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9Departament de Ciències Fisiològiques, Universitat de Barcelona, 08907 Barcelona, Spain
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SUMMARY
Appropriate cristae remodeling is a determinant of mitochondrial function and bioenergetics and thus repre-
sents a crucial process for cellular metabolic adaptations. Here, we show that mitochondrial cristae architec-
ture and expression of themaster cristae-remodeling protein OPA1 in proopiomelanocortin (POMC) neurons,
which are key metabolic sensors implicated in energy balance control, is affected by fluctuations in nutrient
availability. Genetic inactivation of OPA1 in POMC neurons causes dramatic alterations in cristae topology,
mitochondrial Ca2+ handling, reduction in alpha-melanocyte stimulating hormone (a-MSH) in target areas,
hyperphagia, and attenuated white adipose tissue (WAT) lipolysis resulting in obesity. Pharmacological
blockade of mitochondrial Ca2+ influx restores a-MSH and the lipolytic program, while improving the meta-
bolic defects of mutant mice. Chemogenetic manipulation of POMC neurons confirms a role in lipolysis con-
trol. Our results unveil a novel axis that connects OPA1 in POMC neurons with mitochondrial cristae, Ca2+

homeostasis, and WAT lipolysis in the regulation of energy balance.
INTRODUCTION

Homeostatic regulation of energy balance is achieved by the

orchestration of adaptive behavioral, autonomic, and endocrine
1820 Cell Metabolism 33, 1820–1835, September 7, 2021 ª 2021 Th
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responses via multiple and distributed neuronal networks. A

crucial feature to properly modulate such effector mechanisms

is the ability of these neural circuits to sense and integrate

diverse signals reflecting nutritional status (Timper and Br€uning,
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2017). In this scenario, proopiomelanocortin (POMC)-expressing

neurons in the arcuate nucleus of the hypothalamus (ARC) have

emerged as key nutrient sensors implicated in the regulation of

metabolism (Timper and Br€uning, 2017; Toda et al., 2017). How-

ever, the precise molecular mechanisms of POMC neuron

nutrient sensing remain incompletely understood.

Mitochondria play a fundamental role in cellular energy man-

agement, being able to monitor nutrient fluctuations and arrange

coordinated responses to bioenergetically adjust to metabolic

demands (Gao et al., 2014; Liesa and Shirihai, 2013). These

responses are complex and involve a combination of diverse

molecular pathways that modulate mitochondrial biogenesis,

metabolism, and dynamics.

Mitochondrial dynamics is a key process to ensure cell survival

during a variety of stress conditions. For example, the interplay

between metabolic challenges and variations in mitochondrial

architecture has been reported in several tissues (Liesa and Shir-

ihai, 2013; Mishra and Chan, 2016; Schrepfer and Scorrano,

2016; Wai and Langer, 2016). Mitochondrial morphology is

mainly controlled by fusion processes, via mitofusins (MFN1

andMFN2) and optic atrophy 1 (OPA1), and fission events by dy-

namin-related protein 1 (DRP1), fission 1 (FIS1), and mitochon-

drial fission factor (MFF) (Tilokani et al., 2018). Notably, recent

evidence has shown that adequate mitochondrial fusion and

fission in hypothalamic neurons, including POMC neurons, are

necessary for systemic metabolic control (Dietrich et al., 2013;

Ramı́rez et al., 2017; Santoro et al., 2017; Schneeberger et al.,

2013; Toda et al., 2016).

Mitochondria also undergo remodeling of internal structures

such as cristae, which are dynamic infolds of the inner mem-

brane. Cristae are critical for efficient oxidative phosphorylation

(OXPHOS) and contribute to the diffusion of proteins, metabolites,

and ions includingCa2+. Therefore, it is not surprising that changes

in cristae structure influencemitochondrial bioenergetics and that

cristae reshaping is observed according to the cellular energetic

state (Cogliati et al., 2013; Gomes et al., 2011; Mishra et al.,

2014; Patten et al., 2014). While the in vivo link between meta-

bolism and mitochondrial dynamics is recognized, its connection

with cristae morphology remains poorly understood.

OPA1, in addition to its involvement in mitochondrial dynamics,

is a master regulator of cristae remodeling by participating in

cristae junction formation and maintenance. This process pro-

tects cells from apoptosis (Cipolat et al., 2006; Frezza et al.,

2006) and improves OXPHOS through stabilization of respiratory

chain supercomplexes (Civiletto et al., 2015; Cogliati et al., 2013;

Del Dotto et al., 2017). Importantly, OPA1-dependent cristae

modulation is required for cellular adaptations to metabolic de-

mands (Patten et al., 2014). Therefore, cristae remodeling can

be postulated as a new therapeutic approach to counteract mito-

chondrial and metabolic dysfunctions (Cogliati et al., 2016).

The connection between OPA1, cristae structure, and

OXPHOS activity independent of mitochondrial fusion (Patten

et al., 2014) suggests that cristae topology readjustments partic-

ipate in energy balance control. Thus, we reasoned that such a

convoluted process could represent a core mechanism in

POMC neurons to sense and adapt to metabolic needs. Here,

we unveil an unexpected link between OPA1 and mitochondrial

Ca2+ dynamics in POMC neurons, influencing adipose tissue tri-

glyceride mobilization and metabolic health.
RESULTS

Nutritional challenges reshape mitochondrial cristae
architecture in POMC neurons
To initially explore whether changes in nutrient availability influ-

ence mitochondrial cristae structure in POMC neurons, control

C57Bl/6J mice were submitted to diverse energy states and

cristae were examined by electron microscopy (Figure S1A).

Food deprivation decreased the number of cristae permitochon-

dria (Figure 1A) with a concomitant increase in cristae length

(Figures 1B and 1C). Nutrient overload with high-fat diet (HFD)

also resulted in a reduced number of cristae per mitochondria

(Figure 1D), but without altering their length (Figures 1C and

1E). These results suggest that mitochondrial cristae topology

in POMC neurons is modulated by physiological and pathophys-

iological nutritional conditions.

Since OPA1 participates in cristae structure maintenance and

adaptations to metabolic status (Cogliati et al., 2016), we exam-

ined the associations between hypothalamic Opa1 expression

and metabolic phenotypes using the BXD mouse reference

panel. These inbred strains permit the investigation of genetic

variation with a complexity that resembles the human population

(Wang et al., 2016). We observed a negative correlation between

the expression of Opa1 in the hypothalamus and body weight,

food intake, adiposity, and glycemia across the BXD strains un-

der HFD conditions (Figure S1B).

To investigate the implication of OPA1 in POMC neuron

adaptation to metabolic status, we measured its gene expres-

sion under similar nutritional conditions. To this aim we opted

for a translating ribosome affinity purification strategy. We

interbred POMCCre/+ with Rpl22lsl-HA floxed mice (hereafter

POMCRiboTag), which allows Cre-mediated hemagglutinin

(HA) tagging of polyribosomes and subsequent isolation of

actively translated mRNAs (Figure 1F) (Sanz et al., 2009). The

reliability of the model to purify POMC-enriched transcripts

and the assessment of possible off-target recombination was

tested. Colocalization of POMC and HA showed ~11%off-target

recombination, with random distribution throughout the ARC

(Figures S1C and S1D, red column). Only ~6%of POMC neurons

did not recombine (Figures S1C and S1D, green column).

Expression analysis revealed that, relative to total Pomc gene

enrichment, Agrp and Npy only represented 9.2% and 9.1%,

respectively (Figure S1E). This is compatible with a subpopula-

tion of POMC neurons coexpressing Agrp and Npy (Campbell

et al., 2017; Lam et al., 2017). No enrichment of negative control

markers for dopaminergic neurons (tyrosine hydroxylase; Th) or

astrocytes (aldehyde dehydrogenase 1 family member L1;

Aldh1l1) was observed (Figure S1E). Interestingly, Opa1 expres-

sion was reduced in POMC neurons under both fasting and HFD

conditions (Figures 1G and 1H). In agreement with a shift toward

fission in POMC neurons under nutrient deprivation or excess

(Dietrich et al., 2013; Ramı́rez et al., 2017; Santoro et al., 2017;

Schneeberger et al., 2013), we also found a reduction of either

Mfn1 upon fasting orMfn2 upon HFD (Figures 1G and 1H). A co-

ordinated decrease in fusion and fission genes is common

through diverse physiologic and pathophysiologic conditions

(Favaro et al., 2019). Accordingly, fission determinants Dnm1

and Fis1 were also reduced upon fasting, suggestive of halted

mitochondrial dynamics, but remained unchanged upon HFD
Cell Metabolism 33, 1820–1835, September 7, 2021 1821
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Figure 1. Mitochondrial cristae remodeling in POMC neurons is influenced by nutritional status
(A and B) Quantification of cristae per mitochondria (A) and cumulative probability distribution of cristae length (B) in POMC neurons of C57Bl/6J mice upon

random fed (n = 1,009 cristae, 152 mitochondria, 15 neurons, 4 mice) or fasted (n = 906 cristae, 151 mitochondria, 20 neurons, 4 mice) conditions.

(C) Representative electron micrographs of mitochondria cristae profiles in POMC neurons from fed, fasted, and high-fat diet (HFD) C57Bl/6J mice. Scale

bar, 100 nm.

(D and E) Quantification of cristae per mitochondria (D) and cumulative probability distribution of cristae length (E) in POMC neurons of C57Bl/6J mice fed normal

chow diet (NCD; n = 893 cristae, 164 mitochondria, 16 neurons, 4 mice) or HFD for 16 weeks (n = 881 cristae, 186 mitochondria, 19 neurons, 4 mice).

(F) Schematic of the protocol used for POMC neuron translatome enrichment.

(G) Expression of mitochondrial fusion genes in POMC neurons from random fed or fasted POMCRiboTag mice (n = 6–8/ group).

(H) Expression of mitochondrial fusion genes in POMC neurons from POMCRiboTag mice fed with NCD or HFD (n = 5–7/ group).

All studies were conducted in 12- to 14-week-old male mice. Data are expressed as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. ns, not significant. See also

Figure S1.
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indicating that these genes did not contribute to the phenotype

(Figures S1F and S1G).

These results indicate that the POMCRiboTag mouse is an

appropriate tool to investigate cell-specific translatome changes

and that fluctuations in nutrient availability impact on mitochon-

drial cristae status and Opa1 expression in POMC neurons.
1822 Cell Metabolism 33, 1820–1835, September 7, 2021
Generation of mice lacking OPA1 in POMC neurons
To explore the in vivo role of OPA1 in POMC neurons we gener-

ated POMC-neuron-specific Opa1 knockout mice (hereafter

POMCOpa1KO) as previously described (Ramı́rez et al.,

2017). Downregulation of Opa1 gene expression was detected

in ARC-enriched microdissections (Figure S2A). Additionally,
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Figure 2. Deletion of Opa1 in POMC neurons causes obesity

(A) Body weight of control (n = 6) and POMCOpa1KO (n = 7) mice on chow diet.

(B) Total lean and fat mass in control (n = 8) and POMCOpa1KO (n = 9) mice.

(C) Adiposity in control (n = 5) and POMCOpa1KO (n = 11) mice. Perigonadal (pgWAT), subcutaneous (scWAT), and brown (BAT) adipose tissues are represented.

(legend continued on next page)
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densitometric protein quantification showed a 22% downregu-

lation of OPA1 short and long forms (Figures S2B and S2C). To

further confirm Opa1 deletion in POMC neurons, we conducted

fluorescence in situ hybridization and immunofluorescence

techniques. Opa1 transcript expression was depleted to 25%

(Figures S2D and S2E), while OPA1 protein dropped to 12%

in POMCOpa1KO compared with control mice (Figures S2F

and S2G).

As the POMC promoter also drives Cre recombinase expres-

sion in corticotrophs and melanotrophs, we examined OPA1

expression in the pituitary gland. No changes were observed at

transcriptional (Figure S3A) or protein expression levels (Fig-

ure S3B; control 100 ± 2 versus POMCOpa1KO 93 ± 5 a.u.;

n = 6–5). The anatomy of the pituitary and adrenal gland was pre-

served (Figures S3C and S3D). The number of positive cells for

growth hormone (Gh), prolactin (Prl), follicle-stimulating hormone

(Fsh), luteinizing hormone (Lh), adrenocorticotropic hormone

(Acth), and thyroid-stimulating hormone (Tsh) was comparable

between control and mutant mice (Figure S3E). Furthermore,

basal and stress-induced corticosterone (Figure S3F), epineph-

rine, and norepinephrine concentrations were also normal (Fig-

ure S3G). This demonstrates that Cre-mediated recombination

in the pituitary did not impair the pituitary-adrenal axis.

