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Abstract: I have tried a Richardson-Lucy deconvolution algorithm with a simulator of a pro-
grammable illumination laser microscope coded in Python for different excitation patterns, conclud-
ing that the most resolutive optimization process is for the multi point mode scanning, achieving a
resolution below 100nm for a simulated noisy image.

I. INTRODUCTION

Fluorescence Confocal Microscopy has become a
widely used tool in microscopic imaging, especially in re-
search, where information from biological tissue images
is of big interest. But, as it is well known, this is a
diffraction-limited optical imaging system that for visible
light has a resolution limit between 200nm and 350nm.
Everything achieved below this resolution limit is usu-
ally understood as super-resolution microscopy. The feat
to pass this limit was recognized in 2014 when the Nobel
Prize of Chemistry was awarded to Eric Betzig, Stefan W.
Hell, and William E. Moerner for the ”Super-Resolved
Fluorescence Microscopy” [1].

In the past years, a lot of research has been done
towards this direction and with the constant improve-
ment of computational power and technology, many re-
searchers opt for computational approaches and the use
of deep learning techniques. H. Wang et al. show super-
resolution results in fluorescence microscopy [2] and A.
Small et al. discuss several ”Fluorophore localization al-
gorithms for super-resolution microscopy” [3] that rely on
switchable fluorophores and powerful algorithmic tech-
niques of position estimation, for instance. In this FGW
(”Final Grade Work”) we implement a Richardson-Lucy
deconvolution algorithm explained in [4] and [5] using
a computational tool written in Python developed in
a previous FGW by Sara Lumbreras that simulates an
innovative confocal technique called Superfast Confocal
Microscopy through Enhanced Acusto-Optic Modulation
(SCREAM) [6]. This innovative method developed by
Mario Montes Usategui and his team from the Optical
Trapping Lab - Grup de Biofotònica (BiOPT) allows the
creation of any kind of excitation patterns using two or-
thogonal Acusto-optical deflectors and holography.

So, the purpose of this work is to apply a super-
resolution algorithm for microscopy images in a simu-
lated environment and to study the result obtained with
different excitation patterns and casuistry.
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II. METHODS AND RESULTS

A. Simulator Functioning

Both, the simulator and the algorithm are programmed
in Python, mostly using pytorch library because of the
optimized speed of execution and the possibility and easy
way of executing the script in a Graphic Processing Unit
(GPU). As it will be shown further, running the script
in the GPU results in a very large improvement in the
execution time.

It will be explained the basic concept of the functioning
of the simulator relevant for this work, for additional or
more specific information, we refer the reader to the cited
FGW [7].

Firstly, the script calculates the point spread function
(PSF), defined as the transverse spatial variation of the
amplitude of the image received at the detector plane
when the lens is illuminated by a perfect point source [9].
Then the excitation pattern is generated. The excitation
pattern is the result of the convolution of an illumination
pattern with the PSF of the illumination system. This
illumination pattern is programmable and can be any
pattern desired where the point of laser illumination is
represented by a pixel with value 1. Then the sample is
excited, this physical phenomenon can be easily modeled
mathematically as a point-wise product of the excitation
pattern and the ”ground truth”. The ”ground truth” is
the image with perfect resolution of the reality that we
want to obtain, that we want to see. From this point
on, the ”ground truth” will be referred to as GT. The
next step is the convolution of the excited image with
the observation PSF. And finally, the image is passed
through a camera binning, taking into account the pixel
size of the image acquisition system, for example, a CCD.

This process is done in an arbitrary number of steps.
If it is used, for example, an excitation pattern that is a
grid of points separated some distance, and the sample
is scanned with 16 steps displacing the points in the y-
axis and then displacing them 16 steps in the x-axis, the
result will be a stack of 256 images. One for every step. If
the scanning is done first with straight lines in the x-axis
with 16 steps and then with straight lines in the y-axis
with the same amount of steps, the stack will have 32
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images. Then, as an example, this stack can be collapsed

FIG. 1: Data flow representation of the simulator process

into a 2D image calculating the mean value of every pixel
along the z-axis.

The operation flow is shown in FIG[1].

