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Abstract: Cystinuria, a rare inherited aminoaciduria condition, is characterized by the hyperexcretion
of cystine, ornithine, lysine, and arginine. Its main clinical manifestation is cystine stone formation in
the urinary tract, being responsible for 1–2% total and 6–8% pediatric lithiasis. Cystinuria patients
suffer from recurrent lithiasic episodes that might end in surgical interventions, progressive renal
functional deterioration, and kidney loss. Cystinuria is monitored for the presence of urinary cystine
stones by crystalluria, imaging techniques or urinary cystine capacity; all with limited predicting
capabilities. We analyzed blood and urine levels of the natural antioxidant L-ergothioneine in a Type
B cystinuria mouse model, and urine levels of its metabolic product S-methyl-L-ergothioneine, in
both male and female mice at two different ages and with different lithiasic phenotype. Urinary
levels of S-methyl-L-ergothioneine showed differences related to age, gender and lithiasic phenotype.
Once normalized by L-ergothioneine to account for interindividual differences, the S-methyl-L-
ergothioneine to L-ergothioneine urinary ratio discriminated between cystine lithiasic phenotypes.
Urine S-methyl-L-ergothioneine to L-ergothioneine ratio could be easily determined in urine and, as
being capable of discriminating between cystine lithiasis phenotypes, it could be used as a lithiasis
biomarker in cystinuria patient management.

Keywords: L-ergothioneine; S-methyl-L-ergothioneine; cystine lithiasis biomarker; cystinuria; Slc7a9
KO mice

1. Introduction

L-Ergothioneine (L-Erg) is a natural thiohistidine [1] absorbed from the diet in mam-
mals and synthesized by non-yeast-like fungi, actinobacteria [2], methylotrophs [3] and
cyanobacteria [4]. L-Erg is widely distributed among tissues, being more abundant in
erythrocytes, liver, seminal fluid, bone marrow, eye lens, cornea and kidneys [5–7]. L-Erg
has been shown to accumulate in injured tissues like joints in collagen-induced arthritis [8],
inflamed intestinal mucosa of patients with Crohn’s disease [9], and liver damage [10,11].
This has pointed to the hypothesis that it might function in parallel to known adaptative
antioxidants [2]. L-Erg is specifically transported by OCTN1 (Slc22a4) [12,13] and the
OCTN1 knock out mice (Slc22a4−/−) shows complete absence of L-Erg in tissues [14].
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Cystinuria, a rare aminoaciduria condition (OMIM#220100 or OMIM#600918) with
an estimated prevalence of 1:7000 newborns is caused by mutations in either SLC3A1 or
SLC7A9 genes, which encode rBAT and b0,+ AT, respectively; the two subunits of the cystine
and dibasic b0,+ amino acid transporter of renal and intestinal epithelial cells. The disease
is characterized by the urine hyperexcretion of cystine and dibasic amino acids (lysine,
ornithine, and arginine). The main clinical symptom is the generation of cystine calculi in
the urinary tract due to cystine low solubility at urine physiological pH. Cystine lithiasis
represents 1–2% total and 6–8% pediatric renal lithiasis [15], and is monitored for the pres-
ence of urinary cystine stones by crystalluria [16], imaging techniques or urinary cystine
capacity [17]; all with limited predicting capabilities. Affected patients suffer from recur-
rent lithiasic episodes that can lead to progressive renal functional deterioration [18,19]
and often lead to renal failure limiting patient’s quality of life. Lithiasic episodes may
cluster between periods without symptomatic stone disease [20], and cystine stones are
often removed by surgical interventions. The risk of CKD among patients with hereditary
stone diseases like cystinuria is higher than patients with other stone disease [18]. Stone
recurrence, repeated surgical procedures to remove unsolved stones, obstructive uropathy,
urinary tract infections, nephrotoxic treatments and/obstructions of Bellini ducts by cystine
crystals may be behind the observed prevalence of CKD in cystinuria patients [18,21]. It
has been recently shown L-Erg levels are lower in mice and patients with CKD [22]. As
no reliable biomarker of stone formation in cystinuria exists [16], new methods for pre-
dicting the lithiasic episodes, reliable and easy to set up in clinical diagnostic laboratories,
are needed.

