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Abstract: We derive a stream function formulation for the dynamics of 2D active nematics in
the absence of topological defects. This formulation extends previous studies by incorporating the
flow alignment coupling. We study the linear stability analysis of the spontaneous-flow instability
and check it numerically. Then, we obtain numerically the 2D nonlinear stationary states for a
particular limit in which active forces dominate over elastic ones, and viscous dissipation dominates
over rotational dissipation. Finally, we find significant differences with previous results due to the
presence of the flow alignment coupling.

I. INTRODUCTION

In recent years, several advances have been made
within the context of fluid dynamics in active matter. An
active system is a nonequilibrium condensed system com-
posed of large numbers of active “agents”, each capable
of converting both stored and ambient free energy into
movement or mechanical forces. These complex systems
are of high interest in biophysics, since many remarkable
examples are biological in origin, such as bacteria and
self-organising bio-polymers. A thorough description of
soft active matter can be found in M. C. Marchetti et al.
[1] and in the references therein.

Specifically, we focus on “active gels”, a type of ac-
tive matter which consists of orientable and elongated
active particles suspended in a fluid medium. Further-
more, we consider the nematic case, where the active
particles themselves are head-tail symmetric. Therefore,
the final equations of this model will be invariant under
p to -p transformations, being p the polarisation vector.

The work presented in here is subsequent to the pa-
per of R. Alert et al. [2], which aims to study the
phenomenon of turbulence in active gels. In fact, they
provide a universal scaling law for active matter, where
the kinetic energy is shown to be E(q) ∼ q−1 at long
wavelengths. Although Kolmogorov’s scaling law E(q) ∼
q−5/3 for non active matter dates back to 1941 (see [3]),
the existence of universal scaling properties in active
flows has remained unclear until now, and several fun-
damental questions remain unsolved.

The minimal model introduced in [2], designed to cap-
ture universal properties of turbulence, was not fully real-
istic. In particular, it did not include the flow alignment
coupling measured by the parameter ν, which measures
the tendency of the orientation p to align with the flow
and at the same time the shear stress generated by a dis-
torted orientation of the field p (see R. Voituriez et al.
[4]).
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Hence, to assess the claim of universality of nematic
turbulence, a model of active gel including this transport
coefficient needs to be developed. To this end, we in-
clude this coefficient into the constitutive equations and
conservation laws, which allows us to obtain the equa-
tions ruling the system of an active nematic gel with the
flow alignment effect. Afterwards, an adaptation of the
numerical algorithm implemented by R. Alert in [2] is
performed in order to integrate the dynamics of the sys-
tem. Nevertheless, the new model with the added pa-
rameter turns to increase significantly the complexity of
implementing a numerical integration, so, in this work,
we focus on a particular limit of parameters.

II. MINIMAL MODEL OF ACTIVE NEMATICS

Let us consider a 2D active incompressible nematic in
a domain of area L2, viscosity η, frictional drag γ and
alignment coefficient ν. Let the polar field be given by the
unit director vector pα = (cos θ, sin θ). We assume that
pα has constant modulus and that the field θ is not sin-
gular, that is, we exclude topological defects. As shown
in K. Kruse et al. [5], the continuity equation for the
conservation of linear momentum reads

ρ(∂t + vβ∂β)vα = −∂αP + ∂β(σαβ + σaαβ) (1)

where ρ is the density, v the velocity, P the pressure
and the symmetric and antisymmetric parts of the stress
tensor are

σαβ = 2ηvαβ − ζqαβ +
ν

2
(pαhβ + pβhα − pγhγδαβ),

σaαβ = −1

2
(pαhβ − pβhα),

respectively, being ζ the active flow coefficient, hα the
molecular field, vαβ = 1

2 (∂αvβ +∂βvα) and qαβ = pαpβ−
1
2pγpγδαβ . For vanishing Reynolds numbers we have that
the left side in (1) also vanishes. Then, taking the curl
in (1) for RE=0 we obtain

curl(σαβ + σaαβ) = 0, (2)
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since curl(∂αP ) also vanishes as it is the curl of a gradi-
ent.

