
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Twitter engagement model for the RecSys
2020 Challenge

Author:
Pere GILABERT

Supervisor:
Dr. Santi SEGUÍ

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

June 30, 2020

http://www.ub.edu
http://www.johnsmith.com
http://www.jamessmith.com
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Twitter engagement model for the RecSys 2020 Challenge

by Pere GILABERT

Recomendation systems is a wide field of research and it is present in many area of
our daily life. The RecSys ACM conference is the most important conference in the
recommendation area and each year it holds a competition, the RecSys Challenge.
The work here presented aims to solve the RecSys 2020 Challenge which consists
of giving a certain probability of two Twitter users to interact. We have developed
a model which uses the power of Gradient Boosting Trees to combine multiple fea-
tures we created to represent each interaction between users. Features such as popu-
larity or engagement were combined with and embedding of the tweet text to create
an interdisciplinary model that is able to reach 0.75 on the Precision-Recall area un-
der the curve metric and 17.64 on the Relative Cross Entropy. The popularity feature
and previous reactions to the same language were discovered as the most relevant
features for our model. Regarding the competition, our team reached the ninth place
of the challenge.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Acknowledgements
To my project manager Santi for his high dedication in this work and his interest in
the competition. At no time I have felt alone and it has been a pleasure to work with
him.

To my family and friends for the constant support and confidence in all the projects
I do.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Introduction . 1

1.1.1 Motivation of this project . 2
1.1.2 Goals . 2

1.2 Document structure . 3

2 The RecSys Challenge 2020 5
2.1 RecSys . 5
2.2 The problem . 5
2.3 Evaluation . 6

2.3.1 Precision-Recall Area Under the Curve (PR-AUC) 7
2.3.2 Relative Cross-Entropy (RCE) . 7

2.4 The data . 7
2.4.1 Tweet Features . 8
2.4.2 Engaged With User Features (Tweet creator) 8
2.4.3 Engaging User Features (Tweet receiver) 8
2.4.4 Engagement Features . 9
2.4.5 Additional concepts . 9

3 Background 11
3.1 Classifiers and Neural Networks . 11
3.2 Natural Language Processing . 12

3.2.1 BERT model . 13
3.3 Baseline model . 15

4 Implementation details 17
4.1 Organizing the data . 17
4.2 Analysing the dataset . 18
4.3 Features creation . 19

4.3.1 Tweet features . 19
4.3.2 Tweet creator features . 20
4.3.3 Tweet receiver features . 21

4.4 Language model . 22
4.5 Train-Val split . 23
4.6 Model ensemble . 23

viii

5 Results 25
5.1 Feature importance . 25
5.2 Training the model . 26
5.3 Competition Results . 27

6 Conclusions and Future Work 29
6.1 Conclusions . 29
6.2 Future Work . 29

A Technicalities 31
A.1 Github Repository . 31

Bibliography 33

1

Chapter 1

Introduction

1.1 Introduction

We live surrounded by information. At all times, fresh news appear while others
become obsolete. In addition, because of the large volume of information provided
to us every day, users have become very selective about spending time on a partic-
ular application, social network or game. They need relevant and engaging content,
aligned with their interests, so they don’t get bored and stop using it.

Machine learning is one of the most powerful fields of research in the technology
sector, which seeks to provide solutions to specific problems using, generally, a large
volume of historical data. From these data, patterns of systematical behavior can be
predicted. Currently, these techniques are applied in fields as diverse as marketing,
medicine or information technology. A subfield of Machine Learning, although born
first, is the world of recommendation systems.

Within the recommendation systems field there are several widely known appli-
cations. This is the case of song recommendation systems, ads for products to be
purchased or content that is shown to users on social networks.

This project focuses on the study of the social network Twitter. This is possible
thanks to a huge set of data made public by this Twitter platform (Belli et al., 2020)
and that tries to solve the problem of recommending tweets.

FIGURE 1.1: Active Twitter (2010-2019). Image font: Statista

Twitter has, nowadays, more than 330 million as we can see in Figure 1.1 active
users so its recommendation algorithm is one of the most relevant factors for its
continuous growth. Its users will spend more time within the platform if the content

2 Chapter 1. Introduction

shown to them is in line with their interests, so it is an interesting challenge how to
decide the information to show to each user. This is the problem we tackle in this
project. The final goal is to be able to design a tweet recommendation system to show
more relevant information to the user and thus improve their browsing experience.
Concretely, the aim is to increase the positive reactions of users to the tweets shown,
that is, we want to maximize the number of likes, replys, retweets and retweet with
comment. These are the four actions a user can react to a tweet with.

With this approach in mind, we face different challenges and some difficulties:

• First and foremost, the large volume of data. The examples provided in the
dataset mentioned above contains about 200 million examples of user interac-
tions and 100 million examples of user pairs that have not interacted with each
other (negative sampling).

• Secondly, the need to develop a multidisciplinary model that combines classic
characteristics of users directly (such as the number of followers, the frequency
of tweets...) with more complex characteristics that need the understanding of
the environment (such as the topics of interest of a user from the text of his/her
tweets, the popularity of a user, his influence on the network...).

1.1.1 Motivation of this project

This project is challenging for several reasons. Firstly, on a personal level, because it
is the first Challenge with worldwide recognition in which I participate and further-
more this challenge is part of a high level congress in the data science sector. The
possibility of presenting a paper at the ACM RecSys 2020 conference is also a good
incentive to try to do my best since it would be my first presented paper.

Secondly, it is a unique opportunity to apply all the knowledge learned during
this last year in which I have completed the Masters in Fundamental Principles of
Data Science. The concepts learned in controlled environments like small problems,
should serve to think big and develop a complex solution to the problem at hand.

