
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Apply Machine Learning in the Company
to Predict the Quality of Sales Leads

Author:
Jordi SOLÉ CASARAMONA

Supervisors:
Xavier LLORENS LATORRE

Mariano YAGÜEZ INSA

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

August 31, 2020

http://www.ub.edu
https://www.linkedin.com/in/jordisolecasaramona/
https://www.linkedin.com/in/xavierllorenslat/
https://www.linkedin.com/in/xavierllorenslat/
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Apply Machine Learning in the Company to Predict the Quality of Sales Leads

by Jordi SOLÉ CASARAMONA

Many organizations are still driven by intuition and experience-based decision mak-
ing. With this type of decisions, problems such as human bias, loss of experienced
workers, and the reluctance to use more sophisticated information systems can be a
severe problem. With the arrival of the era of data, companies have at their disposal
more information than never before, but not many know how to use this resource to
its full potential. In this work, we are going to develop a data science pipeline to pre-
dict the quality of the sales leads for the EMEA 3D sales department in HP, a project
that aims to enhance the transition to a data-driven decision-making organization.

In order to solve this problem, the developed pipeline was focused on two tasks. The
first, involved developing a web scraping tool to obtain information not previously
available on the company database or that was very time consuming to acquire due
to the size of the database, of more than 40,000 leads. And second, the training of a
machine learning algorithm to predict a score quality together with an explainability
of the main features of the decision for every lead.

The result of this process greatly impacted the business, all the knowledge was kept
always in the company inside the machine learning model, and the explanations of
each decision are making gain confidence in the model. Furthermore, the sales team
used the score to make more data-driven decisions and save time by prioritizing the
best quality leads. The accuracy of the trained Extreme Gradient Boosting algorithm
to do the predictions proved to be a 13.45% improvement over the baseline model
with a total accuracy of 0.94282 when tested on the test set.

Lastly, all these tasks were put together as a pipeline and uploaded to a server inside
HP to execute the process automatically every day with minimal human interven-
tion. The pipeline developed proved to give very positive results for the organiza-
tion and further developments are being made to enhance the results.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Acknowledgements
First of all, I would like to thank my tutor inside HP, Xavier Llorens Latorre, that has
guided me through the whole process of understanding the problem and building
a solution for it with his wide domain knowledge of the sales process. Also, thank
the EMEA 3D ISR sales team for their feedback to improve the feature engineering
and predictions, especially Thibault Rames. Likewise, I would like to acknowledge
the EMEA 3D head of sales, Emilio C. Juarez to let me use the organization data to
build the machine learning pipeline for this project.

Lastly, thank professor Mariano Yagüez Insa for his advice at the beginning of the
process.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Related Work . 3
1.4 Objectives . 4
1.5 Report layout . 4

2 Background information 5
2.1 Web scraping . 5
2.2 Tree based algorithms . 5

2.2.1 Random Forest . 5
2.2.2 Extreme Gradient Boosting . 6

2.3 Interpretability and Explainability . 7

3 Data Prepossessing 8
3.1 Data sets . 8

3.1.1 System original information . 8
3.1.2 Scraping information . 9

3.2 Data Cleaning . 10
3.3 Feature Engineering . 10
3.4 Label Encoding . 12

4 Experiments & Results 13
4.1 Validation Metrics . 13
4.2 Baseline . 14
4.3 Random Forest . 14
4.4 Extreme Gradient Boosting . 16
4.5 Model selection . 17
4.6 Test set performance . 18

5 Pipeline 20
5.1 Pipeline description . 20
5.2 Pipeline automation . 24
5.3 Achieved improvements . 25

6 Discussion 27
6.1 Future work . 27
6.2 Conclusion . 28

A Master’s thesis source code 29

viii

Bibliography 30

1

Chapter 1

Introduction

1.1 Motivation

The sales process has always been a human to human interaction for many centuries.
Where the seller tries to capture the buyer’s needs and attempts to solve them with
the product offered while capturing the maximum value for the company. Nowa-
days not much has changed, this process is done frequently through the internet
but most of the time it boils down to human to human interaction, especially when
dealing with large transactions. The main difference now is that companies track
every little movement that the potential customer makes. This entails the creation
of abundant information that many companies don’t know how to use. The usage
of this data could enhance decision making and minimize the costs of the company,
gaining a competitive advantage in the process.

The use of Data Science tools in non-technical departments, especially in big and
well-established companies, is difficult. Most of their sales process is still guided by
the intuition of the salesmen on a particular trace of information from the potential
customer. This information is called lead, and they usually contain personal details
about the customer, such as, what company is he working for, what role is he in,
among others. The intuition gained through experience is used by the salesman to
determine what leads have a high probability to go further in the sales funnel. Be-
cause this intuition is not stored and it is difficult to pass to others, every time the
salesman is replaced this knowledge gets lost. Even more when considering that the
average stay time length for this position in HP (called Inside Sales Representatives
or ISR’s for short) is less than 2 years for this group.

Furthermore, the salesman of the given company is not the only one that is after the
customer, other salesmen from competing companies are usually after the same deal
too. Hence, it is important to go through the different leads and prioritize those that
have a higher chance of success before the competition.

Due to all the above, it is clear that losing information and knowledge is not an
option, and that companies should embrace ways to use the full potential of the
data they have. Subsequently, a bigger investment in data-related profiles could
lead to an overall improvement in the sales and marketing process. This will sup-
port the transition from individual small intuition-based decisions, to an algorithmic
decision making using previous information from every other ISR in the company.
Creating an organization-wide knowledge that even with the replacement of the
salesmen, could never be lost. This will make the expertise reside always inside the
organization.

2 Chapter 1. Introduction

1.2 Problem Statement

The main problems in sales teams are: the high rotation of personnel, their decisions
based on intuition, and their division in multiple sub-regions that have different
needs, creating information silos between regions.

In this project, we aim to focus on the prediction of the status for each one of the
leads from HP’s 3D Multi Jet Fusion (MJF) printers in the European market, as well
as to minimize the salesman’s decisions errors.

There are 4 possible status of leads:

• Qualified: When the lead is good to pass the filter and go further in the sales
funnel. The customer shows potential buying interest in the product. Approx-
imately 2,500 leads (6.17%).

• Nurture: When the lead is good but it is not ready to go to the next sale stage
just yet. This could be due to customer budget constrains or because they are
waiting for new material developments. Nurture leads are set to be recon-
tacted after a period of time that ranges from 6 months to 2 years. Approxi-
mately 3,500 leads (8.64%).

• Closed: This is where the leads that didn’t have a good quality nor entered
any of the two previous states reside. The customer just requested informa-
tion without any intention of buying the machine. Approximately 30,000 leads
(74.08%).

• New: In this state, we find the newest leads that have not been classified in any
of the definitive above states just yet. These are the leads that the ISR has to
decide in what state they belong in by getting information about the company
and their interest in HP’s product. These "New" leads are the leads that the
developed machine learning algorithm will tell us in what category they will
most likely wind up in. Approximately 4,500 leads (11.11%).

The size of the dataset is currently more than 40,500 leads from the fiscal year 2016
quarter 1 to the fiscal year 2020 quarter 4. On average, every week 257 new leads are
entered into the system. In the following sections, we will see the description of the
information from every lead.

Note that these MJF printers have a range of prices from 150,000 to 450,000 USD.
And thus, due to it being a high priced product and only B2B, the number of leads
in the system is not as high as in other company divisions with cheaper products
such as personal computers. Notice that the 3D Printing division started in 2016.

