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Abstract: A multivariate INAR(1) regression model based on the Sarmanov distribution is proposed
for modelling claim counts from an automobile insurance contract with different types of cover-
age. The correlation between claims from different coverage types is considered jointly with the
serial correlation between the observations of the same policyholder observed over time. Several
models based on the multivariate Sarmanov distribution are analyzed. The new models offer some
advantages since they have all the advantages of the MINAR(1) regression model but allow for a
more flexible dependence structure by using the Sarmanov distribution. Driven by a real panel
data set, these models are considered and fitted to the data to discuss their goodness of fit and
computational efficiency.

Keywords: multivariate longitudinal data; time dependence; cross dependence; motor insurance

MSC: 60E05; 62H05; 62H10

1. Introduction

In many areas, such as the actuarial field used in the application section of this
paper, little attention has been paid to the possibility of including several dependence
assumptions in the regression models to fit the data at hand. Specifically, we focus on two
sources of dependence in panel count data: first, time dependence, or the serial dependence
between observations of the same individual over time; second, cross dependence, or the
dependence between types of observations of the same individual. A natural way to
address this issue is through a multivariate time series model for count data. For a broad
review see [1]. The family of multivariate integer-valued autoregressive models (MINAR)
is a useful model that allows for certain flexibility without being complex.

These models can be applied to the ratemaking problem of pricing an automobile in-
surance contract with two types of coverage, considering the serial correlation between the
observations of the same policyholder over time and the correlation between claims from
different coverage types, as shown in [2], where a bivariate integer-valued autoregressive
process of order 1, BINAR(1), is fitted to the data using a bivariate Poisson distribution to
allow for cross correlation.

In this paper, we expand on the previous paper in two ways. First, we extend from
a bivariate to a multivariate setting using a multivariate integer-valued autoregressive
process of order 1, MINAR(1). Second, we make use of multivariate discrete distributions
defined using the Sarmanov family to address the cross correlation. Such distributions
can have interesting advantages with respect to other approaches that are available for the
multivariate discrete case. For example, the multivariate Poisson distribution see, e.g., [3]
suffers from the need to evaluate multiple sums, which can be slow and error-prone. At the
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same time, this model is restricted to positive correlation between variables. A different
approach based on copulas see, e.g., [4] suffers from the fact that the joint probability
mass function (pmf) needs evaluation of multiple terms since it cannot be written in a
simple way. This can also create numerical problems. Therefore, our approach using the
Sarmanov family provides models that are less computationally intensive but can still have
a reasonable range of correlation structure.

In sum, we propose a MINAR(1) regression models based on the Sarmanov family of
distributions to fit panel count data. We model the time correlation via a MINAR(1) model
while we use multivariate discrete distributions based on the Sarmanov derivation to
model the cross correlation. The model allows for the inclusion of covariates. In Section 2,
we define the background material needed to fully describe the model and its estimation in
Section 3. In the application Section 4, models are applied to a Spanish insurance claim
counts database. Finally, some remarks can be found in the concluding Section 5.

2. The Multivariate Integer Autoregressive Model Based on the Sarmanov
Distribution
2.1. Multivariate Integer–Valued Autoregressive Models

In the univariate setting, integer–valued autoregressive models have been suggested
as discrete counterparts of the standard Gaussian autoregressive process. The integer-
valued autoregressive model of order 1 (INAR(1)) [5,6] is defined as follows.

Definition 1. An integer–valued autoregressive process {Yt}t∈Z of order 1 (INAR(1)) is defined
on the discrete rang N = {0, 1, 2, . . .} by

Yt = α ◦Yt−1 + εt, (1)

where Y0 represents an initial value of the process and α ∈ [0, 1). The sequence {εt} is usually
referred to as the innovation process and consists of uncorrelated non-negative integer-valued
random variables with mean µε and finite variance σ2

ε . At each time point t, εt is independent of Yt
and of α ◦Yt−1.

The above definition tries to mimic the classical AR(1) models and is based on the
notion of binomial thinning. The binomial thinning operator “◦” is defined in [7]:

α ◦Y =
Y

∑
j=1

Zj, (2)

where {Zj} are independent identically distributed Bernoulli random variables with
P(Zj = 1) = 1− P(Zj = 0) = α. The binomial thinning introduces serial dependence
through conditioning on Yt−1 while preserves the integer nature of the process.

