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Abstract: Breast cancer is the most frequent type of cancer and the major cause of mortality in women.
The rapid development of various therapeutic options has led to the improvement of treatment
outcomes; nevertheless, one-third of estrogen receptor (ER)-positive patients relapse due to cancer
cell acquired resistance. Here, we use dynamic BH3 profiling (DBP), a functional predictive assay that
measures net changes in apoptotic priming, to find new effective treatments for ER+ breast cancer.
We observed anti-apoptotic adaptations upon treatment that pointed to metronomic therapeutic
combinations to enhance cytotoxicity and avoid resistance. Indeed, we found that the anti-apoptotic
proteins BCL-xL and MCL-1 are crucial for ER+ breast cancer cells resistance to therapy, as they
exert a dual inhibition of the pro-apoptotic protein BIM and compensate for each other. In addition,
we identified the AKT inhibitor ipatasertib and two BH3 mimetics targeting these anti-apoptotic
proteins, S63845 and A-1331852, as new potential therapies for this type of cancer. Therefore, we
postulate the sequential inhibition of both proteins using BH3 mimetics as a new treatment option
for refractory and relapsed ER+ breast cancer tumors.
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1. Introduction

Breast cancer is the most common type of cancer in women and one of the top causes
of mortality worldwide [1,2]. Enormous efforts have been devoted to studying this complex
and heterogeneous disease, classifying it by molecular signature, predicting response to
therapies, and improving patient prognosis. It is now well established that there are several
main breast cancer subtypes: estrogen receptor (ER) positive and/or progesterone receptor
positive; human epidermal receptor 2 (HER2) amplified; and a third group that does
not express any of the receptors above, referred as triple-negative breast cancer [2]. This
acquired knowledge in breast cancer biology led to the identification of novel molecular
targets and the development of specific inhibitors against them [3]. Recently, newly
developed compounds targeting key altered proteins, such as ER, EGFR, HER2, MET, PI3K,
AKT, mTOR, MAPK pathway, PARP, and many others, induce cancer cell elimination [4–7].
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Some of these agents are currently used in the clinic, such as ER inhibitors, lapatinib, and
trastuzumab against HER2, or PARP inhibitors such as olaparib [8–13], and others.

Three-quarters of all breast cancers are ER positive (ER+) and present signaling
deregulation. ER is a protein with a ligand and a DNA-binding domain that, once activated,
acts as a transcription factor regulating gene expression, cell proliferation, development,
and multiple physiological roles [14]. Generating specific drugs against this receptor has
been an extensive field of study to treat ER+ tumors for decades. In this regard, one of
the first developed anti-estrogens was tamoxifen, which blocks ER activity [15], achieving
outstanding clinical results and overall improving breast cancer patient survival [14].
Other compounds employing different mechanisms of action followed, such as fulvestrant
(that induces ER destabilization and degradation [15]) or aromatase inhibitors that reduce
estrogen production [15], similarly ameliorating patient treatment [16]. In fact, most women
respond to these ER-targeting agents and survive the disease, yet one-third of them relapse,
presenting a high risk of metastasis [17]. A myriad of mechanisms of resistance have been
described by different laboratories, including ESR1 mutations, compensation by other
receptors (such as androgen and progesterone receptors), changes in expression/activation
of ER-signaling proteins, drug metabolism, endocrine secretion, and others [14]. Therefore,
there is a clear unmet need for new ER+ breast tumor treatments after tamoxifen or
aromatase inhibitor-based therapy recurrence [14].