1.1.2 Goals

The main objective of this project is to develop a sophisticated recommendation sys-
tem. The model must combine different disciplines of the Machine/Deep-Learning
world such as:

• To extract features from the given dataset.

• To be able to generate new features by combining temporal information of past
tweets.

• To create a Language Model using some State-of-the-Art model that works in
the multilingual case and to generate a text embedding of the text.

• To create a robust model where all these features are combined.

• To submit several solutions to the Recsys platform and compete with the top
teams.

1.2. Document structure 3

1.2 Document structure

• Chapter 1: Introduction to the thesis topic.

• Chapter 2: The Recsys Challenge. An overview of the Recsys conference and
the definition of the current challenge.

• Chapter 3: Background. All the theoretical concepts necessary to understand
the procedure followed in this project. Here we will devote some time on the
classification algorithm, the language model, and the baseline method pro-
posed by the organizers.

• Chapter 4: Implementation details. Here we will explain all the process to
construct the model, including the analysis of the dataset and the construction
of the features.

• Chapter 5: Results. The outcomes of the previous chapter work.

• Chapter 6: In the last Chapter, a summary of all the work done, conclusions
and further steps.

5

Chapter 2

The RecSys Challenge 2020

2.1 RecSys

The ACM Recommender Systems conference (RecSys) is one of the most important
conferences in the world. It is entirely dedicated to recommendation systems, a very
extensive field in many areas, and which is very specific to each problem faced.
This is like this because there is not a perfect recommendation system for all prob-
lems since it depends a lot on the type of data available, the type of objective to be
achieved, the users it is aimed at, among other factors.

The 2020 edition is the 14th edition of the conference and the 10th edition of the
challenge. In this contest, a problem is presented to be solved and the participants
have approximately three months to develop a recommendation algorithm to be able
to claim the prize.

The last four competitions organized by RecSys were:

• 2019 Trivago: Their products are accommodations that they offer to its clients.
The participants had to predict the accommodations each user clicked while
surfing its web.

• 2018 Spotify: Spotify is a well consolidated platform for music recommenda-
tion. The goal of the challenge was to complete playlist given only the first few
songs.

• 2017 XING: The problem presented by XING was the job recommendation but
focusing on the problem of cold start, that is, when we do not have information
about a new user that starts to use the platform or a new job that does not have
information of the users who would like it.

• 2016 XING: A job recommendation system.

2.2 The problem

The problem presented in the 2020 RecSys Challenge is the recommendation of
tweets but not in a direct way. Given a pair of users and a tweet generated by one of
them the goal is to assign a probability from 0 to 1 that the second user will react to
the tweet as it is shown in Figure 2.1. There are 4 classes of reactions a user can give
which are:

• Like: The user can mark the message with a heart to indicate she/he likes it.

• Reply: The user can replay to the creator of the tweet.

6 Chapter 2. The RecSys Challenge 2020

• Retweet: The user can share a tweet from another person in its own personal
page.

• Retweet with comment: The user can share a tweet from another person in its
own personal page, adding an extra message.

FIGURE 2.1: Problem statement

Moreover, this is not a classical classification/regression problem with 4 classes since
a user can give multiple reactions to the same tweet for example, and a typical com-
bination, is Like & Retweet. Thus, we have 4 classification/regression problems to
deal with.

2.3 Evaluation

In order to evaluate the performance of a submission, 2 metrics for the 4 targets will
be used to compute the final score of a submission, so each submission has 8 values.
Then, the average for the first metric is computed and for the second metric too.
Finally, all the users will be ranked according to these two values in the following
way. All users are ranked with respect to the first metric but and with respect to the
second metric separately. This two positions are added together to obtain the final
classification score. So, for example, a participant that is the first on the first metric
and second on the second one, will have a total score of 1 + 2 = 3.

In order to understand the two metrics used to evaluate each submission, some
concepts need to be explained.

• Precision: In a binary classification problem we have elements of one class
(positive) and elements of the other class (negative). If we count the number of
correctly classified elements in the positive (TP: True Positive) and the negative
elements that are missclassified as postive (FP: False Positive), we can define
the precision as

Precision =
TP

TP + FP
(2.1)

• Recall: Using the same notation as before, the Recall computes formula is

Recall =
TP

TP + FN
(2.2)

2.4. The data 7

• Cross-Entropy / Log-Loss: In a binary classification problem, we can define ŷi
as the real label and yi as the predicted target. Then, the Cross-Entropy for a
set of N examples is defined as

CEpred = − 1
N

N

∑
i=1

[
ŷi log(yi) + (1 − ŷi) log(1 − yi)

]
(2.3)

2.3.1 Precision-Recall Area Under the Curve (PR-AUC)

Precision-Recall is a well know metric to evaluate the performance of a regression
algorithm. The plotted curve summarizes the trade-off between the true positive rate
and the positive predictive value for a predictive model using different probability
thresholds. Then the PR-AUC is the value of the area under the Precision-Recall
curve.

2.3.2 Relative Cross-Entropy (RCE)

To compute the Relative Cross Entropy first we need to define:

CTR =
Positive examples

Total number of examples
(2.4)

This value is specially designed for unbalanced datasets (like this one). From here,
we can compute the Naive Cross-Entropy that is the Cross-Entropy between the real
labels and a vector with the value CTR repeated to match the labels length. That is:

CEnaive = − 1
N

N

∑
i=1

[
ŷi log(CTR) + (1 − ŷi) log(1 − CTR)

]
(2.5)

Finally, the Relative Cross Entropy can be defined as the quotient

RCE = 100 ×
CEnaive − CEpred

CEnaive
(2.6)

As a final note, one can see that minimizing the Cross-Entropy, the Relative Cross
Entropy is maximized.