Parametric models can be constructed by an appropriate choice of distribution of
the innovations. The autocorrelation at lag h is given by ρ(h) = αh, for any non-negative
integer h. The implication is that similarly to a Gaussian autoregressive process, ρ(h)
decays exponentially with lag h and is strictly positive.

Extending the above approach to a multivariate setting, it is assumed that A is a m×m
matrix with entries αij with 0 ≤ αij ≤ 1 for i, j = 1, . . . , m, and Y is a random vector with
values in Nm. A ◦ Y is an m-dimensional random vector with i-th component

[A ◦ Y]i =
m

∑
j=1

αij ◦Yj, i = 1, . . . , m, (3)

where the discrete series in all αij ◦Yj, i, j = 1, . . . , m are assumed to be independent. Useful
properties of this matricial operator can be found in [8,9].
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Based on (3), we can define a multivariate integer-valued autoregressive process of
order 1 (MINAR(1)) as in [10]:

Yt = A ◦ Yt−1 + Rt, t ∈ Z, (4)

where {Rt}t∈Z is a sequence of non-negative integer-valued random vectorswith mean
µR and variance ΣR, independent of A ◦ Yt−1. Then, the ith element of the MINAR(1)
process is

Yit =
m

∑
j=1

αij ◦Yj,t−1 + Rit, i = 1, . . . , m, (5)

where αij ◦Yj,t−1 are assumed to be mutually independent binomial thinning operations as
defined in (2).

The non-negative and integer-valued random process {Yt}t∈Z is the only strictly
stationary solution of (4) if the largest eigenvalue of A is less than 1 and E||Rt|| < ∞. Basic
thinning operation properties can be used to show that the mean vector µ and covariance
matrix γ(h) at lag h of the process Yt are given by see [11]:

µ = E(Yt) = (I−A)−1µR, and

γ(h) = E[(Yt+h − µ)(Yt − µ)T ]

=

{
Aγ(0)AT + diag(Bµ) + ΣR, h = 0
Ahγ(0), h ≥ 1

respectively, where [B]ij = αij(1 − αij) for i, j = 1, . . . , m. Please note that γ(0) is the
stationary variable of the variance matrix of the process.

Please note that an important ingredient of the model is the choice of distribution
for the innovations, i.e., the distribution of Rt. A thorough discussion of models and
distributions for multivariate counts can be found in [1]. Here we will use a different
approach: a multivariate discrete distribution defined using the Sarmanov family of
distribution. A detailed discussion about this is provided in Section 2.2. Applications of
the MINAR model are described in the recent paper by [12].

The method of conditional maximum likelihood can be considered for the estimation
of the MINAR(1) process [10]. Let θ = (vec(A)

′
, µ
′
R, vec(ΣR)

′
)
′

be the unknown parameter
vector. The maximum likelihood estimator (MLE) of θ is defined as θ̂ = argmaxθ`(θ) where

`(θ) =
T

∑
t=2

log f (yt|yt−1, θ), (6)

is the maximum log-likelihood function. The conditional probability functions involved
in (6) are convolutions of m sums of binomials

fi(yit|yt−1, θ) = P(Yit = yit|Yt−1 = yt−1), i = 1, . . . , m, (7)

and a distribution
g(k1, . . . , km) = P(R1t = k1, . . . , Rmt = km), (8)

corresponding to the joint distribution of the innovations {Rt}. Hence, f (yt|yt−1, θ) can be
expressed as the multiple sum

f (yt|yt−1, θ) =
m1

∑
k1=0
· · ·

mn

∑
km=0

f1(y1t − k1|yt−1, θ) · · · fm(ymt − km|yt−1, θ)g(k1, . . . , km),

where mi = min(yit, yi,t−1), i = 1, . . . , m.
Numerical techniques can be used for the maximization of (6). However, the numerical

difficulty of the maximum likelihood approach, increase intensely with a dimensional
increase [10] and the assumption of a cross-correlated innovation process. To avoid such
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complications, Ref. [11] consider a simplified MINAR(1) model where a unique source of
dependence between the univariate series is assumed. In particular, they assume {Rt}
follow jointly a discrete multivariate distribution while A is a m×m diagonal matrix with
independent elements αi = [A]ii, i = 1, . . . , m. The assumption for A substantially reduces
the correlation structure. Now, each univariate series {Yit} at time t is a function of its own
predecessors at time t− 1, but not of the predecessors of the rest of the series, i.e.,

Yit = αi ◦Yi,t−1 + Rit, i = 1, . . . , m.