Mouse models of cystinuria resemble human cystinuria to a large extent (reviewed
extensively in [21]) and the cystinuria Type B mouse model (Slc7a9−/−), in particular:
(i) forms cystine stones from early adulthood in both sexes; (ii) cystine, arginine, lysine and
ornithine excretion profiles are similar to those found in Type B cystinuria patients [23];
and, (iii) has been shown to reproduce the effects of a currently used cystinuria treatment
and be a good model for antilithiasic pharmacological studies [24].

In the present study, we analyzed blood and 24h urine concentrations and excretion of
L-Erg and one of its subproducts, S-methyl-L-ergothioneine (S-Met-L-Erg) in the cystinuria
Type B mouse model (Slc7a9−/−) [23] in both sexes at 3 and 6 months of age, evaluate
their putative role as a cystine lithiasis biomarker, and the biomarker capacity as a cystine
lithiasis predictor.

2. Materials and Methods
2.1. Mice Care

Mice were maintained in a 12 h light-dark cycle in a humidity and temperature-
controlled room. Animals were housed in sterile cages with free access to food (Teklad
Global 14% Protein Diet, Harlan Laboratories, Madison, WI, USA) and water.

2.2. Knocking Out Slc22a4 in the Type B Cystinuric Mouse Model (Slc7a9−/−)

Single loss-of-function mouse models for Slc7a9−/− (NCBI gene ID: 30962, location:
NC_000073.6) [23] and Slc22a4−/− (NCBI gene ID: 30805, location: NC_000077.6) [14], both
in a pure C57BL/6 J genetic background were crossed to obtain double heterozygous mice,
which were backcrossed to get all expected genotypes. Only those mice with a Slc7a9−/−

genotype and with all Slc22a4 genotype combinations, including the double KO Slc7a9−/−

Slc22a4−/− (dKO), were further used. For genotyping analyses, genomic DNA was isolated
from tail tissue. Slc22a4−/− genotype was confirmed by PCR (30 cycles at 60 ◦C annealing
temperature), based on a 3′-primer strategy (F: 5′-GGGTGTGGTCCAGAGGACT-3′; R
WT-specific: 5′-TAGTTGCCAGCCATCTGTTG-3′; R KO-specific: 5′-GACTGACATACC
ATTGAAGC-3′) allowing to distinguish genotypes by generating 255 bp and 313 bp frag-
ments from the WT and KO alleles, respectively. For Slc7a9−/−, genotype was confirmed
by PCR (30 cycles at 60 ◦C annealing temperature), based on a 3′-primer strategy (F:
5′-GCATTCGCCACAGGCTCTTC-3′; R-WT: 5′-CTGTGTTGGCCAGCACAGAC-3′, R KO-
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specific: 5′-CGCAGCGCATCGCCTTCTAT-3′), allowing to distinguish genotypes by gener-
ating 452 bp and 311 bp fragments from the WT and KO alleles, respectively.

2.3. Cystine Calculi Detection by X-ray In Vivo Imaging

At 3 and 6 months of age, isoflurane anesthetized mice were subjected to X-ray
imaging for lithiasis detection in an IVIS Lumina XR Series III (Caliper Lifescience—Vertex
Techniques, Hopkinton, MA, USA) following the manufacturer’s imaging parameters with
a calibration curve of cystine stones of known weights. Mice with a cystine stone present
at 3-months of age were catalogued as Early Stone Formers (ESF) and those with a cystine
lithiasis onset between 3 and 6-months of age were catalogued as Late Stone Formers (LSF).
Those without a lithiasic phenotype were considered non-stone formers (NSF).

