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Electrophysiological sensory deviance detection signals, such as the mismatch
negativity (MMN), have been interpreted from the predictive coding framework as
manifestations of prediction error (PE). From a frequentist perspective of the classic
oddball paradigm, deviant stimuli are unexpected because of their low probability.
However, the amount of PE elicited by a stimulus can be dissociated from its probability
of occurrence: when the observer cannot make confident predictions, any event holds
little surprise value, no matter how improbable. Here we tested the hypothesis that
the magnitude of the neural response elicited to an improbable sound (D) would scale
with the precision of the prediction derived from the repetition of another sound (S), by
manipulating repetition stability. We recorded the Electroencephalogram (EEG) from 20
participants while passively listening to 4 types of isochronous pure tone sequences
differing in the probability of the S tone (880 Hz) while holding constant the probability of
the D tone [1,046 Hz; p(D) = 1/11]: Oddball [p(S) = 10/11]; High confidence (7/11);
Low confidence (4/11); and Random (1/11). Tones of 9 different frequencies were
equiprobably presented as fillers [p(S) + p(D) + p(F) = 1]. Using a mass-univariate
non-parametric, cluster-based correlation analysis controlling for multiple comparisons,
we found that the amplitude of the deviant-elicited ERP became more negative with
increasing S probability, in a time-electrode window consistent with the MMN (ca. 120–
200 ms; frontal), suggesting that the strength of a PE elicited to an improbable event
indeed increases with the precision of the predictive model.

Keywords: uncertainty, precision, prediction error, mismatch negativity (MMN), deviance detection, predictability,
oddball
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INTRODUCTION

According to current models that view the brain as a Bayesian
inference system, our experience of the world stems from internal
representations of the statistical regularities of the sensory
input. These internal representations embody our experience
and prior knowledge about the world, and the associated
expectations. Based on these representations, internal forward
models continuously make predictions regarding the sensory
input (Friston, 2010). Predictions are compared with incoming
sensory information and prediction error (PE) is used to adjust
the internal representations. This comparison process and the
ensuing generation of PE signals is also referred to as sensory
deviance detection, and it is reflected in electrophysiological
responses, most notably in the mismatch negativity (MMN;
Garrido et al., 2009). Today, deviance detection is widely accepted
as a general principle of brain function (Friston, 2010; Escera and
Malmierca, 2014; Malmierca et al., 2014).

An aspect of this process which is much less well-established
in the deviance detection literature is the proposal that it is
flexibly adjusted depending on the estimated precision of the
sensory signals, or in other words, the confidence that can
be placed in the current internal models and the predictions
derived from them. Specifically, it is proposed that the gain
of the PE signals is modulated (“precision-weighted”) by their
expected precision, thereby adjusting the impact that the PE has
in terms of updating the internal representations (Feldman and
Friston, 2010; Schröger et al., 2015). This is critical for the proper
formation and updating of predictive models under different
contexts and levels of noise, avoiding issues like overfitting, and
allowing a dynamic adjustment of the balance between the weight
placed on priors and the weight placed on sensory evidence when
interpreting sensory input. Precision-weighting of the gain of the
PE signal is also proposed to be the mechanism through which
attention operates to modulate sensory responses (Feldman and
Friston, 2010). Moreover, it has been proposed that dysfunctional
precision-weighting might be a critical factor in schizophrenia
and autism, in which the balance between the weight placed on
priors and evidence would be skewed toward the priors in the
former and toward the evidence in the latter (Adams et al., 2013;
Lawson et al., 2014, 2017). Thus, the concept of precision or
confidence appears to be a central aspect of generating and using
internal models, crucial in determining our experience through
its influence on perception and attention.

Nevertheless, the concept of confidence or precision is
somewhat elusive and has been rarely operationalized in a clear
way in deviance detection studies. So far, it seems unclear
how to measure confidence and investigate it with a simple
paradigm that is also applicable to clinical settings. The aim of
this report is to propose a simple manipulation that taps into
precision or confidence based on the most common design to
investigate deviance detection, the oddball paradigm, allowing
us to investigate the hypothesis that sensory deviance detection
signals are precision weighted.