2.4 The data

The data made public by Twitter is about 200 million interactions between users
during two weeks. Specifically, the data provided is from 2020-02-06 to 2020-02-
19. In addition, during this period, 100 million negative interactions have also been
generated, that is, pairs of users and tweets in which there has been no interaction.

The data is divided into three different sets. The first one is the training set. This
dataset contains interactions of the users during the first week available, i.e. from
2020-02-6 to 2020-02-12 with the information of whether or not an interaction took
place and the type of interaction. The two other datasets contain the information
for the following week, i.e. 2020-02-13 to 2020-02-19 but without the information
on whether or not there was an interaction between the users. During the whole
contest, only one of these two files was provided and it was used to upload partial
solutions to a web platform that evaluates this file. During the last two weeks of the

8 Chapter 2. The RecSys Challenge 2020

competition, the third file was provided with the same format as the second one, to
generate the final solution.

Each example consists of multiple fields:

2.4.1 Tweet Features

• Text tokens: Ordered list of Bert ids corresponding to Bert tokenization of
Tweet text

• Hashtags: Tab separated list of hastags (identifiers) present in the tweet

• Tweet id: Tweet identifier

• Present media: Tab separated list of media types. Media type can be in (Photo,
Video, Gif)

• Present links: Tab separated list of links (identifiers) included in the Tweet

• Present domains: Tab separated list of domains included in the Tweet (twit-
ter.com, dogs.com)

• Tweet type: Tweet type, can be either Retweet, Quote, Reply, or Toplevel

• Language: Identifier corresponding to the inferred language of the Tweet

• Timestamp: Unix timestamp, in sec of the creation time of the Tweet

2.4.2 Engaged With User Features (Tweet creator)

• User id: User identifier

• Follower count: Number of followers of the user

• Following count: Number of accounts the user is following

• Is verified: Is the account verified?

• Account creation time: Unix timestamp, in seconds, of the creation time of the
account

2.4.3 Engaging User Features (Tweet receiver)

• User id: User identifier

• Follower count: Number of followers of the user

• Following count: Number of accounts the user is following

• Is verified: Is the account verified?

• Account creation time: Unix timestamp, in seconds, of the creation time of the
account

2.4. The data 9

2.4.4 Engagement Features

• Engagee follows engager?: Does the account of the engaged tweet author fol-
low the account that has made the engagement?

• Reply engagement timestamp: If there is at least one, unix timestamp, in sec-
onds, of one of the replies

• Retweet engagement timestamp: If there is one, unix timestamp, in seconds,
of the retweet of the tweet by the engaging user

• Retweet with comment engagement timestamp: If there is at least one, unix
timestamp, in seconds, of one of the retweet with comment of the tweet by the
engaging user

• Like engagement timestamp: If there is one, Unix timestamp, in seconds, of
the like

2.4.5 Additional concepts

There are some concepts that may need a further explanation:
Firstly, the Bert identifiers are a direct conversion of the tweet text into a list of

numerical values. We’ll talk about them in more detail later.
Secondly we have the UNIX timestamp. This is a common format for represent-

ing dates in digital format that counts the seconds that have passed since January 1,
1970 (UTC).

Lastly, we say that a Twitter account is verified if a blue mark appears next to the
user’s name. This mark is a distinction given by Twitter to the accounts of important
people and serves to distinguish that account from possible fake accounts created by
other users.

11

Chapter 3

Background

3.1 Classifiers and Neural Networks

Neural networks have meant a gigantic advance in the field of artificial intelligence
as they are capable of facing very different problems with excellent results. The basis
of this project is based on the development of two different types of algorithms,
capable of learning some specific characteristics and predicting a value. The first
one is a classifier. A classifier is an algorithm capable of distinguishing samples
from different classes as can be seen in Figure 3.1.

(A) Decision boundary for a binary problem. Image
font: Wikipedia

(B) Decision tree. Image font: Victor Zhou

FIGURE 3.1: Two types of classifiers

For this specific problem we have used LightGBM (Ke et al., 2017), a well known
algorithm based on the Gradient Boosting technique. In order to be able to under-
stand this concept, first we need to talk about what a Decision Tree is.

A decision tree is a structure used in Machine Learning as a classifier. As we
can see in Figure 3.1b, from a series of chained conditions, we can classify a sample
into a specific category. In each node of the tree, the dataset is separated into two
categories depending on a condition. In each terminal node of the tree, there is a
label, that is, a category for the data set that satisfies the previous conditions.

One of the major advantages of these methods is their interpretability. Decisions
made at each decision node can be represented by a combination of the initial actual
characteristics of the data. In contrast, most machine learning algorithms (and deep
learning algorithms such as neural networks) do not have this property. The learned
model can be thought of as a black box that receives some input elements and from
which a prediction comes out.

There are many algorithms that use this method to classify. RandomForest, XG-
Boost, Adaboost or LightGMB, are some of the most known methods.

12 Chapter 3. Background

Now we add a new concept, Gradient Boosting Decision Trees. Here we do not
use just one decision tree but combine multiple trees to make the prediction. The
trees are trained iteratively, that is, one at a time, to minimize a target we call loss
function. The way to train is relatively simple, you separate the data that is in a
node if that minimizes the loss function. A good way to prevent the algorithm from
overfitting, is to limit the number of splits that can make each tree.

There are two different strategies when it comes to building a tree. The first,
level-wise, expands by levels. This method keeps the tree balanced so the search
time is as short as possible. The second, leaf-wise, expands the node that optimizes
the most. This second method is more likely to overfit the dataset but is more scal-
able when we have a very large dataset. Figure 3.2 shows these two methods.