2.4. Sample Collection

Mice were individually housed in metabolic cages for 4 days with the first day as an
adaptation period. Mice weight, water and food intake, and excreted urine were monitored
daily. 24 h urine samples were collected and kept at −80 ◦C until further analysis with
50 µL 10% thymol in isopropanol as preservative. On the last day, blood was obtained
by intracardiac puncture with EDTA coated syringes and transferred into Microvette
EDTA-tubes (Sarstedt, Nümbrecht, Germany) on isoflurane anesthetized animals and
centrifuged at 3000 rpm for 10 min and 4 ◦C in a minifuge after 10 min incubation at
room temperature. Plasma was then separated into a new tube and kept on ice. Plasma
absorbance at 414 nm was then determined to quantify hemolysis with a NanoDrop ND-
1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and only those
with OD < 0.2 were considered for further analysis. Blood and plasma samples were stored
at −80 ◦C and centrifuged erythrocytes (RBCs) were also collected and stored at −80 ◦C.

2.5. L-Erg and S-Met-L-Erg Determination

L-Erg in blood, plasma and RBCs was measured as described by Sotgia et al. [25,26]
while plasma creatinine as described by Zinellu et al. [27].

For L-Erg and S-Met-L-Erg analysis in urine, thawed urine samples removed from
debris were 1:10 diluted in Milli-Q water supplemented with 3×-deuterated L-Erg and
S-Met-L-Erg (50 ng/mL final concentration each). The L-Erg, S-Met-L-Erg and their respec-
tive 3×-deuterated isoforms used as standards where in-house synthesized following a
previously described route [28]. Both, diluted samples and standards were then filtered
through eXtremeFV PVDF 0.2 µm filter vials (Thomson Instrument Company, Oceansite,
CA, USA), and L-Erg and S-Met-L-Erg quantified from 20 µL by LC-MS/MS using an LPG-
3400SD LC System (Dionex, Sunnyvale, CA, USA) coupled to an LTQ-XL ESI tandem mass
spectrometer (Thermo, Burlington, MA, USA). Samples and standards were kept at 15 ◦C in
the autosampler and were injected into a ZORBAX Eclipse Plus C18 (3.5 µm, 75 × 4.6 mm;
Agilent, Sta. Clara, CA, USA) maintained at 35 ◦C. Solvent A was 0.05% formic acid in
ultrapure water, and solvent B was acetonitrile in 0.05% formic acid. Chromatography
was carried out at a flow rate of 0.9 mL/min under isocratic conditions (99%A:1%B) for
3 min. Mass spectrometry was carried out under positive ion, electrospray ionization
mode, using multiple reaction monitoring (MMR) for quantification of specific target ions.
Source voltage was set at 3.0 kV, and capillary temperature was kept at 375 ◦C. Nitrogen
sheath gas flow was 90 (a.u.), auxiliary gas flow 10 (a.u.) and sweep gas flow was 6 (a.u.).
Alphagaz 2 helium (Air Liquide, Paris, France) was used as collision gas. Precursor to
product ion transitions for each compound were as follows: L-Erg: 230.0→ 186.0; d3-L-Erg:
233.0→ 189.0; S-Met-L-Erg: 244.0→ 200.0; d3-S- Met-L-Erg: 247.0→ 203.0. In all cases,
isolation width (m/z) and CID collision energies were 2.0 and 20%, respectively. Creatinine
concentrations in 24 h urine samples were determined with Creatinine Assay Kit (Sigma,
Sant Louis, MO, USA) as indicated by manufacturer after filtering through 10 kDa MWCO
spin filters (Amicon Ultra 0.5 mL, Millipore, Burlington, MA, USA).
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2.6. Statistical and Prediction Analysis

RStudio and ggplot2, xlsx, dplyr, ggpubr, plotROC, stringr, tidyr, ggsignif, and plyr
R packages under R version 4.0.3 were used for data analysis and figure preparation.
Mann-Whitney statistical test was used for statistical analysis and statistical significance
was considered if p ≤ 0.05.