Most anticancer agents used to eliminate breast tumors kill through apoptotic pro-
grammed cell death [4,18–22]. Apoptosis is a form of cell death that is regulated by the
BCL-2 family of proteins that controls mitochondrial outer membrane permeabilization,
the point of no return for this process [23]. When a cancer cell is effectively treated, early
changes in the BCL-2 family of proteins can be detected that precede apoptotic process
engagement [24,25]. In this regard, functional assay dynamic BH3 profiling (DBP) can
measure these initial pre-apoptotic events and predict later cytotoxicity. In fact, it has been
proven as an excellent predictive biomarker for anticancer therapy response to a wide
variety of targeted agents in breast cancer cell lines and in primary patient samples [26,27].
Moreover, DBP can be used to identify anti-apoptotic changes upon treatment using specific
synthetic peptides to determine increased dependence on BCL-2, BCL-xL, or MCL-1. Using
this information, we can explore combinations with BH3 mimetics, such as ABT-199 (also
known as venetoclax, a BCL-2 inhibitor) [28], S63845 (MCL-1 inhibitor) [29], or A-1331852
(A-133) (BCL-xL inhibitor) [30], that block anti-apoptotic proteins to restore cell death [31].
Most of these molecules are now being evaluated in clinical trials as single agents or espe-
cially in combination to treat different forms of cancer [32]. Notably, several laboratories
have demonstrated the potential use of BH3 mimetics to improve HER2+ [33], PI3KCA
mutant [34] and ER+ [35] breast cancer treatment. However, how breast cancer cells adapt
and survive therapy leading to disease progression in the clinic it is still poorly understood.

Here, we use DBP to identify ER+ breast cancer anti-apoptotic adaptations to survive
therapy. We demonstrate that when blocking these survival mechanisms with specific BH3
mimetics, cancer cells rapidly adapt and use a second anti-apoptotic protein. By timely
identification of this compensation, we can sequentially block these anti-apoptotic proteins
with BH3 mimetics to overcome tumor adaptation to treatment, reaching high cytotoxicity
in ER+ cancer cells where other standard therapies fail.

2. Materials and Methods
2.1. Cell Lines and Treatments

Breast cancer cell lines MDA-MB-415, T47D, and MCF7 were purchased from Ameri-
can Type Culture Collection (ATCC, Manassas, Virginia). Cells were tested for mycoplasma
and cultured in RPMI 1640 medium (31870, Thermo Fisher, Gibco, Paisley, Scotland) supple-
mented with 10% heat inactivated fetal bovine serum (10270, Thermo Fisher, Gibco, Paisley,
Scotland), 1% L-glutamine (25030, Thermo Fisher, Gibco, Paisley, Scotland) and 1% peni-
cillin and streptomycin (15140, Thermo Fisher, Gibco, Paisley, Scotland) and maintained at
37 ◦C in a humidified atmosphere of 5% CO2. Drug treatments were performed directly in
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the culture media at the doses and time points indicated in every single experiment. All
drugs were purchased at Selleckchem (Munich, Germany).

2.2. Dynamic BH3 Profiling

Dynamic BH3 profiling experiments were performed as previously described [36,37].
In brief, 3 × 104 cells/well in a 96-well plate were used for cell lines. A 25 µL aliquot
of BIM BH3 peptide (final concentration of 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 µM), 25 µL
of BAD BH3 peptide (final concentration of 10 µM), 25 µL of HRK BH3 peptide (final
concentration of 100 µM), and 25 µL of MS1 BH3 peptide [38] (final concentration of 10 µM)
in MEB (150 mM mannitol, 10 mM Hepes-KOH pH 7.5, 150 mM KCl, 1 mM EGTA, 1 mM
EDTA, 0.1% BSA, 5 mM succinate) with 0.002% digitonin were deposited per well in a
96-well plate (3795, Corning, Madrid, Spain). Single-cell suspensions were stained with the
viability marker Zombie Violet (423113, BioLegend, Koblenz, Germany) and then washed
with PBS and resuspended in MEB in a final volume of 25 µL. Cell suspensions were
incubated with the peptides for 1 h following fixation with formaldehyde and staining with
cytochrome c antibody (Alexa Fluor® 647 anti-cytochrome c-6H2.B4, 612310, BioLegend,
Koblenz, Germany). Individual DBP analysis were performed using triplicates for DMSO,
alamethecin (BML-A150-0005, Enzo Life Sciences, Lorrach, Germany), the different BIM
BH3 concentrations used, and BAD, HRK, and MS1 BH3 peptides. The expressed values
stand for the average of three different readings performed with a high-throughput flow
cytometry SONY instrument (SONY SA3800, Surrey, United Kingdom). ∆% priming
stands for the maximum difference between treated cells minus non-treated cells for a
given peptide.