B. Richardson-Lucy Deconvolution Algorithm

An experimental image losses quality because of the
convolution with the optical system PSF and the noise.
The idea of the deconvolution algorithm is to invert the
operation. But the operation in the other way is not as
simple as it could seem. In [4] and [5] the following idea
and algorithm are proposed:

A low-resolution image, m, can be considered as a high-
resolution image, d, degraded because of the multiplica-
tion with a matrix, H, that represents a downgrading
process and the addition of a possible background signal,
b.

m = Hd + b (1)

In this particular case, H is the simulation, the imaging
process. It is the measurement itself that involves the
steps explained in the previous subsection.

As it is known, real fluorescence microscopy measure-
ments have always noise due to the limitations of elec-
tronic detectors. Adapting the Equation (1) to a noisy
image measurement is obtained the Equation (2):

mn = P (Hd + b) (2)

where mn is the noisy low-resolution image and P rep-
resents the addition of Poisson noise.

The starting point for the algorithm is an initial esti-
mate of the high-resolution image. In this FGW we al-
ways used as the initial guess the result of collapsing the
stack of images given by the simulation code into an im-
age summing up the images along the z-axis, considering
the XY plane as the image obtained in every iteration.

The algorithm to enhance the initially estimated image
into a super-resolved one is the following iterative process
(see [4] & [5] for details):

m = Hei + b (3)

r = mn/m (4)

ei+1 = eiH
T r/HT ones (5)

FIG. 2: Data flow representation of the image enhancement
algorithm. Red lines represent the input arguments and green
lines represent the final output of the algorithm after N arbi-
trary number of iterations

Here, the estimated image that we want to upgrade,
and that is the output of the algorithm is represented
as ei, and HT is the transpose of the measurement ma-
trix H. In the same way as it is explained in [6] we
implemented HT reversing the order of operation of the
imaging process. Considering this, HT r and HT ones is
understood as the application of H to r and a matrix
with all the values equal to one. So if we had:

H = (EPstackimage) ∗ PSF (6)

Where EPstack represents all the stack of excitation
patterns because H represents all the measurements. HT

becomes into:

HT = (imagestack ∗ PSF )EPstack (7)

Note that the order of operation is from left to right,
being the point wise product the first operation in H and
the convolution in HT . In the Equation (6) and Equation
(7) it is possible to observe that H takes an image as
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input and returns a stack of observations and that HT

does the contrary, takes as input the stack, and returns
an image that is calculated summing the resulting stack
in the z-axis.

C. Results

As it was explained before, in both tools, the SCREAM
system and the simulator, exists the possibility of illumi-
nating the sample with a completely arbitrary pattern.
To proof the super resolution capability of the studied ap-
proach, we generated different simulated data and com-
pared the efficiency of the algorithm itself and the effi-
ciency of the illumination modes explained below.

• Multi Points: Consists in a grid of points that move
along the x and y-axis consecutively the number of
times that it is defined with the number of steps
parameter. So if it is defined n number of steps, it
will generate a stack of n ∗ n frames.

• Random: Consists in a random pattern for every
step. The result is a stack of n frames.

• Multi line xy: It is a combination of the modes
multi line x and y that consists in straight lines
along one axis. Firstly, is done the scanning hori-
zontally and then vertically, as an example. It re-
sults in a stack with n + n frames.

FIG. 3: Representation of the effect of scanning with more
steps. Algorithms applied to ”Anna Palm” and ”Bibeads”a

images

a”Bibeads” image is a simulated image that generates a set of
point emitters grouped in pairs with a certain distance between
the centers of the points

Also, for the scanning were used the following system
parameters: A laser illumination with a 523nm wave-
length, microscope objective with NA = 1.2, an effective
pixel size of 10nm, and a camera binning of 40nm.

To help better understanding of the resolution im-
provement done it was decided to quantify it with the

FIG. 4: Obtained results of the scanning of ”Anna Palm”
image with multi point illumination mode and 500 iterations.
a, b, c, d are the GT, the super-resolution image (SR), the epi-
fluorescence image (EPI) and, a frame from the experimental
stack, respectively. 0.53 SSIM achieved in 423.6s.

