations 

The analytical estimations analytical estimations provided in Catanzano et al. (2005) allow us to 

show more clearly the occurrence of negative degree correlations in degree heterogeneous scenarios 

and, therefore, better assess peer-pressure imbalance in real social networks. In order to do that we 

generate a network of size 𝑁 = 100. The model yields correlated networks for values 𝛼 > 0.5 in the 

degree distribution which approaches to the values empirically seen in real SF networks. Let us consider 

a network with 𝛼 = 0.8, which corresponds to a value 𝛾 = 2.25. We set a constant average degree for 
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𝑚 = 2. Results are averaged over 31 realizations under the power-law probability distribution with 

exponent 𝛾. Numerical simulations enable us to depict the average degree of the nearest neighbours 

from expression (11). In Figure (4) we report this average for all possible node degrees existing in the 

network.   

 

 

The correlation function displays a decreasing slope for the considered degree. We note a strong 

disassortative mixing (i.e. negative degree correlation) for extreme node degree values. Those agents 

with low degree nodes tend to connect in average higher connected peers than those agents with high 

degree nodes. These correlations are characterised by the absence of multiple connections. Only a few 

highly connected individuals ensure the overall connectivity of the entire population (see Figure (5)). 

Based on the analytical exploration from section 3, the pressure that individuals with a degree 𝑘 > 20 

exerts will be higher than those bellow the barrier. Those agents are in general connected to peers with 

a range connectivity 𝑘 ∈ [1, 2]. The existence of isolated leaves in their neighbour increases the damage 

range, in that all pressure responsibility relies on the highly connected agent. On the other hand, the 

connectivity interval also comprises peers with two connections. As we already discuss, the equilibrium 

action of those peers depends even more on their connections pressure. The agent of our interest is 

forced to exert an amount of pressure 𝑝𝑖𝑗 ≥
𝑝↓𝑗

2
 for all 𝑗 ∈ 𝑁 with 𝑘 = 2, 𝑖 ∈ 𝑁𝑏𝑟(𝑗). However, those 

peers possess another connection which degree is contingent upon the structure of the network. This 

complicates the interactions study when not even the agents must pressure all their peers. Therefore, 

the exact calculation of the pressure impact is outside the scope of this paper, as it would require massive 

numerical exercises based, for instance, on computer-based experimentation (see subsection 6.2). 

Nevertheless, the implications of this network structure shed light on the matter and help to explain the 

consequences of degree differences in heterogeneous populations.  

Figure 4 | Average nearest neighbour degree of the vertices with degree k, in the SM for a value of 𝛼 = 0.8. 

Source: Self-elaboration with the established population sample. 
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5. Policy implications 

5.1. Community level policies 

Research frequently reveals that diverse communities exhibit different intra-community 

behaviours (Laurence, J., et al., 2019). Those behaviours are strongly characterised by individuals’ 

interactions. Social linkages can define people’s conduct and vice versa. This situation has always 

implied that some individuals are more potentially connected than others. Those agents are usually 

characterised by a higher social status and consequently their decisions generate greater impacts on 

other behaviours. Furthermore, social connectivity has increased dramatically last decade due to the 

rise of digital platforms. A public speech, an official event or even a tweet from a celebrity or political 

personality, has an inordinate impact. For this reason, we believe policy makers must consider local 

interactions to delimit the negative externalities on public goods. To help addressing this challenge, we 

provide an exploratory analysis about the implications heterogeneous connections have on cooperation 

when individuals can exert pressure on each other. 

The mechanism accounts for the association of community-level characteristics. Individual's 

interactions are local, which means that some of the decisions that affects the entire community are 

subordinated to their closest relationships. The intuition behind the mechanism is intuitive and realistic. 

Individuals exerts peer-pressure to their peers to promote decisions aligned with social wellness. Those 

considerations about population structure reinforce the mechanism compared to most common 

Figure 5 | Population structure and local neighbourhoods. Scale-free graph for a population of 100 individuals. 