2.3. Cell Death Analysis

Cells were stained with fluorescent conjugates of Annexin V (FITC Annexin V, 640906
or Alexa Fluor® 647 Annexin V, 640912, BioLegend, Koblenz, Germany) and propidium
iodide (PI) (1056, BioVision, Milpitas, CA, USA) and analyzed on a flow cytometry Gallios
instrument (Beckman Coulter, Nyon, Switzerland). Viable cells are Annexin V negative
and PI, and cell death is expressed as 100% viable cells.

2.4. Protein Extraction and Quantification

Proteins were extracted by lysing the cells during 30 min at 4 ◦C using RIPA buffer
(150 mM NaCl, 5 mM EDTA, 50 mM Tris-HCl pH = 8, 1% Triton X-100, 0.1% SDS, EDTA-
free Protease Inhibitor Cocktail (4693159001, Roche, Mannkin, Germany)) followed by a
centrifugation at 16,100g for 10 min. The supernatant was stored at −20 ◦C for protein
quantification performed using Pierce TM BCA Protein Assay Kit (23227, Thermo Fisher,
Paisley, Scotland).

2.5. Immunoprecipitation

Cells were lysed in immunoprecipitation buffer (150 mM NaCl, 10 mM Hepes, 2 mM
EDTA, 1% Triton, 1.5 mM MgCl2, 10% glycerol and EDTA-free Protease Inhibitor Cocktail
(4693159001, Roche, Mannkin, Germany)) and centrifuged at 14,000× g, 15 min at 4 ◦C. The
resulting supernatants were incubated with magnetic beads (161-4021, Bio-Rad, Madrid,
Spain) conjugated to 5 µg of rabbit anti-BIM antibody (CST2933, Cell Signaling, Leiden,
The Netherlands) or 5 µg of rabbit IgG antibody (CST2729, Cell Signaling, Leiden, The
Netherlands) at 4 ◦C overnight. A fraction of the supernatant (30 µL) was removed and
mixed with half volume of 4× SDS-PAGE sample buffer, heated at 96 ◦C for 5 min, and
stored at −80 ◦C as cell lysate fractions. After magnetization, a part of the supernatant
was mixed with half volume of 4× SDS-PAGE sample buffer, heated at 96 ◦C for 5 min,
and stored at −80 ◦C as unbound fractions. The rest of the supernatant was discarded.
The resulting pellet was washed and mixed with 40 µL 4× SDS-PAGE sample buffer and
heated 10 min at 70 ◦C to allow dissociation between the purified target proteins and
the bead–antibody complex. Finally, sample was magnetized, and the supernatant was
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collected and stored at −80 ◦C as immunoprecipitation (IP) fractions for further Western
blot analysis.

2.6. Immunoblotting

Proteins were separated by SDS-PAGE (Mini-Protean TGX Precast Gel 12%, 456-1045,
Bio-Rad, Madrid, Spain) and transferred to PVDF membranes (10600023, Amersham
Hybond, Pittsburgh, PA, USA). Membranes were blocked with dry milk dissolved in
Tris-buffered saline with 1% Tween 20 (TBST) for 1 h and probed overnight at 4 ◦C with
the primary antibodies of interest directed against rabbit anti-BCL-xL (CST2764, Cell
Signaling, Leiden, The Netherlands), rabbit anti-MCL-1 (CST5453, Cell Signaling, Leiden,
The Netherlands), rabbit anti-BIM (CST2933, Cell Signaling, Leiden, The Netherlands),
rabbit anti-actin (CST4970, Cell Signaling, Leiden, The Netherlands) followed by anti-rabbit
IgG HRP-linked secondary antibody (CST7074, Cell Signaling, Leiden, The Netherlands) in
3% BSA in TBST for 1 h at room temperature. Immunoblots were developed using Clarity
ECL Western substrate (1705060, Bio-Rad, Madrid, Spain). When necessary, immunoblots
were stripped in 0.1 M glycine pH 2.5, 2% SDS for 40 min, and washed in TBS. Bands were
visualized with LAS4000 imager (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and
ImageJ were then used to measure the integrated optical density of bands.