Deletion ofOpa1 in POMCneurons results in obesity and
hyperphagia
Male POMCOpa1KO mice developed obesity from 7 weeks of

age onward (Figure 2A), concomitant with increased total fat

mass (Figure 2B). Perigonadal (pgWAT) and subcutaneous

(scWAT) white adipose tissue depots were larger whereas no

change was observed in brown adipose tissue (BAT) mass (Fig-

ure 2C). In line with enhanced adiposity, POMCOpa1KO mice

displayed hyperleptinemia (Figure 2D) and leptin resistance (Fig-

ures 2E and 2F).

To discriminate the causes leading to obesity in mutant mice,

we analyzed energy expenditure and food intake. No alterations

in energy expenditure were detected (Figures S3H and S3I).

Nevertheless, POMCOpa1KO mice displayed hyperphagia (Fig-

ure 2G). Enhanced orexigenic neuropeptide tone and blunted

transition between fast and fed states was observed in mutant

mice (Figures 2H and 2I). Consistently, a-MSH staining in the

paraventricular (PVH), lateral (LH), dorsomedial (DMH), and

ventromedial (VMH) nucleus of the hypothalamus was

decreased in mutant mice (Figures 2J and 2K; data not shown).

This was not due to impaired POMC neuron projection develop-
(D) Fasting plasma leptin levels in control (n = 5) and POMCOpa1KO (n = 11) mic

(E and F) Cumulative food intake (E) and body weight gain (F) after vehicle (Veh)

(G) Daily food intake in control (n = 6) and POMCOpa1KO (n = 7) mice.

(H and I) Relative neuropeptide expression in the hypothalamus of control (n = 6

(J and K) Representative immunofluorescence images (J) and integrated dens

POMCOpa1KO (n = 3) mice. 3V, third ventricle. Scale bar, 100 mm.

(L and M) Representative TOMATO fluorescence images (L) and quantification

POMCOpa1KO (n = 7) mice. 3V, third ventricle. Scale bar, 100 mm.

(N) Total hypothalamic a-MSH content in control (n = 7) and POMCOpa1KO (n =

(O) Gene expression of POMC-processing enzymes in the hypothalamus from c

(P) Fed and fasting blood glucose levels in control (n = 5) and POMCOpa1KO (n

(Q) Fasting plasma insulin levels in control (n = 6) and POMCOpa1KO (n = 7) mic

All studies were conducted in 12- to 14-week-old male control and POMCOpa1K

ns, not significant. See also Figures S2 and S3.
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ment, as total fiber density in the PVH was not affected by Opa1

deficiency (Figures 2L and 2M). Total hypothalamic a-MSH con-

tent (Figure 2N) and the expression of POMC prohormone

convertases Pc1/3, Pc2, or a-amidating monooxygenase

(Pam) (Figure 2O) were unaltered. These results suggest defec-

tive neuropeptide transport to axonal target sites as the likely

cause of reduced a-MSH fibers.

Obesity is closely associated with alterations in glucose meta-

bolism. As expected, mutant mice exhibited high blood glucose

levels under fed conditions (Figure 2P), hyperinsulinemia (Fig-

ure 2Q), glucose intolerance (Figure S3J), and insulin resistance

(Figure S3K). As female mutant mice displayed a similar obeso-

genic and metabolic phenotype (Figures S3L–S3O), subsequent

studies were executed in male mice.

Together, loss of OPA1 in POMC neurons led to hyperphagic

obesity and altered glucose metabolism due to defective trans-

port and release of a-MSH.

Impaired fasting-induced lipolysis in POMCOpa1KO

mice precedes the onset of obesity
We noticed that fasting-induced body weight loss in adult

POMCOpa1KO mice was significantly attenuated when

compared with control mice (Figure S4A), suggestive of

impaired adipose tissue mobilization in situations of energy de-

mand. To minimize confounding factors associated with

obesity, we studied young weight-matched mice (5–6 weeks

of age) before the onset of obesity. At this time point, no differ-

ence in body weight was detectable at basal fed conditions

(Figure 3A), in spite of an incipient adiposity in POMCOpa1KO

mice (Figure 3B). Concomitantly, mutant mice exhibited

hyperleptinemia (Figure S4B), despite normal leptin sensitivity

(Figure S4C), and exacerbated response to the a-MSH analog

melanotan II (MT-II) (Figure S4D) indicative of a developing

melanocortigenic defect preceding obesity. At this age,

POMCOpa1KO mice did not show hyperglycemia (control

67 ± 5 versus POMCOpa1KO 74 ± 3 mg/dL, n = 4–7), hyperin-

sulinemia (control 0.50 ± 0.08 versus POMCOpa1KO 0.71 ±

0.11 ng/dL, n = 4–7) or altered food intake (control 3.2 ± 0.2

versus POMCOpa1KO 3.3 ± 0.1 g/day, n = 10).

Interestingly, mutant mice did not lose body weight, pgWAT,

or scWAT mass upon overnight fasting as opposed to control

counterparts (Figures 3A and 3B), suggesting impaired lipolysis.

This effect was specific for WAT, as BAT mass (Figure 3B), liver

weight, and hepatic triglyceride content (Figures S4E and S4F)

were unaltered.
e.

or leptin (Lep) treatment in control (n = 6) and POMCOpa1KO (n = 7) mice.

) and POMCOpa1KO (n = 7) mice under fed or fasting conditions.

ity quantification (K) of a-MSH staining in the PVN from control (n = 3) and

(M) of POMC neuron projection density in the PVH from control (n = 5) and

7) mice.

ontrol (n = 7) and POMCOpa1KO (n = 7) mice.

= 11) mice.

e.

Omice. Data are expressed as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 3. Impaired lipolysis upon fasting in POMCOpa1KO mice precedes the onset of obesity

(A) Body weight (n = 9–11/genotype/nutritional status; pooled from two independent experiments).

(B) pgWAT, scWAT, and BAT mass (n = 9–11/genotype/nutritional status; pooled from two independent experiments).

(C) Plasma FFA levels (n = 9–10/genotype/nutritional status).

(D) Gene expression of lipolytic enzymes in pgWAT (n = 7–8/genotype/nutritional status).

(E and F) Representative immunoblot images (E) and densitometric quantification (F) of pHSL (normalized by total HSL protein) and perilipin A (normalized by

tubulin) levels in pgWAT (n = 4/genotype/nutritional status).

(G) Epinephrine and norepinephrine content in pgWAT (n = 4/genotype/nutritional status).

All studies were conducted in 5- to 6-week-old male control and POMCOpa1KO mice under fed or overnight (16 h) fasting conditions. Data are expressed as

mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. ns, not significant. See also Figure S4.
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During fasting, WAT triglycerides are hydrolyzed into glycerol

and free fatty acids (FFAs), which are released into the blood-

stream to provide lipidic substrates to other tissues. Thus, we

asked whether defective lipolysis was underlying the reduced

adiposity loss upon fasting in POMCOpa1KO mice. Fasting-

induced lipolysis caused a 2-fold increase in plasma FFA levels

in control animals. However, this was significantly attenuated

in mutant mice (Figure 3C). The lipolytic pathway is mainly

controlled by adipose triglyceride lipase (ATGL), hormone-

sensitive lipase (HSL), and perilipin A (Wang et al., 2008). ATGL

(encoded by Pnpla2), but not HSL (encoded by Lipe), gene

expression was reduced under fasting conditions in pgWAT

from POMCOpa1KOmice (Figure 3D). HSL is activated by phos-

phorylation at S660 andS563 (Anthonsen et al., 1998; Greenberg

et al., 2001). Notably, mutant mice showed an impaired phos-

phorylation pattern during the fed to fast transition (Figures 3E

and 3F). In addition, perilipin A protein levels were significantly

reduced (Figures 3E and 3F). Collectively, these results are

consistent with impaired lipolysis in POMCOpa1KO mice.

Catecholamines are major signals triggering lipolysis through

local sympathetic WAT innervation (Bartness et al., 2014). Local

pgWAT content of epinephrine and norepinephrine in fed condi-

tions were equivalent between control and POMCOpa1KO

mice (Figure 3G). However, pgWAT catecholamine content

was reduced in mutant mice under fasting conditions (Figure 3G)

indicating impaired sympathetic tone.

As the sympathetic nervous system (SNS) is also involved in

proliferation and differentiation of adipose tissue, gene expres-

sion for established markers (Cebpa, Pparg, and AdipoQ) was

assessed. No significant differences were found (Figure S4G),

ruling out potential alterations in adipogenesis. Furthermore,

equivalent gene expression of key enzymes involved in lipid up-

take (Lpl and Cd36) and de novo FFA synthesis (Acca, Fasn, and

Scd1) during both fed and fast states was observed in pgWAT

from control and POMCOpa1KO mice (Figure S4H). These find-

ings rule out a putative contribution of lipogenesis or FFA uptake

in the phenotype observed in mutant mice.

Together, these results indicate that deletion of OPA1 in

POMC neurons impairs sympathetic outflow-mediated lipolysis

in adipose tissue upon fasting before the onset of obesity.

POMC neurons regulate lipolysis
Pharmacological and genetic studies have shown that the cen-

tral melanocortin system modulates WAT metabolism (Brito

et al., 2007; Nogueiras et al., 2007). However, direct involvement

of POMCneurons in adipose tissue lipolysis control has not been

established. To this aim, we injected Cre-dependent stimulatory

(AAV-hM3Dq) or inhibitory (AAV-hM4Di) designer receptors

exclusively activated by designer drugs (DREADDs) into the

ARC of POMCCre/+ mice or POMC+/+ counterparts (Figures 4A

and 4E). Efficient recombination of DREADDs in POMC neurons

was confirmed by the expression of mCherry reporter (Figures

S5A and S5B).

Clozapine-N-oxide (CNO)-mediated activation of stimulatory

DREADDs increased the number of FOS-positive cells (Fig-

ure S5C) and reduced appetite belatedly (Figure S5E). This de-

layed physiological effect is in line with previous observations

(Koch et al., 2015). Conversely, CNO-driven induction of inhibi-

tory DREADDs reduced FOS immunoreactivity within the ARC
1826 Cell Metabolism 33, 1820–1835, September 7, 2021
(Figure S5D) and increased food intake (Figure S5F). These re-

sults demonstrate the fidelity of specific POMC neuron activity

manipulations using DREADD technology.

DREADD-mediated activation of POMC neurons did not

impact FFA release, adiposity, or body weight after prolonged

fasting when compared with controls (Figures 4B–4D). Howev-

er, inhibition of POMC neurons reduced fasting-induced FFA

levels with a concomitant increase in adiposity and attenuation

of body weight loss (Figures 4F–4H). Consistently, HSL phos-

phorylation at S660 and S563, as well as perilipin A protein

levels, were also reduced in pgWAT (Figure 4I). These results

indicate that direct inhibition of POMC neuronal activity modu-

lates lipolysis.

Opa1 deletion in POMC neurons leads to alterations in
mitochondrial morphology and cristae ultrastructure
OPA1 plays key roles in mitochondrial fusion, respiration, and

cristae maintenance (Cogliati et al., 2016; Frezza et al., 2006;

Mishra et al., 2014; Patten et al., 2014). Therefore, we examined

these parameters in POMCOpa1KO mice. POMC neuron-spe-

cific electron microscopy analysis showed a reduction in the

density of mitochondria (Figure 5A), associated with decreased

mitochondrial cellular coverage (Figure 5B) and enlarged area

(Figure 5C). Mitochondria from mutant mice also displayed

reduced aspect ratio, consistent with loss of a pro-fusion mito-

chondrial protein (Figures 5D and 5E). Interestingly, in 50% of

POMC neurons almost half of the mitochondria had profoundly

disrupted inner morphology and cristae shape as a conse-

quence of OPA1 deletion (Figure 5E). These results confirm

that OPA1 is essential for the maintenance of mitochondrial ar-

chitecture and cristae morphology.

High-resolution respirometry in ARC-enriched samples from

mutant mice showed a moderate decline in the respiratory

capacity of NADH- and succinate-linked pathways (Figure 5F).

Protein levels of representative subunits for each OXPHOS com-

plex were not affected (Figure 5G), consistent with no major

impairment in respiratory capacity. These results denote slightly

reduced mitochondrial function despite defective mitochondrial

ultrastructure in mutant mice.

OPA1 in POMC neurons connects mitochondrial Ca2+

influx with adipose tissue lipolysis
Genetic deletion ofOpa1 alters mitochondrial Ca2+management

in vitro, though with divergent outputs (F€ulöp et al., 2011, 2015;

Kushnareva et al., 2013). Mitochondrial Ca2+ transport mainly

occurs via the mitochondrial calcium uniporter (MCU) (Baugh-

man et al., 2011; De Stefani et al., 2011). An increase in the

pore subunit Mcu, but not in the regulatory subunits Micu1 and

Micu2, was seen in POMCOpa1KO ARC-enriched microdissec-

tions (Figure 6A), suggesting augmented mitochondrial Ca2+

transport. To directly measure POMC neuron Ca2+ dynamics in

freely moving mice, we implemented a strategy based on viroge-

netics and fiber photometry (Figure S6A). We generated an ad-

eno-associated virus (AAV) containing a Cre-dependent variant

of the Ca2+ sensor GCaMP6s that was targeted to the mitochon-

dria (hereafter AAV-mtGCaMP6s). Selective expression of

mtGCaMP6s in POMC neurons was achieved via AAV injection

into the ARC of POMCCre/+ or POMCOpa1KOmice (Figure S6A).