(A) Level-wise. XGBoost (Chen and Guestrin,
2016) uses this method

(B) Leaf-wise. LightGBM uses this method

FIGURE 3.2: Two types of tree growth

One of the most relevant points to consider when expanding the tree, is to decide
how to split the data in each node. The optimal solution would be to go through
all the examples and all the characteristics of our dataset but this would take an
enormous amount of time.

Instead of doing this, LightGBM uses a grouping of the data features and splits
them over these groups instead of the original features. This is a great improvement
in the speed of the algorithm.

3.2 Natural Language Processing

Natural Language Processing is a field of linguistics that, combined with artificial
intelligence, creates algorithms for processing human language. There are several
related problems in this field such as

• Named Entity Recognition: Where the goal is to classify words based on
whether they refer to locations, dates, organizations... In Li et al., 2012 an ex-
ample of this task is shown, using Twitter data.

• Translation: Converting an original phrase in one language into a the same
meaning sentence in a different language. The latest (and the State-of-the-Art
in translation) model available is T5 (Raffel et al., 2019) created by Google, it is
able to translate in real time among other things.

• Text reconstruction: Given a text with missing words, fill it with words that
make sense in the global context of the sentence. As we will see later on, the
BERT model is trained using this task.

• Sentiment Analysis: Given a sentence, to be able to classify its sentiment, so
to differentiate whether it is expressing a positive, negative or neutral emotion,
for example. This is a very common task of te previous years and similar analy-
sis can be found in Agarwal et al., 2011; Pak and Paroubek, 2010; Kouloumpis,
Wilson, and Moore, 2011 also using the data gathered from Twitter.

3.2. Natural Language Processing 13

3.2.1 BERT model

The BERT Model (Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding) (Devlin et al., 2018) is a text model developed by Google in 2018 that
was a revolution in the NLP sector. This model is trained using two giant datasets
(BookCorpus (Zhu et al., 2015) and Wikipedia) and the authors released several pre-
trained models. In particular, the one of our interest (Bert-Multiligual-Base-Cased)
is trained using Wikipedia in 104 languages.

The structure of the model is quite simple. It uses 12 fully-connected layers of
786 neurons each. In addition, it uses 12 special structures called heads that rep-
resent patterns of interaction between different word types. These patterns do not
share parameters with each other so that one pattern does not influence another. An
example of these 12 patterns can be found:

1. Interaction of a word with the next word in the sentence.

2. Interaction of a word with its previous word.

3. Interaction of a word with its other appearances in the sentence.

4. Interaction of a word with punctuation marks.

With 12 patterns per layer and 12 different layers, there are 144 interaction pat-
terns (attention patterns) in each BERT model. In total, all the BERT architecture has
over 110 million parameters.

The input format of phrases to the model is also very particular. Phrases always
begin with a specific token [CLS] and end with another key token, [SEP]. In the
case that the input does not consist of a single sentence as we will see in Question
Answering tasks for example, the format is [CLS] sentence 1 [SEP] sentence 2 [SEP].

To encode the words in tokens, a conversion using three different embeddings
is used. The first one is where transformations are made in order to find the root of
the verbs and other transformations to reduce the word complexity. The second one
is the segment embedding. We will have only one segment in case the input is only
one sentence and two segments if the task requires two input sentences. The third
and last embedding, consists of the position of the word within the sentence. We can
see how two consecutive phrases are coded in the example of the original paper in
Figure 3.3.

FIGURE 3.3: Triple embedding for BERT tokenization

To create the BERT pre-trained model, the authors trained it in two different
tasks. Firstly the Masked LM task where a few words in the sentence are hidden
and the model has to reconstruct them.

14 Chapter 3. Background

Second, the Next Sentence Prediction (NSP) task. Given two sentences the model
has to identify whether the second sentence is next (in context) to the first one. This
task is used in Question Answering (QA) where the problem faced is to try to predict
if a sentence is an answer to a given question. Another problem, Natural Language
Inference (NLI) consists on, given two sentences, predicting if they convey the same
meaning, for example, the description of a situation or a product review made by
two different people.

The token [CLS] has a special function within the classification tasks. The final
hidden state of that token is the input used by the classifier to determine the output
of the model. As we can see in Figure 3.4, the lasts hidden states are discarded and
only the first one is kept. In this case, the hidden state corresponding to the token
[CLS] has 784 values that enter the classifier, a fully-connected network that reduces
the dimension from 784 to 2 and applies a softmax at the end to predict for example,
if the sentiment of the sentence is positive (1) or negative (0).

FIGURE 3.4: CLS token usage. Image font: Chris McCormick

3.3. Baseline model 15

3.3 Baseline model

In the original twitter paper (Belli et al., 2020), a baseline model is presented. A
distinction is made between features by the type of data these features represent
and not by the intrinsic properties of what they represent in reality.

• Numerical features: In order not to introduce a numerical value as a feature,
numerical features are separated into different groups (buckets) depending on
the quantile they are placed on the distribution function. In the paper it is
proposed to work with 50 buckets. Each bucket is represented with a vector of
zeros and a one according to the bucket it represents (One Hot Encoding).

• Category features: They are converted directly into buckets using their value.
For example, the "tweet type" characteristic that can take values: Retweet, Re-
play, Quote or TopLevel can be encoded with one of the vectors [0, 0, 0, 1], [0, 0, 1, 0],
[0, 1, 0, 0] and [1, 0, 0, 0].

• ID features: In this case the authors decided to make a hash of the value and
split it also into 50 buckets to make the One Hot Encoding. For example,
the language 22C448FF81263D4BAF2A176145EE9EAD would be converted to
a number from 0 to 49 and transformed with One Hot Encoding to a vector of
50 values.