2.7. Statistical Analysis

Statistical significance of the results was analyzed using Student’s t-tail test. * p < 0.05
and ** p < 0.01 were considered significant. SEM stands for standard error of the mean.
For ROC curve analysis, cell lines were considered responsive to treatment when ∆% cell
death > 25%. Drug synergies were established based on the Bliss Independent model as
previously described [39]. Combinatorial index (CI) was calculated CI = ((DA + DB) − (DA
× DB))/DAB, where D represents cell death of compound A or B or the combination of
both. Only the combination of drugs with a CI < 1 were considered synergies. GraphPad
Prism8 was used to generate the graphs and to perform the statistical analysis.

3. Results
3.1. Dynamic BH3 Profiling Predicts Targeted Agents’ Effectiveness in ER+ Breast Cancer Cells

Breast cancer survival has increased in recent decades, partially due to the introduction
of targeted therapies [3]. Beyond drugs that directly target proteins such as ER, EGFR,
HER2, MET, PI3K, AKT, mTOR, and those of the MAPK pathway [7], anti-apoptotic
protein inhibitors (BH3 mimetics) are now being evaluated as new targeted therapies for
breast cancer [35] as increased anti-apoptotic protein levels have been reported [33,35,40].
Nevertheless, as one-third of ER+ breast cancer patients relapse following current therapies
and present a high risk of metastasis [17], we sought to identify new strategies to better
treat this type of cancer. We selected different targeted agents that are currently evaluated
in pre-clinical and clinical trials. We used ipatasertib (AKT inhibitor) [41], which has
already been tested for triple-negative breast cancer [42]; everolimus (mTOR inhibitor),
alpelisib (PI3K inhibitor) [43,44], palbociclib (CDK4/6 inhibitor) [45], fulvestrant (estrogen
receptor antagonist) [46,47], that have been approved for hormone receptor positive breast
cancer treatment, and the BH3 mimetics S63845 (MCL-1 inhibitor) [33] and ABT-199 (BCL-2
inhibitor) [35], which are currently being explored in clinical trials. Using DBP, we first
tested the overall response to treatments using the BIM peptide [26] in two ER+ cell lines,
MDA-MB-415 and T47D [48], after 16 h of incubation with the described drugs. MDA-MB-
415 cells showed an increase in ∆% priming after ipatasertib and S63845 (Figure 1A); in
contrast, alpelisib, ABT-199, everolimus, palbociclib, and fulvestrant treatments did not
produce any effect on these cells (Figure 1A). Interestingly, when we compared these DBP
predictions with the concomitant cell death assessed by Annexin V and PI staining at 72 h,
we observed a good correlation between the increase in ∆% priming with DBP (Figure 1A)
and the increase in ∆% cell death (Figure 1B). T47D cells showed almost no increase in ∆%
priming after the treatments mentioned before (Figure 1C). When we analyzed cytotoxicity
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at 72 h, we could just observe a modest significant increase in cell death after alpelisib
treatment (Figure 1D). We also tested MCF7 cells by DBP and we could not observe any
increase in the ∆% priming or significant cytotoxicity with any of the compounds analyzed
(data not shown). We obtained a significant correlation between ∆% priming and ∆% cell
death in the breast cancer cells analyzed (Figure 1E). To determine how good DBP is as a
binary predictor for the targeted agents’ efficacy in breast cancer, we performed receiver
operating characteristic (ROC) curve analysis [49]. The area under the curve (AUC) for a
random classifier would be 0.5, whereas for a perfect predictor the AUC would be 1. Our
results showed that the AUC was 1 (Figure 1F), indicating the excellent predictive capacity
of DBP for the targeted agents and breast cancer cell lines tested. Collectively, these results
showed the identification of effective targeted therapies for ER+ breast cancer cell lines
using DBP.
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Figure 1. Dynamic BH3 profiling predicts sensitivity to targeted agents in different ER+ breast
cancer cell lines. (A) Results from the DBP assay after 16 h incubation with different treatments in
MDA-MB-415 cells. Results expressed as ∆% priming represents the increase in priming compared
to control cells. (B) Cell death results from Annexin V and propidium iodide staining and FACS
analysis after 72 h incubation with the targeted agents in MDA-MB-415 cells. Results expressed as ∆%
cell death represents the increase in cell death compared to control cells. (C) Results from the DBP
assay after 16 h incubation with different treatments in T47D cells. Results expressed as ∆% priming
represents the increase in priming compared to control cells. (D) Cell death results from Annexin
V and propidium iodide staining and FACS analysis after 72 h incubation with the targeted agents
in T47D cells. Results expressed as ∆% cell death represents the increase in cell death compared to
control cells. (E) Correlation analysis between ∆% priming and ∆% cell death in MDA-MB-415 and
T47D cells. (F) Receiver operating characteristic curve analysis. Values indicate mean values ± SEM
from at least three independent experiments. ** p < 0.01.