It is in these "New" leads, that had not been assigned to any state, where the ma-
chine learning algorithm is going to be used. Because we want the output to be
easily understood by anyone, regardless of their background, the output score must
be trouble-free to understand. To do so, the distinction between Good and Bad leads
was made. Where good leads are leads that have been assigned to Qualified or
Nurture states, and bad leads are those that belong in Closed state due to their null
capacity of generating a deal.

Also important is the fact that the score for every lead won’t be just a binary score,
but instead, a score that ranges from 0 to 1 in order to differentiate the leads with a

1.3. Related Work 3

score of 0.9 with the ones with 0.6. Thereby, we could use this more detailed score to
build a priority list of leads to be contacted based on their score.

Another problem that we will have to face is that because there are only 6,000 leads
in either Qualified and Nurture states (Good leads) versus the 30,000 Closed leads
(Bad leads) in the system, an imbalanced classification problem arises.

Every week, an average of 257 leads enter the system. In addition, due to the COVID
pandemic, most of the marketing campaigns are done online, resulting in an increase
in leads assisting in these events. For these new leads, the salesman has to decide
if they will be classified to Qualified, Nurture, or Closed leads using their previous
experience and knowledge. Additionally, they have to prioritize the best leads to be
contacted first using the CRM that many times does not have the information about
the segment or products produced by the lead. This is a problem because human
bias can be introduced to the decision making and knowledge gain though experi-
ence will be lost when the person exits this position.

Moreover, and due to the manager’s request, the developed algorithm has to have
the ability to explain the decisions for each individual lead. This is done to help
the team better understand the algorithm’s decisions and give the capability to the
salesman to learn from the algorithm and improve their decision making and trust
to the model.

In addition, due to this information being dynamic, especially the activities per-
formed to the leads, this pipeline needs to be executed in an automated daily man-
ner. This is because the score can change after performing, for example, an activity
such as a phone call with the customer.

And lastly, while the pipeline was developed, the 3D department in HP changed
its CRM (Customer Relationship Management) from Dynamics to Salesforce. This
meant that the column names were changed, some fields used by the algorithm
where deleted, and new ones created. Thus, the implementation had to be revised
again to adjust the pipeline to the change of CRM.

1.3 Related Work

Applying machine learning in sales is becoming an important topic, especially sales
prediction inside the companies. These enterprises are transitioning from tradi-
tional forecasting techniques to more sophisticated machine learning algorithms to
improve their predictive analytics and sales forecasting (Cheriyan et al., 2018). In
other analysis (Korolev and Ruegg, 2015) authors claimed that Boosted Tree algo-
rithms like Extreme Gradient Boosting are state-of-the-art for many sales predic-
tion problems. Moreover, other publications declare that research has shown that
companies perform better when they apply data-driven decision-making instead of
intuition-based decisions, and drives decisions away from human biases (Provost
and Fawcett, 2013). Some lines of work investigate how machine learning explain-
ability on business is used to help domain experts to iteratively evaluate and up-
date their beliefs using methods such as EXPLAIN and IME (Bohanec, Borstnar, and
Robnik-Sikonja, 2017).

4 Chapter 1. Introduction

1.4 Objectives

The aim of this work is to successfully predict a score for each lead to help the sales-
man know if the lead will become good (Nurture or Qualified) or bad (Closed). This
will involve getting extra information from companies by using web scraping tech-
niques to have a better knowledge of their company products and size. Furthermore,
understand the main reason behind the good leads and, at the same time, yield an
explanation for the ISR’s to understand the score outputted by the algorithm. Lastly,
automate the processes by building a pipeline so it can be executed every day with
minor human intervention.

1.5 Report layout

To easily follow this paper, the report layout has been divided in 6 chapters:

• Chapter 2: Where we will explain in detail some of the methodologies used in
this project.

• Chapter 3: In which the data processing will be explained. From the features
that compose the different datasets to the cleaning done to them, as well as the
feature engineering developed and encoding used.

• Chapter 4: On this section we will go over the experiments and results ob-
tained with the different machine learning algorithms used. By looking at the
validation metrics, we will choose the best algorithm to perform the predic-
tions.

• Chapter 5: We will go over the details on how the pipeline works, their inner
processes, and its automation. Moreover, we will expose the benefits that this
project has bring to HP.

• Chapter 6: And lastly, we will go over the conclusions and the future work that
could be done to further enhance the project.

5

Chapter 2

Background information

In this chapter, we aim to provide the background information to achieve a better
understanding of the concepts and techniques used in this pipeline.

2.1 Web scraping

Web scraping is a tool used to extract information from public websites using a web
browser. These processes consist of a spider or web crawler designed to obtain data
automatically without any human interaction. This code retrieves an HTML of the
web page or from the desired part of the page where the information resides. Then,
using dedicated packages like BeautifulSoup the wanted information can be cut out
from all the HTML web page code.

One of the main purposes of web scraping is to build a database and to perform data
analysis with the retrieved information for better decision-making with extra infor-
mation that we didn’t have before. While this practice is not illegal it is not consid-
ered legal, and many companies such as LinkedIn try to protect their most valuable
asset, their data, using advanced techniques. The company even went as far as suing
100 anonymous scrapers, but the US court’s decision was that data scraping of pub-
licly available information does not constitute a violation of the CFAA (Computer
Fraud and Abuse Act), and hence, it is not considered a criminal offense nor crime.

2.2 Tree based algorithms

Tree-based algorithms are a type of supervised learning techniques that are very
popular due to its high performance and interpretability. Because their building
blocks are decision trees, we can understand each of their decisions by looking at
their nodes and can perform both classification and regression tasks. In this paper,
we are going to focus on two types of tree-based algorithms to better understand
how they work.

2.2.1 Random Forest

Random Forest algorithm is a type of Bootstrapping aggregation or Parallel Ensam-
ble Learning. In this approach, we grow multiple decision trees independently from
each other and decide the output decision by performing the average of all the re-
sulting decision trees when we are facing a regression problem, or takes the majority
vote when the problem is a classification.

If the number of the trees in the forest, N, is large, it makes the overall forest more

6 Chapter 2. Background information

robust to the variability of the output, giving the effects of K-fold cross-validation.
Its performance improvement is due to the reduction of the variance of the classifier
while maintaining its bias. The algorithm is described as follows:

1. Samples from the training set, X, are taken randomly but with replacement in
smaller subsets xn.

2. Grow a full tree using, for example, the ID3 algorithm (Iterative Dichotomiser
3) from (Quinlan, 1986) algorithm with no pruning. When splitting, we select
d < D, where D is the total input variables and d a subset of D.

3. Compute the Information Gain and split the node to reduce the entropy within
the random subset of samples xn.

4. Repeat the process for all the subsets xn to build the forest.

This algorithm is widely used because it has many benefits such as:

• It is interpretable. Humans can understand the decisions made by the algo-
rithm because the variables and the values of the split are visible in the nodes.
The model also outputs the importance of the variables by counting the at-
tribute used to do the splitting as being it more important.

• Can perform both classification and regression tasks.

• Easily handles irrelevant attributes by imposing Gain=0 to them.

• Can handle missing data.

• Very fast at testing time: O(depth).

While the main drawback of Random Forest would be that because its greedy ap-
proach, trees may not find the best configuration to fit the data.

2.2.2 Extreme Gradient Boosting

Extreme Gradient Boosting algorithm or XGBoost algorithm is a type of Boosting or
Sequential Ensamble Learning where each component in the aggregation depends
on all the others. By using this method, the algorithm is capable of correcting the
errors made by the model in the previous iteration. The XGBoost algorithm was de-
veloped by (Chen and Guestrin, 2016) and, as well as the Random Forest algorithm,
XGBoost works for regression and classification problems.