The model they present has the following architecture (Figure 3.5):

FIGURE 3.5: Baseline model presented

The three types of features, transformed into the One Hot Encoding format, are
passed into a layer of 16 neurons each. This makes a total of 48 neurons. Their output
is combined after the activation Leaky ReLU is applied. These are all connected with
a layer of 128 neurons followed by a layer of 64 neurons followed by a 32 neurons
one and finally a layer of 4 neurons to obtain the final output of the four classes

16 Chapter 3. Background

that we want to predict. Between the layers a Leaky ReLU is applied except for the
output of the network where a sigmoid is applied instead of a softmax in order to
have a multiclass output.

17

Chapter 4

Implementation details

In this Chapter we will explain the different features created from the original dataset
we mentioned in section 2.4.1. In addition, we will also explain the implemented text
model which is able to classify how popular a tweet will be by looking only at the
text. Finally, we will go over how we have unified these two concepts to create the
final model.

4.1 Organizing the data

One of the first problems that arose when we started the challenge was the large vol-
ume of data available to us. The original dataset with about 167 million samples was
too big to fit in the RAM memory of our computer or the server we had dedicated
to the challenge.

So, the first thing we did was to split the data into smaller files we called train_batches.
Each of them contained 1 million samples from the original file. Next, we noticed
that the samples in the original file did not follow any particular order. We decided
that, if we wanted to take advantage of the past to predict the future, the most im-
portant thing was to sort those samples. That is how we generated a set of files that
we called train_batches_timestamp where each of them refers to a specific time of day.

File 001 002 003 · · · 166 167 168
% positive 48.42 48.40 49.61 · · · 38.38 35.92 27.31

Unique tweets 422475 425174 430127 · · · 369857 365057 337080
Unique writers 341187 341175 344058 · · · 298881 296113 275728

Unique engaged 821514 843079 823413 · · · 690067 679229 592966
Day 02-06 02-06 02-06 · · · 02-12 02-12 02-12

Hour 00 01 02 · · · 21 22 23

TABLE 4.1: Files sorted by timestamp with some statistics.

In Table 4.1 we can see some statistics of the firsts and lasts batches. We can see
how this temporal order is important in Figure 4.1.

It shows the number of users (tweet makers, tweet receivers and number of
unique tweets) by hour of the day. There is a clear pattern that repeats every 24h.

18 Chapter 4. Implementation details

FIGURE 4.1: Number of users and tweets by hour

4.2 Analysing the dataset

From the training dataset with 167 million examples, 76.5 million are positive (with
some interaction between users) and the rest are negative (without interaction). We
can see in the Figure 4.2 that the number of tweets per user is very unbalanced. Here
we show the top 100 users regarding the number of tweets present in the dataset.
The maximum number of times a user appears is 172 thousand times and the dis-

FIGURE 4.2: Presence of users in the dataset (Top 100), logarithmic
scale

tribution has a very long tail with many users showing up only once. This is not
the number of tweets a user made but the number of tweets his/her tweet is shown
with an interaction attached.

When analysing the dataset, looking deep into the features, we have noticed
some patterns we would like to explore. In the next section, features that came from
that analysis are explained in detail.

4.3. Features creation 19

4.3 Features creation

Machine learning algorithms, specifically the LightGBM classifier that we have used,
needs numerical features to be trained. As we have mentioned, the classifier chooses
features and distributes the data in a classification tree, trying to make the best pos-
sible splits. Thus, on the one hand we have converted the original features to nu-
merical variables using different strategies such as One Hot Encoding, and on the
other hand, we have generated new features by combining information from differ-
ent samples of the training data, which has been one of the most important part of
this project. All these features can be split in three different groups.

4.3.1 Tweet features

The features of the tweet refer to the text of the tweet, as well as the time in which
it was done or the language in which it was written, that is, everything that refers
to the context of the message and the specific text. The text, being a larger section to
which we will dedicate a more detailed explanation, is found in a later section.

1. Present media: This field is formed by the GIF, Photo and Video values. So
we’ve created 4 features:

(a) Media: contains the total number of media elements in the tweet.

(b) Photo: contains the number of photos in the tweet.

(c) Gif: contains the number of GIFS in the tweet.

(d) Video: contains the number of videos in the tweet.

A concrete example, the tweet that contains the string Photo\tPhoto\tVideo is
represented by the vector [3, 2, 0, 1] since it has 3 media elements 2 of which
are photos and 1 video.

2. Hashtags: A hashtag is a keyword that accompanies a tweet and serves as a
category or tag. In the original dataset, the hashtags were hashed so that we
could not reconstruct the original word. We introduce a new feature with the
number of hashtags present in the tweet.

3. Present links: This field is formed by all the links present in the tweet. They
are hashed so there is no information of what link it is. The feature created is a
numerical one containing how many links are in the tweet.

4. Present domains: As the previous one, this field contains the domains this
tweet links to. They are also hashed so the feature created is how many do-
mains the tweet contains.

5. Tweet type: There are four types of tweet: Retweet, Quote, Reply, and Toplevel.
We encoded each of them in a categorical 0-1 variable so we obtained a 4-
dimensional vector for each tweet with a single one and three zeros. For ex-
ample the vector [0, 1, 0, 0] represents a Quote tweet.