The expression of mtGCaMP6swas restricted to POMC neurons
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Figure 4. Modulation of POMC neuron activity influences lipolysis

(A) Schematic of viral activatory DREADD injection.

(B) Fasting-induced FFA increase after CNO-mediated stimulation of POMC neuronal activity (n = 9–13/group).

(C) Fasting-induced pgWAT mass after CNO-mediated stimulation of POMC neuronal activity (n = 12–13/group).

(D) Fasting-induced body weight change after CNO-mediated stimulation of POMC neuronal activity (n = 13/group).

(E) Schematic of viral inhibitory DREADD injection.

(F) Fasting-induced FFA increase after CNO-mediated inhibition of POMC neuronal activity (n = 8–13/group).

(G) Fasting-induced pgWAT mass after CNO-mediated inhibition of POMC neuronal activity (n = 8–13/group).

(H) Fasting-induced body weight change after CNO-mediated inhibition of POMC neuronal activity (n = 8–13/group).

(I) Immunoblot images and quantification of fasting-induced changes of lipolytic enzymes in pgWAT after CNO-mediated inhibition of POMC neuronal activity

(n = 8/group). Phosphorylated HSL was normalized by total HSL and perilipin A was normalized by actin.

All studies were conducted in 14- to 16-week-old male POMCCre/+ mice or POMC+/+. Data are expressed as mean ± SEM. *p < 0.05. See also Figure S5.
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Figure 5. Deletion ofOpa1 in POMC neurons alters mitochondrial morphology, cristae ultrastructure, and mitochondrial function before the

onset of obesity
(A–D) Mitochondrial density (A), coverage (B), area (C), and aspect ratio (AR) (D) in POMC neurons from control (n = 1,216 mitochondria, 19 neurons, 4 mice) and

POMCOpa1KO (n = 367 mitochondria, 15 neurons, 4 mice) mice.

(E) Representative electron microscopy images of POMC neuron mitochondria (scale bar, 100 nm) and cumulative frequency distribution of mitochondria with

disrupted inner morphology in POMC neurons from control (n = 1,216 mitochondria, 19 neurons, 4 mice) and POMCOpa1KO (n = 367 mitochondria, 15 neurons,

4 mice) mice.

(F) Mitochondrial respirometry of ARC-enriched microdissections from control (n = 5) and POMCOpa1KO mice (n = 4). x axis shows the substrates utilized

(P, pyruvate; M, malate; G, glutamate; S, succinate), respiratory states, and pathways.

(G) Representative immunoblot images and densitometric quantification of archetypical proteins for complex I (Ndufb8), complex II (Sdhb), complex III (Uqcrc2),

complex IV (Mtco1), and complex V (Atp5a) in ARCmicrodissections from control and POMCOpa1KOmice (n = 6/phenotype). Actin was used as loading control.

All studies were conducted in 5- to 6-week-old male control and POMCOpa1KO overnight fasted (16 h) mice. Data are expressed as mean ± SEM. *p < 0.05;

***p < 0.001.
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Figure 6. Mitochondrial Ca2+ dyshomeostasis in POMC neurons from POMCOpa1KO mice underlies defective lipolysis

(A) Gene expression of MCU complex subunits in ARC microdissections from control (n = 5) and POMCOpa1KO mice (n = 11).

(B and C) Recordings of mitochondrial (B) and cytosolic (C) Ca2+ normalized fluorescence signal from POMC neurons in fastedmice. Food presentation response

is marked with a dotted frame. Inset represents the area under the curve (AUC) quantification of the fluorescence increase over baseline during the acquisition

(legend continued on next page)
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and exhibited a coincident mitochondrial pattern (Figures S6B–

S6D), confirming specific cellular and sub-cellular targeting.

Food presentation rapidly increases cytosolic Ca2+ in POMC

neurons (Chen et al., 2015). Therefore, to stimulatemitochondrial

Ca2+ upload, a food pellet was offered to fasted mice (Fig-

ure S6A). While control animals increased the mitochondrial

Ca2+ signal in response to food presentation, mutant counter-

parts remained unresponsive (Figure 6B). Nevertheless,

POMCOpa1KO mice preserved the ability to dynamically in-

crease cytosolic Ca2+ (detected via AAV-GCamP7s) upon food

presentation confirming a mitochondria-specific Ca2+ handling

defect (Figure 6C). MCU inhibition with the selective and cell-

permeable Ru265 compound (Woods and Wilson, 2020; Woods

et al., 2019, 2020) blocked mitochondrial Ca2+ uptake in control

mice (Figures 6D and 6E), confirming the specificity and accurate

performance of the mtGCaMP6s reporter. Remarkably, MCU in-

hibition restored the mitochondrial Ca2+ dynamics in mutant

mice (Figures 6D and 6E).

The blunted mitochondrial Ca2+ signal observed in

POMCOpa1KO mice could be due to either loss of Ca2+ up-

take capacity or Ca2+ overload. To disentangle this, we

conducted acute intracerebroventricular (i.c.v.) injections

of various structurally different MCU-specific inhibitors

(Ru265, Ru360, mitoxantrone) and activators (kaempferol,

SB 202190) (Figure 6F) (Arduino et al., 2017; Bermont et al.,

2020; Chang et al., 2011; Kannurpatti and Biswal, 2008; Vac-

caro et al., 2017; Woods et al., 2019). Strikingly, the three

MCU inhibitors tested rescued fasting-induced FFA release

(Figures 6G and S6E), whereas MCU activators had no effect

on this parameter (Figure S6F). Collectively, these results sug-

gest that deletion of Opa1 in POMC neurons causes a surplus

of mitochondrial Ca2+ in basal conditions, thus impeding

further stimulated mitochondrial Ca2+ influx.

Based on these findings, we reasoned that MCU inhibition

could prevent the phenotypical alterations of POMCOpa1KO

mice. Accordingly, acute Ru360 treatment restored the pgWAT

lipolytic program in POMCOpa1KO mice (Figures 6H and 6I).

We next investigated the involvement of the SNS in the Ru360-

mediated lipolysis rescue. An acute treatment induced a partial

but significant increase in catecholamine content in pgWAT

from mutant mice (Figure 6J). Other factors involved in lipolysis

activation, such as glucagon or corticosterone, were not affected

by Ru360 treatment (data not shown). Additionally, Ru360 co-in-

jection with the b3-adrenergic antagonist SR59230A prevented
period. Mitochondrial Ca2+ measurements: control (n = 6) and POMCOpa1KO (n

(n = 3) mice.

(D and E) Representative mitochondrial Ca2+ fluorescence trace of POMC neuro

vehicle (Veh) or Ru265.

(E) AUC quantification of the fluorescence increase over baseline during the acq

(F) Schematic of acute i.c.v. injection setup.

(G) Fasting-induced increase of plasma FFA after vehicle (Veh) or Ru360 i.c.v. in

(H and I) Representative immunoblot images (H) and densitometric quantification

in pgWAT from control and POMCOpa1KO mice after i.c.v. treatment with vehic

(J) Epinephrine and norepinephrine content in pgWAT from control and POMCOpa

treatment.

(K) Fasting-induced increase of plasma FFA levels in control and POMCOpa1KOm

of saline (Sal) or b3-adrenergic blocker SR59230A (SR). n = 10–12/genotype/trea

All studies were conducted in 12- to 16-week-old male control and POMCOpa1K

mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. ns, not significant. See also Fig
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the FFA rise in POMCOpa1KO mice (Figure 6K). These results

indicate that mitochondrial Ca2+ overload in POMC neurons un-

derlies the impaired lipolysis of adipose tissue via sympathetic

inputs.

Mitigation of central mitochondrial Ca2+ influx restores
a-MSH transport and reverses the obesogenic
phenotype of POMCOpa1KO mice
POMCOpa1KO mice exhibited reduced a-MSH staining in the

PVH despite unaltered hypothalamic content and equivalent fi-

ber density, indicating defective neuropeptide transport to target

sites (Figures 2J–2N). Remarkably, i.c.v. injection of a-MSH

improved fasting-induced FFA release (Figure 7A), suggesting

that a-MSHmediates normalized lipolysis after Ru360 treatment.

Indeed, ex vivo studies showed that Ru360 stimulated a-MSH

release in both control and POMCOpa1KO hypothalamic ex-

plants (Figure 7B). We next assessed whether defective

a-MSH transport in mutant mice was due to mitochondrial

Ca2+ overload. A subchronic Ru360 treatment (Figure 7C) recov-

ered a-MSH immunoreactivity in the PVH (as well as other

POMC neuron target sites) of POMCOpa1KO mice (Figures 7D

and 7E; data not shown). These data denote that compromised

mitochondrial Ca2+ homeostasis underlies defective a-MSH

transport in mutant mice, resulting in impaired lipolysis via sym-

pathetic inputs.

Next, we tested whether the subchronic central Ru360

regime was able to reverse the obesogenic phenotype of

POMCOpa1KO mice. While Ru360 had no effect in control

mice, mutant animals gradually reduced bodyweight until reach-

ing an ~20% loss at the end of the treatment (Figures 7F and 7G).

Ru360 also reduced food intake (Figure 7H), adiposity (Figure 7I),

and adipocyte size (Figures 7J–7L) in POMCOpa1KO mice. The

obesity-related low-grade inflammation of WAT was also

relieved (Figure 7M). These results show that subchronic inhibi-

tion of mitochondrial Ca2+ influx in the hypothalamus reverts

the obesity traits of POMCOpa1KO mice.

DISCUSSION

Cristae remodeling in response to energetic states has been

documented for decades but considered an artifact (Hacken-

brock, 1966). The discovery of cristae rearrangements during

apoptosis confirmed the dynamic nature of these structures (Co-

gliati et al., 2016). Thus, the concept that morphological changes
= 8) mice. Cytosolic Ca2+ measurements: control (n = 5) and POMCOpa1KO

ns from control and POMCOpa1KO fasted mice after i.c.v. injection of either

uisition period. n = 3/genotype.

jection in control and POMCOpa1KO mice. n = 7–12 genotype/treatment.

(I) of lipolytic markers (HSL-pS660/HSL, HSL-pS563/HSL, and perilipin/tubulin)

le (Veh) or Ru360 (n = 4/genotype/treatment).

1KOmice after i.c.v. treatment with vehicle (Veh) or Ru360. n = 9–11/genotype/

ice after vehicle (Veh) or Ru360 i.c.v. injection together with i.p. administration

tment.

Omice under fed or overnight (16 h) fasting conditions. Data are expressed as

ure S6.
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Figure 7. Central blockade of mitochondrial Ca2+ transport reverts obesity in POMCOpa1KO mice by restoring a-MSH in target areas

(A) Fasting-induced increase of plasma FFA levels after vehicle (Veh) or a-MSH i.c.v. injection in control and POMCOpa1KOmice. n = 7–8 genotype/treatment.

(B) Ex vivomeasurements of a-MSH secretion in hypothalamic explants from control and POMCOpa1KOmice. The average from 12 mice per genotype pooled

from 3 independent experiments is shown.

(C) Scheme depicting subchronic i.c.v. Ru360 injection setup.

(D and E) Representative immunofluorescence images (D) and integrated density quantification (E) of a-MSH staining in the PVN from control and POMCOpa1KO

mice after subchronic i.c.v. injection of vehicle (Veh) or Ru360. n = 4/genotype/treatment. 3V, third ventricle. Scale bar, 100 mm.

(F–H) Body weight change (F), final body weight (G), and average daily food intake (H) after subchronic treatment with vehicle (Veh) or Ru360 in control (vehicle,

n = 12; Ru360, n = 11) and POMCOpa1KO (vehicle, n = 10; Ru360, n = 10) mice.

(I) Adiposity after subchronic protocol (n = 6/genotype/treatment).

(J) Representative hematoxylin and eosin staining images of pgWAT. Scale bar, 100 mm.

(legend continued on next page)
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in cristae are relevant for cellular adaptations to metabolic de-

mands has recently reemerged (Cogliati et al., 2013, 2016;

Patten et al., 2014), yet the in vivo importance of cristae plasticity

remains uncertain. We reasoned that the connection between

cristae dynamics and energy status may be particularly impor-

tant in cellular nutrient sensors such as POMC neurons. Our

studies show that energy availability impact on cristae-remodel-

ing responses in these neurons. The parallel reduction of Opa1

expression in POMC neurons, under similar nutritional chal-

lenges, points to OPA1 as a candidate to mediate bioenergetic

adaptations to nutrient availability. The consequences of such

cristae dynamism are currently unknown, but likely contribute

to bioenergetic adjustments by modulating the kinetics of chem-

ical reactions and respiratory supercomplex assembly (Cogliati

et al., 2013).