But what makes Extreme Gradient Boosting one of the most used algorithms in Kag-
gle competitions and state-of-the-art in some problems is its features:

• Extreme Gradient Boosting improves the performance of Gradient Boosting
because it uses second-order gradients and regularization techniques like Lasso
and Ridge.

• It uses parallelization for sequential tree building. Its training time is far lower
than algorithms like Random Forest, this is one of the keys to why it has be-
come such a popular model.

• The algorithm is built to optimize the resources of the hardware, it has cache
awareness and "out-of-core" computing.

• It can naturally handle sparsity.

2.3. Interpretability and Explainability 7

2.3 Interpretability and Explainability

Many times interpretability and explainability are confused, nevertheless, they are
different concepts. Interpretability can be defined to be the degree of white box,
meaning in which extend we can explain the mechanism used to go from input to
output, and how will the output change when the input is tweaked. Whereas ex-
plainability is how you can explain the model in human terms, even if the model is
not interpretable.

One of the main benefits of using decision trees family algorithms is that the de-
cisions made by these models can be explained and understood by a human, due
to its splits using axis-orthogonal hyperplanes. And this is very important because
now you could explain the algorithm to non-technical profiles and since the model
is capable of being explained, the trust in it grows as now we can explain why did
the algorithm output a certain score. Furthermore, with these explanations, we are
capable of enhancing human decision making and even correct errors or biases of
the models as we can see the decisions of the algorithm.

Libraries like LIME (Local Interpretable Model-Agnostic Explanations) from (Ribeiro,
Singh, and Guestrin, 2016) help us better understand the decision of the algorithm,
and because it is model-agnostic, it is independent of the type of method used. LIME
provides what its called local model interpretability, meaning it explains individual
predictions by approximating the model from the neighborhood of the prediction.
It tweaks a single data sample by changing the feature values and observes the re-
sulting impact on the output, developing a model approximations of the black box
that is the algorithm. Hence, LIME helps grow trust in the model since for every
prediction we can explain the "reason why" of the prediction.

8

Chapter 3

Data Prepossessing

In this chapter, we are going to firstly explain the data sources behind this project to
fully understand the features of the final dataset. Secondly, the processes to clean
user-entered data. And lastly, the feature engineering developed using domain
knowledge aiming to improve the performance of machine learning algorithms.

Disclaimer: The data used for this project is highly sensitive and as part of the con-
fidentiality agreement signed with HP, only minimal amounts of data with no cus-
tomer details can be taken out of the company nor be externally used. As a result,
no data exploration can be publicly shown.

3.1 Data sets

The databases used in this project to build the final dataset fed to the algorithm can
be divided in two groups:

3.1.1 System original information

This data is extracted manually with csv files from the corporate Salesforce CRM from
3 different tables:

• Lead database: Here we can find personal information of the customer: name,
country, company, the position of the contact inside the company, when the
lead was created or modified, what type of machine are they interested in, etc.

Every lead has a unique primary key called Response-Id that is a sequential
number in ascending order, thus, it is related with the time when the lead was
created and with the similar leads created on a given campaign. In this table of
the database we have the label to predict, this is the status (Good or Bad lead)
in which the lead will most probably wind up (see section 1.2).

We can also find information related to what sector the company is in, email,
and phone of the contact. But, because this is information that has to be intro-
duced manually, it is sometimes missing or liable to have some errors.

• Activities database: It shows the tasks that the sales team performed to a given
lead. These can be a call, custom e-mail, massive e-mails, etc. With this table
we are able to track how many touches did we have with each customer, giving
us a good indication of customer engagement. Furthermore, the date when
those activities were performed is also stored together with some comments
that the ISR introduces manually.

3.1. Data sets 9

• Campaigns database: In what trade shows, events, webinars or other market-
ing campaigns have the lead been present. All the events where the customer
went are kept, in conjunction with the date.

3.1.2 Scraping information

This is the extra information that the web scraping algorithm gets from the web
pages of LinkedIn and Glassdoor. By doing this, we are saving salesmen time looking
for detailed information about the new companies in those same portals. Further-
more, with extra information about the companies, the salesman can have better
decision making and also the machine learning algorithm can use this data to im-
prove its outcome. More details on the scraping process in the Pipeline description
in chapter 5, where we will explain how this was achieved.

• LinkedIn scraping: LinkedIn could find approximately 79.5% of the compa-
nies listed in the Lead database. In those companies found on the web, rele-
vant information such as the number of employees, headquarters, foundation
year, contact phone, products, and vertical of the company was obtained. In
addition, 45% of them had extra commentaries about their main products, but
those descriptions were not always in English and needed to be translated. The
scraping also takes the LinkedIn company name to later check if the found in-
formation was from the correct company.

• Glassdoor scraping: From Glassdoor the information scraped was: the re-
ported income of the companies, as well as the number of employees and their
company vertical. Fewer companies were found using this web and the details
were not as accurate as the ones found in LinkedIn. Thus, if the information
of the company was found in both web pages, the data from LinkedIn was the
one used.

Using the scraped information for more than 40,000 leads, the total number of leads
segmented, meaning the industry of the companies scraped, went from a 31.83% to a
84.26%. This was achieved by combining the results from HP’s CRM, and the scrap-
ings of LinkedIn, and Glassdoor. Because of the huge number of lead that needed to
be scraped at the beginning, multiple scrapings were run in parallel for 3 weeks to
obtain the past lead information.

These scraping information gave HP very important findings. We improved the
knowledge that both Sales and Marketing teams can use for better targeting the in-
dustries with the highest chance of having good leads and better analyze the market
size and status. Regarding the 15.74% of leads whose segment not found using web
scraping nor in the CRM data, are thought to be companies that are not big enough
or not technological enough to be on the web. This also gives us the information that
they might not have the technology or the size to buy a 3D printer.

Regarding the full dataset used for machine learning, the data was joined together
in a first normal form with the Response-Id as the primary key for joining the data
sets from the system original information of HP’s CRM. Because of what we were
looking for in the scraped web pages were companies, the company name act as the
primary key to join both tables obtained from the scraping information of LinkedIn
and Glassdoor. Lastly, the resulting tables from the CRM and the extra scraped in-
formation were joined using the company name as the primary key.

10 Chapter 3. Data Prepossessing

3.2 Data Cleaning

Because we are dealing with data introduced manually by sales personnel, it is keen
on some errors. Furthermore, the scraping process had some cleaning to be made.
In this section, we unfold the data cleaning processes that take place in the pipeline.

The first modification is to generalize the different nine states that the lead can have
from the company CRM to the 4 states we described in section 1.2. This is done be-
cause there is fine detail coming from the CRM lead state that it is not needed for the
machine learning prediction. Recall that we just want to know for every new lead,
the probability in which it will be Qualified or Nurture (good lead), or a Close lead
(bad lead).

Another important cleaning performed to the data was in the "Phone number" field.
This is because these data was introduced manually by the ISR’s and because we are
dealing with all EMEA countries (Europe, Middle East, and Africa) the telephone
numbers can be very different, with mismatching digit length and with sometimes
a plus sign in the front, or dashes between numbers. In order to standardize the
phones, all punctuation marks and spaces were removed.