Ref. [11] suggested a pairwise likelihood approach for the estimation of this reduced
model which transform the multivariate estimation problem to a set of bivariate problems.
Finally, in the above model, additional covariate information can be applied by assuming
some functional relationships for the mean of the innovation terms. The model is no
longer stationary.

2.2. Sarmanov Family

The Sarmanov family was introduced in [13]. Ref. [14] studied some general methods
for the construction of families considering different types of marginal distributions. Here
we present the case for discrete distributions. The Sarmanov family has the well-known
Farlie-Gumbel-Morgenstern (FGM) copula as a special case. Consequently, it is strongly
connected with copula-based models. For the discrete case, this family has the additional
advantage that the joint pmf can be written as a single expression, while in copula-based
models we can have serious numerical issues for calculating the pmf.

Assume that P1(x1) and P2(x2) are two pmf with supports defined on A1 ⊆ R and
A2 ⊆ R and qi(xi), i = 1, 2 are bounded non-constant functions such as

∞
∑

xi=−∞
qi(xi) fi(xi) = 0.

Then a joint pmf defined by

P(x1, x2) = P1(x1)P2(x2)[1 + ωq1(x1)q2(x2)], (9)

where the factor ωq1(x1)q2(x2) measures the departure of two variables X1, X2 from inde-
pendence and ω is a real number that satisfies the condition

[1 + ωq1(x1)q2(x2)] ≥ 0, for all x1, x2. (10)

In the case where ω = 0, the variables X1, X2 are independent.
Depending on choices for the functions q(x), we can derive different cases. For exam-

ple, a well-known case is when |qi(xi)| < 1 [14] and

qi(xi) = 1− 2Fi(xi), i = 1, 2, (11)

satisfying the condition
∞∫

x=−∞
qi(xi) fi(xi) = 0.

Considering the case of uniform [0, 1] marginals F1(x1) = u and F2(x2) = v, what is
known as the FGM family of copulas arises, defined as:

c(u, v) = 1 + ω(1− 2u)(1− 2v), u, v ∈ [0, 1]. (12)

The overall constraint on ω is given by:

c(u, v) ≥ 0. (13)
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We make use of another case, referenced in [14,15]. We use qi(xi) = exp(−xi)− Li(1),
xi = 0, 1, . . ., where Li(1) is the value of the Laplace transform of the marginal distribution
evaluated at s = 1, i.e.,

L(s) = E
(

e−sX
)
=

∞

∑
x=0

exp(−sx)P(x),

where P(·) is the marginal distribution. This has led to several bivariate discrete distribu-
tions. The pmf has the form

P(x1, x2) = P1(x1)P2(x2)[1 + ω(exp(−x1)− L1(1))(exp(−x2)− L2(1))], (14)

where Li(·) is the Laplace transform for the i-th marginal, i = 1, 2. For example, consider
the Poisson marginal with mean λ, then L(k) = exp(−λ(1− exp(−k))).

This bivariate distribution has been studied in [15]. The joint pmf is given by

P(X1 = x, X2 = y) =
e−λ1 λx

1
x!

e−λ2 λ
y
2

y!
×[

1 + ω
(

e−xe−y − e−λ1ce−y − e−λ2ce−x − e−λ1ce−λ2c
)]

(15)

x, y = 0, 1 . . ., λ1, λ2 > 0 and ω is a dependence parameter with a suitable range of values.
Finally, c = 1− exp(−1). The correlation is given by

ρ = ω
√

λ1λ2c2 exp(−(λ1 + λ2)c),

while in the general case

ρ =
ωu1u2

σ1σ2
,

where ui = −L(1)′ − L(1)µi, and µi, σ2
i are the mean and the variance of the marginal

models. For a general function g(·) we have that

ui = E[Xqi(X)] (16)

and thus, we can get the results in all cases. Please note that we assume that the expecta-
tions exist.

In a similar manner, we can define the negative binomial case. The bivariate negative
binomial is defined as

P(X1 = x, X2 = y) =
Γ(x + φ1)

Γ(φ1)x!

(
φ1

φ1 + µ1

)φ1
(

µ1

φ1 + µ1

)x
×

Γ(y + φ2)

Γ(φ2)y!