3. Results
3.1. L-Erg and S-Met-L-Erg in Male Mice Blood and Urine

We first analyzed L-Erg content in blood and urine, S-Met-L-Erg concentration in
urine and L-Erg and S-Met-L-Erg excretion of 3 months-old WT and Slc7a9−/− male mice
(shown in Figure 1, 3 months). No statistically significant differences were seen although
a lower content of S-Met-L-Erg urine concentration and excretion in Slc7a9−/− male mice
compared to WT mice have been detected at this age.
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Figure 1. L-Erg and S-Met-L-Erg levels in WT and cystinuric (Slc7a9−/−) male mice at 3 and 6 months of age. (A) L-Erg
concentration in blood, plasma, red blood cells (RBC) and 24 h urine in WT (green solid line) and Slc7a9−/− (orange dashed
line) male mice. (B) S-Met-L-Erg concentration in 24 h urine. (C) L-Erg and S-Met-L-Erg excretion. In all panels, mean ± SEM
are shown and Mann-Whitney probability test value are indicated as **, p ≤ 0.01; ***, p ≤ 0.001 and ****, p ≤ 0.0001 vs.
3 months of age; #, p ≤ 0.05 and ###, p ≤ 0.001 vs. WT mice. The number of independent mice used per condition ranges
from 5 to 30.



Antioxidants 2021, 10, 1424 5 of 14

Age related differences in RBCs’ L-Erg concentration were reported in humans [29]
and in rats [30]. To account for this results in mice, we analyzed as before blood L-Erg
levels and urine L-Erg and S-Met-L-Erg levels in male mice at 6 months of age (shown
in Figure 1, 6 months). We observed statistically 33% and 41% significant reductions at
6-months of age in S-Met-L-Erg concentration and excretion, respectively, in Slc7a9−/−

male mice compared to WT mice (shown in Figure 1B,C, 6 months).
When both ages were compared, only L-Erg levels in RBCs and urine were significa-

tively 2-fold higher at 6 months of age in both WT and Slc7a9−/− male mice (shown in
Figure 1A, RBC and urine).

3.2. L-Erg and S-Met-L-Erg in Female Mice Blood and Urine

Gender related L-Erg differences in RBC levels have also been described in female
rats [30]. We then investigated as above L-Erg concentration in blood, plasma and RBCs,
and L-Erg and S-Met-L-Erg concentration and excretion in urine in 3- and 6-months-old
WT and Slc7a9−/− female mice (shown in Figure 2).
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At 3 months of age (shown in Figure 2, 3 months), we only detected significant
20% and 31% lower S-Met-L-Erg urine concentration and excretion, respectively, in Slc7a9−/−

female mice compared to WT (shown in Figure 2B,C, 3 months). At 6 months of age,
reduced L-Erg levels were observed in plasma (31%) and RBCs (41%), and S-Met-L-Erg
urine levels (27%) of Slc7a9−/− female mice compared to WT (shown in Figure 2, 6 months).
We also compared both ages looking for age-related differences in female mice. We only
observed an age-related significant decrease in L-Erg concentration in plasma in Slc7a9−/−

female mice (shown in Figure 2A, plasma).

3.3. Sex-Related Differences in L-Erg and S-Met-L-Erg in Blood and Urine

We then looked for gender-related differences in WT and Slc7a9−/− (KO) female mice
(shown in Figure 3), as a sex-related difference in L-Erg concentration in blood had been
reported in rats [30].
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and female mice. (B) S-Met-L-Erg concentration in 24 h urine. (C) L-Erg and S-Met-L-Erg excretion. Each colored symbol
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Significative sex-related reduced L-Erg levels could be found in blood, plasma, RBCs,
and urine of Slc7a9−/− female mice (43%, 36%, 48% and 30.8% lower, respectively) when
compared to Slc7a9−/− male mice (shown in Figure 3A). Urine S-Met-L-Erg concentration
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in female mice showed significative differences in both WT and Slc7a9−/− mice at both
tested ages, being about 40% lower at 3 months of age and about 50% lower at 6 months of
age than corresponding male mice (shown in Figure 3B).

