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Abstract: In this work, we delve into the analysis of the propagation of infectious diseases
described by the SIR epidemiological model on networks whose connections change over time. We
use a fast dynamic message-passing method to estimate the marginal probabilities that each node in
one of these networks is in a given state at a certain time. After testing the validity of the predictions
given by this approach, we apply them to the problem of inferring the origin of an epidemic on a
dynamic network.

I. INTRODUCTION

The SARS-CoV-2 pandemic outbreak that has plunged
the world into a severe sanitary crisis has highlighted the
importance of studying the spread of infectious diseases
through populations of individuals. However, this area
of research has existed for many years. In fact, one of
the earliest mathematical approaches to the spread of an
epidemic is attributed to Daniel Bernoulli for his analysis
of smallpox in 1766.

Today, epidemic spreading is studied using networks
which are able to model the intricate contact patterns of
human beings. An epidemiological model is also needed
to identify the states of individuals with respect to some
contagious disease. The unidirectionality of one of these
models allowed the authors of [2] to present the dynamic
message-passing equations as a closed set of recursion
rules, which provide the probabilities that each member
of a network is in a given state at time t.

In the present work, we have written from scratch an
algorithm to test the validity of the dynamic message-
passing (DMP) predictions on dynamic networks, by
comparing them with the probabilities obtained using
a Monte Carlo simulation. Then, we have adapted the
code to be able to use the DMP probabilities to locate
the origin of an epidemic from the observation of a given
network at a certain time. We place great emphasis on
the change of the links in a network, analyzing how it
affects the DMP predictions and the performance of the
aforementioned algorithm.

II. METHODS

A. SIR model

Epidemic modeling assumes that a population can be
divided into different compartments depending on the
stage of some contagious disease. In this work we adopt
the SIR model in which individuals can be in one of the
following three states at any given time: susceptible (S),
infectious (I) or recovered (R). At each time step, an
S individual can be infected by one of its I neighbors

with probability λ, and an I individual can recover on
its own with probability µ, regardless of its interactions.
R individuals are removed from the contagion process,
which makes the SIR model unidirectional [1–3, 7].

B. Networks

We model a population as a network (or graph) of N
nodes. Each node i is connected to a set of neighbors
∂i(t), whose size determines the degree ci of the former.
A node can have several properties, but we are mainly
interested in its state qi(t) with respect to an infectious
disease.

We use two types of networks: random regular graphs
(RRG) which are selected uniformly at random from the
set of graphs where all nodes have the same degree c
[2, 4], and proximity networks (PN) which are created
by placing N nodes uniformly at random in a square of
side

√
N , and establishing links with probability

Pij =
c

N
e−dij/l, (1)

where dij is the euclidean distance between nodes i and
j, and l is a parameter that controls the presence of long
connections [1].

We want to study the spread of epidemics on dynamic
networks, so we need rewiring algorithms that can modify
the connections of a given graph:

• For an RRG, we choose two links (i, j) and (k,m)
at random, such that k and m are not connected
to i or j, and with probability Prew we remove the
previous links and create the new connections (i, k)
and (j,m). We refer to Prew as rewiring probability;

• For a PN, we choose one link (i, j) and two nodes
k and m at random, and with probability Prew we
remove the previous connection and create the new
link (k,m).

Both algorithms are executed Nc/4 times, so there are
PrewNc/2 link exchanges on average.
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C. Dynamic message-passing equations

The epidemic process on a graph can be thought of
as the spread of infection signals from I to S nodes [2],
which enables us to introduce the messages:

P k→i
S (t) ≡ probability that node k is susceptible at

time t;

θk→i(t) ≡ probability that an infection signal has not
been passed from node k to node i up to
time t;

φk→i(t) ≡ probability that an infection signal has not
been passed from node k to node i up to
time t, and that node k is infectious at that
moment.

The unidirectional nature of the SIR model allowed the
authors of [2, 3] to present the dynamic message-passing
equations as a closed set of recursion rules, which they
wrote in terms of the above messages:

P k→i
S (t) = PS(0)

∏
j∈∂k(t)\i

θj→k(t),

θk→i(t) = θk→i(t− 1)− λφk→i(t− 1),

φk→i(t) = (1− λ)(1− µ)φk→i(t− 1)

− P k→i
S (t) + P k→i

S (t− 1),

(2)

where PS(0) is the probability that any node is initially
susceptible, and ∂k(t)\i represents the set of neighbors
of node k excluding node i. The DMP equations can
be iterated over time, starting from the initial conditions
θk→i(0) = 1 and φk→i(0) = δqk(0), I . They provide an
estimate of the marginal probabilities that node i is in a
given state at time t0:

P i
S(t0) = PS(0)

∏
k∈∂i(t)

θk→i(t0),

P i
R(t0) = P i

R(t0 − 1) + µP i
I (t0 − 1),

P i
I (t0) = 1− P i

S(t0)− P i
R(t0).