Now, we proceed to take the curl separately to the
symmetric and antisymmetric parts of the stress tensor.
With this aim, we firstly recall that the molecular field
is defined as hα = K∇2pα + h0‖pα where K is a constant

and h0‖ a Lagrange multiplier (see K. Kruse [5]). For sim-

plicity, we consider a local rotation in order to work with
the axis given by the parallel and perpendicular compo-
nents of the molecular field to the vector pα. Indeed, the
relation between both frames of reference is given by a
well-known rotation matrix in the plane.

Then, we need to find the expressions of h‖ and h⊥.
Since the definition of the molecular field contains a La-
grange multiplier involving only the parallel component,
h⊥ can be easily obtained from the projection of K∇2pα
in the perpendicular axis, which leads us to h⊥ = K∇2θ.

On the other hand, due to the presence of the Lagrange
multiplier, we cannot proceed as before to obtain the
parallel component. Alternatively, h‖ can be obtained
from the constitutive equation (see R. Voituriez [4])

dpα
dt

=
1

γ
hα − νpαvαβ (3)

where dpα
dt = ~v · ~∇p + ∂tp + ωαβpβ and ωαβ = 1

2 (∂αvβ −
∂βvα). After some straightforward yet tedious calcula-
tions, h‖ can be isolated from (3) to obtain that

h‖ =
γν

2

(
sin 2θ(∂2yψ − ∂2xψ) + 2 cos 2θ∂2xyψ

)
. (4)

Thus, introducing the stream function ψ such that vx =
∂yψ and vy = −∂xψ Eq. (2) finally reads

η∇4ψ +
1

2
K∇4θ + νB(θ) =

ζ

(
1

2
(∂2y − ∂2x) sin 2θ + ∂2xy cos 2θ

) (5)

with B(θ) = 1
2 (∂2y − ∂2x)(h‖ sin 2θ + K∇2θ cos 2θ) +

∂2xy(h‖ cos 2θ −K∇2θ sin 2θ).
To obtain a closed system of equations, we need to con-

sider another equation for pα. Taking it from K. Kruse
[5], we have that

(∂t + vβ∂β)pα + ωαβpβ =
1

γ
hα − νvαβpβ (6)

where we neglected the active alignment term propor-
tional to pα. Multiplying the vectorial Eq. (6) by
p⊥α = (− sin θ, cos θ) and rewriting each term we finally
get

∂tθ−
K

γ
∇2θ+

1

2
∇2ψ = (∂xψ)(∂yθ)− (∂yψ)(∂xθ)−νC(θ)

(7)
where C(θ) = 1

2 cos 2θ(∂2yψ − ∂2xψ)− sin 2θ∂2xyψ.
Eqs. (5,7) define our dynamical system. It is easy to

see that setting ν = 0 leads us to the model used in R.
Alert [2].

A. Linear regime and dimensionless form

It is clear that Eqs. (5,7) have a trivial homogeneous
solution with θ = 0, ψ = 0. Here we perform the lin-
ear stability analysis of this state which leads to sponta-
neous flow. To this end, let us consider a perturbation of
wavevector ~q forming an angle φ with px. Then, substi-
tuting the linear ansatzes θ = θ0 exp{i(qxx+ qyy) + Ωt}
and ψ = ψ0 exp{i(qxx + qyy) + Ωt} in Eqs. (5,7) and
linearizing them in terms of θ0 and ψ0, the linear growth
rate Ω(q) of the perturbation can be isolated. When-
ever the linear growth rate is positive, the perturbation
is unstable since its amplitude increases.

In fact, considering that qx = q cosφ and qy = q sinφ,
the linearized equations respectively read

θ0

(
1

2
Kq4 +

1

2
Kν(q4y − q4x) + ζ(q2y − q2x)

)

+ ψ0

(
ηq4 + γν2q2xq

2
y

)
= 0,

(8)

θ0

(
Ω +

K

γ
(q2x + q2y)

)
= ψ0

(
1

2
(q2x + q2y)− 1

2
ν(q2x − q2y)

)
.