From the scraped LinkedIn and Glassdoor information, we obtained the segment
in which the company operates in. But, these web pages use different terminology
than HP’s CRM. For example, SEAT S.A. is in the segment of "Mobility and Trans-
portation" for HP, "Automotive" for LinkedIn, and "Manufacturer of transportation
equipment" for Glassdoor. Hence, a cleaning transforming the scraped segments to
HP’s had to be made. This was done by duplicating the columns of their respective
segment information and replacing it by and approximation of HP’s from an auxil-
iary excel file to translate the segments to HP segments. By doing this, we kept both
the original LinkedIn and Glassdoor segment and its HP’s equivalent, standardizing
the data. The HP segments are more general, non-detailed segment.

Also from the scraped information, we obtained the two columns that needed clean-
ing because they were intervals. These are company income and company size.
Because the algorithm can not work with interval due to it being strings, these had
to be transformed to numbers without altering their ordinal nature. To carry out this
task, the upper bound was assigned to the interval, and in this way, the distances be-
tween intervals were preserved and not hashed to random numbers. For example, a
company with "1001 - 5000 employees" was assigned to 5000.

3.3 Feature Engineering

Using the domain knowledge gained with more than one year of experience in the
sales team, many feature engineering fields were developed to help the machine
learning algorithm in their classification task. The extra fields created were:

• Count of campaigns: This field captures how many times has a lead come to
different campaigns with the same Response-Id. This is done by a groupby
count by the Response-Id.

• Count of companies: Shows how many times has a company entered the CRM
even with different Response-Ids. Another groupby count is used but now on
the lower case company name field.

3.3. Feature Engineering 11

• Phone or Landline: It is very important to know if the phone that we received
from the customer is actually a mobile phone or a landline number, this can
show the customer engagement in the product. To do this, the Wikipedia
page of "List of mobile telephone prefixes by country" (Wikipedia contribu-
tors, 2020) was used to identify the two types of lines using the previously
cleaned phone number field.

• 3D company: Using the products section from the LinkedIn scraped informa-
tion, we created a boolean field to check if "3D" was among one of the company
products. Adding to this, the field is also positive if the name of the company
incorporates the string "3D" in the company name.

• HP + LinkedIn + Glassdoor Vertical: Because we have the information of
which vertical the company operates from 3 different sources in the best of
the cases we need to merge these fields. Since the data entered by the sales-
man is said to be the most accurate, it has the highest priority. Then, LinkedIn
and Glassdoor equivalent HP segment, by this priority order. If we follow the
example in 3.2, SEAT S.A. would have the value of "Mobility and Transporta-
tion".

• LinkedIn + Glassdoor Company Size: The same goes this time for the com-
pany size. This is not an original field from the corporate CRM and hence,
the sources are LinkedIn and Glassdoor, with the first one having the priority
when both are found.

• Phone or Email present: This created field informs if there is any contact
phone or email with the customer in a boolean fashion. As we will see later on,
this proved to be one of the most important fields of them all, because if you
cannot contact your customer, the lead will, most certainly, be a bad lead.

• OHE for Activities: A One Hot Encoding (OHE) was developed for every ac-
tivity performed to a lead because a lead can have multiple activities assigned.
Thus, if there were multiple activities with the same Response-Id, the One Hot
Encoding of the different encoding would be merged and summed. By doing
these, we could inform the model of the number of activities of every type
performed to a certain Response-Id, even when activities are performed more
than once.

• OHE for Camapigns: The same as the previous field was done but this time
with the different types of campaigns. Since a lead can come to different cam-
paigns, a One Hot Encoding was created for every campaign and then merged
and summed by the primary key of the Response-Id.

• Appearances of important words: From the LinkedIn web page we scraped
45% of the times the products or services the company was providing to their
customers in the form of a list. To retrieve the most important products from
these lists, we used TF (Term Frequency) count to see the most repeated words
in the corpus of the combined lists. The following step was selecting the most
frequent product from the list of products for each company. In doing so, the
list of products was transformed into the most frequent (in the corpus) product
for every row.

12 Chapter 3. Data Prepossessing

• Fiscal Year Quarter: With the creation date of the Lead, we translated it to
Fiscal Year. This is widely used in sales, where bonuses are assigned in a quar-
terly manner and hence, some correlation could exist since the salesman is
more prone to pass a regular lead as a Qualified lead (good lead) to increase
their numbers. It is also during the last month of the quarter when the sales
personnel push harder to close the deals.

3.4 Label Encoding

To deal with fields that contained strings, the Sklearn Label Encoder function was
used. This encoder transforms strings into integers, starting from 1 with the first
string encountered in a given column, 2 for the second one, and so on. To maintain
the encoding constant, the whole data was ordered in descending creation date. By
doing so, we make sure that the encoders were always the same for previously seen
data, and when new strings arrive, the encode would assign a non used integer
to encode the new strings. This approach was selected because, in this way, the
encoder never changes, unlike with hashing functions. This will be essential when
using machine learning to predict daily the score for the "New" status leads.

13

Chapter 4

Experiments & Results

In this section, the different experiments and results from the pipeline will be ex-
posed. The chosen machine learning algorithms to be tested in the experiments were
the Random Forest and the Extreme Gradient Boosting models. This models where
selected because of the restriction set by the team manager, stating that he wanted
an algorithm in which their decisions could be explained to the sales team in human
non-technical terms (see section 1.2). Hence, tree-based algorithms were chosen to
develop this task.

The dataset was divided into three different sets because the performance of both
Random Forest and XGBoost algorithms had to be tested and the best algorithm se-
lected. The sets only contain Good and Bad leads. The leads still on "New" status
had been left out of this set because those leads are the ones that have to be predicted
with the algorithm trained on the hole previous dataset of good and bad leads.

• Training set size: (25340, 58)

• Validation set size: (7276, 58)

• Testing set size: (3585, 58)

Note that these numbers change due to leads being introduced in the CRM daily.
Furthermore, the status of leads is dynamic and leads can go, for example, from
Nurture to Closed.

4.1 Validation Metrics

Let’s remember what were the main problems for our dataset. First, because the
Good leads (Nurture and Qualified status) are just 16.9% of the leads with a total
number of more than 40,000, we are facing an unbalanced dataset. And second,
because of the previous point, leads that are good are very valuable and we can not
afford to classify a good lead as a bad one. Hence, the Recall or True Positive Rate
(TPR) formula 4.1 is a high priority for this project.

TPR =
True Positive

True Positive + False Negative
(4.1)

When facing a binary classification problem, the most used validation metrics are
commonly Accuracy and the Area Under Curve or AUC. Since AUC works best for
skewed distributions, this metric was chosen to be the main validation metric. Fur-
thermore, AUC incorporates the True Positive Rate that we said was very important
for this problem.

14 Chapter 4. Experiments & Results

The AUC depends on the ROC curve or Receiver Operating Characteristic curve, in
fact, the AUC is the integral from [0,1] or "area under the curve" of the ROC. This
curve is generated by plotting the True Positive Rate (formula 4.1) against the False
Positive Rate (formula 4.2) on different operating points or threshold values.

FPR =
False Positive

False Positive + True Negative
(4.2)

Hence, the AUC can be understood as a way to tell to what degree the model is
capable of distinguishing between classes. A perfect model with an AUC of 1 is a
model that can perfectly distinguish between the two classes, and this is what we
want our machine learning algorithm to optimize.

Because it was considered that the Accuracy metric was also important to optimize,
we ended up using a multi-metric evaluation from sklearn package make_scorer that
was used in the GridSearchCV and refitted on the AUC to achieve the best cross-
validated AUC score.

Apart from the AUC and Accuracy metrics, we are going to use the F1 Score metric
that is the harmonic mean of the precision and recall (see formula 4.3) as a validation
metric to test the performance of the modes. This metric takes into account both
false positives and false negatives, or the Type I and Type II errors, from the second
diagonal of the confusion matrix. Thus, F1 Score is very useful when classes don’t
have the same number of samples, and that is the case for our problem.