Consistent with a crucial role in cristae and mitochondrial re-

modeling, OPA1 ablation in POMC neurons caused variations

in mitochondrial dynamics toward fission and severe disruption

of inner morphology and cristae architecture. These remarkable

organelle impairments did not compromise cell survival (Ramı́rez

et al., 2017). Furthermore, the mitochondrial respiratory capacity

was only moderately affected and the expression of representa-

tive OXPHOS subunits was equivalent. This implies the exis-

tence of compensatory mechanisms or the ability of the remain-

ing pool of structurally intact mitochondria to counterbalance.

Phenotypically, deletion of Opa1 in POMC neurons caused

obesity due to hyperphagia and attenuated fasting-induced lipol-

ysis. Mutant mice exhibited reduced a-MSH in neuronal projec-

tions, albeit its total hypothalamic content and expression of

POMC-processing enzymes was unaltered. These results sug-

gest defective a-MSH transport to axonal terminals. Synaptic

vesicle release is an energy-demanding process that relies on

adequate cellular location of mitochondria (Hollenbeck and

Saxton, 2005). Anterograde mitochondrial transport to axonal

terminals is modulated by matrix Ca2+ influx through the

cristae-resident MCU (Vais et al., 2016). Interestingly, OPA1 likely

participates inmitochondrial Ca2+ signaling since its genetic dele-

tion in vitro impairs Ca2+ dynamics, although with divergent re-

sults (F€ulöp et al., 2011, 2015; Kushnareva et al., 2013). Our in vivo

fiber photometry recordings in POMCneurons and pharmacolog-

ical studies indicated that loss of OPA1 increased mitochondrial

Ca2+ content, thus rendering the mitochondria unresponsive to

subsequent challenges. These results are coherent with in vitro

and hypothalamic slices data (data not shown; F€ulöp et al.

2011, 2015; Gottschalk et al., 2019; Paillard et al., 2018). In line

with this, prevention of mitochondrial Ca2+ uptake via central de-

livery of the selective MCU inhibitor Ru360 restored a-MSH stain-

ing in relevant hypothalamic target areas. This indicates that

excessive mitochondrial Ca2+ transport is the primary defect un-

derlying altered a-MSH distribution. It is therefore likely that Ca2+

overload into the mitochondria arrests their movement along the

axon, jeopardizing a-MSH synaptic vesicle release and neuronal
(K) Adipocyte area quantification (n = 2–3/genotype/treatment).

(L) Cumulative frequency of adipocyte area distribution.

(M) Gene expression of representative markers of obesity-associated adipose tis

binding protein; Ccl2, chemokine [C–C motif] ligand 2; Itgax, integrin alpha X)

(n = 6/genotype/treatment).

All studies were conducted in 12- to 16-week-old male control and POMCOpa1K
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function (Chang and Reynolds, 2006; Chang et al., 2006, 2011;

Niescier et al., 2018). Consistent with a role for OPA1 in the mod-

ulation of mitochondrial Ca2+ import and mitochondrial axon

motility, downregulation of OPA1 in cultured neurons reduces

the abundance of mitochondria along the dendrites and causes

synaptic dysfunction (Bertholet et al., 2013). These observations

suggest a potential link between MCU and OPA1. Indeed, a

recent proteomic analysis revealed an MCU-dependent OPA1-

MICU interaction (Tomar et al., 2019).

The restoration of mitochondrial Ca2+ signaling in mutant

mice, via acute central treatment with diverse MCU inhibitors,

recovered the lipolytic program. The effects of Ru360 on lipolysis

were paralleled, and potentially mediated, by the reestablish-

ment of a-MSH distribution to relevant areas. This notion was

further supported by the partial recovery of fasting-induced

FFA release in mutant mice after i.c.v. administration of a-MSH.

Remarkably, subchronic central Ru360 administration had a

robust beneficial effect on POMCOpa1KO mice. After 13 days of

treatment, mutant mice reduced body weight and adiposity, with

a concomitant normalization of food intake and obesity-associ-

ated inflammatoryparameters inWAT. Interestingly,a recent study

has reported a link between impairedmitochondrial Ca2+ handling

in POMC neurons, neuronal hyperpolarization, and diet-induced

obesity (Paeger et al., 2017). Together, these observations argue

in favor of a crucial role of mitochondrial Ca2+ homeostasis upon

POMC neuronal activity and control of energy balance.

The effects of central Ru360 aremediated by the SNS, as a b3-

adrenergic blocker negates its effects on fasting-induced FFA

release. WAT is innervated by sympathetic endings and fast-

ing-associated increase in local adrenergic outflow activates

lipolysis (Bartness et al., 2014; Brito et al., 2008). Interestingly,

central administration of leptin reduces fat weight independently

of changes in food intake (Buettner et al., 2008) and reports

demonstrate direct neuro-anatomical innervation of the adipo-

cytes that mediate the lipolytic effect of leptin (Zeng et al.,

2015). Mapping of the sympathetic innervation has unveiled

that the ARC, DMH, LH, and PVH are polysynaptically connected

to adipose depots (Caron et al., 2018). In particular, leptin

signaling in ARC neurons regulates the plasticity of sympathetic

architecture in adipose tissue (Wang et al., 2020). Nevertheless,

the specific neuronal populations implicated in the leptin-depen-

dent neuro-adipose tissue axis responsible for fat mobilization

have not been described to date.

Specific components of themelanocortin system are plausible

candidates to mediate this communication. Our results support

the notion that POMC neurons, which are targets of leptin action,

may participate in the neuro-adipocyte response to starvation

through lipolysis. Direct inhibition of POMCneurons via DREADD

curtails the molecular lipolytic program and decreases fasting-

induced lipid mobilization. Consistently, reduction of the central

melanocortin tone by pharmacologic or genetic means inhibits

lipolysis while promoting WAT triglyceride uptake, synthesis,
sue inflammation (Tnfa, tumor necrosis factor alpha; Lbp, lipopolysaccharide

in mice after 13 days of subchronic treatment with vehicle (Veh) or Ru360

Omice. Data are expressed as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.
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and deposition (Brito et al., 2007; Nogueiras et al., 2007).

Furthermore, chemogenetic activation of AgRP neurons de-

creases WAT pHSL levels and lipolysis (Cavalcanti-de-Albu-

querque et al., 2019). Although the contribution of POMC neu-

rons to fasting-induced lipolysis is partial, as other factors

regulate this process, our results provide further understanding

of the central mechanisms fine-tuning lipid metabolism.

In summary, we demonstrate that POMC neuron cristae

morphology, and the expression of the principal cristae-shaping

player Opa1, is influenced by energy availability. We propose a

model whereby disruption of mitochondrial and/or cristae dy-

namics in POMC neurons leads to excessive mitochondrial

Ca2+ influx, resulting in defective a-MSH transport and release.

This reduced melanocortinergic tone causes hyperphagia and

attenuates sympathetic fasting-induced lipolysis eventually

causing obesity. Our results indicate that OPA1 in POMC neu-

rons is a crucial mediator of bioenergetic adaptations to nutrient

availability and is involved in systemic energy balance control.

Limitations of study
While this study shows that mitochondrial cristae architecture in

POMC neurons remodels under different nutritional situations,

we did not define the specific nutrients/hormones underlying

these changes. Experiments aimed at answering this question

would provide a deeper understanding of this biological process.

We report a new methodology for in vivo cell-targeted mito-

chondrial Ca2+ measurements. This strategy is optimum to

detect mitochondrial Ca2+ fluctuations but not to quantify abso-

lute Ca2+ content. The interpretation of our results, indicating

that absence of mitochondrial Ca2+ dynamism upon stimuli

was due to Ca2+ overload, was based on the combination of

Ca2+ measurements and pharmacological treatments targeting

theMCU. The development of genetically engineered ratiometric

tools would provide direct evidence to support our conclusions.

Our findings are exclusively based on mouse data. Therefore,

for a full translational significance, it would be pertinent to assess

Opa1 expression in human post-mortem hypothalami under

diverse pathophysiological and obesity-related conditions.
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Anthonsen, M.W., Rönnstrand, L., Wernstedt, C., Degerman, E., and Holm, C.

(1998). Identification of novel phosphorylation sites in hormone-sensitive

lipase that are phosphorylated in response to isoproterenol and govern activa-

tion properties in vitro. J. Biol. Chem. 273, 215–221.
Cell Metabolism 33, 1820–1835, September 7, 2021 1833

https://doi.org/10.1016/j.cmet.2021.07.008
https://doi.org/10.1016/j.cmet.2021.07.008
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref1
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref1
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref1
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref1


ll
OPEN ACCESS Article
Arduino, D.M., Wettmarshausen, J., Vais, H., Navas-Navarro, P., Cheng, Y.,

Leimpek, A., Ma, Z., Delrio-Lorenzo, A., Giordano, A., Garcia-Perez, C.,

et al. (2017). Systematic identification of MCUmodulators by orthogonal inter-

species chemical screening. Mol. Cell 67, 711–723.e7.

Bartness, T.J., Liu, Y., Shrestha, Y.B., and Ryu, V. (2014). Neural innervation of

white adipose tissue and the control of lipolysis. Front. Neuroendocrinol. 35,

473–493.

Baughman, J.M., Perocchi, F., Girgis, H.S., Plovanich, M., Belcher-Timme,

C.A., Sancak, Y., Bao, X.R., Strittmatter, L., Goldberger, O., Bogorad, R.L.,

et al. (2011). Integrative genomics identifies MCU as an essential component

of the mitochondrial calcium uniporter. Nature 476, 341–345.

Bermont, F., Hermant, A., Benninga, R., Chabert, C., Jacot, G., Santo-

Domingo, J., Kraus, M.R.-C., Feige, J.N., and De Marchi, U. (2020).

Targeting mitochondrial calcium uptake with the natural flavonol kaempferol,

to promote metabolism/secretion coupling in pancreatic b-cells. Nutrients

12, 538.

Bertholet, A.M., Millet, A.M.E., Guillermin, O., Daloyau, M., Davezac, N.,

Miquel, M.C., and Belenguer, P. (2013). OPA1 loss of function affects in vitro

neuronal maturation. Brain 136, 1518–1533.

Brito, M.N., Brito, N.A., Baro, D.J., Song, C.K., and Bartness, T.J. (2007).

Differential activation of the sympathetic innervation of adipose tissues bymel-

anocortin receptor stimulation. Endocrinology 148, 5339–5347.

Brito, N.A., Brito, M.N., and Bartness, T.J. (2008). Differential sympathetic

drive to adipose tissues after food deprivation, cold exposure or glucopriva-

tion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1445–R1452.

Buettner, C., Muse, E.D., Cheng, A., Chen, L., Scherer, T., Pocai, A., Su, K.,

Cheng, B., Li, X., Harvey-White, J., et al. (2008). Leptin controls adipose tissue

lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14,

667–675.

Campbell, J.N., Macosko, E.Z., Fenselau, H., Pers, T.H., Lyubetskaya, A.,

Tenen, D., Goldman, M., Verstegen, A.M.J., Resch, J.M., McCarroll, S.A.,

et al. (2017). A molecular census of arcuate hypothalamus and median

eminence cell types. Nat. Neurosci. 20, 484–496.

Caron, A., Lee, S., Elmquist, J.K., and Gautron, L. (2018). Leptin and brain-ad-

ipose crosstalks. Nat. Rev. Neurosci. 19, 153–165.

Cavalcanti-de-Albuquerque, J.P., Bober, J., Zimmer, M.R., and Dietrich, M.O.

(2019). Regulation of substrate utilization and adiposity by Agrp neurons. Nat.

Commun. 10, 311.

Chang, D.T.W., and Reynolds, I.J. (2006). Differences in mitochondrial move-

ment andmorphology in young andmature primary cortical neurons in culture.

Neuroscience 141, 727–736.

Chang, D.T.W., Honick, A.S., and Reynolds, I.J. (2006). Mitochondrial traf-

ficking to synapses in cultured primary cortical neurons. J. Neurosci. 26,

7035–7045.

Chang, K.T., Niescier, R.F., andMin, K.T. (2011). Mitochondrial matrix Ca2+ as

an intrinsic signal regulating mitochondrial motility in axons. Proc. Natl. Acad.

Sci. USA 108, 15456–15461.

Chen, Y., Lin, Y.C., Kuo, T.W., and Knight, Z.A. (2015). Sensory detection of

food rapidly modulates arcuate feeding circuits. Cell 160, 829–841.

Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K.,

Metzger, K., Frezza, C., Annaert, W., D’Adamio, L., et al. (2006). Mitochondrial

rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-

dependent cristae remodeling. Cell 126, 163–175.