6. Languages: As we can see in Figure 4.3 (in log scale), there are 66 different
languages present in the original dataset. Although they’re all hashed and we
can’t tell which one is which at first, from the text of the tweet it’s easy to tell.
We can see how the language with the most presence is English with some 67
million samples. Secondly, and by far the most important, we have Japanese

20 Chapter 4. Implementation details

FIGURE 4.3: Languages present in the original dataset.

with about 26 million samples. In last positions we have languages with only
142 and 15 examples that are impossible to decode since the decoder was not
trained using them (We will devote more time in the Bert encoder-decoder
later in this Chapter). We used a One Hot Encoding of 66 positions to encode
the language.

7. Time: Time is a major factor when making a publication in social networks. It
is well known by the "Instagramers" and "Twitters" the hours when they have
to publish their photos or messages to have the greatest impact and to reach
more people. In our case, we have dealt with this problem in two different
ways. First of all, we have introduced a feature with the time of the tweet.
A tweet is more likely to reach more people if it’s done in the afternoon rather
than in the morning. On the other hand, we have also introduced a new feature
with the number of weeks since the creation of the tweet to know if the tweet
is no longer current.

8. Relevant words: As suggested in Suh et al., 2010 and 10 Ways To Get More
Retweets, there are words that are very influential in the capture of Likes and
Retweets. This is a topic that we would have liked to explore more in depth
but, due to lack of time, we could not fully analyze. What we did was an initial
analysis and we incorporated the following two features: If the tweet contains
the characters RT or the word "Retweet".

4.3.2 Tweet creator features

1. Verified account: The account of this user may or may not be verified. We
encoded this information in a single binary feature where 1 represents that the
user’s account is verified and 0 represents that it is not.

2. Ratio feature: As it is suggested in Teutle, 2010, the ratio between following
users and followers is a good metric to determine the importance of a node
in the network. In this case, this ratio is representative of the importance of
a user. We added the quotient between number of followers and number of
following users as a new feature.

4.3. Features creation 21

3. Engagement features: A key factor in knowing if two users will interact with
each other is whether or not they have interacted before. We’ve built 4 features
(one for each class we want to predict) that contain the ratio between the tweets
made by one user and how many of them contain an interaction in some way
by the second user.

4. Popularity: One of the best features we have implemented is popularity. Here
we look at how people react to a user’s tweets not because of the content of
the tweet but because of the person who made it. As an example, we have
many tweets from Barack Obama where the probability of Like or Retweet is
very high simply because he is the one who writes it. So we created 4 new
features we called them popularity with the number of reactions a user had. It
is important to mention that we can not include future information, otherwise
our classifier would overfit the data. In order to do so, we only considered past
tweets to the one we were currently evaluating.

4.3.3 Tweet receiver features

1. Engagee follows engager: This is a simple binary feature where a 1 represents
that the creator of the tweet is followed by the other user.

2. Verified account: We incorporated the same feature as we did in the tweet
creator to capture if the account of the tweet receiver is verified.

3. Ratio feature: In the same way as we did for the tweet creator ratio, we created
the same ratio for the tweet receiver user.

4. React to language: Let’s assume that the person who tweets is A, the person
who receives the tweet is B. We’ve created a feature that analyzes how likely it
is that person B will react to person A’s tweet based on the language in which
the tweet is written. In the case that the tweet is written in a "foreign" language
for person B (i.e. languages in which B does not react), we want to assign a
very low probability to that example. This helps the classifier to be more sure
which examples are negative, i.e. that they have not had any interaction. To
build this feature, we have used the temporal order of the dataset that we have
commented in 4.1. So, to fill this feature in the train dataset, we only used
the past tweets, otherwise we would incorporate future information, which
would cause an overfitting. Then, for the validation and test sets we used all
the information of all the training batches.

5. Popularity: In a Similar way as we did for the tweet creator user popularity,
there are users who react very strongly to almost anything they are shown.
With that, we incorporated 4 new features. Like the previous features, it is
important not to use future information to build popularity, so we only use
information from tweets created prior to the tweet we analyze.

22 Chapter 4. Implementation details

4.4 Language model

As discussed in Chapter 2, BERT is a very capable model that can solve various
language-related tasks with few modifications to the original model. If the task is
relatively simple, simply adding a layer at the end of the model to serve as a classi-
fier is sufficient. Our problem here was not to classify the tweet texts but to learn a

FIGURE 4.4: Fine-Tunning the BERT model. Approach 1

vector representation (embedding) in order to represent the users’ preferences. Ide-
ally, we would pass two tweets to our model and, by learning from pairs of tweets
that users have liked, the model would return whether both tweets are usually liked
by one same user and so if they belong to the same field of interest. So, the first
approach we made was the model that we can see in Figure 4.4 where, as input it
receives a couple of sentences and as output it returns if these two sentences can be
of interest or not for the same user. Apart from this, as we have mentioned that we
need an embedding of the text, we introduced a dense layer of 50 neurons before the
classifier. Thus, once the model is trained, by inputting the same sentence twice, we
can obtain its embedding of size 50. This is the vector of features we can input in the
global model.

This approach did not give the expected results so we switched to a simpler
but more effective approach that we can see in Figure 4.5. Instead of focusing on
sentence pairs, we focused only on the content of the text. Thus, we moved from
relying on users to just worrying about the text of the tweet. The model we used
is very similar to the previous one, where now the input is only one sentence and
for the output we use a layer of 50 neurons for embedding and another layer of 4
neurons with a sigmoid at the end to predict the probabilities of Like, Retweet, Reply
and Retweet with comment. To train the model we first calculated, for each tweet of
the train dataset, the ratio of positive interactions to the total number of interactions.

From this model we can extract more information since, the embedding of 50
represents the text and the output of 4 values represents the probabilities of the four

4.5. Train-Val split 23

FIGURE 4.5: Fine-Tunning the BERT model. Approach 2

classes we have to predict. So in the final model, we have introduced those two
value vectors, in total, 54.