(3)

Even though the authors of [2, 3] used static graphs, here
we generalize to dynamic networks for which we only need
to know the neighbors of node i at time t, ∂i(t), and the
rewiring history. The computational complexity of the
DMP equations is O(tNc).

D. Validity of the DMP predictions

The marginal probabilities (Eqs. 3) given by the DMP
equations (Eqs. 2) are exact for locally tree-like networks,
to which RRGs tend to for large values of N . We use PNs
as simple representatives of real-world networks. In this

section, we check the validity of the DMP predictions on
random dynamic networks by comparing them with the
probabilities given by a Monte Carlo (MC) simulation.

Let us outline how the comparison is made: we create
a dynamic network of N nodes, one of which is initially
infectious and all the others are susceptible, and we let
the system evolve up to time t0. At that moment, we do
an observation O of the entire network and the task is
to calculate the probability that each of its nodes is in a
given state X (i.e., S, I or R) using the MC simulation
and the DMP equations, and compare the two. For a
given initial graph and rewiring history,

• we perform a MC simulation that replicates the
dynamic rules imposed by the SIR model up to
time t0. Repeating this M times we obtain the
MC probability P i

X,MC(t0) that node i is in a given

state X at time t0. The uncertainty of P i
X,MC(t0)

can be approximated by

δP i
X,MC(t0) '

√
P i
X,MC(t0)

[
1− P i

X,MC(t0)
]

M
; (4)

• we run the DMP equations on the graph up to
time t0. We only need to do this once to obtain
the DMP probability P i

X,DMP(t0) that node i is in
a given state at time t0.

This entire process is a random instance of the problem
of comparing the MC and DMP predictions. Running
multiple instances gives us a collection of probabilities
P i
X,MC(t0) and P i

X,DMP(t0) that we can sort by the values
of the former in ascending order. This allows a clear
comparison between the two methods.

E. Inference of the epidemic origin

The problem of inferring the origin of an epidemic is
an example of one of the many applications of the DMP
equations. It can be defined as follows: we generate a
dynamic network of N nodes, one of which is initially
infectious (the so-called patient zero, i0) and all others
are susceptible, and we let the system evolve until time t0
is reached. At that moment, we do an observation O of
the entire network and the task is to locate i0.

Let us outline our approach to this problem: for each
node i, whose state is either I or R in O, we run the
DMP equations on the initial graph up to time t0. This
gives us the probability P j

X(t0, i) that node j is in a given
state X at time t0, assuming that node i is the patient
zero. Bayes’ theorem tells us that the probability that
node i is the patient zero given the observation P (i|O)
is proportional to the probability of the observed states
given the patient zero P (O|i). We approximate the latter
as a product of the marginal probabilities provided by the
DMP equations [2]

P (O|i) '
∏

qk(t0)=S

P k
S (t0, i)

∏
ql(t0)=S

P l
I(t0, i)

∏
qm(t0)=S

Pm
R (t0, i).
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We also define an “energy” function E(i) ≡ − logP (O|i),
such that nodes with lower energy are more likely to be
the true patient zero [2]. Once the iteration through the
infectious and recovered nodes in O ends, we rank them
by their energy value in ascending order, with zero being
the lowest possible rank. Finally, we extract the rank of
the true patient zero r0. We refer to this whole process
as random instance of the inference algorithm.

Instead of comparing the performance of the DMP-
based inference algorithm with that of other inference
measures [2], we analyze the effects of a higher rewiring
probability on its efficiency.

III. RESULTS

A. Validity of the DMP equations

For a given time t0, we compare the MC and DMP
probabilities for 1000 instances on proximity networks of
1000 nodes and l = 100, and plot them as a function of
their rank n. This can be repeated for higher values of
Prew to see if the agreement between the MC and DMP
predictions changes significantly. As shown in Fig. 1,
the probabilities of being infectious provided by the two
methods are compatible, even when there is a non-zero
value of Prew acting on the graph. The rewiring disperses
the DMP probabilities but has little impact on their mean
values, which are close to the MC probabilities for all
nodes.
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FIG. 1: Comparison of the MC and DMP probabilities for
PNs of 1000 nodes and l = 100 (1000 instances). We generate
an epidemic with µ = 0.5, λ = 0.7 and t0 = 5. The resulting
probabilities are sorted by the values of P i

I,MC(t0) and plotted
as a function of their rank n. We denote the MC probabilities
by a thick red line and their uncertainties by thin red lines
calculated with the relation P i

I,MC(t0) ± δP i
I,MC(t0), where

δP i
I,MC(t0) is given by Eq. (4). We represent the values of the

DMP probabilities by purple crosses and their average over
the instances by orange dots, whose uncertainties are given
by the standard deviation. (a) Prew = 0.0; (b) Prew = 0.1.