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

TP
TP + 1

2 (FP + FN)
(4.3)

4.2 Baseline

The baseline for the machine learning was established to be the ratio of bad lead of
the dataset, that is 83.1%. This means that if we build a naive classifier that every
lead was assigned to be a bad lead, the estimated classifier accuracy would be 83.1%.
Hence, this is the baseline accuracy that our model will have to beat.

4.3 Random Forest

For the Random Forest algorithms two approaches were tried: First, the Balanced
Random Forest Classifier algorithm from the imbalanced-learn package as we are
dealing with an unbalanced dataset. According to the documentation it "randomly
under-samples each bootstrap sample to balance it" (G. Lemaitre, 2017). And second, we
used the standard Random Forest Classifier from sklearn to test the effectiveness of
the Balanced version. Both algorithms had the same configuration, with a Cross-
Validation of 5 fold and the following Search Grid parameters:

• ’max_depth’: [5, 25, 50]

• ’n_estimators’: [1000, 2000]

After training the algorithms for almost an hour with the train set (25,340 leads),
they were tested on the validation set (7,276 leads) using SearchGridCV with 5 fold,
the best configurations were selected, and both models were testes against different
evaluation metrics.

4.3. Random Forest 15

TABLE 4.1: Evaluation metrics comparing the performance of Bal-
anced and standard Random Forest on the validation set.

Algorithm Accuracy AUC F1 Score

Balanced Random Forest 0.88414 0.956787 0.739574
Random Forest 0.92207 0.961829 0.759236

As we can see in table 4.1, for all the different metrics the Balanced Random
Forest performed worst than the Random Forest, especially in the Accuracy and F1
Score. The standard random forest achieved a 4.29% higher accuracy and a 2.66%
better F1 SCore with respect the balanced version of the model. Regarding the AUC
score, both algorithms achieved a similar score.

FIGURE 4.1: Column normalized confusion matrices yield by the Bal-
anced Random Forest (left) and Random Forest (right) on the valida-

tion set.

Looking at figure 4.1 we can see that the confusion matrix yield by the Balanced
version of the Random Forest model (left) obtained very good results, as most of the
values are on the first diagonal of the matrix. Because it is column normalized, we
can instantaneously see that the True Positive Rate is 89%, and that the False Positive
Rate is just 7.2%.

When looking at the confusion matrix for the standard Random Forest (right), we
see that the first diagonal is not perfectly distinguishable as the Balanced version,
but the False Positive Rate rises to a 98%. Whereas, the True Positive Rate is 66%,
far lower than the balanced version. The high accuracy achieved by the standard
Random Forest model can be explained because the majority class, with 83.1% of
the leads being bad leads, was classified 98% of the time correctly. When comparing
the two matrices, the non-balanced version achieves a worst True Positive Rate at
66% and a False Negative Rate of 34%, 23 points worst in both metrics than in the
balanced version. As previously said, this is explained because the standard version
didn’t have any measure of dealing with the unbalanced dataset and performed very
good on the bad leads classification.

16 Chapter 4. Experiments & Results

4.4 Extreme Gradient Boosting

For the Extreme Gradient Boosting a Search Grid was also used with a Cross-Validation
of 5 fold with the following parameters:

• ’objective’: [binary:logistic]

• ’learning_rate’: [0.05, 0.1, 0.2]

• ’n_estimators’: [1000, 2000]

• ’scale_pos_weight’: [2, 5]

Notice the parameter ’scale_pos_weight’. This is the ratio of the number of negative
class to the positive class used to balance imbalanced datasets like the one we are
facing. This proportion of our problem is around 4.6931. Hence, this hyperparame-
ter being at 5 for example, gives 5 times more weight to the positive class, meaning
that the misclassification error of a positive example has a 5 fold higher cost. Same as
with the Random Forest, the XGBoost was tested with the three different evaluation
metrics.

TABLE 4.2: Evaluation metrics of the Extreme Gradient Boosting al-
gorithm on the validation set.

Algorithm Accuracy AUC F1 Score

Extreme Gradient Boosting 0.93664 0.970280 0.831567

As shown in the table 4.2, the Extreme Gradient Boosting seem to perform better
than the previous Random Forest algorithms even with the selected model having
’scale_pos_weight’=5 as a hyperparameter.

FIGURE 4.2: Column normalized confusion matrix yield by the Ex-
treme Gradient Boosting on the validation set.

From the above figure 4.2 we can see that the confusion matrix has a True Positive
Rate of 84% and a True Positive Rate of 96%. The type I and type II errors, especially

4.5. Model selection 17

the first one, are very low. The False Positive Rate yield for this model is 4.2%. This
gives us a better understanding of the high AUC score obtained in table 4.2. When
comparing this confusion matrix with the previous models, we can see that the XG-
Boost classified correctly the vast majority of the negative examples and performed
almost as well as the Balanced Random Forest with the classification of the positive
class. Because of this, this algorithm has the highest accuracy of all models tested.

4.5 Model selection

After using the training and validation sets to train the model and test it against
different validation metrics, we have to pick the best one. As a result, we need to
compare the three previous classifiers, starting for the main validation metric of the
scoring, the AUC.

FIGURE 4.3: Reciver Operating Characteristic curve for Balanced
Random Forest (BRF), Random Forest (RF), and XGBoost (XGB) clasi-

fiers.

From the above figure 4.3 we can see the different ROC curves for the three previ-
ous models tested. Clearly, the line in blue is the ROC that has a bigger Area Under
the Curve, this line belongs to the XGBoost classifier that obtains an AUC of 0.97028.
This score is not far from 1, that would be the perfect classifier, and is a big improve-
ment over the 0.5 line in black that is the random choice. Almost a point below is
the AUC’s of both Random Forest classifiers.

Now let’s compare all the validation metrics used with all the three previous models.

18 Chapter 4. Experiments & Results

TABLE 4.3: Evaluation metrics comparing the performance of the
baseline model, the Balanced Random Forest, standard Random For-

est, and Extreme Gradient Boosting on the validation set.

Algorithm Accuracy AUC F1 Score

Baseline model 0.83100 - -
Balanced Random Forest 0.88414 0.956787 0.739574
Random Forest 0.92207 0.961829 0.759236
Extreme Gradient Boosting 0.93664 0.970280 0.831567

Following the table 4.3, it can clearly be seen at first sight that the XGBoost al-
gorithm outperforms all of the two types of Random Forest algorithms used in this
work and the baseline model. Let’s go over each of the validation metrics.

• Accuracy: The highest accuracy is achieved by the XGBoost classifier and it
is 0.01457 points higher or an increase of 1.58% with respect to the Random
Forest accuracy, that is the second-best model in this aspect. When looking
back to the baseline accuracy in section 4.2, the system accuracy was set to be
83.1%. With XGBoost we have increased the accuracy by 12.71% or 0.10564
points. The accuracy of the balanced version of the Random Forest falls far
behind at 0.88414.

• AUC: The AUC’s of the different classifiers are very similar. But again, the
Extreme Gradient Boosting classifier has the highest score with an AUC of
0.97028, a 0.9% increase respect the second-best AUC score of the standard
Random Forest. This means that XGBoost is the classifier that can better sepa-
rate the two different classes of the problem.

• F1 Score: Here is where the XGBoost algorithm exceeds all the other algo-
rithms by far. The F1 Score of 0.831567 can be explained by the small Type I
and Type II errors present in the confusion matrix in figure 4.2 while having a
high number of True Positive examples. XGBoost outperforms the second-best
F1 Score by a 9.33%.