Source: Self-elaboration 
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centralized policies. In this respect, our analysis significantly strengthens the evidence for the 

importance of the number of connections implies. Importantly, even over small communities, 

individuals’ attitudes in diverse populations can change due to their connectivity patterns (i.e. the 

structure of their social networks). Our perception is that connectivity differences must be addresses to 

find the most efficient and egalitarian policy tools to solve problems of externalities. 

These findings also help to understand why, on average, diversity is characterized by social gaps. 

Our exploratory analysis has uncovered how individuals with higher connection responsibilities are 

negatively impacted. As a result, one of the implications of the model is to adequately reward those 

individuals to compensate for pressure cost inequality. Based on our results, the intuition behind the 

social reward mechanism proposed in Mani et al. (2013) creates inefficiencies. Individuals are rewarded 

as a cooperation incentive. However, the reward system favours free-ride situations from the social 

budget. This attempts against the main motive of the model creating efficiency costs. With the aim to 

solve this issue we encouraged to make explicit the peer-pressure of each individual. In the next 

subsection we suggest a potentially more appropriate rewarding mechanism.  

5.2. Reward function on degree heterogeneous social networks 

Social mechanisms promote cooperation by rewarding individuals for the pressure exerted. In the 

model, a reward is given to agent 𝑖 as a result of his peer, agent 𝑗’s action 𝑥𝑗. Despite rewarding the 

agents and assuming the costs, the mechanism results inefficient.  

Under the assumption of a heterogeneous network, peer-pressure costs seriously harm highly 

connected agents interacting with low node degree peers. Consequently, agents may attempt to free-

ride on rewarding. In many cases agents do not pressure all their peers since the model prioritizes some 

peers over others. However, agents receive a reward by all their peers’ low action. An imposed 

mechanism to avoid the “Tragedy of the commons” may results in losses in the reward budget.  

To address this issue, the mechanism must consider who is pressuring on whom to correctly offsets 

the costs. In this line, we propose a modification in the original social reward function.  

More specifically, the reward is given to agent 𝑖 as a result of the rate of change of a neighbour 

agent 𝑗, given 𝑝𝑖𝑗 > 0. Formally, 

𝑟𝑖𝑗(𝑥𝑗) = (𝛼𝑗 + 𝛽𝑖)(𝑥𝑗
′(𝑝𝑖𝑗) − 𝑥𝑗) where 𝛼𝑗 = 𝑐𝑢𝑗

′′(𝑥𝑗
∘) and 𝛽𝑖 = 𝑣𝑖

′ (∑ 𝑥𝑘
∘

𝑘≠𝑖

) 

where 𝑥𝑗
′(𝑝𝑖𝑗) states for the new action level once agent 𝑖 pressures his peer 𝑗. Since in equilibrium 

pressure decisions are known, each agent becomes rewarded by their own actions. Comparing with the 

initial reward, the modification component included in the function, increases the mechanism 

efficiency. Nevertheless, we must bear in mind that this approach may require a costly information 
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acquisition process to set all trade-offs.  Consequently, its translation into specific policy practices (and, 

in particular, the incorporation of such information costs) requires further study.  

6. Conclusions 

6.1 Summary of results 

The key theme underlying social interaction is that our activities are shaped to a great extent by 

society-driven factors. There exists evidence that cooperation develops relatively easily between 

individuals when challenged with a collective threat such as an environmental crisis (Hoffman et al.; 

Schlager; Van Vugt). In behavioural economics and evolutionary game theory, social interaction is 

recognised as an important factor in social dilemmas.  