Except for WT mice at 3-months of age, L-Erg and S-Met-L-Erg urine excretions
showed significant sex-related differences in both WT and Slc7a9−/− mice, being female
mice L-Erg and S-Met-L-Erg excretion 41–72% lower than the excretion of male mice (shown
in Figure 3C).

3.4. L-Erg and S-Met-L-Erg Urine Concentration in Lithiasic Mice

One of the hallmarks of cystinuria, which the Type B mouse model (Slc7a9−/−) repro-
duce [23], is the presence of cystine stones in cystinuria patients from both sexes. According
to the age at which the stones were first detected, we classified lithiasic Slc7a9−/− mice as
early stone formers (ESF) if the stone is first detected by X-ray analysis at 3 months of age,
late stone formers (LSF) if first detected at 6 months of age, and non-stone formers (NSF) if
not detected at this age.

Therefore, we analyzed, as above, L-Erg concentration in blood, plasma, RBCs and
urine, S-Met-L-Erg levels in urine and L-Erg and S-Met-L-Erg excretions in stone and
non-stone former (NSF) Slc7a9−/− mice of both genders at 3 and 6 months of age (shown in
Figure 4). L-Erg concentration in RBCs was significatively reduced in stone-former male
mice at 6 months of age (shown in Figure 4A, RBC). Besides, L-Erg 24 h urine concentration
was significatively higher in both ESF female and LSF male mice at 6 months of age and in
ESF female mice at 3 months of age (shown in Figure 4A, urine). S-Met-L-Erg was lower
in ESF females at 3 months of age and in stone former males at 6 months of age (shown
in Figure 4B). L-Erg excretion was significant lower only in ESF males at 6 months of age
and S-Met-L-Erg excretion in stone former mice from both sexes at both tested ages, 3 and
6 months of age (shown in Figure 4C).

As S-Met-L-Erg is a subproduct of L-Erg metabolism which levels are affected by
those of L-Erg, we investigated if the urine concentration ratio between both compounds
showed differences related to the lithiasic phenotype. As shown in Figure 5A, the ratio
in stone former mice (SF) was a significatively 2- to 3-fold lower than in NSF Slc7a9−/−

mice from both sexes at any age. This result strongly suggests that the ratio between the
24 h urine concentrations of S-Met-L-Erg and L-Erg could be used to differentiate the
lithiasic phenotype in mice. We investigated this possibility by the means of a receiver
operator characteristic (ROC) curve for 95 mice (54 lithiasic and 41 non-lithiasic) (shown in
Figure 5B). The area under the ROC curve (AUC) of 84.9% (95% CI: 76.98–92.76%) and the
negative predictive value of 78.04% and positive predictive value of 83.33% at the Youden’s
cut-off value of 0.065 suggest the possibility of using this ratio as a lithiasic biomarker.
Furthermore, the performance of the urinary ratio of S-Met-L-Erg to L-Erg was not severely
affected by age (shown in Figure 5C) or sex (shown in Figure 5D).