(9)
Now, properly combining Eqs. (8,9) the growth rate can
be written as follows

Ω = −K
γ
q2

(
1 +

γ(1− ν cos 2φ)2

4η
(

1 + γ
4ην

2 sin2 2φ
))

+
ζ

2η

cos 2φ(1− ν cos 2φ)

1 + γ
4ην

2 sin2 2φ
.

(10)

It is convenient for the subsequent work to consider a
scaling of the equations in order to reduce the amount
of parameters of the system. With this aim, let us scale
the lengths by L, the time by γL2/K and the stresses by
K/L2. Furthermore, let us denote r = γ/η and define
the activity parameter as

A =
S|ζ|L2

K
r (11)

where S = −1(+1) for contractile (extensile) stresses.
The marginal curves Ω = 0 plotted in Fig. (1) represent
the boundary between linearly stable and unstable modes
in dimensionless variables. Indeed, it shows a substantial
change when ν > 1, what is called the flow alignment
regime, since this effect begins to be relevant. Specifi-
cally, some of the parallel modes are in that case unsta-
ble, as opposed to the flow tumbling regime for ν < 1.

B. Viscous dissipation limit with A finite

Due to the complexity of solving numerically the sys-
tem given by Eqs. (5,7), we focus on the particular case
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FIG. 1: Marginal curves Ω = 0 considering the scaling men-
tioned above, for r = 0 (left) and r = 1 (right). The inner
regions represent the unstable modes in the Fourier space,
since Ω > 0. In all cases, the activity is set to A = −200.

where γ � η (r → 0) while keeping the activity finite.
This stands to the physical limit where the viscous dissi-
pation dominates over the original from the nematic and
active stresses dominate over elastic stresses. After ap-
plying the scaling mentioned in Sec. II A, in this limit
Eqs. (5,7) read

∇4ψ = A

(
1

2
(∂2y − ∂2x) sin 2θ + ∂2xy cos 2θ

)
, (12)

∂tθ = ∇2θ − 1

2
∇2ψ + (∂xψ)(∂yθ)− (∂yψ)(∂xθ)− νC(θ).

(13)
Given that these equations depend on the flow align-

ment coefficient, this plays a role in the dynamics even
when γ � η (and A is finite). Hence, an analysis of these
equations will provide new insight into the dynamics in
active gels not shown in [2]. Furthermore, Fig. (1) il-
lustrates that in the linear regime, the system behaves
similarly for r = 0 and r finite, which also justifies that
this limit is meaninguful.

III. NUMERICAL APPROACH

To fully understand the behaviour of the system given
by (12,13) a numerical integration of these equations is
required. To this end, we used the algorithm imple-
mented by R. Alert in [2] as starting point and adapted
the routines therein to solve the system of our interest.

The resulting algorithm is a combination of spectral
methods and finite differences that discretely integrates
the equations in a n2-nodes square lattice of side L = 1
given a sinusoidal initial condition θ(~r, 0) = θ0 sin(~r · ~q).
The procedure consists of a certain amount k of steps,
integrating in each one a discrete time dt. In each step,
given the polar field, the stream function is firstly com-
puted in the Fourier space. In fact, it yields from the

Eq. (12) and from the properties of the Fourier trans-
form that the Fourier transform of the stream function
is given by

F [ψ]~q (t) =
A

q4 + ε

(
q2x − q2y

2
F [sin 2θ]~q − qxqyF [cos 2θ]~q

)
(14)

where the term ε = 10−8 is set to avoid the divergence
in the origin. Therefore, the stream function can be ob-
tained by computing the inverse Fourier transform of the
Eq. (14).

Once having the value of ψ for every point of the lat-
tice, the algorithm finds θ̇ using finite differences the
same way as in [2]. However, since now the term C(θ)
in Eq. (13) contains the crossed derivative ∂2xyψ, a pre-
scription is needed to compute this quantity. Within the
framework of finite differences, we have that

∂2xyψ(i, j) =
ψ(i+ 1, j + 1)− ψ(i+ 1, j − 1)

4∆Y∆Y

− ψ(i− 1, j + 1) + ψ(i− 1, j − 1)

4∆Y∆Y

(15)

being ψ(i, j) the stream function in the point (i, j) and
∆X, ∆Y the distances between consecutive points in
each axis. Lastly, the new polar field is defined as
θt+dt = θt + θ̇dt for every point in the lattice.