(
φ2

φ2 + µ2

)φ2
(

µ2

φ2 + µ2

)y
×[

1 + ω
(
(e−x − c1)(e−y − c2)

)]
, (17)

where µj (j = 1, 2) is the mean parameter for each case while the marginal variances are

µj +
µ2

j
φj

and hence φj is the overdispersion parameter for each dimension. In addition, we
use as

cj =

(
µj

µj + φj(1− e−1)

)φj

(18)

which is the L(1), i.e., the Laplace transform of the negative binomial distribution evaluated
at t = 1.

This type of Sarmanov model has been applied extensively and many models have
been described. The negative binomial case has been examined in [16]. For other distri-
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butions, the generalized Poisson is described in [17,18]. In addition, Ref. [19] examined
a double Poisson case. Other such constructions refer to truncated Poisson [20,21] for
a bivariate exponentiated exponential geometric case, Ref. [22] for zero-inflated power
series, Ref. [23] for zero-inflated generalized Poisson, and [24] discussed a bivariate Poisson
inverse Gaussian model. A bivariate Poisson-Lindley model can be found in [25,26].

In a context similar to what we attempt here, the bivariate Poisson in (15) has been
used for bivariate integer-valued time series in [27,28] for a bivariate INGARCH type and
in [29] for a BINAR model. In addition, Ref. [30] used a bivariate Poisson-Lindley as an
innovation distribution for a BINAR model. Finally, actuarial usage of such a family is
used in [31,32].

Other choices for g(x) are given in [24] and include q(x) = xα − E(Xα) or q(x) =
P(x)− E(P(x)), but in this case some restrictions apply. In addition, the FGM family is a
special case of the Sarmanov family but a restricted interval is needed to work well, and in
our case the positive integers are not a restricted interval. For further generalization, see
the work of [24].

Ref. [14] proposed a generalization of the joint pmf of the multivariate Sarmanov
distribution. The d variate case is defined as

P(x1, . . . , xd) =
d

∏
i=1

Pi(xi)[1 + Rq1q2 ...qd(x1, . . . , xd)],

where

R12...d(x1, . . . , xd) =
d−1

∑
i=1

d

∑
j=i+1

ωijqi(xi)qj(xj) +

d−2

∑
i=1

d−1

∑
j=i+1

d

∑
k=j+1

ωijkqi(xi)qj(xj)qk(xk) + · · ·+

ωijk...m

m

∏
i=1

qi(xi) (19)

and Ωn = {ωijk, . . . , ωijk...m} is the set of real numbers chosen such that

1 + Rq1q2 ...qn(x1, x2, . . . , xn) ≥ 0.

In this model, dependencies between all parameter combinations are calculated but
the construction has a high computational cost. Please note that parameter ωij measures the
dependence between Xi and Xj while parameter ωijk measures the dependence between
the triplet Xi, Xj, Xk in a similar fashion to a 3-way interaction. The above general form
of the model assumes up to d-way dependence between all variables. This is perhaps
overkill because of the added complexity and the difficulty in interpreting the parameters,
which may be unnecessary for real applications. As expected, the calculation of correlation
is complicated.

To improve on this, we use a limited version based on the construction defined above.
In our model we consider dependence only between two variables taking all combinations
up to 2-way, namely

Rq1q2 ...qd(x1, x2, . . . , xd) =
d−1

∑
i=1

d

∑
j=i+1

ωijqi(xi)qj(xj). (20)

It is easy to prove that this structure has properties of multivariate Sarmanov as
proposed by [33]. Under this construction qi(xi), i = 1, . . . , d are bounded functions.
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Using the extension of the model in [15], we can create a trivariate Poisson distribution
using again the Laplace transform. Now the joint pmf is given by

P(x, y, z) =
e−λ1 λx

1
x!

e−λ2 λ
y
2

y!
e−λ3 λz

3
z!

×[
1 + ω12

(
e−xe−y − e−λ1ce−y − e−λ2ce−x − e−λ1ce−λ2c

)
+

ω23

(
e−ye−z − e−λ2ce−z − e−λ3ce−y − e−λ2ce−λ3c

)
ω13

(
e−xe−z − e−λ1ce−z − e−λ3ce−x − e−λ1ce−λ3c

)]
, (21)

where x, y, z = 0, 1 . . ., λ1, λ2, λ3 > 0 and ωij’s are the dependence parameters with a
suitable range of values. Again, c = 1− exp(−1).