3.5. OCTN1 as a Cystine Lithiasis Modulator

As L-Erg is transported by OCTN1 (Slc22a4) and as Slc22a4−/− mice lack L-Erg in the
kidneys [14], we crossed the Slc22a4−/− mice with our cystinuria mice model (Slc7a9−/−)
looking for differences in the rate of lithiasic mice related to OCTN1 loss (shown in Figure 6
and Table 1). We found a higher number of lithiasic female mice independently of Slc22a4
genotype except at 48 weeks of age in Slc7a9−/− Slc22a4+/− (Het, heterozygous for Slc22a4)
where no age-related differences could be found. Generally, the rate of lithiasic mice
was higher for the double KO (Slc7a9−/− Slc22a4−/−) mice independently of sex, except
at 48 weeks of age, in which no differences in the percentage of lithiasic mice could be
related to the loss of Scl22a4. This result suggests that OCTN1 (Slc22a4) might modulate
cystine lithiasis in mice by changing the cellular availability of the molecules it transports,
especially L-Erg, as it is the main molecule transported known today.
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mice per condition ranges from 1 to 20), and the bars indicate the mean ± SEM. Mann-Whitney probability test value is
indicated below the bars as +, p ≤ 0.1; and, *, p ≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001, ****, p ≤ 0.0001 vs. non lithiasic (NSF) mice.

To better understand this result, we analyzed the amount of L-Erg and S-Met-L-Erg in
the 24 h urine of these mice at 3 months of age. L-Erg was detectable in 24 h urine to similar
levels in Slc7a9−/− Slc22a4+/+ (WT for Slc22a4) mice when compared to wild-type mice
(Slc7a9+/+ Slc22a4+/+), but the amount of S-Met-L-Erg was 50% lower (p = 0.0022) (shown in
Table 2). Knocking out Slc22a4 in the Slc7a9−/− mice produced a significative reduction of
L-Erg levels in urine (p = 0.0382 for Slc22a4+/− and p = 0.0138 for Slc22a4−/−) and, although
we could still detect S-Met-L-Erg, its 24 h urine concentration was below the quantification
limits of the method used. As expected, double KO mice (Slc7a9−/− Slc22a4−/−) showed
lower concentration of L-Erg than Slc7a9−/− Slc22a4+/− mice.
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Figure 6. Percentage of lithiasic mice depending on Slc22a4 genotype in a cystinuric (Slc7a9−/−)
mice. The percentage of lithiasic mice in a cystinuric Slc7a9−/− genotype mice depending on Slc22a4
genotype distributed by sex. WT mice are Slc7a9−/− Slc22a4+/+ (green, solid line); Het mice are
Slc7a9−/− Slc22a4+/− (orange dotted line); and KO mice are Slc7a9−/− Slc22a4−/− (blue dashed line).
Table 1 shows the number of mice per condition and age.
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Table 1. Number of mice per condition and age used to assess the percentage of lithiasic mice in
Figure 6.

Sex Slc22a4 Genotype Week 12 Week 24 Week 32 Week 40 Week 48

Female WT (+/+) 66 62 58 57 57

Female Het (+/−) 55 51 51 51 51

Female KO (−/−) 89 78 76 76 75

Male WT (+/+) 89 78 76 76 75

Male Het (+/−) 60 60 56 53 52

Male KO (−/−) 90 79 76 75 72

Table 2. L-Erg and S-Met-L-Erg 24 h urine concentration when knocking out Slc22a4 in cystinuric
Slc7a9-/- mice. Number of mice (N), mean and standard error (se) in µM and p-value. *, The p-value
versus WT Slc7a9 and WT Slc22a4, respectively. bql, bellow quantification limits. All groups contain
male and female mice.

Compound Slc7a9 Genotype Slc22a4 Genotype N Mean se p-Value *

L-Erg WT (+/+) WT (+/+) 33 1.960 0.188

L-Erg KO (−/−) WT (+/+) 58 1.789 0.087 0.1964

L-Erg KO (−/−) Het (+/−) 5 0.691 0.088 0.0382

L-Erg KO (−/−) KO (−/−) 3 0.176 0.028 0.0138

S-Met-L-Erg WT (+/+) WT (+/+) 24 0.285 0.042

S-Met-L-Erg KO (−/−) WT (+/+) 56 0.152 0.013 0.0022

S-Met-L-Erg KO (−/−) Het (+/−) 5 bql

S-Met-L-Erg KO (−/−) KO (−/−) 3 bql

This result, similar to the observations made by Kato et al. when deleting OCTN1
and comparing L-Erg levels against WT mice [14], suggests that (i) another transporter
might be involved in the absorption of L-Erg from the diet, (ii) OCTN1 is needed for L-Erg
transport into cells, and (iii) S-Met-L-Erg is mainly produced intracellularly.