In the simulation we also include some noise added in
every step, to incorporate physical fluctuations, from ei-
ther thermal or active origin. Besides, this also helps the
numerical system to escape from unstable or metastable
states.

A. Testing the linear regime

The growth rate can be used as a test to check the
proper behaviour of the linear terms in the algorithm.
To this end, recalling the scaling and the physical limit
introduced in Sec. II A the growth rate can be written as

Ω = −q2 +
A

2
cos 2φ (1− ν cos 2φ) . (16)

Then, the growth rate can be obtained analytically us-
ing the expression (16) and computationally by comput-

ing θ̇/θ in every point of the lattice. In fact, Fig. (2)
shows high accuracy between the theoretical values of
the growth rate and the numerical computation, for some
of the transversal modes. This validates the numerical
scheme at least at linear level.

B. Simulation parameters

In all the simulations we have focused on contractile
stresses (S = −1) and considered activity parameters
|A| from 200 to 800. The mode of the initial condition
was taken as qx = 0, qy = 2π and its amplitude was
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FIG. 2: Validation of the growth rate for the transversal
modes. The curves represent −q2/A, while the points rep-
resent the quantity Ω

A
− 1

2
cos 2φ(1 − ν cos 2φ) for the corre-

sponding A, ν, qy and value of Ω obtained computationally.

θ0 = 0.07854. The time step used was dt = 3 ·10−6. This
was conditioned by the fact that a smaller value would
increase the simulation time, while a much bigger one
may lead to numerical instabilities.

All the simulations shown in the next section are in a
lattice with n = 256. However, since a direct integration
with that resolution was not feasible due to the high com-
putational time required, we proceeded as follows: firstly,
for every A and ν the stationary state was found in a lat-
tice of 128 × 128. Afterwards, the resulting polar field
was used to obtain a linear interpolation of this field in a
lattice of n = 256, which was used as initial condition to
run a simulation in this resolution. Of course, since this
state was already close to the stationary state, this was
reached in a relatively short time.

IV. NUMERICAL RESULTS

For all the combinations of the parameters A and ν
considered, we reached stationary states (see Fig. (3)).
Hence, our regime is far from being chaotic. Instead,
the phenomenon of active turbulence should appear for
higher values of the activity parameter, as seen in R.
Alert [2].

However, there are noticeable differences between the
stationary states for different flow alignment coefficients
when the activity increases. For ν = 0 and low activity
(|A| = 200) the stationary state shows one full oscillation
in the y direction, which corresponds to the most linearly
unstable mode (the dominant one). Still for ν = 0, Fig.
(3) shows how more complex zig-zag patterns are formed
for |A| = 400 and become fuzzier when increasing the
activity even further. Nonetheless, it seems clear that
the zig-zag states correspond to secondary instabilities
of the horizontal bands.

On the other hand, for ν > 0 these bands are not
stationary. Instead, for |A| = 400 oblique bands appear

defining an angle of φ = π/4 with the x axis. This pattern
corresponds to the mode qx = qy = 2π, which is linearly
stable since for this mode Ω < 0. Thus, the stationary
states having oblique bands yield from the nonlinear part
of the equations, which are responsible for exciting this
mode.

Lastly, it is also noticeable that when the activity in-
creases for ν > 0 and the bands are no longer stationary,
the resulting patterns are a perturbation of the oblique
bands.

Afterwards, we carried a simulation for |A| = 600 and
ν = 0, taking the stationary state for |A| = 600 and
ν = 1.5 as initial condition. The resulting stationary
state was slightly modified in terms of the amplitude but
conserved the oblique bands. We conclude that these
bands are also solutions of the ν = 0. These were never
found before, implying that they coexist with other sta-
tionary patterns, with different basin of attraction. In
fact, being this a nonequilibrium system, it is hard to
address analytically which state is more stable.