Civiletto, G., Varanita, T., Cerutti, R., Gorletta, T., Barbaro, S., Marchet, S.,

Lamperti, C., Viscomi, C., Scorrano, L., and Zeviani, M. (2015). Opa1 overex-

pression ameliorates the phenotype of two mitochondrial disease mouse

models. Cell Metab. 21, 845–854.

Cogliati, S., Frezza, C., Soriano, M.E., Varanita, T., Quintana-Cabrera, R.,

Corrado, M., Cipolat, S., Costa, V., Casarin, A., Gomes, L.C., et al. (2013).

Mitochondrial cristae shape determines respiratory chain supercomplexes as-

sembly and respiratory efficiency. Cell 155, 160–171.

Cogliati, S., Enriquez, J.A., and Scorrano, L. (2016). Mitochondrial cristae:

where beauty meets functionality. Trends Biochem. Sci. 41, 261–273.
1834 Cell Metabolism 33, 1820–1835, September 7, 2021
De Stefani, D., Raffaello, A., Teardo, E., Szabò, I., and Rizzuto, R. (2011). A
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Imbernón, M., et al. (2017). Mitochondrial dynamics mediated by mitofusin 1

is required for POMC neuron glucose-sensing and insulin release control.

Cell Metab. 25, 1390–1399.e6.

Santoro, A., Campolo, M., Liu, C., Sesaki, H., Meli, R., Liu, Z.W., Kim, J.D., and

Diano, S. (2017). DRP1 suppresses leptin and glucose sensing of POMC neu-

rons. Cell Metab. 25, 647–660.

Sanz, E., Yang, L., Su, T., Morris, D.R., McKnight, G.S., and Amieux, P.S.

(2009). Cell-type-specific isolation of ribosome-associated mRNA from com-

plex tissues. Proc. Natl. Acad. Sci. USA 106, 13939–13944.

Schneeberger, M., Dietrich, M.O., Sebastián, D., Imbernón, M., Castaño, C.,

Garcia, A., Esteban, Y., Gonzalez-Franquesa, A., Rodrı́guez, I.C., Bortolozzi,

A., et al. (2013). Mitofusin 2 in POMC neurons connects ER stress with leptin

resistance and energy imbalance. Cell 155, 172–187.

Schrepfer, E., and Scorrano, L. (2016). Mitofusins, from mitochondria to meta-

bolism. Mol. Cell 61, 683–694.

Tilokani, L., Nagashima, S., Paupe, V., and Prudent, J. (2018). Mitochondrial

dynamics: overview of molecular mechanisms. Essays Biochem. 62, 341–360.

Timper, K., and Br€uning, J.C. (2017). Hypothalamic circuits regulating appetite

and energy homeostasis: pathways to obesity. Dis. Model. Mech. 10,

679–689.
Toda, C., Kim, J.D., Impellizzeri, D., Cuzzocrea, S., Liu, Z.W., and Diano, S.

(2016). UCP2 regulatesmitochondrial fission and ventromedial nucleus control

of glucose responsiveness. Cell 164, 872–883.

Toda, C., Santoro, A., Kim, J.D., and Diano, S. (2017). POMC neurons: from

birth to death. Annu. Rev. Physiol. 79, 209–236.

Tomar, D., Thomas, M., Garbincius, J.F., Kolmetzky, D.W., Salik, O., Jadiya,

P., Carpenter, A.C., and Elrod, J.W. (2019). MICU1 regulates mitochondrial

cristae structure and function independent of the mitochondrial calcium uni-

porter channel. bioRxiv. https://doi.org/10.1101/803213.

Vaccaro, V., Devine, M.J., Higgs, N.F., and Kittler, J.T. (2017). Miro1-depen-

dent mitochondrial positioning drives the rescaling of presynaptic Ca2+

signals during homeostatic plasticity. EMBO Rep. 18, 231–240.

Vais, H., Mallilankaraman, K., Mak, D.-O.D., Hoff, H., Payne, R., Tanis, J.E.,

and Foskett, J.K. (2016). EMRE is a matrix Ca(2+) sensor that governs gate-

keeping of the mitochondrial Ca(2+) uniporter. Cell Rep. 14, 403–410.

Wai, T., and Langer, T. (2016). Mitochondrial dynamics and metabolic regula-

tion. Trends Endocrinol. Metab. 27, 105–117.

Wang, S., Soni, K.G., Semache, M., Casavant, S., Fortier, M., Pan, L., and

Mitchell, G.A. (2008). Lipolysis and the integrated physiology of lipid energy

metabolism. Mol. Genet. Metab. 95, 117–126.

Wang, X., Pandey, A.K., Mulligan, M.K., Williams, E.G., Mozhui, K., Li, Z.,

Jovaisaite, V., Quarles, L.D., Xiao, Z., Huang, J., et al. (2016). Joint mouse-hu-

man phenome-wide association to test gene function and disease risk. Nat.

Commun. 7, 10464.

Wang, P., Loh, K.H., Wu, M., Morgan, D.A., Schneeberger, M., Yu, X., Chi, J.,

Kosse, C., Kim, D., Rahmouni, K., et al. (2020). A leptin-BDNF pathway regu-

lating sympathetic innervation of adipose tissue. Nature 583, 839–844.

Woods, J.J., and Wilson, J.J. (2020). Inhibitors of the mitochondrial calcium

uniporter for the treatment of disease. Curr. Opin. Chem. Biol. 55, 9–18.

Woods, J.J., Nemani, N., Shanmughapriya, S., Kumar, A., Zhang, M., Nathan,

S.R., Thomas, M., Carvalho, E., Ramachandran, K., Srikantan, S., et al. (2019).

A selective and cell-permeable mitochondrial calcium uniporter (MCU) inhibi-

tor preserves mitochondrial bioenergetics after hypoxia/reoxygenation injury.

ACS Cent. Sci. 5, 153–166.

Woods, J.J., Lovett, J., Lai, B., Harris, H.H., andWilson, J.J. (2020). Redox sta-

bility controls the cellular uptake and activity of ruthenium-based inhibitors of

the mitochondrial calcium uniporter (MCU). Angew. Chem. Int. Ed. Engl. 59,

6482–6491.

Xu, A.W., Kaelin, C.B., Takeda, K., Akira, S., Schwartz, M.W., and Barsh, G.S.

(2005). PI3K integrates the action of insulin and leptin on hypothalamic neu-

rons. J. Clin. Invest. 115, 951–958.

Zeng, W., Pirzgalska, R.M., Pereira, M.M.A., Kubasova, N., Barateiro, A.,

Seixas, E., Lu, Y.H., Kozlova, A., Voss, H., Martins, G.G., et al. (2015).

Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell

163, 84–94.
Cell Metabolism 33, 1820–1835, September 7, 2021 1835

http://refhub.elsevier.com/S1550-4131(21)00324-7/sref42
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref42
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref43
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref43
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref43
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref44
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref44
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref44
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref45
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref45
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref45
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref45
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref46
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref46
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref46
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref46
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref47
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref47
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref47
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref48
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref48
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref48
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref48
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref49
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref49
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref49
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref49
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref49
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref50
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref50
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref50
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref51
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref51
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref51
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref52
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref52
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref52
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref52
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref53
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref53
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref54
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref54
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref55
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref55
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref55
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref55
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref56
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref56
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref56
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref57
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref57
https://doi.org/10.1101/803213
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref59
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref59
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref59
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref60
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref60
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref60
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref61
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref61
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref62
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref62
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref62
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref63
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref63
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref63
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref63
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref64
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref64
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref64
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref65
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref65
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref66
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref66
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref66
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref66
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref66
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref67
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref67
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref67
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref67
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref67
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref68
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref68
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref68
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref69
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref69
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref69
http://refhub.elsevier.com/S1550-4131(21)00324-7/sref69


ll
OPEN ACCESS Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alpha-MSH Millipore Cat# AB5087; RRID: AB_91683

Alpha-Tubulin Sigma-Aldrich Cat# T6199; RRID: AB_477583

Alexa Fluor 594 chicken anti-mouse ThermoFisher Cat# A-21201; RRID: AB_2535787

Alexa Fluor 488 chicken anti-rabbit ThermoFisher Cat# A-21441; RRID: AB_2535859

Alexa Fluor 488 donkey anti-sheep ThermoFisher Cat# A-11015; RRID: AB_2534082

Alexa Fluor 594 donkey anti-rabbit ThermoFisher Cat# A-21207; RRID: AB_141637

Alexa Fluor 647 donkey anti-rabbit ThermoFisher Cat# A32795; RRID: AB_2762835

Anti-mouse HRP GE Healthcare UK Limited Cat# NA931; RRID: AB_772210

Anti-Rabbit HRP GE Healthcare UK Limited Cat# NA934; RRID: AB_2722659

b-Actin Sigma-Aldrich Cat# A2066; RRID: AB_476693

GFP Aves Labs Cat# GFP-1010; RRID: AB_2307313

HA.11 Covance Cat# MMS-101R; RRID: AB_291262

HSL-PSer563 Cell Signaling Cat# 4139; RRID: AB_2135495

HSL-PSer660 Cell Signaling Cat# 4126; RRID: AB_490997

HSL Cell Signaling Cat# 4107; RRID: AB_2296900

OPA1 BDBiosciences Cat# 612606; RRID: AB_399888

OPA1 Novus Biologicals Cat# NB110-55290C; RRID: AB_1851209

OXPHOS Rodent Antibody Cocktail Abcam Cat# ab110413; RRID: AB_2629281

Perilipin Cell Signaling Cat# 3467; RRID: AB_2167270

POMC Phoenix Pharmaceuticals Cat# H-029-30; RRID: AB_2307442

TOM20 Santa Cruz Cat# sc-11415; RRID: AB_2207533

Bacterial and virus strains

AAV8-hSYN-DIO-hM3D(Gq)-mCherry Addgene Cat# 44361

AAV8-hSYN-DIO-hM4D(Gi)-mCherry Addgene Cat# 44362

pGP-Syn-FLEX-jGCaMP7s-WPRE Addgene Cat# 10449-AAV9

pAAV-FLEX-EF1A-mtGCaMP6s-WPRE Vector builder This paper

pAAV-FLEX-tdTomato Addgene Cat# 28306-AAV9

Chemicals, peptides, and recombinant proteins

3-3’-Diaminobenzidine Sigma-Aldrich Cat# D5637

Adenosine diphosphate (ADP) Calbiochem Cat# 117105

Alpha-MSH Sigma-Aldrich Cat# M4135

Angiotensin II Sigma-Aldrich Cat# A9525

Antimycin A Sigma-Aldrich Cat# A8674

Artificial cerebrospinal fluid (aCSF) Tocris Bioscience Cat# 3525

Buffer RLT Qiagen Cat# 79216

Carbonyl cyanide 4-(trifluoromethoxy)

phenylhydrazone (FCCP)

Sigma-Aldrich Cat# C2920

Clozapine-N-oxide Tocris Cat# C4936

Dental acrylic TAB2000�, liquid Kerr Cat#61775

Dental acrylic TAB2000�, powder Kerr Cat#61771

Digitonin Sigma-Aldrich Cat# D5628

Durcupan Electron Microscopy Sciences Cat# 14040

Dynabeads Protein G ThermoFisher Cat# 10004D

Enhanced chemiluminescence reagent Pierce Cat# 32105
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Glucose solution 40% Fresenius Kabi Cat# C.N 620724

Glutamate Sigma-Aldrich Cat# G1626

Glutaraldehyde solution 50 % Panreac AppliChem Cat# A3166

Insulin Lilly Cat# C.N 710008.9

Kaempferol Sigma-Aldrich Cat# 1354900

Leptin R&D Cat# 498-OB

Malate Sigma-Aldrich Cat# M1000

Melanotan II Bachem Cat# 4039778

Mitoxantrone Hydrochloride Sigma-Aldrich Cat# M2305000

Osmium tetroxide Electron Microscopy Sciences Cat# 19190

Paraformaldehyde 16% Electron Microscopy Sciences Cat# 15710-S

Picric acid solution Sigma-Aldrich Cat# P6744

Protease and Phosphatase Inhibitor Cocktail Sigma-Aldrich Cat# PPC1010

RIPA Buffer Sigma-Aldrich Cat# R0278

Rotenone Sigma-Aldrich Cat# R8875

Ru265 Dr. Justin J Wilson N/A

Ru360 MerkMillipore Cat# 557440

SB202190 Tocris Cat# 1264

Sodium pyruvate Sigma-Aldrich Cat# P2256

SR59230A Tocris Cat# 1511

Succinate Sigma-Aldrich Cat# S2378

Sucrose Sigma-Aldrich Cat# S0389

Trizol Reagent ThermoFisher Cat# 15596026

Uranyl acetate Electron Microscopy Sciences Cat# 22400

Critical commercial assays

Corticosterone EIA Immunodiagnosticsystems Cat# AC-14F1

ECL Western Blotting Substrate Pierce Cat# 32106

Epinephrine/Norepinephrine ELISA LDN Cat# BA E-5400

Glucocard X-meter Arkray Cat# GT-1910

High Capacity cDNA Reverse Transcription Kit Applied Biosystems Cat#4368814

HR Series NEFA-HR(2)-R1 WAKO Cat# 434-91795

HR Series NEFA-HR(2)-R2 WAKO Cat# 436-91995

Insulin ELISA CrystalChem Cat# 90080

Leptin ELISA CrystalChem Cat# 90030

MSH, alpha EIA Phoenix Pharmaceuticals Cat# EK-043-01

MSH, alpha FIA Phoenix Pharmaceuticals Cat# FEK-043-01

PreMix Ex taq Takara C#RR39WR

Quant-iT RiboGreen RNA assay kit ThermoFisher Cat# R1149

RNeasy-plus Mini kit Qiagen Cat# 74134

RNAscope Probe Diluent ACD; Advanced Cell Diagnostics Cat# 3000041

RNAscope Fluorescent Multiplex Detection Reagents ACD; Advanced Cell Diagnostics Cat# 320851