FIG. 5: Obtained results of the scanning of ”Anna Palm”
image with random illumination mode with 16 steps and op-
timization with 500 iterations. a, b, c, d are the GT, the
SR image, the EPI and, a frame from the experimental stack,
respectively. 0.32 SSIM achieved in 58.28s.

structure similarity value (SSIM) calculated between the
GT and SR images. [10]
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FIG. 6: Scanning of ”Bibeads” with a distance of 100nm be-
tween centers and blurred in x and y directions with a gaus-
sian filter with a std of 20nm. Scanning done with 16 steps
multi point mode and 500 iterations.a, b, c, d are the GT, the
SR image,the EPI and, a frame from the experimental stack,
respectively. 0.9926 SSIM achieved in 455,6 s

FIG. 7: Obtained results of the scanning and optimization
of Siemens Star resolution test image with 16 steps in multi
point mode and 2000 iterations. From left to right are repre-
sented the GT, the SR image and, the EPI. Yellow and blue
circles represent the visual resolution limit of the EPI and the
SR, respectively, showing that the resolution approximately
is improved by a factor 2

FIG. 8: Obtained results of the scanning and optimization of
the lines resolution test image with 16 steps in multi point
mode and 2000 iterations. From left to right are represented
the GT, the SR image and, the EPI.

III. CONCLUSIONS

We have seen, from the results of the experiments, that
the addition of steps for the scanning does not result in a

FIG. 9: Intensity profile of GT, SR image and EPI of the
”Bibeads” zoomed image, from left to right order. 100nm
distance between the centers of the points

FIG. 10: Intensity profile of GT, SR image and EPI of the
”Lines Test” image calculated over 600 different line profiles.
From left to right order.

significant improvement. Actually, some improvement is
only seen in images with a bigger density of information,
as ”Anna Palm”. In images of a low level of informa-
tion as ”Bibeads” there is no clear improvement obtained
(FIG[3]). Also, the addition of steps increases the com-
putational capability and time needed to optimize the
resolution for a visual improvement that is practically
not perceptible. For example, the difference of time be-
tween scanning in multi point mode of 5 and 20 steps is
bigger than a factor of 8 because of the quadratic depen-
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IMAGE IL.MODE TIME(s) SSIM

Anna Palm random 47.24 0.2402

multi point 44.43 0.3879

multi line xy 44.09 0.2986

Bibeads 240nm random 23.46 0.9026

multi point 21.55 0.9474

multi line xy 21.24 0.9330

Siemens Star random 24.52 0.0921

multi point 18.12 0.1414

multi line xy 20.56 0.1142

Lines random 24.18 0.0088

multi point 20.49 0.0246

multi line xy 20.46 0.0148

TABLE I: Comparison of execution times and achieved SSIM
between illumination modes for different simulated images in
the same conditions. Executed with a scanning resulting in
36 frames and an optimization of 50 iterations

DEVICE IL.MODE TIME(s)

GPU random 1.91

multi point 14.51

multi line xy 2.87

CPU random 15.13

multi point 91.31

multi line xy 17.87

TABLE II: Comparison of execution times between GPU and
CPU for a scanning of 16 steps and an optimization of 50
iteration done to the same simulated image

dence of the number of frames with the number of steps.
For a random illumination mode is more than a 1.5 times

slower with 20 steps than with 5, because of the linear
relation between the number of steps and frames. Al-
though, from the TABLE[1] and FIG[3] we can see that
the maximum SSIM values are achieved with multi point
illumination mode. Certainly, according to the needed
resolution and execution times, the other modes can be
really useful and of big interest because of the much faster
optimization if few steps are used, and even though de-
cent SSIM achieved values. That decreases the photo-
bleaching problem because of illuminating fewer times
the same point in the sample.

The obvious computational power superiority of a
GPU with 3840 cores and 12 GB of memory over a Cen-
tral Processing Unit (CPU) of 8 GB of memory and 4
cores, can be easily concluded from the execution times
showed in TABLE[2].

Hence, we opted to use 16 steps to demonstrate the
resolution capability of the algorithm. We can affirm,
considering the results shown in FIG[4][5][6] that the al-
gorithm approach is successful, achieving resolutions be-
low 100nm (FIG[9]). The visual quality increase of the
images is undoubtful. To be able to quantify the resolu-
tion power, ”Siemens Star” and ”Lines” resolution test
images were used and from the intensity profile analy-
sis, we can declare an achieved resolution below 150nm
(FIG[7][8][10]).
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