Another interesting study consists in observing if the
MC and DMP predictions deviate significantly from each

other for increasing values of t0. Fig. 2 shows that the
probabilities obtained by the two methods are compatible
for all nodes at different observation times.
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FIG. 2: Comparison between the MC and DMP probabilities
for PNs of 1000 nodes and l = 100. We generate an epidemic
with µ = 0.5, λ = 0.7 and two values of t0. The probabilities
are sorted by the values of P i

X,MC(t0) and plotted as a function
of their rank n. We represent the MC probabilities by thick
lines and their uncertainties by thin lines calculated with the
relation P i

X,MC(t0) ± δP i
X,MC(t0), where δP i

X,MC(t0) is given
by Eq. (4). We represent the DMP probabilities averaged over
1000 instances by dots, whose uncertainties are given by the
standard deviation.

To analyze the effect of the size of a network on the
agreement between MC and DMP probabilities, we run
ten instances on random regular graphs of 105 nodes and
c = 4. As shown in Fig. 3, both methods provide very
similar predictions despite using fewer instances. This
can be attributed to the better performance of the DMP
equations on large graphs, where the presence of short
loops is scarce and nodes are more independent of each
other. Furthermore, RRGs exhibit tree-like behavior as
N increases, which accentuates the good results.
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FIG. 3: Comparison of the MC and DMP probabilities for 10
instances on RRGs of 105 nodes and c = 4. An epidemic is
generated with µ = 0.5, λ = 0.7 and several values of t0. We
generate this figure in the same way as Fig. 2.
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B. Inference of the epidemic origin

Now, we present the results of the problem of inferring
the origin of an epidemic, starting with two instances of
the inference algorithm with different values of Prew on
RRGs of 1000 nodes and c = 4. We plot the resulting
energies of the nodes as a function of their rank; see inset
of Fig. 4. Since single instances are not enough to draw
conclusions, we set the value of Prew and run a thousand
instances of the inference algorithm, each of which gives
a normalized rank of the true patient zero r0/|G| (i.e., r0
divided by the number of infectious and recovered nodes
in the observation O). A histogram is used to show the
results of this process for several values of Prew; see Fig. 4.
The inference algorithm is able to predict the location of
the true patient zero with greater precision than 60% for
values of Prew up to 0.3. We must bear in mind that
with this configuration there is an average of 600 link
exchanges at each time step (i.e., approximately a third
of all the links present in a RRG of 1000 nodes and c = 4),
which makes the results surprising. Increasing values of
Prew have less impact on the performance of the inference
algorithm. In fact, the histogram seems to indicate that
there is a saturation of the efficiency of the algorithm for
higher values of the rewiring probability. That, however,
should be investigated in more detail in future work.
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FIG. 4: Results of 1000 instances of the inference algorithm
on RRGs of 1000 nodes and c = 4. Inset: an epidemic is
generated with µ = 1, λ = 0.6 and t0 = 8. The energies
of the nodes provided by the inference algorithm are plotted
as a function of their rank for two random instances with
different values of Prew. The true patient zero is marked by a
red cross in both cases. Main figure: an epidemic is generated
with µ = 1, λ = 0.5 and t0 = 5. The histogram (over 1000
instances) of the normalized rank of the true patient zero
r0/|G| (where |G| is the number of I and R nodes in O) is
plotted for several values of Prew.

Next we let one of the parameters (i.e., µ, λ or t0) vary
to study how it affects the efficiency of the algorithm.
Let us start with λ: for each of its values, we average
r0/|G| over 1000 instances. At the end of this procedure,
we possess a set of ordered pairs { (λ, 〈r0/|G|〉) } that
we can plot. Repeating this whole process for different