3.2. Inhibition of Anti-Apoptotic Adaptations Could Overcome Treatment-Induced Resistance

Despite the development of different targeted therapies to treat ER+ breast cancer
patients, such as tamoxifen, fulvestrant, or aromatase inhibitors [14,17], 15–20% of patients
still relapse within 5 years of treatment withdrawal [50]. It has been previously described
that the over-expression or over-activation of anti-apoptotic proteins can lead to disease
progression [51]. In particular, it has been reported that tamoxifen-treated ER+ breast
cancers often present high BCL-2 and BCL-xL expression [52], and that tumors harboring
elevated MCL-1 protein expression exert poorer prognosis [53]. In this regard, DBP can
anticipate anti-apoptotic adaptations to treatments [31] and guide the use of BH3 mimetics
to overcome them. We previously identified some targeted therapies that caused cytotoxic-
ity in ER+ cell lines (Figure 1) but we wanted to further investigate possible adaptations
to those compounds and new strategies to increase their efficacy. Therefore, we analyzed
the contribution for each anti-apoptotic protein using DBP by measuring the increase in
∆% priming after treatments using the BAD, HRK, and MS1 peptides that are specific for
these proteins (Figure 2). We observed an increase in ∆% priming after ipatasertib with
the HRK peptide in MDA-MB-415 but not in T47D cells (Figure 2A) indicating the BCL-xL
dependence of the first. These results were further corroborated by the observation of
a synergistic combination (CI < 1) [39] with the sequential treatment of ipatasertib fol-
lowed by A-133 in MDA-MB-415 (CI = 0.588) (Figure 2B) but not in T47D cells (CI = 1.02)
(Figure 2C). Moreover, we could also detect a strong adaptation through BCL-xL after
S63845 treatment in both cell lines (Figure 2A), which was further confirmed by cell death
analyses, observing a synergistic effect (CI = 0.362 for MDA-MB-415 and CI = 0.112 for
T47D) when sequentially combining S63845 and A-133 in both cell lines (Figure 2B,C).
Interestingly, when we did the opposite and treated MDA-MB-415 and T47D with A-133,
we detected an increase in ∆% priming with the MS1 peptide (Figure 2D), indicating a
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reciprocal adaptation through MCL-1. Indeed, we observed again a synergistic combina-
tion (CI = 0.607 for MDA-MB-415 and CI = 0.105 for T47D) with the sequential treatment
with A-133 followed by S63845 (Figure 2E,F), overcoming the predicted resistance. Thus,
MCL-1 and BCL-xL clearly compensated for each other in ER+ breast cancer cells as the
inhibition of one leads to cells escaping apoptosis through the other. Despite not obtaining
any cytotoxic response with the single agents in MCF7 cells, we explored if these cells
could develop similar anti-apoptotic adaptations, but we could not observe an increase in
∆% priming with the MS1 peptide after the treatment with A-133 nor an increase in ∆% cell
death after the sequential treatment of S63845 and A-133 (data not shown). We hypothesize
that MCF7 resistance to cell death could be partially explained by the caspase-3 deficiency
that these cells present [54].
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Figure 2. Dynamic BH3 profiling predicts BCL-xL and MCL-1 anti-apoptotic adaptation as a resistance mechanism after
targeted agent treatment in ER+ breast cancer cell lines. (A) Results from the contribution of BCL-xL anti-apoptotic protein
using the HRK peptide after ipatasertib 1 µM and S63845 1 µM treatment in MDA-MB-415 and T47D. Results expressed as
∆% priming represents the increase in priming compared to control cells. (B,C) Cell death from Annexin V and propidium
iodide staining and FACS analysis after 72 h incubation of MDA-MB-415 and T47D cells with the single agents alone or
the sequential combination of ipatasertib or S63845 with A-133. (D) DBP from the contribution of MCL-1 anti-apoptotic
protein using the MS1 peptide after A-133 0.1 µM treatment. (E,F) Cell death analysis after 72 h incubation of MDA-MB-415
and T47D cells with the single agents alone or the sequential combination of A-133 and S63845 for 72 h. Values indicate
mean values ± SEM. ** p < 0.01 compared to single agents and # indicates CI < 1. All experiments were performed at least
three times.