RNAscope Enhancer Fluorescent Kit v2 ACD; Advanced Cell Diagnostics Cat# 323100

RNAscope HybEz hybridization system Advanced Cell Diagnostics Cat# 311720

SDS-PAGE pre-cast 4%-12% gels Bio-Rad Cat# 345-0124

Triglyceride determination kit Sigma-Aldrich Cat# TR0100-1KT

Experimental models: Organisms/strains

POMC-Cre mice (Xu et al., 2005) N/A

B6N.129-Rpl22tm1.1Psam/J mice The Jackson Laboratory Cat# 011029

Opa1fl/fl mice (Ramı́rez et al., 2017) N/A

(Continued on next page)
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Oligonucleotides

TaqMan Acca ThermoFisher Mm01304277_m1

TaqMan AdipoQ ThermoFisher Mm00456425_m1

TaqMan Agrp ThermoFisher Mm00475829_g1

TaqMan Aldh1 ThermoFisher Mm03048957_m1

TaqMan Ccl2 ThermoFisher Mm00441242_m1

TaqMan Cd36 ThermoFisher Mm00432403_m1

TaqMan Cebpa ThermoFisher Mm00514283_s1

TaqMan Dnm1 Thermo Fisher Mm01342903_m1

TaqMan Fasn ThermoFisher Mm00662319_m1

TaqMan Fis1 Thermo Fisher Mm00481580_m1

TaqMan Hprt ThermoFisher Mm00446968_m1

TaqMan Itgax ThermoFisher Mm00498698_m1

TaqMan Lbp ThermoFisher Mm00493139_m1

TaqMan Lipe ThermoFisher Mm00495359_m1

TaqMan Lpl ThermoFisher Mm00434764_m1

TaqMan Mfn1 ThermoFisher Mm00612599_m1

TaqMan Mfn2 ThermoFisher Mm00500120_m1

TaqMan Mcu ThermoFisher Mm01168773_m1

TaqMan Micu1 ThermoFisher Mm00522783_m1

TaqMan Micu2 ThermoFisher Mm00551312_m1

TaqMan Npy ThermoFisher Mm00445771_m1

TaqMan Opa1 ThermoFisher Mm00453879_m1

TaqMan Pam ThermoFisher Mm01293044_m1

TaqMan Pc1/3 ThermoFisher Mm00479023_m1

TaqMan Pc2 ThermoFisher Mm00500981_m1

TaqMan Pnpla2 ThermoFisher Mm00503040_m1

TaqMan Pomc ThermoFisher Mm00435874_m1

TaqMan Pparg ThermoFisher Mm00440945_m1

TaqMan Scd1 ThermoFisher Mm01197142_m1

TaqMan Th ThermoFisher Mm00447557_m1

TaqMan Tnfa ThermoFisher Mm00443258_m1

RNAscope probe Mm-Pomc ACD; Advanced Cell Diagnostics Cat# 314081

RNAscope probe Mm-Opa1-O1-C3 ACD; Advanced Cell Diagnostics Cat# 836341-C3

Software and algorithms

Doric Neuroscience Studio Doric Lenses https://neuro.doriclenses.com/products/

doric-neuroscience-studio

ImageJ software NIH, Open source https://imagej-nih-gov.sire.ub.edu/ij/

MATLAB MATLAB https://es.mathworks.com/products/

matlab-online.html

Prism Graphpad Software https://www.graphpad.com/scientific-

software/prism/

Other

Fiber photometry console Doric Lenses Cat# FPC

Glucometer Arkray Cat# GT-1910

Guide cannula Bilaney Consultants GmbH Cat# C315G/Spc

Standard diet Envigo Laboratories Cat# #2014

High fat diet 45% Kcal from fat Research Diets Cat# D12451

ImmEdge hydrophobic barrier pen Vector laboratories Cat# 1047002

Internal Cannula Bilaney Consultants GmbH Cat# C315I/Spc

(Continued on next page)
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Microvette CB-300 Sarstedt Cat# NC9141704

Hamilton 5 mL, Neuros Model 75 RN, point style 3, SYR Hamilton Cat#65460-02

Optic fiber Newdoon Technology N/A

ProLong Gold Antifade Mountant Thermo Fisher Cat# 10417002

SuperFrost Plus microscope slides Thermo Fisher Cat# 322000

Vetbond 3M Cat# 1469SB
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, M.C.

(mclaret@clinic.cat).

Materials availability
Plasmids generated in this study are available on reasonable request.

Data and code availability
d The data generated in this study will be shared by the lead contact upon reasonable request.

d This study did not generate new code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice and diets
The generation of POMCOpa1KO and POMCRiboTagmice has been previously reported (Haddad-Tóvolli et al., 2020; Ramı́rez et al.,

2017). Briefly, POMCCre/+ mice (Xu et al., 2005) were intercrossed with either Opa1 (Ramı́rez et al., 2017) or with Rpl22lsl-HA floxed

mice (Sanz et al., 2009) on a C57BL/6J background. Colonies were maintained in-house by breeding POMCCre/+; loxp/loxpmice with

loxp/loxpmice, and littermate controls were used for the experiments. Mice weremaintained at 20-24�C on a 12:12 h light-dark cycle

with free access towater and standard chowdiet (Envigo Laboratories #2014) or HFD (45%kcal fat; ResearchDiets #D12451). Health

status of themicewere checked regularly. The age and number ofmice analyzed for each experiment is detailed in the figure legends.

All in vivo studieswere performedwith approval of the University of Barcelona Ethics Committee, complying with current Spanish and

European legislation.

METHOD DETAILS

BXD data analysis
Data used for correlation studies were obtained and analyzed using the GeneNetwork web service (http://www.genenetwork.org/).

The selected sets of phenotypical traits corresponded to determinations of body weight gain (between 4 and 20 weeks of age),

gonadal fat, glycaemia and food intake from female and male samples fed with high-fat diet. Opa1 expression data was selected

from the INIA Hypothalamus Exon Affy MoGene 1.0 ST (GSE36674) dataset via GeneNetwork website. The strength of the linear as-

sociation between the mentioned phenotypes and the top-ranked Opa1 exon expression data across available BXD strains was

measured using the Pearson correlation. The results obtained were visualized using the "ggplot2", "RColorBrewer", "ggrepel", ‘‘grid-

Extra’’, and ‘‘ggpubr’’ packages (https://www.bioconductor.org/).

Physiological tests
Blood glucosewasmeasured using a Glucometer (Arkray). Glucose tolerance tests were performed in overnight (16 h) fastedmice by

intraperitoneal (i.p.) injection of a D-glucose bolus (2 g/kg). Insulin sensitivity tests were performed on 6h food deprived mice by i.p.

injection of insulin (0.4 IU/kg). Blood glucose was determined at 0, 15, 30, 60 and 120 min post-injection. Blood samples were

collected via tail vein or trunk bleeds using a capillary collection system with EDTA (Sarstedt) and subsequently centrifuged

(3,600 rpm, 20 min at 4�C) to obtain plasma. Hormones were measured by commercially available ELISA kits: insulin (Crystalchem),

leptin (Crystalchem), corticosterone (Immuno Diagnostic Systems) and epinephrine/norepinephrine (Labor Diagnostika Nord). For

the extraction of catecholamines, tissues were digested in 0.01 N HCl-0.3 mg/ml ascorbic acid buffer using a homogenizer. Samples

were centrifuged at 6,000 rpm for 20 min at 4�C and supernatants taken for analysis. Plasma FFA were measured using the
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quantitative enzymatic determination FFA kit (WAKO). Hepatic triglycerides were quantified using a TAG kit (Sigma), in 3 mol/l KOH,

65% ethanol extracts, based on the method of Salmon and Flatt for liver saponification.

Body composition and indirect calorimetry
Whole-body composition was measured using NMR imaging (EchoMRI). Indirect calorimetry was assessed using a TSE LabMaster

modular research platform (TSE Systems) as previously described (Schneeberger et al., 2013). Briefly, mice were acclimated to the

test chambers for 48 h and then were monitored for the same period of time. Data collected from the last 48 h was used to calculate

all parameters for which results are reported.

MTII and leptin sensitivity tests
Mice were singly housed 1 week prior to studies and were acclimatized to handling and sham injections for 3 days. Tests were con-

ducted in a cross-over fashion. Twelve-week-old control and POMCOpa1KO mice were i.p. injected with either 1.5 mg/g of mouse

leptin (R&D Systems) or vehicle twice a day (1 h before lights out at 7 p.m. and at 8.00 a.m.) for 3 consecutive days. Six-week-old

control and POMCOpa1KO mice were submitted to an acute leptin test to ensure similar body weights during the protocol. I.p.

administration of either 5mg/g of leptin (R&D Systems) or vehicle 1 h before lights-out was performed. Food intake and body weights

were recorded daily. For the MTII test, overnight (16 h) fasted mice were i.p. injected with either 50 mg MTII (Bachem) or vehicle 2 h

after lights on. Food was provided and remaining food measured at the indicated time points.

I.c.v. cannulation and treatments
Third ventricle i.c.v. surgery was carried out in 10-week-old male POMCOpa1KOmice and littermate controls. Mice were anaesthe-

tized with a Ketamine/Xylazine cocktail, received Buprenorphine (i.p. 0.3 mg/Kg) and were positioned in a stereotaxic frame (Kopf

Instruments). The skull was exposed and a 26-gauge stainless steel guide cannula (Bilaney Consultants GmbH) was implanted

into the third ventricle (midline 0 mm, 0.82 mm posterior from Bregma, depth 4.8mm from skull surface). The cannula was secured

to the skull with screws and VetBond tissue adhesive (3M�). After surgery, the mice were singly-housed and given at least 1 week to

recover. Prior to the study, cannula placement was verified by a positive dipsogenic response to angiotensin II (1 nmol in 1 ml; Sigma-

Aldrich). On experimental days, body weight and blood sample under random fed conditions were taken immediately before the i.c.v.

procedure. Mice were infused with 2 ml of vehicle (artificial cerebrospinal fluid; Tocris Bioscience or Ethanol; MerckMillipore), a-MSH

(1 nmol/ml; Sigma-Aldrich), Ru360 (0.25 nmol/ml; MerckMillipore), Ru265 (0.25 nmol/ml; kindly provided by Dr. Justin JWilson, Cornell

University, New York), Mitoxantrone Hydrochloride (2 mg/ml, Sigma-Aldrich), SB202190 (1 nmol/ml; Tocris), or Kaempferol (1 nmol/ml;

Sigma-Aldrich) two hours before lights off, and immediately subjected to 16 h fasting. I.c.v. injections were performed using a

30-gauge internal cannula that extended 0.5mmbelow the guide cannula (Bilaney Consultants GmbH), connected to a 5ml Hamilton

syringe and infused over 1min. Nextmorning, bodyweight and blood samplewas taken 2 h after lights-on. On tissue harvesting days,

i.c.v. injection was repeated (2 h after lights-on) and tissues were harvested 2 h later. For sub-chronic treatments, i.c.v. procedure,

body weight and food intake were monitored daily 2 h after lights on. To analyze sympathetic outflow, SR59230A (2 mg/Kg; Tocris)

was administered i.p. just before i.c.v. treatment.

In experiments where fiber photometry was complemented with pharmacological treatments, a cannula into the lateral ventricle

was implanted in the same surgical procedure as viral infection and fiber optic cannula implantation (see below). Briefly, the skull

was exposed and a 26-gauge stainless steel guide cannula (Bilaney Consultants GmbH) was implanted into the lateral ventricle

(Bregma: AP:-0.5mm, L:-1.5mm, DV:-2.2mm from skull surface). Animals were individualized and given at least 1 week to recover.