4. Discussion

L-Erg is particularly enriched in RBCs in comparison with plasma in WT mice; and
L-Erg excretion is low, supporting its avid retention by the body [31], in agreement with
previously published findings in humans [32–34]. But we have seen differences in either
urine L-Erg concentration or excretion when comparing cystinuric mice with their WT
counterparts.

In this sense, we have observed in 6-month-old cystinuric male mice a 15% reduction
in L-Erg excretion without any change in 24 h urine concentration. L-Erg transporter,
OCTN1, expression is upregulated in injured tissues to promote L-Erg uptake and help in
reducing damage caused by oxidative stress [22]. Based on this, and due to the antioxidant
and cytoprotective properties of L-Erg, this lower excretion might be an adaptive response
against a lower antioxidant capacity of cystinuric kidneys, but the excretion was even lower
for S-Met-L-Erg, a S-methyl derivative of L-Erg. No information on its biological source is
available apart from being detectable in human blood and urine [32], and in many mouse
tissues except spleen and heart [35]. The fact that its 24h urine concentration is low enough
to avoid our quantification method in Slc22a4−/− mice suggests that it might be produced
inside the cells perhaps in an unknown intracellular transmethylation reaction mediated
by methyl-S-transferases. Based on our results, we hypothesized a reduced methylation
capability of the kidney in cystinuria that could explain the observed reduced urine levels
and excretion of S-Met-L-Erg in cystinuric mice.

The other known products of L-Erg metabolism are hercynine and L-ergothioneine
sulfonate, both stable oxidative products of L-Erg. We did not quantify the concentration
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or excretion of these products, but assuming that the production of these compounds is
not compatible with the formation of S-Met-L-Erg, we hypothesize that the levels of either
hercynine or L-ergothioneine sulfonate or both are higher in cystinuric mice, which again
would point out to a hampered oxidation regulation in cystinuric kidneys. This hypothesis
is supported by the correlation observed in the levels of hercynine or L-ergothioneine
sulfonate and L-Erg in kidneys [35]. The reduce glutathione levels observed in the liver
of cystinuric mice might predispose to injuries caused by oxidative stress [36] and can
be speculated that ergothioneine, as an antioxidant, might be being used by tissues to
compensate a reduced redox metabolism.

Age-related L-Erg changes in RBCs has been observed in humans, where it declines
gradually at 19–50 years from the maximum at 18 years of age [29]. We have tested L-Erg in
mice at 3 and 6 months of age, which corresponds to middle age humans (20–30 years) [37].
Although a reduction in L-Erg levels were expected from human observations, the levels in
RBCs at 6 months of age in comparison with those at 3 months of age were higher in mice,
replicating the observations made in rats, where no age-related decline in L-Erg levels in
RBCs were detected [30], suggesting specie-specific characteristics.

No gender-related differences in L-Erg plasma concentration has been reported in
middle age humans [38], although it had been reported in rats [30], pointing out again to
a putative specie-specific characteristic. Gender biased expression in human kidneys has
been demonstrated for 67 genes [39], and 114 genes in rats [40] and glutathione metabolic
process was among the functional categories of gender biased genes in human kidneys [39].
To explain the observed gender-related differences in L-Erg and S-Met-L-Erg levels in mice,
it is tempting to speculate that OCTN1 expression might be gender biased in mice. We
did not observed significative changes in L-Erg levels in blood, in contrast to the lower
levels present in the blood of mice and patients with CKD [22], except for the increase in
cystinuria male mice at 6 months of age.