Finally, we also sought to study BCL-2 contribution to MCL-1 inhibition resistance
(Figure S1). We observed a BCL-2 mediated adaption to S63845 treatment as an increase in
∆% priming was observed with the BAD peptide after 16 h of treatment in MDA-MB-415
and T47D cell lines (Figure S1A). Cell death analyses demonstrated a synergistic effect
when sequentially combining both drugs in MDA-MB-415 (CI = 0.773) and T47D cells
(CI = 0.820) (Figure S1B,C). Nevertheless, the contribution of BCL-2 to MCL-1 inhibition
is minor compared to the one observed with BCL-xL, indicating that the anti-apoptotic
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MCL-1/BCL-xL axis is the predominant one in breast cancer, as previously reported [55].
These results exemplify that DBP can accurately predict anti-apoptotic adaptations to
treatments after only 16 h of incubation and can be used to design effective rational
sequential combinations of targeted agents. In summary, the most effective metronomic
combinations that we identified in ER+ breast cancer cell lines were from concomitantly
administering the BH3 mimetics S63845 and A-133.

3.3. Resistance to Treatments Relies on BCL-xL and MCL-1 Binding to BIM

To better understand the molecular mechanism underlying the observed anti-apoptotic
adaptations, we decided to explore the expression of anti-apoptotic proteins after treatment
in T47D cells. We focused on MCL-1 and BCL-xL after treatment with the BH3 mimetics
S63845, ABT-199, and A-133 (Figure 3). Surprisingly, we could not detect neither an increase
in BCL-xL expression after S63845 treatment nor an increase in MCL-1 after A-133 treatment
(Figure 3), as could be expected. These results point to a different molecular explanation
rather than an anti-apoptotic protein overexpression to rescue ER+ breast cancer cells
from death. As anticipated, we could observe an increase in MCL-1 protein expression
after S63845 treatment due to an extension of the protein half-life as has been previously
reported [56].
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Figure 3. The identified resistant mechanisms are not due to overexpression of anti-apoptotic
proteins. Left panel: Representative images from Western blot analysis of T47D control lysates and
after treatment with BH3 mimetics for 16 h. Right panel: Optical density quantification normalized
to actin and represented as fold change compared to control. S63845 treatment significantly increases
MCL-1 expression due to its stabilization. Values indicate mean values ± SEM. * p < 0.05 and all
experiments were performed at least three times.