Cannula placement was confirmed as described above. On experimental days, 4mL of Ru265 (0.25 nmol/ml) was injected as

described above. Thirty min after lateral ventricle injection, mice were connected to the fiber photometry apparatus and recordings

started.

Viral constructs and injections
Eight to twelve-week-old male mice were anesthetized with a Ketamine/Xylazine cocktail (i.p., 100 mg/Kg and 10 mg/Kg), received

Buprenorphine (i.p., 0.3 mg/Kg) and were placed in a stereotaxic frame (Kopf Instruments) for subsequent adeno-associated virus

(AAV) injection into the ARC. Virus (250 to 500 nL/injection site) were administered using a 33-gauge needle connected to a 5 ml sy-

ringe (Neuro-Syringe, Hamilton) at 50 nL/min according to the following coordinates: 1.5 mm posterior to the Bregma, ± 0.3 mm

lateral to midline, and 5.8 mm below the surface of the skull. Before needle retraction, an 8-min time lapse was allowed. After the

procedure, the incision was sutured by VetBond tissue adhesive (3M) and mice were placed in a heated cage until they recovered

from anesthesia. Experiments were conducted at least 3 weeks after injections to ensure AAV expression.

For chemogenetic experiments, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) viruses were injected

bilaterally (300-400 nl/side). Constructs for hSYN-DIO-hM3D(Gq)-mCherry and hSYN-DIO-hM4D(Gi)-mCherry (Addgene) were

packaged into AAV serotype 8 and produced at UPV-CBATEG (Barcelona). Viral concentrations were 7.53x1012 gc/mL for AAV8-

hSYN-DIO-hM3D(Gq)-mCherry and 1.10x1013 gc/mL for AAV8-hSYN-DIO-hM4D(Gi)-mCherry.

For fiber photometry experiments, genetically encoded calcium indicators were unilaterally injected into the ARC. For cytosolic

calcium detection, the pGP-Syn-FLEX-jGCaMP7s-WPRE construct (Addgene; 2.1x1013 gc/mL) was packaged into AAV serotype

9 and produced at UPV-CBATEG (Barcelona). For mitochondrial calcium detection, the expression of the calcium sensor GCaMP6s

was targeted to the mitochondria by adding the mitochondrial targeting sequence cytochrome oxidase subunit 8A (COX8A) at the
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N-terminus (pAAV-FLEX-EF1A-mtGCaMP6s-WPRE; VectorBuilder; 2.06x1013 gc/mL). This construct was custom designed and

packaged into AAV serotype 9 and produced at the VectorBuilder platform.

To visualize POMC neuron fibers in the PVH, the pAAV-FLEX-tdTomato construct was packed into AAV serotype 9 (Addgene;

2.1x1013 gc/mL) and injected bilaterally into the ARC.

Chemogenetic studies
For food intake measurements, each animal was singly housed and injected i.p. with saline for 5 consecutive days, twice a day (9.00

a.m. and 6.00 p.m.), to obtain basal values. Next, mice were injected with CNO (1.5 mg/Kg; Tocris) using the same time schedule.

Food pellets were weighed at injection time points. To investigate the satiating effect of the DREADD-mediated activation of POMC

neurons, food intake was calculated during the dark phase. Stimulation of food intake by DREADD-induced inhibition of POMC neu-

rons was measured during the light phase.

For FFA measurements, saline or CNO (3 mg/Kg/day) was administered i.p. for 3 consecutive days at 9.00 a.m. On the fourth day,

CNO (1.5 mg/Kg) was injected twice (at 9.00 a.m. and at 6.00 p.m.). A blood sample (basal) was obtained from the tip of the tail just

before the second injection. Mice were fasted overnight and a blood sample (fasted) was taken at 9.00 a.m. of the fifth day. FFA’s

were measured in both samples using a kit fromWAKO. Afterwards, mice were injected with CNO (1.5 mg/Kg) and tissues harvested

at 6.00 p.m.

In vivo fiber photometry and analysis
Optic fiber implantation was performed immediately after viral infection, during the same surgical procedure. Optical fibers (fiber core

= 400 mm; 0.5 NA; 1.25 mmØ metal ferrule; Newdoon Technology) were implanted unilaterally over the ARC (Bregma: AP: -1.5 mm,

L:+0.3 mm, DV:5.7 mm from skull surface). Optical fibers were fixed to the skull with dental acrylic (Kerr). Experiments were per-

formed at least 3 weeks after surgery to allow for recovery and viral expression.

Animals were acclimated for 3 days before the experimental day by tethering them to the fiber patch cord and allowing them to

explore the experimental home cage during 15 min. Photometry measurements were performed in overnight (16 h) fasted mice

around ZT4. Recordings consisted of 10 min baseline measurements followed by food presentation and 10 min post-stimulus

recordings.

Excitation blue (470 nm) and purple (405 nm) LED lights were modulated at different frequencies (211 Hz and 511 Hz,

respectively) from a 2-channel LED Driver (LEDD_2; Doric Lenses) and sent to a Fluorescence Mini Cube (FMC4_AE(405)_E(460-

490)_F(500-550)_S; Doric Lenses) before connecting to low autofluorescence optical fibers patchcords (MFP_400/430/LWMJ-

0.48_1m_FCM-FCM_T0.05; Doric Lenses) through a pigtailed rotary joint (FRJ_1x1_PT_400/430/LWMJ-0.57_1m_FCM_

0.06m_FCM; Doric Lenses), to allow for free movement of the mice. 470 nm (Ca2+-dependent) and 405nm (isosbestic reference

fluorescence) signals were collected through the same optic fiber cable back to the MiniCube, where a dichroic mirror separates

the excitation light from the fluorescence emission and direct to a photoreceiver module. Digital signal was amplified and demodu-

lated using a lock-in detection algorithm. Data was collected via the Doric Neuroscience Studio Software (Doric Lenses), exported

and analyzed using a custom-built MatLab script. Briefly: the 470 and 405 nm signals were processed and normalized to baseline

signals independently to define DF/F (F-Fbaseline)/Fbaseline). Fbaseline was the mean of the fluorescence detected during the pre-

stimulus period. Isosbestic DF/F was subtracted from the 470 nm DF/F. Data were down-sampled to 1 Hz in MATLAB.

Pituitary and adrenal gland immunohistochemistry
Pituitaries and adrenals were obtained from 4% paraformaldehyde (PFA)-perfused mice, fixed overnight and maintained in 70%

ethanol until paraffin inclusion. Three mm sections of each tissue from control and POMCOpa1KO mice were mounted in parallel

on the same slide and stained with Haematoxylin-Eosin following conventional protocols. Organs were fully sectioned and the largest

central sections used for area measurements. For immunohistochemistry, antigen retrieval was performed with PT-link (DAKO) in

high (TE) or low (BC) pH solution and Envision kit (DAKO) for blocking. Sections were incubated with: monoclonal anti-ACTH antibody

(1:3,000, DAKO), anti-GH (1:3,000), anti-PRL (1:500), anti-TSH (1:200), anti-LH (1:10,000) and anti-FSH (1:3,000) antibodies from the

National Institute of Diabetes and Digestive and Kidney diseases. Afterwards, slides were counterstained with Mayer Hematoxylin

diluted 1:2. Sections were mounted and photographed with a BX43F microscope (Olympus) equipped with an XC50 camera. Areas

were measured with ImageJ2 v1.52e.

ADIPOSE TISSUE IMMUNOHISTOCHEMISTRY

pgWAT from control and mutant mice were fixed in formalin 10% overnight at 4�C, embedded in paraffin and cut into 4 mm-thick

sections. Hematoxylin-Eosin staining was performed using conventional protocols. Images were taken using an Olympus BX41

microscope and analyzed by ImageJ.

Brain immunohistochemistry and quantification
Overnight (16 h) fasted mice were transcardially perfused with 4% PFA, overnight fixed, cryoprotected in 30% sucrose, and frozen.

Brains were cut into 30-mm-thick slices using a cryostat.
Cell Metabolism 33, 1820–1835.e1–e9, September 7, 2021 e6



ll
OPEN ACCESS Article
For a-MSH immunodetection, hypothalamic slices containing PVH, LH, DMH and VMH (one every four sections) were extensively

washed in KPBS buffer and blocked in 2% donkey serum in KPBS plus 0.4% Triton X-100. Sections were incubated with sheep anti-

a-MSH antibody (1:10,000; Millipore) in blocking buffer for 48 h at 4�C. After washing with KPBS, slices were incubated with donkey

anti sheep Alexa 488 antibody (1:300; Life Technologies) for 1 h at room temperature. Images were taken using a Leica DMI 4000B

confocal microscope equipped with a 20x objective (numerical aperture 0.70). For each section, ten image stacks with 1mmdistance

interval were taken. a-MSH integrated density after image skeletonization of the max Z-stack exposure was calculated using ImageJ

FIJI (NIH) software.

For double HA and POMC immunodetection, hypothalamic slices containing ARC were extensively washed in KPBS buffer and

blocked in 2% chicken serum in KPBS plus 0.4% Triton X-100. Sections were incubated with mouse anti-HA antibody (1:2,000; Co-

vance) in blocking buffer for 48 h at 4�C. After washing with KPBS, slices were incubated with chicken anti-mouse Alexa 594 antibody

(1:400; Life Technologies) 1 h at room temperature. After washing with KPBS, slices were further blocked with 2% chicken serum in

KPBS plus 0.4%Triton X-100 and incubatedwith rabbit anti-POMCPrecursor (27-52) (1:1,000; Phoenix Pharmaceuticals) in blocking

solution for 48 h at 4�C. After washing with KPBS, slices were incubated with chicken anti rabbit Alexa 488 antibody (1:400; Life

Technologies) for 1 h at room temperature. Images were taken using a Leica DMI 6000B microscope equipped with a 20x objective

and analyzed using ImageJ.

For double OPA1 and POMC immunodetection, hypothalamic slices containing ARC were extensively washed in KPBS buffer and

blocked in 10%donkey serum in KPBS plus 1%Triton X-100. Sections were incubated with rabbit anti-OPA1 antibody (1:100; Novus

Biologicals) in blocking buffer for 1 h at room temperature plus 48 h at 4�C. After washing with KPBS, slices were incubated with

donkey anti-rabbit Alexa 594 antibody (1:300; Life Technologies) for 2 h at room temperature. After washing with KPBS, slices

were further blocked with 2% chicken serum in KPBS plus 0.4% Triton X-100 and incubated with rabbit anti-POMC Precursor

(27-52) (1:1,000; Phoenix Pharmaceuticals) in blocking solution for 1 h at room temperature plus 24 h at 4�C. After washing with

KPBS, slices were incubated with chicken anti-rabbit Alexa 488 antibody (1:400; Life Technologies) for 1 h at room temperature. Im-

ages were taken using a Leica DMI 4000B confocal microscope equipped with a 63x objective with an optical aperture of 1 airy unit.

For each section, image stacks with 2mm distance interval were taken. The same settings (objective, zoom, laser power, gain) were

used to acquire images along the experiment. Quantification of OPA1 in POMC neurons was performed bilaterally in stacks from

equivalent sections of the ARC. OPA1 staining particles in POMC positive area around nuclei was quantified using ImageJ FIJI

(NIH) software. The threshold to consider OPA1 staining as positive was set at +3x SD of the staining in negative antibody controls.

Representative images shown are single stacks equally adjusted for brightness and contrast.

To validate specific mitochondrial expression of the mtGCaMP6s Ca2+ sensor in POMC neurons, GFP immunodetection was per-

formed followed by either TOM20 or POMC double immunodetection, respectively, as follows: hypothalamic slices containing ARC

were extensively washed in KPBS buffer and blocked in 2%chicken serum in KPBS plus 0.4%Triton X-100. Sections were incubated

with rabbit anti-GFP antibody (1:200; Aves Labs) in blocking buffer for 1 h at room temperature followed by 24 h at 4�C. After washing

with KPBS, slices were incubated with chicken anti-rabbit Alexa 488 antibody (1:200; Life Technologies) for 1 h at room temperature.

After washing with KPBS, slices were further blocked with 2% donkey serum in KPBS plus 0.4% Triton X-100 and incubated with

rabbit anti-POMCPrecursor (27-52) (1:1,000; Phoenix Pharmaceuticals) or rabbit anti-Tom20 (1:200; Santa Cruz) in blocking solution

for 1 h at room temperature plus 48h at 4�C. Slices were washed with KPBS and incubated for 2 h at room temperature with either

donkey anti rabbit Alexa 647 antibody (1:200; Life Technologies) to visualize POMC, or donkey anti rabbit Alexa 594 antibody (1:200;

Life Technologies) to visualize TOM20. Imageswere taken using a Leica DMI 4000B confocal microscope equipped with a 63x objec-

tive plus 1.5x zoom and optical aperture of 1 airy unit. For each section, image stacks with 2mm distance interval were taken. The

representative images shown are maximum intensity projections made in FIJI (NIH) equally adjusted for brightness and contrast.