Some authors have noted an increasing incidence of pediatric nephrolithiasis, at least
in the U.S. [41,42], with the consequence of an increasing need of noninvasive methodolo-
gies for diagnosis and follow-up. Currently, patient’s cystine lithiasis might be controlled
by analyzing the urinary crystal volume and number of cystine crystals, or the cystine
capacity, or by imaging techniques. Crystalluria analysis, which is only available in selected
clinical laboratories, shows an AUC of 66% [16], bellow the AUC of 84% displayed by the
S-Met-L-Erg to L-Erg ratio described here.

One of the practical limitations of crystalluria is urine processing time [16]. Such
limitation could be avoided quantifying urine parameters such as cystine capacity, super-
saturation, and concentration, or as we propose from our results, measuring S-Met-L-Erg
and L-Erg urinary levels. The AUCs of cystine capacity, cystine supersaturation and cystine
concentration are 69%, 70% and 70%, respectively [17], clearly below the 84% of the S-Met-
L-Erg to L-Erg ratio. The good performance of the S-Met-L-Erg to L-Erg ratio indicates that
it could be a better biomarker of cystine lithiasis than the currently existing ones.

The abovementioned methods show a limited capability to detect cystine stones in
clinical settings and no reliable biomarker of cystine lithiasis can be used by clinicians to
manage cystinuria patients [16]. The use of the urinary S-Met-L-Erg to L-Erg ratio in a
clinical setting would not be much different of the routine amino acid determination which
is nowadays mostly done by mass spectrometry [43], opening the possibility of measuring
it from dry spot urine or frozen samples, once the protocol is set up in clinical diagnosis
laboratories. A more reliable and easier to determine cystine lithiasis biomarker could
allow clinicians to detect cystine stones earlier and prescribe appropriate treatments. An
earlier detection would also mean a smaller cystine stone, leading to shorter treatment
times and a lower risk of urinary tract obstruction, which could also have an impact on
patients’ quality of life. Furthermore, a cystine lithiasis biomarker that does not rely on
cystine could also be included in clinical assays to monitor the performance of future
cystinuria treatments to prevent cystine stone formation.
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The results presented here also suggest that OCTN1 (Slc22a4) might be a modulator of
cystine lithiasis. The changes we observed in the levels of the antioxidant L-Erg together
with the lower reduced and total glutathione levels described in cystinuric mice [36] and
the reduction in cystine lithiasis when mice is treated with antioxidants [44,45], support
the hypothesis of the involvement of redox mechanisms in cystinuria. Based on our results,
it is also tempting to speculate that a lower activity or a defective OCTN1 might be behind
those patients showing highly lithiasic phenotypes.

The differences observed in S-Met-L-Erg to L-Erg ratio between lithiasic and non-
lithiasic cystinuric mice and its good performance in the cystinuria mouse model support
considering urinary S-Met-L-Erg to L-Erg ratio as a good biomarker of cystine lithiasis. Its
use in a clinical outcome, once verified, could clearly improve cystinuria patient manage-
ment and, therefore, patients’ quality of life.

5. Conclusions

L-ergothioneine and S-methyl-L-ergothioneine urine excretions showed significant
sex-related differences in both WT and Type B cystinuria (Slc7a9−/−) mice.

In a mouse model of Type B cystinuria (Slc7a9−/−), the ratio of the urine concentrations
of S-methyl-L-ergothioneine to L-ergothioneine discriminated between lithiasic and non-
lithiasic mice regardless of sex and age.

The urinary S-methyl-L-ergothioneine to L-ergothioneine ratio performes as a good
biomarker of cystine lithiasis in a Type B cystinuria (Slc7a9−/−) mouse model.

6. Patents

The results presented are part of the patent WO2021018774A1, entitled "Ergothioneine,
S-methylergothioneine, and uses thereof".
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