The above can be extended to other distributions such as a negative binomial by
considering the appropriate functions. See the bivariate case given in (17). Therefore, we
get for the trivariate negative binomial that

P(x, y, z) =
Γ(x + φ1)

Γ(φ1)x!

(
φ1

φ1 + µ1

)φ1
(

µ1

φ1 + µ1

)x

Γ(y + φ2)

Γ(φ2)y!

(
φ2

φ2 + µ2

)φ2
(

µ2

φ2 + µ2

)y

Γ(z + φ3)

Γ(φ3)z!

(
φ3

φ3 + µ3

)φ3
(

µ3

φ3 + µ3

)z
×[

1 + ω12(e−x − c1)(e−y − c2)+

ω13(e−x − c1)(e−z − c3) +

ω23(e−y − c2)(e−z − c3)
]
, (22)

where cj are defined in (18).
The correlation coefficients are given by:

ρij =
ωvivj

σiσj
, i, j = 1, 2, 3, i 6= j,

where vi, vj, defined similar to (16).
Such multivariate models have been described in [19,34]. In addition, an interest-

ing discussion can be found in [32,35] where different models for multivariate counts
were proposed.

3. The Proposed Model
3.1. The Model

Consider that we have n individuals. Each individual is observed at a certain number
of time points Ti. We observe for individual i at time point t the vector Yit, i = 1, . . . , n, and
t = 1, . . . , Ti. Without loss of generality, we can assume a different length of observations
for each individual, say Ti.

We define vector Yit as Yit = (Y1it, . . . , Ymit)
′, i.e., we observe for each time point t and

the i-th individual m different variables (j = 1, . . . , m). In our application, m = 3 and each
vector at each time point refers to the number of claims for the three types of claim at this
time point and individual.

To capture the time correlation, we model the temporal correlation via a MINAR(1)
model assuming that

Yit = A ◦ Yi,t−1 + Rit,

where now matrix A is diagonal to create a more parsimonious representation. Please
note that we can assume that this matrix may depend on the characteristics of the i-th
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individual or has some temporal structure, i.e., using Ait instead. This is not the case for
our application. In other terms, we assume the same time correlation structure for all
individuals and all time points. This assumption may be relaxed if necessary.

Rit is a vector of size m with the innovations that drive the model. We assume
that Rit follows some trivariate (m−variate, m = 3) discrete distribution as defined by a
trivariate Poisson-Sarmanov distribution (21) or a trivariate negative binomial Sarmanov
(22), discussed in Section 2. For our application, the marginal distributions are Poisson
or negative binomial, respectively, with means λj, j = 1, 2, 3. We consider the case of a
trivariate negative binomial defined in (22) to account for overdispersion in the marginal
distributions where an additional overdispersion parameter φj for j = 1, 2, 3 is needed to
account for the overdispersion of each variable. Recall that if the overdispersion parameter
tends to ∞, the negative binomial tends to a Poisson distribution. In some sense, a negative
binomial is more general than the Poisson, as it includes the Poisson as a special case.

In addition, the mean of each of the variables is associated with some covariate
information that can be time related (i.e., changes over time) by the usual log link, i.e.,

log λjit = β′jXjit,

where Xjit is a vector of coefficients associated with the j-th variable, for individual i at
time point t. In this application, we assume the same covariates for all the variables and
hence the models, dropping the first subscript, simplify to

log λjit = β′jXit.

From the above definition, the cross correlation of the models comes from the multi-
variate joint distribution used for the innovations. The time correlation is captured by the
diagonal matrix A, each parameter of which is associated with the autocorrelation of each
of the variables. Notably, the parameters ω12, ω13 and ω23 measure the cross correlation
between the three variables.

The parameters that need to be estimated are, the diagonal elements of A, say α1, α2, α3
that measure the autocorrelations for the three variables, the vector of regression coefficients
βj associated with the three variables and the parameters ω12, ω13 and ω23. Please note
that we again assume that they are the same for all individuals and we do not assume any
covariate information for them.

3.2. ML Estimation

Based on the above derivation the likelihood for the i-th individual Li that contains
the information at all Ti time points will be

Li(Θ) =
Ti

∏
t=2

f (yit|yi,t−1).

Assuming that we have m = 3, i.e., 3 variables, Θ is the totality of parameters to be
estimated, namely

Θ = (α1, α2, α3, β1, β2, β3, ω12, ω13, ω23).