Another interesting conclusion we can draw from these
simulations involves also the stream function. If we now
take Eqs. (12, 13) for ν = 0 and consider a solution of
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FIG. 3: Polar field of the stationary states in a 256 × 256
lattice represented in degrees. The rows correspond to the
four values of |A|, from 200 to 800 in increments of 200 from
top to bottom and the columns show values of ν = 0, 0.5 and
1.5 from left to right.
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the form ψ = Kθ being K a constant, it can be seen that
such a solution can be a stationary state for a suitable
value of K. In fact, imposing that ∂tθ = 0 in the second
and computing the derivatives, we obtain that

∇2θ

(
1− K

2

)
= 0. (17)

Hence, for K = 2 this does not imply a condition on
the polar field. Therefore, we can select θ to fulfil the
Eq. (12) with ψ = Kθ. It follows from here that θ and
ψ = 2θ can be a stationary solution.

It is clear that whenever the polar field and the stream
function are proportionals, their contour lines will be
equal. Therefore, from Fig. (4) we know that the sta-
tionary solution found for |A| = 800 and ν = 0 is of the
form described above, since the lines where the polar field
is constant coincide with streamlines.

On the other hand, for ν > 0 the term −νC(θ) pre-
vents the solutions θ and ψ = 2θ from being stationary
in general. Thus, in this case the contour lines do not
have to coincide (see Fig. (4)).

FIG. 4: Contour lines of the stationary state for |A| = 800 and
ν = 0 (left) and ν = 1.5 (right). The orange lines represent
curves where the polar field is constant, whereas the green
lines are curves of constant stream function.

V. DISCUSSION AND CONCLUSIONS

In summary, we have introduced a new theoretical
model of a 2D active nematic that considers the flow
alignment effect and have derived the equations ruling
the dynamics of such a system. These new equations
show consistency with previous papers, leading to the

same expressions when ν = 0. Nonetheless, the new
parameter clearly increases their complexity introducing
new nonlinearities.

By linearizing these equations, we obtained the expres-
sion of the growth rate coefficient, which allows us to
study the stability at linear order. We also showed a
notable change for ν > 1 (the flow alignment regime),
since some of the parallel modes happen to be unstable,
contrary to the case of ν = 0.

Then, due to the complexity of the resulting equations,
we focused on the limit where r → 0 keeping A finite.
By introducing some adjustments in the software made
by R. Alert in [2] we have been able to integrate nu-
merically the dynamics for low activity parameters. As
expected, the regime was not chaotic and the stationary
states were obtained and discussed for ν = 0 and ν > 0.
Besides, we showed remarkable differences when consid-
ering a finite flow alignment coefficient. We found new
stationary states formed by oblique bands for all cases of
ν, and more complex 2D patterns for ν > 0 that differ
from their counterparts for ν = 0. In addition, we found
that the contour lines of the polar field and the stream
function were not equal, as used to happen for ν = 0.

Although the active turbulence is much beyond the
scope of this work, this serves as a starting point to un-
derstand this phenomenon considering the flow alignment
effect, which has been shown that significantly affects the
dynamics of the system. Of course, the general case with
non vanishing r has yet to be addressed. To this end
it is advisable to consider a finite elements method for
the numerical integration, since the explicit method used
in here can hardly be adapted to face the general case.
This, together with an exploration for higher values of
the activity parameter, will provide new insight into the
phenomenon of active turbulence.
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[5] K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, and K. Seki-
moto. Generic theory of active polar gels: a paradigm for
cytoskeletal dynamics. Eur. Phys., 16, 5-16, (2005).

Treball de Fi de Grau 5 Barcelona, February 2021


	Introduction
	Minimal model of active nematics
	Linear regime and dimensionless form
	Viscous dissipation limit with A finite

	Numerical approach
	Testing the linear regime
	Simulation parameters

	Numerical results
	Discussion and conclusions
	Acknowledgments
	References