values of Prew it is possible to analyze its effect on the
performance of the inference algorithm. As expected,
Fig. 5a shows that increasing values of Prew complicate
the task of inferring the epidemic origin. However, the
predictions are still good. The same study can be done
for t0; see Fig. 5b. Here we observe that the inference
algorithm is able to predict successfully the patient zero
before the epidemic peak occurs. For later observation
times the predictions are worse, but by then the study of
the patient zero loses interest since it cannot be applied
to contain an epidemic outbreak.
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FIG. 5: Normalized rank of the true epidemic origin averaged
over 1000 instances of the inference algorithm on RRGs of
1000 nodes and c = 4. (a) We set µ = 0.5 and t0 = 10, and
let λ vary to study how 〈r0/|G|〉 depends on it. We repeat
this process for several values of Prew to see if they affect the
efficiency of the inference algorithm. The dashed lines show
the average fraction of nodes that are infectious or recovered
in O for each value of Prew. (b) We set µ = 0.5 and λ = 0.7,
and let t0 vary to study how 〈r0/|G|〉 depends on it. This
process is repeated for multiple values of Prew to see if they
affect the performance of the inference algorithm. The dotted
and dash-dotted lines show the average fraction of I and R
nodes in O for each value of Prew, respectively.

Finally, to see how the intrinsic parameters of a graph
can alter the results of the inference algorithm, the above
analysis for λ can be performed on proximity networks
of 1000 nodes with different values of l. Fig. 6 shows
that this parameter can change the performance of the
algorithm significantly. One the one hand, for l = 10
(Fig. 6a) we favor the presence of local connections in
the networks, and the predictions get worse. Curiously,
they improve for higher values of both Prew and λ, which
can be attributed to the addition of long connections by
the rewiring algorithm. On the other hand, for l = 100
(Fig. 6b) proximity networks behave like E̋rdos-Rényi
graphs (ER), i.e., random networks of N nodes in which
each one of theN(N−1)/2 possible connections is present
with probability P [7]. In turn, ERs tend to RRGs for
large N and constant P , which explains why Figs. 5a and
6b are so alike. Although in the latter the effect of the
rewiring algorithm is less noticeable, which again could
be explained by the addition of longer interactions. In
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fact, if we take a closer look at Fig. 6 we can see that the
rewiring algorithm makes the fraction of I and R nodes
in the observation grow significantly, which indicates the
sparsity of long links when Prew is zero.
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FIG. 6: Normalized rank of the true epidemic origin averaged
over 1000 instances of the inference algorithm on PNs of 1000
nodes with different values of l. We set µ = 0.5 and t0 = 10,
and let λ vary to study how 〈r0/|G|〉 depends on it. We repeat
this process for several values of Prew to see if they affect the
efficiency of the inference algorithm. The dashed lines show
the average fraction of nodes that are infectious or recovered
in O for each value of Prew. (a) l = 10; (b) l = 100.

IV. DISCUSSION

In this work, we have verified the validity of the DMP
equations on dynamic networks, which has been done
through a comparison between the DMP predictions and
the probabilities provided by a MC simulation. In fact,
since the results given by both methods are so similar we
should use the more efficient of the two. In that regard,
the DMP approach is superior to the MC simulation,
as the former only needs one run on a given graph to
provide the marginal probabilities of interest, and the
latter requires multiple executions.

Then we have applied the DMP approach to study the
problem of determining the origin of an epidemic. This
problem had already been studied by the authors of [2] to
showcase the potential of the DMP method when applied
to static networks. We have generalized their approach to
dynamic networks and have shown that the DMP-based
inference algorithm continues to perform well on them.

The DMP equations had been studied before in the
literature [1–3, 5], but its interest has recently resurfaced
due to the SARS-CoV-2 pandemic. In that regard, the
DMP method could be applied to obtain the marginal
probability that each person in a large city is infectious
at a given time. Then we could test the individuals with
a higher probability of being infected according to the
DMP method, and confine them if necessary [1]. Even
though we already have the necessary tools to implement
an algorith like this, it could not describe a disease as
complicated as SARS-CoV-2. For that, we would have
to use more complex networks, like those utilized in [1],
and adopt an epidemiological model with more than three
possible states. We leave this task for future work.

V. CONCLUSIONS

We can conclude that our results corroborate the
agreement between the MC and DMP predictions on
random dynamic networks, the latter approach being
more efficient since it only requires one run per network.
Therefore, it is justified to use an inference algorith based
on the DMP equations to study the problem of inferring
the origin of an epidemic on dynamic networks. Here the
rewiring worsens the efficiency of the inference algorithm,
but it can still give good results.

Acknowledgments

I would like to thank my mother for her support, and
my advisor Matteo Palassini for his patience and help in
the development of this work.

[1] Antoine Baker, Indaco Biazzo, Alfredo Braunstein, et al.,
Epidemic mitigation by statistical inference from contact
tracing data, arXiv:2009.09422 (2020).
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