As the total amount of anti-apoptotic proteins (Figure 3) could not explain the observed
adaptations, and as it has been shown that MCL-1 and BCL-xL share the ability to bind with
high affinity to BIM [57,58], we wondered if their interaction could confer the treatment
resistance. To answer this question, we performed immunoprecipitation assays (IP). We first
analyzed the IP efficiency by checking BIM expression in the unbound fraction (Figure 4A),
and we then confirmed that no relevant changes in total protein levels were detected after
treating the cells (Figure 4B). When we analyzed MCL-1 and BCL-xL bound to BIM after
the selected treatments, we observed that A-133 induced a significant decrease in BCL-xL
binding to BIM and a significant increase in MCL-1 interaction with BIM (Figure 4C).
Similarly, S63845 treatment induced a significant decrease in the amount of MCL-1 bound
to BIM while it significantly increased with BCL-xL (Figure 4C). These results demonstrate
that these anti-apoptotic proteins have redundant functions and that they compensate one
another to avoid apoptotic cell death in ER+ breast cancer cells (Figure 5). Thus, when we
combined both BH3 mimetics sequentially, BIM could no longer bind to MCL-1 or BCL-xL,
triggering BAX and BAK activation and restoring apoptotic cell death (Figure 5).
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Figure 4. The acquired resistance mechanisms are controlled by the amount of anti-apoptotic protein
bound to BIM. (A) Upper panel: Representative images of Western blot analysis of T47D cell lysates
and unbound fractions after BIM immunoprecipitation. Lower panel: Optical density quantification
of BIM normalized with actin levels and represented as fold increase compared to the control
condition RabIgG. (B) Upper panel: Representative images of Western blot analysis of T47D cell
lysates after 16 h treatment with the indicated drugs. Lower panel: Optical density quantification
of each protein normalized to actin and represented as fold increase compared to control cells (C)
Left panel: Representative images of Western blot analysis of BIM immunoprecipitation in T47D
cells. Right panel: Quantification of the optical density of each protein and represented as binding
ratio between BIM and MCL-1 or BCL-xL. Results expressed as fold increase represents the increase
in optical density after treatments compared to control cells. Values indicate mean values ± SEM.
** p < 0.01, * p < 0.05 and all experiments were performed at least three times.



Cells 2021, 10, 1659 10 of 14Cells 2021, 10, x 10 of 14 
 

 

 
Figure 5. Schematic representation of MCL-1 and BCL-xL interaction with BIM as a therapy-acquired resistance mecha-
nism. The model distinguishing mechanisms that may operate in the presence of either S63845, A-133, or the sequential 
combination of both BH3 mimetics. The interaction of BIM with MCL-1 and A-133 would shift depending on the BH3 
mimetic used, conferring cell death protection. Only when we sequentially combined both BH3 mimetics, cells will un-
dergo apoptotic cell death. 

4. Discussion 
Breast cancer is the major cause of mortality in women [1]. Despite the identification 

of different molecular targets and the development of specific inhibitors against them [3], 
resistance toward these treatments leads to disease progression. Particularly in ER+ breast 
cancers, one-third of patients relapse and present risk of metastasis after treatment with 
ER-targeting agents [17]. Here, we used DBP to identify new potential treatments with 
BH3 mimetics for ER+ breast cancer. In fact, we used DBP to predict the efficacy of ipa-
tasertib and S63845 in MDA-MB-415 cells which correlated with later cytotoxicity (Figure 
1A,B). Despite observing cytotoxicity when treating with ipatasertib, we could not detect 
it with alpelisib, as it was expected due to the loss of function mutation in PTEN occurring 
in this cell line [59,60] (Figure 1B). Similar results have been reported before and could be 
linked to different regulation steps of the signaling pathway, such as the distinct levels of 
PIK3CA pathway activation, the AKT signaling independent of PIK3CA, the crosstalk 
with other pathways, and the complex feedback regulation of the pathway itself [61]. This 
level of complexity has been previously reported in a detailed network model that ex-
plored the resistance mechanisms to PI3K inhibitors [62]. Therefore, we postulate the pos-
sible use of an AKT inhibitor to treat ER+ breast cancer similarly to what has been reported 
for metastatic triple-negative breast cancer [63]. Furthermore, the high cytotoxicity 
showed by the BH3 mimetic S63845 reinforces the idea that one of the key anti-apoptotic 
proteins in breast cancer is MCL-1 [49]. In T47D cells, we observed a much lower response 
to all single agents tested, with the sole exception of alpelisib (Figure 1D) as these cells 
harbor activating PIK3CA mutation [60]. However, we could not observe cytotoxic effects 
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The model distinguishing mechanisms that may operate in the presence of either S63845, A-133, or the sequential combina-
tion of both BH3 mimetics. The interaction of BIM with MCL-1 and A-133 would shift depending on the BH3 mimetic used,
conferring cell death protection. Only when we sequentially combined both BH3 mimetics, cells will undergo apoptotic
cell death.