Fluorescent in situ hybridization and quantification
Animals were transcardially perfused with saline followed by ice-cold 4% phosphate-buffered PFA (pH 7.4). Brains were dissected

and post-fixed in 4% PFA at 4�C for 24 h, and cryoprotected in 30% sucrose in 1x phosphate buffered saline (PBS, pH 7.4). Brains

were cut into 30-mm-thick slices using a cryostat, mounted in SuperFrost Plus (Thermo Scientific) microscope slides in four equal

series, and subsequently stored at -80�C to preserve RNA until further processing.

Fluorescent in situ hybridization for the simultaneous detection of theOpa1 and Pomc transcripts was performed using RNAscope

Multiplex Detection Reagents (ACD; Advanced Cell Diagnostics, Hayward, CA). TheOpa1 probewas custommade and contained 10

oligo pairs targeting exons 5-10 (GenBank: NM_133752). The Pomc probe contained 10 oligo pairs and targeted region 19-995

(GenBank: NM_008895.3) of the Pomc transcript. The in situ hybridization protocol was performed following the online protocol

for RNAscope (ACD) with minimal modifications. Briefly: slides were washed in PBS, baked at 60�C for 30 min and post-fixed

with 4% PFA for 15 min. Sections were then dehydrated, baked for 30 min at 60�C and subsequently submerged into boiling

(98.5 - 100�C) Target Retrieval reagent for 5min, followed by two brief rinses in RNAse free water. The slices were quickly dehydrated

in 100% ethanol and allowed to air-dry before outlining a barrier around brain slices with an ImmEdge hydrophobic pen (Vector lab-

oratories). When dry, Protease III (ACD) treatment was performed for 30 min at 40�C. The subsequent steps, i.e., hybridization of the

probes and the amplification and detection, were performed according to the manufacturer’s protocol for RNAscope: Opa1 probe

(channel 3) and Pomc probe (channel 1) were mixed 500:1 and hybridized to the sections for 2 h at 40�C, followed by 2x2min washes

in washing buffer (ACD), incubation with Amp1-FL for 30 min at 40�C, two washes, Amp2-FL for 15 min at 40�C, two washes, Amp3-

FL for 30 min at 40�C and finally Amp4-FL for 15 min at 40�C followed by two washes. Sections were then counterstained with DAPI
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for 30 seconds and immediately coverslipped with ProLong Gold Antifade Mountant (ThermoFisher) and stored in the dark at 4�C
until imaging.

Images were taken using a Leica DMI 4000B confocal microscope equipped with a 63x objective with an optical aperture of 1 airy

unit. For each section, 10 image stacks with 1mmdistance interval were taken. The same settings (objective, zoom, laser power, gain)

were used to acquire images along the experiment. Quantification of Opa1 in POMC neurons was performed bilaterally from

equivalent sections of the ARC. Opa1 staining particles in Pomc positive area around nuclei was quantified in maximum intensity

projections using ImageJ FIJI (NIH) software. The threshold to consider Opa1 staining as positive was set at +3x SD of the staining

in negative controls of equivalent sections from control and mutant mice. The representative images shown are single stacks equally

adjusted for brightness and contrast.

POMC neuron projection visualization and quantification
Threeweeks after AAV-FLEX-tdTomato infection, overnight (16 h) fastedmicewere transcardially perfusedwith 4%PFA. Brainswere

isolated, overnight fixed, cryoprotected in 30% sucrose, and frozen. Brains were cut into 30-mm-thick slices using a cryostat.

TOMATO fluorescence in PVH was analyzed using an Olympus BX41 microscope and analyzed by ImageJ.

Hypothalamic a-MSH content
Hypothalami from overnight fasted (16 h) mice were harvested and immediately frozen in liquid nitrogen. On the day of the analysis,

hypothalami were sonicated in 500 ml of 0.1NHCl solution. Lysates were centrifuged and supernatants used for a-MSH quantification

by ELISA (Phoenix Pharmaceuticals). Protein concentration was determined by Bradford.

Electron microscopy and mitochondrial analysis
Mice were transcardially perfused with 0.9% saline with heparine followed by fixative solution (PFA 4%, glutaraldehyde 0.1%, picric

acid 15% in phosphate buffer (PB) 0.1 M, pH=7.4). Brains were removed and fixed overnight at 4�C with the same fixative without

glutaraldehyde. Brains were washed vigorously with ice-cold PB 0.1 M, and sliced at 50 mm in a vibratome. Sections containing the

ARCwere stained for POMC (1:4,000; 48 h at 4�Cwith gentle shaking; Phoenix Pharmaceuticals). After extensivewashes, sliceswere

incubated with secondary antibody, then with ABC and finally developed using 3,3’-Diaminobenzidine. After developing, slices were

placed in osmium tetroxide (1%, 15min) and then dehydrated in an ethanol gradient. Uranyl acetate (1%) was added to 70% ethanol

to enhance ultrastructural contrast. Slices were then embedded in Durcupan, cut in an ultra-microtome and collected in grids for pos-

terior analyzes. A Tecnai 12 Biotwin electron microscope was used to visualize the ultrastructure of the samples, and POMC neurons

were imaged at 2,900X magnification for posterior offline analyzes.

For mitochondria architecture analyzes, random sections of POMC neurons cut throughout the middle of the cell body were

analyzed. Most of these sections contained the nucleus. ImageJ software was used to manually outline each individual mitochon-

drion in the digital images. All samples were checked twice for consistency of mitochondria labeling. We used mitochondria

cross-sectional area as a measurement of mitochondria size, and mitochondria aspect ratio (AR =major axis/minor axis) as an index

of mitochondria shape. Mitochondria density was estimated by dividing the number of mitochondria profiles by the cell area. Mito-

chondria coverage was estimated by dividing the total area of mitochondria (sum of all mitochondria profiles in a given cell) by the

cytosol area.

For mitochondria ultrastructure analysis, mitochondria with visible inner structure and with similar size and morphology across

experimental groupswere analyzed (Figure S1A; step 1). For visualization purposes image enhancement was carried out (Figure S1A;

step 2). For each mitochondrion, cristae length was manually outlined (Figure S1A; step 3) and quantified using ImageJ. All samples

were checked twice for consistency of mitochondria labeling.

High-resolution respirometry
Mitochondrial function was estimated as oxygen consumption by high-resolution respirometry (Oxygraph-2k, Oroboros Instruments).

Briefly, fresh hypothalamic ARC-enriched microdissections were obtained and mechanically homogenized and permeabilized (with

digitonin) in cold respiration media (0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM

HEPES, 110 mM sucrose and 0.1% [w/v] bovine serum albumin [pH 7.1]). The tissue homogenate was added to a 2 ml chamber to

assess oxygen flux. Leak respiration wasmeasured by addingmalate (2mM) and pyruvate (10mM), in the absence of ADP. The contri-

bution of the NADH-derived pathway to oxidative phosphorylation was measured by the addition of ADP (5 mM, Oxphos I). Subse-

quently, glutamate (20mM) and succinate (10mM)were added to assess ADP-stimulated respirationwhenNADHand succinate-linked

pathways are simultaneously transferring electrons to the Q junction (Oxphos I+II). Next, Trifluoromethoxy carbonylcyanide phenylhy-

drazone (FCCP; 1 mM) was titrated to achieve maximum flux through the electron transfer system (ETS I+II) under this experimental

condition. Finally, respiration was inhibited by the sequential addition of rotenone (0.1 mM) and antimycin A (2.5 mM). The remaining

O2 flux after inhibition with antimycin A (O2 flux independent of the electron transfer system) was subtracted to calculate the different

respiratory states. Oxygen flux values are expressed relative to protein content determined by the Bradford method.

POMC neuron-enriched ribosome-associated mRNA isolation
ARC-enriched microdissections were ice-cold homogenized in 0.25 ml homogenization buffer (50 mM Tris, 100 mM KCl, 12 mM

MgCl2, 1% Nonidet P-40, 1 mM DTT, 200 U/mL Promega RNasin, 1 mg/mL heparin, 100 mg/mL cycloheximide, Sigma protease
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inhibitor mixture at pH 7.5). After clearing, 20 mL was separated as input and stored at -80�C until further processing. 2 ml of mouse

monoclonal anti-HA antibody (HA.11, ascites fluid; Covance) was added to the remaining homogenate and allowed to rotate for 2 h at

4�C. After incubation, 200 ml of Dynabeads protein G magnetic beads (Invitrogen) was added and incubated for 2h at 4�C with rota-

tion. Immunoprecipitates (IPs) were washed 3 times for 10min with gentle rotation at 4�C in high-salt buffer (50mMTris, 300mMKCl,

12 mMMgCl2, 1%Nonidet P-40, 1 mMDTT, 100 mg/mL cycloheximide at pH 7.5). After final wash, samples were placed in a magnet

on ice and Qiagen RLT buffer was added to the remaining pellets and input samples. Total RNA was prepared according to manu-

facturer’s instructions using the RNeasy-plusMini kit (Qiagen) and quantified with the Quant-iT RiboGreen RNA assay kit (Invitrogen).

RNA integrity was assessed on a 2100 Bioanalyzer device (Agilent Technologies) using the RNA 6000 Pico kit (Agilent Technologies).

Ex vivo a-MSH secretion
Male 12 to 14 week-old mice were sacrificed by cervical dislocation and the brain immediately isolated and submerged in fresh cold

cutting solution (126 mM NaCl, 10 mM HEPES, 6 mM KCl, 1.4 mM CaCl2, 0.09 mM MgSO4, 5 mM glucose, 0.18 mg/mL ascorbic

acid). A 2 mm coronal slice of the brain containing ARC and PVH was obtained with a brain matrix. Immediately, a 2 mm-thick block

of the mediobasal hypothalamus (including the ARC and PVH) was cut from the rest of the brain using a vibrotome. After 1 h equil-

ibration at 37�C in a cutting solution bath, hypothalami were incubated for 45 min in 200 mL Basal Solution (126 mM NaCl, 10 mM

HEPES, 6 mM KCl, 1.4 mM CaCl2, 0.09 mM MgSO4, 5 mM glucose, 0.18 mg/mL ascorbic acid, 100 mg/mL leupeptin), followed

by 45 min in 200 mL Basal Solution + Ru360 (10 mM). Finally, tissue viability was verified by exposure to 56 mM KCl for 45 min

(KCl was increased from 6 mM to 56 mM, and NaCl was reduced from 126 mM to 76 mM to maintain tonicity). At the end of each

incubation period, supernatants were collected and frozen immediately. a-MSH peptide concentration in the media was assessed

using an a-MSH fluorescent immunoassay kit (Phoenix Pharmaceuticals) according to the manufacture’s protocol.

qRT-PCR
Tissues were harvested and immediately frozen in liquid nitrogen. Total RNA was isolated using Trizol and retrotranscription per-

formed with reagents from Applied Biosystems following conventional protocols. Transcript levels were measured by qPCR using

the ABI Prism 7900 HT system (Applied Biosystems). The proprietary TaqMan Gene Expression assay FAM/TAMRA primers used

(Applied Biosystems) are listed in the Key Resources Table. Hprt was used to adjust for total RNA content.

Western blot analysis
Protein lysates were prepared from pulverized pgWAT samples, ARC-enriched microdissections or pituitaries in RIPA buffer (Sigma-

Aldrich) supplementedwith protease and phosphatase inhibitors. Cleared supernatants were resolved on pre-cast gradient 4%-12%

SDS-PAGE gels (Bio-Rad), transferred onto PVDF membranes (Millipore), and probed with the following primary antibodies: Actin

(1:1,000, Sigma-Aldrich), HSL, HSL-PSer660 and HSL-PSer563 (1:1,000, Cell Signaling Technology); MitoProfile Total OXPHOS

Rodent WB Antibody Cocktail (1:1,000, AbCam); OPA1 (1:1,000, BD Bioscience); Perilipin A (1:1,000, Cell Signaling Technology);

alpha-tubulin (1:1,000; Sigma-Aldrich). Detection was performed by enhanced chemiluminescence (Pierce). Analysis of different

phosphorylation sites was conducted by immunoblotting two replicate set of samples in parallel and confirming matched loading

controls. Band intensities were quantified using the ImageJ software. Expression of phosphorylated proteins were normalized

against the total protein homologue content, while non-phosphorylated proteins were normalized against loading control (Tubulin

or Actin).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are expressed as mean ± SEM. P values were calculated using two-tailed unpaired Student’s t-test when two independent

groups were compared. For multiple groups comparisons, two-way ANOVA or one-way ANOVAwere applied (correcting for multiple

comparisons by controlling the False Discovery Rate using the method of Benjamini, Krieger and Yekutieli). Graphpad software

(Prism) was used for statistical analysis. P < 0.05 was considered statistically significant. Statistical parameters can be found in

the Figures & Figure legends. No statistical methods were used to determine whether the data met assumptions of the statistical

approach.
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