Removing for simplicity the subscript i, we have that

f (yt|yt−1) =
s1

∑
k1=0

s2

∑
k2=0

s3

∑
k1=0

Bin(y1t − k1; α1, y1,t−1)Bin(y2t − k2; α2, y2,t−1)×

Bin(y3t − k3; α3, y3,t−1)g(k1, k2, k3),

where sj = min(0, yj,t−1), j = 1, 2, 3, Bin(x; α, N) is the pmf evaluated at x for a binomial
distribution with probability of success α and N Bernoulli trials, and g(k1, k2, k3) is a
3-variate discrete distribution defined in (21) or (22) via the Sarmanov construction.
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Having obtained the individual likelihood Li, one can see that the individual log-
likelihood is simply

`i(Θ) = log Li(Θ) =
Ti

∑
t=2

log f (yit|yi,t−1)

and hence the log-likelihood to be minimized is

`(Θ) =
n

∑
i=1

`i(Θ),

i.e., the sum all the individual log-likelihoods. Obviously, this is computationally demand-
ing, and we may think of ways to simplify it.

4. Application
4.1. Data

The data used in this section belongs to an automobile portfolio from an insurance
company operating in Spain. The same data have been used previously in [2,36–39].
For this application, only cars categorized as being for private use and policies with full
coverage were considered, resulting in a database of 14,386 policyholders. For each policy,
the total number of policyholder claims, related to three types of coverage, were reported
within a yearly period. First, we counted as N1 type those third-party liability coverage
claims. Second, we counted as N2 type both the comprehensive coverage claims (damage
to the policyholder’s vehicle caused by any unknown party, including theft, flood or fire)
and the collision coverage claims (damage resulting from a collision when the policyholder
is at fault). Finally, we counted as N3 type those claims related to a set of basic guarantees
that include emergency roadside assistance or legal and medical assistance.

We use seven years of data for each policyholder, so all Ti = 7. For each individual,
we have seven observations made at successive time points for the three types of claim
considered here (i.e., third-party liability, comprehensive and collision, and all other guar-
antees) and for a set of covariates, some of which vary across time. Table 1 describes these
covariates.

Table 1. Explanatory variables used in the application

GEN Driver’s gender (1: women; 0: men)
ZON Driving zone (1: northern Spain, high risk; 0: rest of Spain)
LOY Customer loyalty (1: > 5 years with the company; 0: otherwise)
AGE Driver’s age (1: ≤ 30 years old; 0: otherwise)
POW Vehicle’s horsepower (1: ≥ 5500 cc; 0: otherwise)

4.2. Results

Table 2 presents the fitted models. We used trivariate Poisson and trivariate negative
binomial distributions for the innovations. For each family, we fitted the models that
assume: (1) full independence, neither time correlation nor cross correlation (ω12 = ω13 =
ω23 = α1 = α2 = α3 = 0); (2) only time series correlation (ω12 = ω13 = ω23 = 0);
(3) only cross correlation (α1 = α2 = α3 = 0); and (4) full structure, with both time and
cross correlation.

All models were fitted using the optim function in R. Initial parameters were selected
from the previous model by assuming the value 0 for the extra parameters. Please note
that the full independence model actually fits 3 separate GLM (Poisson or negative bi-
nomial regression). We also report the number of parameters and the AIC defined as
2L(M) + 2dM where L(M) is the maximized log-likelihood for the model M, and dM is the
number of parameters. Standard errors were obtained using the Hessian matrix from the
optim function.
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A comparison of the model, based on the log-likelihoods and formal LRT statistics,
shows that both terms are needed: cross correlation as captured by the trivariate distribu-
tion and time correlation as captured by the MINAR(1) model. The improvement in the
trivariate model is much larger. The negative binomial model is improving further since it
can capture the observed overdispersion and the excessive zero counts. Overall, the results
support the time series model with trivariate negative binomial judged by the best value of
AIC. Other information criteria select the same model.

Table 2. Fitted models.