Hence, it is clear that the best machine learning algorithm to use against the test set
is the Extreme Gradient Boosting algorithm, which has outperformed the Random
Forest models.

4.6 Test set performance

Now that we have selected the algorithm that the pipeline is going to use, we will
train the Extreme Gradient Boosting with both training and validation sets and
tested its performance in the test set. By doing this, we will give more samples
with which the machine learning algorithm can be trained. Hence, the sets are now:

• Training set size: (32616, 58)

• Test set size: (3585, 58)

The hyperparameters to optimize are the same as the previous Extreme Gradient
Boosting in section 4.4. After fitting the model for half an hour, we obtain the fol-
lowing results summarized in table 4.4:

4.6. Test set performance 19

TABLE 4.4: Evaluation metrics for the Extreme Gradient Boosting al-
gorithm on the test set.

Algorithm Accuracy AUC F1 Score

Validation Extreme Gradient Boosting 0.94282 0.973318 0.833469

These results are a slightly improvement from the previous XGBoost tested with
the test data. The XGBoost tested against the validation data has achieved an extra
0.00618 better Accuracy, 0.00304 improved AUC and a 0.0016 enhanced F1 Score.

FIGURE 4.4: Column normalized confusion matrix yield by the Ex-
treme Gradient Boosting on the test set.

From the above confusion matrix in figure 4.4 we can see that the increase in ac-
curacy of this last model is due to the True Negative Rate has grown from 96% to
97%, with 2867 of the 2950 negative entries classified correctly. This might not seem
much, but because the majority class (bad lead) is 5 times bigger than the minority
class (good leads) this increase has made the accuracy grow, even with a decrease
of the True Positive Rate from 84% to 81%. Regarding the False Negatives and False
Positives rate, this last one has been reduced slightly.

Thus, we can say that with new leads with non defined state, the XGBoost will have
a similar performance as the one seen in table 4.4. We say similar because the XG-
Boost deployed in the pipeline has been trained with the whole dataset, and hence,
these metrics from the above table are just an approximation of the real performance.
Regardless, the algorithm accuracy is 13.45% higher than the model baseline.

20

Chapter 5

Pipeline

In this chapter, we will review all the pipeline created after selecting the machine
learning model that is going to give us the scoring for each new lead entering the
system. Here is where all the bits and pieces explained in earlier sections come
together.

5.1 Pipeline description

In the image in 5.1 we can see the full pipeline developed to solve this problem. In
it, there are two main parts, the processes, and data from the local computer (green
outline) and the processes done in HP’s Z8 workstation server with 187 GB of RAM
(dark blue outline). Different options were considered to host the pipeline, but since
the data that we are dealing with is very confidential and has many customer details,
the team wanted the data to be hosted inside HP. That is why the Z8 server was
chosen over other platforms such as AWS or Azure.

FIGURE 5.1: Schema of the developed pipeline for the project.

Extraction

The process starts with the extraction process in the local computer, where the data

5.1. Pipeline description 21

from the corporate CRM has to be downloaded locally and uploaded to the server.
This process can not be automated due to Salesforce constraints.

Joining

Inside the Z8 server, a python file with all the code for the pipeline is run every mid-
night. The code that deals with the joining process resides at "Dataset_Creation.py",
receives the different tables of Activities, Leads and Campaigns from Salesforce and
joins them together using as the primary key the Response-Id. Once this is done, a
new xlsx is generated called "NewData.xlsx" that replaces the previous file. In ad-
dition, one backup copy is saved with the same file name followed by a timestamp.
This process takes a mean time of 3 minutes and 43 seconds.

Scraping

From the "NewData.xlsx", the LinkedIn and the Glassdoor Scraping compare the
company names of the new excel file with the company names they have in their in-
ternal files. Those files are called "Linkedin_Sraping.xlsx" for LinkedIn, and "Glass-
door_Sraping.xlsx" for Glassdoor information.

The python code used are "Linkedin_Scraping.py" and "Glassdoor_Scraping.py" to
obtain the data described in 3.1.2. After finding the new companies that need to be
scraped, a chromedriver is open and navigates to the desired websites to access the
requested information. This process is different for the two web scrapers:

• LinkedIn Scraper: First, the web crawler looks for the company on the search
bar and if the company is found, it navigates to the "about" section of the com-
pany to obtain the information. If the company is not found, the scraping
continues to the next ones, leaving the not found company with null values.
This process takes approximately 30 seconds to scrape one lead, hence it can
be a slow process when a new campaign is entered into the system with more
than 200 leads. Moreover, you have to consider that LinkedIn has mechanisms
to catch web scraping, and hence, the algorithm has to go at a slower pace to
resemble human behavior.

But when massive campaigns take place, introducing more than 500 leads into
the system, LinkedIn scraping stops functioning because there is a maximum
of searches per day estimated to be around 500. Once this maximum was
reached, the user is logged out and captchas would appear in the next lo-
gin. The workaround for this issue was to create 7 different LinkedIn accounts
and, by randomly changing the user account once 300 leads were scraped, we
avoided the LinkedIn maximum day searches. In addition to this change of
profile, the code also saves the scraped information so far in case the code
crashed or the internet connection fails when dealing with high amounts of
new leads.

• Glassdoor Scraper: The scraping performed in this web site consisted of for
each company, go to the "Company" section, and search the desired lead there.
If the company is present in Glassdoor, the information of the company is dis-
played right at the top of the company page. Regarding Glassdoor measures to
stop web scraping from their portal, we didn’t found any issues in more than 5

22 Chapter 5. Pipeline

months. Hence, the web scraping can be much faster, at around 20 seconds per
company without such restrictions. Glassdoor scraping also has a mechanism
to save the information scraped in case of a rising error.

Once the process is ended, both scraping files are updated with the newfound infor-
mation, and a backup file for both excels is created.

FIGURE 5.2: Resulting information from the LinkedIn scraping.

In figure 5.2 we can see the outcome of 5 scraped companies done by the LinkedIn
scraper. Here we have the company name in lower case and in the second column
the name of the company on LinkedIn. This column is also used to determine if
LinkedIn didn’t show us the correct company or a company with a similar name.

As seen wit the company "1024colourtech", LinkedIn was not able to find the com-
pany, and thus, the fields are filled with "None". In this example, non of the com-
panies had a Speciality in another language different from English, and hence, no
translation needed to be done.

In addition, observe the fifth row, where the CRM name and the company name and
the LinkedIn company name are very different. But when looking at the company
web, it finds the correct company. Because of this, no implementation to compare
the similarity of words such as Jacquard distance was developed, trusting that the
LinkedIn algorithm will show the best results possible. The total execution time of
both scraping processes depends on how many leads are entered into the system.

Preprocessing

Once the extra information from LinkedIn and Glassdoor is stored, they are joined
together with the systems CRM information by the company name using the "Cre-
ate_file_ml.py". Because some of the scraped companies can have strings in non-
English languages, a program is run to detect the language of the strings and if they
are not in English, it translates them to this language.

This process takes around 10 seconds with a timesleep of 1 seconds to not overload
the GoogleTranslator API used to translate. By doing this, we are achieving a more
homogeneous and higher integrity data that can be now be used to develop feature
engineering in English.

5.1. Pipeline description 23

After the translation, the data preprocessing explained in section 3.2 to section 3.4
takes place. The preprocessing, feature engineering, and encoding for the hole dataset
occur in this process. The resulting file named "Results_Verticals_Salesforce.xlsx" is
saved along with its buck up file. This process ensures that the data can be feed to
the machine learning algorithm to be trained with good and bad leads or to predict
the leads in the new status.