4.5 Train-Val split

To do a good training of the classifier, we need a good training and validation sets.
We could think that, mixing the data in a random way and make a separation of, for
example, 10% for the validation, is a good idea. But a serious problem arises. What
about the tweets that appear many times in the dataset? Those tweets will be in both
sets which will produce a worse generalization of the classifier. Our approach, and
not the only one as we will discuss in Future Work section, is to split the tweets into
the two sets so that neither tweets nor users are shared. This way we can be sure
that the final result in the test set is faithful to the result of our training.

4.6 Model ensemble

As we have already mentioned, the final model is a LightGBM with all the features
we explained in detail, with the incorporation of text in the form of embedding. We
created four copies of the model to train the four targets separately. To train each
model we have used the binary Cross-Entropy as a loss function. In addition, so
that the classifier does not overfit, we have limited the number of tree nodes that
are built to 70 and with a maximum depth of 10 levels. We also introduced two
regularization factors L1 and L2 to the loss with parameter λ = 1 in both cases. All

24 Chapter 4. Implementation details

the models are trained for 1000 epochs with early-stopping if the Cross-Entropy on
the validation set stops decreasing.

Additionally, we also created three versions of the same model for each class and
trained them using a different set each. Then we averaged the output of these three
versions to generate the final submission.

In Figure 4.6, we show the final architecture of our model. We can see the three
groups of features we explained and the text features that are inputted to the four
LightGBM classifiers, each one with a different output, i.e. one is returning the
probability of Like and the others return the probabilities for Replay , Retweet and
Retweet with Comment. We can see also that the final prediction is the average of
the same model bootstraped three times to make a better prediction.

FIGURE 4.6: Architecture of the final model

25

Chapter 5

Results

5.1 Feature importance

Since the LightGBM is a tree algorithm, the importance of each feature can be re-
trieved from the model. There are two types of importances provided inside the
lightgbm package, split and gain. The first one, split, returns the number of times the
feature was used to split data when constructing the tree. The second one, gain, con-
tains the amount of loss that is reduced when using this feature. In Figures 5.1 and
5.2 we can see an example of these two metrics for the LIKE model implemented.

FIGURE 5.1: Split features in the LIKE model

We can see that the feature that was used the most to split is tweet_times. This is the
feature where we count the appearances of a user in the dataset. In the next places
we found the EWUF (Engaged With User Features i.e. tweet creator) and EUF (En-
gaging user features i.e tweet receiver). These are the popularity features we com-
mented in Chapter 4. We can also see that between the top features it appears the
emb_C0 that is the first component of the 4-dimensional vector we used in the lan-
guage embedding which corresponds to the LIKE embedding so we know that, this
way, the embedding is working. In this same way we can see that the gain these
features give is highly related with the order of that feature in the split plot. We can
see in the gain plot that the feature that gave the most gain is the emb_C0, followed

26 Chapter 5. Results

FIGURE 5.2: Gain features in the LIKE model

by num_lang_react. This one is controlling previous interactions of the users in the
language the tweets were written, so it is very important to discriminate between
liked and not liked tweets (specially relevant in the not liked ones).

5.2 Training the model

In Figure 5.3 we can see how the model is performing in the test set regarding Cross-
Entropy and Precision Under the Curve metrics. We can see that, after 100 epochs
the values reached are close to the minimum and maximum in the plots of both rows.

FIGURE 5.3: Evaluation metrics for the final model

5.3. Competition Results 27

5.3 Competition Results

One of the goals of this project was to generate submissions and improve the model
in next iterations. We can see in Figure 5.4 how we were improving during the chal-
lenge. The left hand side plot shows the mean, for the four targets, of the Relative
Cross Entropy metric. Each point in the curve represents a different submission. In
the same way, the right hand side plot shows the mean evolution for the Precision-
Recall Area Under the Curve metric. In Figure 5.5 we can see the final position of

FIGURE 5.4: Evolution of the mean for the RCE and PR-AUC metrics
during the competition

our team Not_Last_Place in the private leaderboard. From a total of 45 participants
in the final phase of the challenge we ended in the 9th position.

FIGURE 5.5: Final leaderboard of the competition

29

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We created a model capable of performing really good in the challenge and, for that,
we were in the top positions of the leaderbord until the last week where we struggled
with some problems regarding the final data provided by Twitter. The dataset was
reduced each week and we needed to adapt to this situation at the end.

We can see that we satisfied all the goals proposed at the beginning of this docu-
ment:

• We extracted multiple features of the dataset, encoding them into categorical
variables using the One Hot Encoding technique. We also applied logarithms
to some of the features in order to not take into account the exact value (possi-
ble way our model may overfit the training data) but the trend of the data.

• We created multiple features such as the popularity, engagement and language
reaction which past data was combined in order to predict the future.

• We developed a Language Model using BERT, a State-of-the-Art model from
2018 that was able to predict the engagement of a tweet based only in the text.
BERT is one of the latest models that supports multilingual text.

• We created a classifier (LightGMB) were all the features created were grouped.
Here the predictions of the language model were used in order to create two
text embeddings.

• We submitted over 50 solutions to the public leaderboard were we were in
the top 3 positions for several weeks. For the last phase of the challenge, we
submitted 2 more solutions to the private leaderboard to obtain the final 9th
position.

6.2 Future Work

Since the competition was only opened for 3 months, we could not do all the things
we wanted to do in order to perform better. Things that would have probably im-
proved the model are:

• Creating a better embedding with another task that involves the users and not
just the text. This was one of the parts were we struggled the most because text
models are very heavy and take a lot of time to train. The model we trained
with pairs of sentences was a great approach but did not perform as we ex-
pected.