LogLik Param AIC

Poisson

Full independence −53,365 18 −106,766
Only time series correlation −53,108 21 −106,258

Only cross correlation −52,427 21 −104,896
Full structure −52,174 24 −104,397

Negative binomial

Full independence −51,413 21 −102,868
Only time series correlation −51,315 24 −102,678

Only cross correlation −50,483 24 −101,014
Full structure −50,270 27 −100,594

The results for the selected model are shown in Table 3. The regression coefficients
for the three variables can be seen, as well as the autocorrelation parameters and the
overdispersion parameters of the three variables. For N2, autocorrelation is very small and
non-significant. In addition, no variables were found to be significant for N2. This was
expected since we have observed mostly 0 and 1 values. Autocorrelations for N1 and N3
are also small, but significant and necessary to fit the data at hand. For variable N1, ZON
and AGE are significant, while for N3, ZON, LOY, AGE and POW are significant.

Table 3. Estimated parameters based on the trivariate INAR(1) models with 3-variate negative
binomial innovation distribution. An * next to the estimated coefficient values implies significance at
a level of 5%.

N1 N2 N3

Est S.e. Est S.e. Est S.e.

Intercept −2.6720 * 0.0475 −9.3446 * 0.8997 −2.4594 * 0.0426
GEN 0.0520 0.0404 0.8404 0.4993 0.0358 0.0354
ZON 0.2167 * 0.0365 0.1255 0.5605 −0.1700 * 0.0348
LOY −0.0189 0.0312 −0.0851 0.4721 −0.1919 * 0.0267
AGE 0.2634 * 0.0405 0.6404 0.5345 0.2819 * 0.0346
POW −0.0124 0.0427 0.7738 0.8338 0.1757 * 0.0392

α1 0.0338 * 0.0035
α2 0.0033 0.0341
α3 0.0609 * 0.0040

φ1 0.0038 0.7951
φ2 6.2270 * 0.1861
φ3 0.1291 1.4172

ω12 0.1984 * 0.0085
ω13 4.9725 4.1412
ω23 0.3309 * 0.0141

To examine the performance of the model, we used the following approach. For all
observations, we kept out the last time point, i.e., t = 7. Then, we fitted the model up to
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time point t− 1 and calculated the expected frequencies for all triplets for the time point
t = 7 based on the conditional distribution

P(N1t = n1, N2t = n2, N3t = n3|N1,t−1 = x, N2,t−1 = y, N3,t−1 = z).

Next, summing up all the individuals, we obtain what we expect to see for that sample
of data for time point t = 7, given what we have seen up to point t = 6, i.e., we derive the
expected frequencies. To examine the 3-variate structure of the data, Table 4 presents the
observed and fitted numbers for the largest observed frequencies. The fitted numbers are
close to the observed ones. A χ2 goodness of fit test gives a value of 14.382 with 11 degrees
of freedom leading to a p-value of 0.2125, which implies a satisfactory fit for the model.

The marginal cases for the three variables can be seen in Figure 1. We have plotted
for each of the three variables the observed and expected frequencies. Quite a good fit can
be seen. Please note that for N2, the observed values at t = 7 had values of only 0 and 1.
Overall, we believe that the model captures the underlying structure and describes the
data at hand satisfactorily.

Table 4. Observed and expected frequencies for the most frequent triplets n1, n2, n3. The fit is
satisfactory. We obtain χ2 = 14.382 and p-value = 0.2125.

n1 n2 n3 Observed Fitted

0 0 0 12,559 12,570.27
0 0 1 733 774.94
1 0 0 484 478.36
1 0 1 176 163.01
0 0 2 141 122.38
2 0 0 96 92.32
2 0 1 31 28.97
0 0 3 29 24.01
3 0 0 28 25.70
1 0 2 28 24.54
3 0 1 12 6.19

Rest 51 57.31
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Figure 1. Observed and expected frequencies for time point t = 7 for all individuals. Each plot
corresponds to one of the three variables.



Mathematics 2021, 9, 505 12 of 13

5. Conclusions

In this paper, we developed a model to account for time and cross dependence for a
case of longitudinal multivariate count data. The time series part was captured by a MINAR
model with a diagonal structure. This was sufficient to account for the time dependence
in our case, but more complicated structure can be considered, such as a non-diagonal
matrix A or higher order models. In addition, families like multivariate INGARCH models
see [40] could be considered.

The dependence between the count variables was captured by Sarmanov-type mul-
tivariate distributions. This provides a flexible way to define multivariate distributions
reducing computational needs, such as those that copula-based models have. In our case,
we considered Poisson and negative binomial marginal distributions. Other choices like a
zero-inflated model are also plausible, with small changes in the model development.
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