Train

The next step is to decide if we want to retrain the algorithm, otherwise, it will use
the pickle from previously trained data to predict the probability of new leads to be-
come good or bad leads. Let’s say we want to retrain the algorithm. We can do that
by setting the parameters "train_xgb" of the pipeline to True. This retraining is done
approximately once every week. Now the model will be retrained on all the 36,000
leads, composed by good leads (Nurture and Qualified) and bad leads (Closed).

Because the data is growing by 257 new leads every week, the training data keeps
growing and the algorithm improving. As we saw in section 4.5, the XGBoost algo-
rithm is the chosen model to be trained with all the data. After it finishes, it is saved
into a pickle file to be used to do faster predictions. This file can be later used as a
parameter in the clean_dataset_ml function in "Predict_Qualified_Salesforce.py" to
specify the model to use to output the predictions.

Prediction

The predictions are made with leads that have the status "New", hence, these new
data have to be preprocessed to be fed to the machine learning algorithm in the same
way we did with the good and bad leads. These involve the cleaning, feature engi-
neering, and encoding. Once the process has been completed, we use the pickle file
to load the desired XGBoost algorithm that is going to be used to output the score
for every lead. After that is done, we use the LIME package to give us the 5 most
important attributes to understand why the machine learning output a certain score
for that lead.

FIGURE 5.3: Output score of the XGBoost algorithm and the 5 LIME
feature explainabilities for different Response-Ids.

From figure 5.3 above we can see the output file of the pipeline. This information
is stored in the "Lead_Scores_Machine_Learning.xlsx" file along with a backup. In

24 Chapter 5. Pipeline

this data, we can see the primary key, the Response-Ids, the predicted score, and the
5 explainability columns for each lead.

Notice that columns generated by LIME have positive or negative scores. The ex-
plainability features show the top 5 most relevant attributes for the given decision
ordered by the absolute score of the given attribute. For example, for the first row
in figure 5.3, the subsegment was found to be the most important attribute for the
decision. When looking at the importance of the field we see that the "Sub Segment"
field found was zero or less than zero, meaning that there was not any subsegment
assigned to the lead. As a result, the explainability shows a negative score. This
is key to understand in the factor that have a positive or a negative impact on the
machine learning score.

For the better user experience and to make the team trust the algorithm, the scores
for every lead are calculated. This included the leads in good or bad states, that are
also predicted. But because the algorithm has been trained with this data, it outputs
near 0 results when the lead is in Closed state (bad lead) and 1 when the lead is in
Qualified or Nurture state (good lead). With this, all the leads have a score and no
nulls will be shown in the system. In practical terms, only the score of the new leads
are used for the ISR decision making. The process of generating the score takes less
than 20 seconds due to the high speed of the XGBoost.

This whole process, depends largely on the number of data points with which you
want to do the approximation, can take up to 4 hours with a good estimation of 500
data points with 5 explainability attributes. This is why for giving the explainability
of the 5000 "New" leads, the process needs to be in a server where the procedure is
executed every midnight and be ready every morning. Notice that the last row of
the figure 5.3 has no explainability features. This is because it is from a lead that
is already in a good or bad state. Calculating the explainability for the hole 40,000
leads would take a non-feasible amount of time.

PowerBi

The last step is to retrieve the excel with the score and explainability information that
has been executing at midnight in the Z8 server and upload it to PowerBI. Hence,
now all the organization can have the quality of the leads using the classification
score and the explainability of the score. The excel with all the information obtained
with the scraping is also retrieved and uploaded to PowerBi to enhance CRM data.

5.2 Pipeline automation

For the automation of this pipeline the libraries schedule and time were used. The
code at main.py imports all the dependencies needed for the pipeline to work. These
are executed as follows:

1. Dataset_Creation.py

2. Linkedin_Scraping.py

3. Glassdoor_Scraping.py

5.3. Achieved improvements 25

4. Create_file_ml.py

5. Clean_dataset_ml.py

To execute all the process in a scheduled manner, the main.py has a function called
"ml_pipeline" that executes all the above functions. The parameters of this function
are the:

• train_xgb: Boolean. Used to perform a retrain to the model. When set to true
it retrains the XGBoost algorithm with all the data from good and bad leads,
leaving out of the training set the leads with the "New" status. Furthermore,
if True, the model predictions will be automatically made with the newly re-
trained model, even if a pickle file is given as a parameter to model_used func-
tion.

• model_used: Pickle file that is given as a parameter the decide which pickle
model to use for the predictions. By default it is the last file created.

• number_samples: Number of samples to do the linear approximation with
LIME. As more samples used, better predictions but the time to do this process
for every lead grows.

Using the schedule function, we can specify at what time of the day the process
needs to be executed automatically. The code will be executed in a while loop and
will only execute when the conditions specified on the schedule function are true.

The time that the process takes to execute depends on the number of leads in "New"
status and the new leads that entered the system in which web scraping needs to be
performed. Overall, the mean execution time during one week has 2 hours and 17
minutes with a number_samples variable set at 250 and no retraining. This execu-
tion time is expected to grow when more points are added to the LIME approxima-
tion and when higher numbers of leads will be entering the system due to summer
vacations end.

5.3 Achieved improvements

One of the most measurable improvements of this work is the cost reduction that
the web scraping gives to the salesman, reducing the time they spend looking for
the company online and finding their products. It is estimated that on average, the
team members spend less than 3 minutes researching the web when a new, previ-
ously unknown, company enters the system and uses one extra minute to upload the
information to the CRM. Hence, the salesmen lose 4 minutes in total to fill the new
company information. Recall that this was not the case for all the companies, only
31.83% of the leads had this information before the web scraping was performed on
this project. Now this percentage is up to 84.26%.

Hence, to calculate the cost reduction we need the cost per minute of the salesper-
son. This is estimated to be 0.273e/min with the information given by HP’s human
resources. Thus, the implementation of the automatic web scraping is saving 4 min-
utes for a mean 257 new lead each week, with a total cost of 280.87e/week or a sav-
ing 17 hours of research each week for the whole team. This number might not seem
much, but in the long run, this information can save up to 1,123.50e each month (72
hours of work) or a very respectable 13,481.97e per year (891 hours of work).

26 Chapter 5. Pipeline

Moving to improvements not as easy to quantify as the last one, we have the score
for every lead and the explainability of each decision. With the feedback given by
the ISR’s of the team, we can say that the implementation has been successful and
has added important information to the CRM information.

These benefits can take the form of a priority list build with the ordered scores of the
machine learning predictions that the salesman uses to contact the best scoring leads
first. Using this new feature, the team prioritizes the calling for the best leads, and
for the bad leads, they could only send an email due to its low probability to become
a deal. This saves the salesman time of going through all the leads and finding the
best ones (difficult to measure) and ensures that the leads with potential are con-
tacted. Think it this way, now the new arriving mail is classified to junk or business
mail automatically without having to go through all the reading.

The high accuracy of the developed score will lead to better decision making and
a reduction of human decision bias. Because of this high accuracy and AUC seen
in previous, less good leads are expected to be classified as bad leads, losing a po-
tentially good deal. In addition, the ISR’s can use the score for the new leads to see
what is the quality of these leads for each country or marketing campaign, having
now an indication of the business potential.

Regarding the explainability features, the salesmen are now able to use this attribute
to gain trust in the algorithm, and for the new hires, they can be helped in the learn-
ing process.