The main goal of this work is to explore the effect of degree heterogeneity (a usual feature of real 

social networks) on scenarios described by Public Goods Games (PGG) with peer-pressure. In 

particular, we aim at disentangling the influence of such a structural feature on peer-pressure, a social 

cooperation-promoting mechanism in PGG. To do so, we selected an already proposed model (Mani et 

al, 2013) and analysed its dynamics under newly defined heterogeneous scenarios. The chosen model 

is ideal since pressure decisions are left to the agents in the network. Thus, enforcement totally relies 

on the local level. In this sense, individual behaviour requires more attention. Our analysis consisted on 

two steps. First, we theoretically explored the effect of node degree correlation (an indicator measuring 

the relationship between node degrees of connected individuals in a network). Secondly, we tested such 

observations on networks presenting desired structural characteristics. Following usual practise in 

Network Science, we carefully studied actors’ behaviour in very simple, small networks and then we 

extended to larger SF networks (artificially created graphs reproducing the degree heterogeneity of real 

social networks).  

Our exploratory analysis showed that agents exhibit different responsibility stages depending on 

their degree and that of their peers. This is a relevant contribution to the literature on how cooperation 

in PGG is shaped by social linkages since previous researchers did not give so much importance to 

behaviour divergences. Specifically, we noted that highly connected individuals are vital to the well-

functioning of the mechanism since they ensure the overall connectivity of the entire population. 

However, the gap in behaviour between high-connected agents (hubs) and low-connected agents 

(leaves) do not favour the model cohesiveness. Given a heterogenous networked population, highly 

connected agents’ interaction results inefficient from a cost perspective. The author’s analytic solution 

dismisses this possibility. In this respect, degree correlation enabled us to identify structural situations 

that could harm the social mechanism. One can imagine scenarios in which individuals with a powerful 

social status can influence more on others, but higher costs are assumed in exchange. Therefore, we 

importantly emphasize how node degree correlation causes sensitiveness in the capacity of decision of 
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the agents. Our findings encourage future structural considerations in PGG. Not everyone responds 

similarly to their peers’ actions. 

Those considerations reinforce and reveal inefficiencies of the social mechanisms. We realise 

diversity strongly alters pressure deviations and we emphasize the importance of its consideration. 

Notwithstanding the contributions of this work, our findings must be considered with some caveats. 

Diversity implies differences, not only because connection status, but cultural, ethnic, or socio-

economic differences can be hardly monitored. Our analysis relies on a generic structural consideration, 

not attempting to provide specific insights. Secondly, as in the studied model, the success of the game 

relies on the effective monitoring of the peer-pressure and the reward.  

6.2. Extension possibilities through computational experiments  

The exploratory analysis presented in this thesis (both theoretical and applied to public policy) are 

relevant, but still limited. Degree heterogeneity in real social networks may influence peer-pressure and 

cooperation in PGG scenarios in different ways. Moreover, from the perspective of public policy design, 

different incentive strategies should be tested.  

Unfortunately, though, all these extensions are beyond the scope of this thesis, both in terms of 

time availability and methodological constraints. Focusing on the second aspect, the approach adopted 

here (i.e. mainly, an analytical exploration of a rather complex model) is a perfect starting point but 

should be complemented with a program of computational experiments. Consequently, roughly 

described, the extension of the work presented here would follow these steps: 

a) Design of an agent-based model based on the one proposed in Mani et al (2013): Agent-based 

models (Hamill & Gilbert, 2015) is a computational modelling approach usually applied in 

evolutionary game theory because it allows to easily integrate individual decision-making and 

interactions over social networks. 

b) Comparative analysis of the effect of degree heterogeneity: By running the computational 

model designed at step a) over networks presenting different controlled levels of degree 

heterogeneity, it would be possible to further understand the effect of this structural feature. A 

typical approach in Network Science would be comparing model executions on Erdös-Renyi 

(completely homogeneous) and Scale-Free (heterogeneous) networks. 

c) Public policy design ‘sandbox’: The, computer-based, experimental environment described in 

the previous points could be used to test different socially-defined incentive mechanisms and 

compare them with classical Pigouvian ones. This would be done by running the model in a) 

with such different incentive mechanisms over the same network and comparing the results in 

terms of actors’ behaviour, peer-pressure profiles, and implementation costs.      
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