4. Discussion

Breast cancer is the major cause of mortality in women [1]. Despite the identification
of different molecular targets and the development of specific inhibitors against them [3],
resistance toward these treatments leads to disease progression. Particularly in ER+ breast
cancers, one-third of patients relapse and present risk of metastasis after treatment with
ER-targeting agents [17]. Here, we used DBP to identify new potential treatments with BH3
mimetics for ER+ breast cancer. In fact, we used DBP to predict the efficacy of ipatasertib
and S63845 in MDA-MB-415 cells which correlated with later cytotoxicity (Figure 1A,B).
Despite observing cytotoxicity when treating with ipatasertib, we could not detect it with
alpelisib, as it was expected due to the loss of function mutation in PTEN occurring in
this cell line [59,60] (Figure 1B). Similar results have been reported before and could be
linked to different regulation steps of the signaling pathway, such as the distinct levels of
PIK3CA pathway activation, the AKT signaling independent of PIK3CA, the crosstalk with
other pathways, and the complex feedback regulation of the pathway itself [61]. This level
of complexity has been previously reported in a detailed network model that explored
the resistance mechanisms to PI3K inhibitors [62]. Therefore, we postulate the possible
use of an AKT inhibitor to treat ER+ breast cancer similarly to what has been reported for
metastatic triple-negative breast cancer [63]. Furthermore, the high cytotoxicity showed by
the BH3 mimetic S63845 reinforces the idea that one of the key anti-apoptotic proteins in
breast cancer is MCL-1 [49]. In T47D cells, we observed a much lower response to all single
agents tested, with the sole exception of alpelisib (Figure 1D) as these cells harbor activating
PIK3CA mutation [60]. However, we could not observe cytotoxic effects of ipatasertib
(Figure 1D), which can be linked to the weak phosphorylation of Akt observed in these
cells despite the described activating mutation and gain of copy number of PIK3CA [64].
These results also showed the different responses to treatments that cell lines from the
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same cancer subtype could display. For this reason, the use of DBP could be crucial for
the identification of new effective treatments for different ER+ cancer patients that are no
longer responding to endocrine therapy.

One of the hallmarks of cancer is cell death evasion and resistance to therapy, and
a rapid mechanism to mediate this is through anti-apoptotic BCL-2 family proteins [52].
It has been recently reported that resistance to MCL-1 treatment in a metastatic model
of breast cancer could be mediated by BCL-xL [49]; in fact, we validated this observa-
tion performing DBP with the HRK peptide (Figure 2A), as we observed a synergistic
combination when sequentially combining S63845 and A-133 (Figure 2B). However, the
contribution of the anti-apoptotic protein BCL-2 is clearly minor (Figure S1), confirming
the importance of BCL-xL in mediating the resistance to MCL-1 inhibition in breast cancer,
as previously described [48]. Similarly, we also observed that when blocking BCL-xL with
A-133, T47D cells survive through MCL-1 (Figure 2C,D), highlighting the importance of
these two anti-apoptotic proteins in BH3 mimetics adaptation in breast cancer. One could
expect that these combinations of treatments would have the same cytotoxic effect when
applied together, however it has been previously reported that the sequential combination—
but not the simultaneous coadministration—of targeted therapies and chemotherapeutic
agents dramatically sensitizes breast cancer cells and improve therapeutic efficacy [65].
Furthermore, the sequential administration of drugs would decrease the toxicity in patients
while having the same cytotoxic effect, thus reinforcing the sequential treatment strategy
presented here.

When we explored the molecular mechanism underlying these anti-apoptotic resis-
tances, we found that the pro-apoptotic protein BIM shifts from one anti-apoptotic protein
to the other depending on the BH3 mimetic used (Figure 4). BIM is therefore sequestered
by MCL-1 when BCL-xL is inhibited with A-133, and by BCL-xL when MCL-1 is blocked
with S63845, mediating rapid resistance to treatments to avoid apoptosis (Figure 5). Im-
portantly, when we sequentially combine both BH3 mimetics, we displace BIM from these
two anti-apoptotic proteins to activate BAX and BAK and engage apoptosis (Figure 5). We
demonstrate here the crucial role of MCL-1 and BCL-xL in ER+ breast cancer, reinforcing
the possible therapeutic use of BH3 mimetic combinations for this type of cancer to avoid
patient relapse.
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