And lastly, all this information is shared online within all the organization and all the
new information from the scraping and machine learning scores are incorporated in
the EMEA Sales PowerBi. Enhancing the decision making process with better com-
pany data from the scraping information and leveraging the machine learning score
to prioritize the best quality leads.

27

Chapter 6

Discussion

6.1 Future work

There are some lines of work that could be developed to further enhance the devel-
oped pipeline. These proposed future improvements are:

• Move the pipeline to Airflow to have better flow management of the whole
pipeline to be capable of sending mails with the score file or retry failed pro-
cesses. Furthermore, LinkedIn and Glassdoor scraping could be executed in
parallel using Airflow DAGs. Regardless, this approach was tried but was
unsuccessfully due to server permissions, even though that the DAG code is
already developed. After the delivery of this thesis, this line of work will be
retried.

• Use data from paid specialized web site to obtain more details from the com-
panies in the CRM and improve the quality of extra information obtained from
the web. Especially valuable would be the income of the companies, but this
is not available most of the time using the web scraping techniques employed
in this project. Hence, if we want to obtain more accurate data from compa-
nies, the next step would be to purchase this information from web sites like
Hoovers.com. At the beginning of the project, Hoovers was tried to scrape but
this web site detected the web browser to be a scraper in a few loops, and as
a countermeasure, didn’t allow the refresh the page to stop showing informa-
tion. Thus, this option was dismissed.

• Connect Salesforce files to the server. This is a line of work that is currently
being developed, from a local folder, upload automatically the Salesforce files
needed for the pipeline. Further discussions with the Salesforce team will be
needed to connect the pipeline directly to the corporate CRM.

• Connect the PowerBi directly to the Z8 Server to have every day the newest
leads scraped and with predictions and their explainability automatically ev-
ery day.

• Try to use different machine learning algorithms to further enhance the model
and try to solve the problem using Neural Networks with LIME.

It is clear that more Data Engineer work need to be done to enhance and fully au-
tomate this pipeline. Work that after the delivery of the thesis I will continue doing
inside HP.

28 Chapter 6. Discussion

6.2 Conclusion

The purpose of this thesis was to predict a score for each lead to help the salesman
know if the lead will become good or bad for HP’s MJF printers, moving from in-
tuition based decisions to a more data-driven decision-making organization. This
involved the development of a data science pipeline spanning multiple processes
such as joining of the data, obtaining extra information of the leads, process the data
and train the algorithm to do the predictions along with the explainability for every
lead. And most importantly, due to the dynamic nature of leads, this process needed
to be automated and executed daily.

Based on the results of previous chapters, we can say that the objectives were suc-
cessfully accomplished. The scraping information improved HP’s vertical segmen-
tation from 31.83% to 84.26%, and so did the machine learning performance. This
process proved to reduce the time that the ISR’s spend looking for the information
of the lead, estimated to be 891 hours of salesman work and a subsequent cost re-
duction of 13,481.97e each year.

In this project, we have proved that the Extreme Gradient Boosting is the best al-
gorithm for predicting the quality of the leads and that this model outperforms the
two other tree-based algorithms in all the tested validation metrics. The final model
achieved an Accuracy of 0.94282 and an AUC of 0.973318, which is a 13.45% im-
provement on the accuracy with respect to the model baseline. Furthermore, the
use of this score enhances greatly the ISR’s decision process since now they have
access to the quality of each lead. Therefore, their decisions based on intuition and
experience have become data-driven decisions that creates an organizational-wide
knowledge with higher accuracy and with reduced human bias. Furthermore, we
achieved no information loss with the change of ISR’s, because all the information
is stored and used by the algorithm, and hence, this knowledge will always reside
inside the company.

29

Appendix A

Master’s thesis source code

The source code for this master thesis can be found in: https://github.com/jordisc97/
MSc_Data_Science-Master_Thesis

https://github.com/jordisc97/MSc_Data_Science-Master_Thesis
https://github.com/jordisc97/MSc_Data_Science-Master_Thesis

30

Bibliography

Bohanec, Marko, Mirjana Borstnar, and Marko Robnik-Sikonja (Apr. 2017). “Explain-
ing machine learning models in sales predictions”. In: Expert Systems with Appli-
cations 71, 416–428. DOI: 10.1016/j.eswa.2016.11.010.

Chen, Tianqi and Carlos Guestrin (2016). “XGBoost: A Scalable Tree Boosting Sys-
tem”. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. DOI: 10.1145/2939672.2939785. URL: http:
//dx.doi.org/10.1145/2939672.2939785.

Cheriyan, Sunitha et al. (Aug. 2018). “Intelligent Sales Prediction Using Machine
Learning Techniques”. In: pp. 53–58. DOI: 10.1109/iCCECOME.2018.8659115.

G. Lemaitre F. Nogueira, D. Oliveira C. Aridas (2017). Balanced Random Forest Classi-
fier. URL: https://imbalanced-learn.readthedocs.io/en/stable/generated/
imblearn.ensemble.BalancedRandomForestClassifier.html (visited on 09/13/2020).

Korolev, Maksim and Kurt Ruegg (2015). “Gradient Boosted Trees to Predict Store
Sales”. In: URL: http://cs229.stanford.edu/proj2015/193_report.pdf.

Provost, Foster and Tom Fawcett (2013). “Data Science and its Relationship to Big
Data and Data-Driven Decision Making”. In: Big Data 1.1. PMID: 27447038, pp. 51–
59. DOI: 10.1089/big.2013.1508. eprint: https://doi.org/10.1089/big.2013.
1508. URL: https://doi.org/10.1089/big.2013.1508.

Quinlan, J. R. (1986). “Induction of Decision Trees”. In: MACH. LEARN 1, pp. 81–106.
DOI: https://doi.org/10.1007/BF00116251.

Ribeiro, Marco Túlio, Sameer Singh, and Carlos Guestrin (2016). "Why Should I Trust
You?": Explaining the Predictions of Any Classifier. arXiv: 1602.04938. URL: http:
//arxiv.org/abs/1602.04938.

Wikipedia contributors (2020). “List of mobile telephone prefixes by country”. In:
[Online; accessed 03-August-2020]. URL: https://en.wikipedia.org/wiki/
List_of_mobile_telephone_prefixes_by_country.

https://doi.org/10.1016/j.eswa.2016.11.010
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/iCCECOME.2018.8659115
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.ensemble.BalancedRandomForestClassifier.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.ensemble.BalancedRandomForestClassifier.html
http://cs229.stanford.edu/proj2015/193_report.pdf
https://doi.org/10.1089/big.2013.1508
https://doi.org/10.1089/big.2013.1508
https://doi.org/10.1089/big.2013.1508
https://doi.org/10.1089/big.2013.1508
https://doi.org/https://doi.org/10.1007/BF00116251
https://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
https://en.wikipedia.org/wiki/List_of_mobile_telephone_prefixes_by_country
https://en.wikipedia.org/wiki/List_of_mobile_telephone_prefixes_by_country

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Related Work
	Objectives
	Report layout

	Background information
	Web scraping
	Tree based algorithms
	Random Forest
	Extreme Gradient Boosting

	Interpretability and Explainability

	Data Prepossessing
	Data sets
	System original information
	Scraping information

	Data Cleaning
	Feature Engineering
	Label Encoding

	Experiments & Results
	Validation Metrics
	Baseline
	Random Forest
	Extreme Gradient Boosting
	Model selection
	Test set performance

	Pipeline
	Pipeline description
	Pipeline automation
	Achieved improvements

	Discussion
	Future work
	Conclusion

	Master’s thesis source code
	Bibliography