30 Chapter 6. Conclusions and Future Work

• More features of the users. We did not exploit in its full capacity the users
and their connections. Algorithms such Personalized PageRank and Network
related metrics could give a good improvement of the results.

• Since we worked results-based in to obtain the best score in the competition,
we did not spend all the required time analyzing the features we were creating.
Further analysis of these features could be performed in order to discard non-
relevant ones or to exploit features that are under its maximum potential.

• Other different separations for the dataset could be considered, for example,
separating the data according to the day the tweet was made, since the train
dataset contains a week of tweets, we could keep the last day for validation
and the first days for training.

• Dependencies between the targets could have been analysed in more detail.
For example, the target Retweet+Comment is always associated with a Retweet
and it’s something we haven’t taken into account. A model that uses the other
interactions as input could give better results.

31

Appendix A

Technicalities

A.1 Github Repository

All the code necessary to run this project can be found in the following github repos-
itory

https://github.com/perecasxiru/Recsys2020_final.git

There are two main files which are the only necessary to be executed in order to
reproduce the results. The execution order that has to be followed is the following.

1. 10_Final_Notebook_M4.ipynb: It contains the main execution. This notebook
does the following operations:

(a) Create the folder train_batches with the data split in files of 1 million sam-
ples.

(b) Create the folder train_batches_timestamp where all the data is organized
in files according to the hour the tweet was written. Each file is also sorted
internally.

(c) Transforms given test files to csv formats and store them into disk.

(d) Create popularity feature.

(e) Create hashtag popularity features.

(f) Create engagement features.

2. 10_Generate_Bert_Embedding: It contains all the code related with the text
processing and text model. It needs to be executed from top to bottom. At the
end, there are some configuration cells that can be fully customized in order to
generate embeddings for any other choosen file.

3. 10_Final_Notebook_M4.ipynb: After executing all the BERT part of the pro-
cess, now we can merge the embeddings with the other features and follow
the final steps:

(a) Run Transformation to transform all the dataset into numerical variables

(b) Split into train and validation sets.

(c) Train the models.

(d) Apply the models to predict the test.

(e) Generate the submission.

https://github.com/perecasxiru/Recsys2020_final.git

33

Bibliography

10 Ways To Get More Retweets. https://www.quicksprout.com/twitter-retweets/.
Accessed: 2020-06-18.

Agarwal, Apoorv et al. (2011). “Sentiment analysis of twitter data”. In: Proceedings of
the workshop on language in social media (LSM 2011), pp. 30–38.

Belli, Luca et al. (2020). “Privacy-Preserving Recommender Systems Challenge on
Twitter’s Home Timeline”. In: arXiv: 2004.13715 [cs.SI].

Chen, Tianqi and Carlos Guestrin (2016). “XGBoost”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. DOI:
10.1145/2939672.2939785. URL: http://dx.doi.org/10.1145/2939672.
2939785.

Devlin, Jacob et al. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv: 1810.04805 [cs.CL].

Ke, Guolin et al. (2017). “LightGBM: A Highly Efficient Gradient Boosting Decision
Tree”. In: ed. by I. Guyon et al., pp. 3146–3154. URL: http://papers.nips.cc/
paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-
tree.pdf.

Kouloumpis, Efthymios, Theresa Wilson, and Johanna Moore (2011). “Twitter senti-
ment analysis: The good the bad and the omg!” In: Fifth International AAAI con-
ference on weblogs and social media.

Li, Chenliang et al. (2012). “Twiner: named entity recognition in targeted twitter
stream”. In: Proceedings of the 35th international ACM SIGIR conference on Research
and development in information retrieval, pp. 721–730.

Pak, Alexander and Patrick Paroubek (2010). “Twitter as a corpus for sentiment anal-
ysis and opinion mining.” In: LREc. Vol. 10. 2010, pp. 1320–1326.

Raffel, Colin et al. (2019). Exploring the Limits of Transfer Learning with a Unified Text-
to-Text Transformer. arXiv: 1910.10683 [cs.LG].

Suh, B. et al. (2010). “Want to be Retweeted? Large Scale Analytics on Factors Impact-
ing Retweet in Twitter Network”. In: 2010 IEEE Second International Conference on
Social Computing, pp. 177–184.

Teutle, A. R. M. (2010). “Twitter: Network properties analysis”. In: 2010 20th Interna-
tional Conference on Electronics Communications and Computers (CONIELECOMP),
pp. 180–186.

Zhu, Yukun et al. (2015). “Aligning Books and Movies: Towards Story-like Visual Ex-
planations by Watching Movies and Reading Books”. In: arXiv preprint arXiv:1506.06724.

https://www.quicksprout.com/twitter-retweets/
https://arxiv.org/abs/2004.13715
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/1810.04805
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://arxiv.org/abs/1910.10683

	Abstract
	Acknowledgements
	Introduction
	Introduction
	Motivation of this project
	Goals

	Document structure

	The RecSys Challenge 2020
	RecSys
	The problem
	Evaluation
	Precision-Recall Area Under the Curve (PR-AUC)
	Relative Cross-Entropy (RCE)

	The data
	Tweet Features
	 Engaged With User Features (Tweet creator)
	Engaging User Features (Tweet receiver)
	Engagement Features
	Additional concepts

	Background
	Classifiers and Neural Networks
	Natural Language Processing
	BERT model

	Baseline model

	Implementation details
	Organizing the data
	Analysing the dataset
	Features creation
	Tweet features
	Tweet creator features
	Tweet receiver features

	Language model
	Train-Val split
	Model ensemble

	Results
	Feature importance
	Training the model
	Competition Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Technicalities
	Github Repository

	Bibliography