In the typical oddball paradigm used to study deviance
detection, two stimuli are presented with differing probabilities;
an infrequent “deviant” stimulus is interspersed among the

repeating presentation of the frequent “standard” stimulus. When
the electrophysiological responses elicited by the deviant are
compared to those elicited by the standard, a negative deflection
can be observed on the difference waveform in the 100-200 ms
latency range: the mismatch negativity (MMN; Näätänen, 1992).
Thus, the MMN signals the detection of a change in the sensory
stream. Since the discovery of the MMN, thousands of studies
have used variations of the oddball paradigm, applying the MMN
to study a wide range of issues in basic and clinical research,
proving to be a powerful tool to study brain function (Näätänen
et al., 2007, 2011, 2012). For the MMN to continue to be so
useful, our understanding of the underlying MMN-generating
process and significance must continue to be updated and evolve
(Winkler, 2007).

Indeed, there has been a substantial progression on the
explanatory theories regarding the type of computation indexed
by the MMN-generating process. Initially, the sensory memory
trace hypothesis proposed that each incoming stimulus is
compared with the trace of the preceding stimuli stored in
sensory memory and that MMN is elicited when the incoming
stimulus differs (Näätänen, 1992). An alternative explanation
proposed that the MMN is the result of the differential
state of refractoriness or adaptation of the neural populations
responding to the standard and deviant stimulus, with the
standard population being more refractory due to the high rate
of responses to the repeating standard, and thus eliciting a
diminished response (“release from refractoriness,” Näätänen,
1990, 1992), or “N1 adaptation hypothesis” (Jääskeläinen et al.,
2004; May and Tiitinen, 2010) compared to the deviant.
Currently, it is generally acknowledged that refractoriness
differences underlie part of the effects measured in most of
the classic deviance detection studies unless this aspect is
properly controlled (Näätänen et al., 2005; Escera and Malmierca,
2014). Nevertheless, the predominant view is that there exists a
unique deviance detection process indexed beyond refractoriness
differences (the “true” MMN). Building up on this idea, the
sensory memory trace hypothesis evolved into considering the
trace against which each incoming stimulus is compared more
of an abstract representation of a regularity, rather than a
literal trace of the standard stimulus. The idea of regularity
representations facilitated a transition from memory-based to
prediction-based explanations, proposing that the comparison
is not to a memory trace, but rather to a prediction generated
on the basis of the regularity. Perhaps the currently best
accepted view of the MMN is the model adjustment hypothesis,
which also highlights the predictive model, proposing that the
MMN-generating process has a direct role in the building
of the predictive internal representation itself, rather than
simply signaling deviance detection (Winkler and Czigler, 1998;
Winkler, 2007). In this view, the MMN reflects the updating of
the internal representation on the basis of how well the incoming
stimuli match the predictions generated by the predictive model.
However, while these last models stress the predictive aspect, they
did not define how specifically the predictive representation is
formed and applied. More recently, MMN has been interpreted
from the predictive coding perspective as a manifestation of PE
(Garrido et al., 2009; Wacongne et al., 2011; Lieder et al., 2013;
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Schröger et al., 2015; Stefanics et al., 2018), placing the MMN-
generating process within a wider conceptualization of the
brain as a Bayesian inference system (Knill and Pouget, 2004;
Friston, 2010) and thus providing a detailed explanation of the
computations involved in the underlying inference process.

The different MMN models emphasize different aspects when
it comes to understanding exactly what the deviance in deviance
detection is, and thus outlining the factors that might influence
MMN elicitation and amplitude. From a rather simple frequentist
perspective of the classic oddball paradigm, the deviance
associated with an event relates to its improbability, given a
prediction of the occurrence of all possible events. Thus, in this
view, the differential processing of deviant stimuli is determined
exclusively by their low probability. This interpretation fits well
with the N1-adaptation hypothesis, in which the effects would
be due solely to differential base rate probability of the standard
and deviant. However, from a Bayesian perspective PE (and thus
MMN) reflects a violation of expectations, and can be related
in a straightforward manner to the concept of Bayesian surprise
(Ostwald et al., 2012). Bayesian surprise quantifies how incoming
data affects an observer, by measuring the difference between the
observer’s beliefs before and after receiving the new data. New
data that is difficult to integrate into the current explanatory
model (i.e., the observer’s beliefs) requires that significant changes
are made to the model, thus yielding a high value of Bayesian
surprise (Itti and Baldi, 2009). This perspective dissociates the
amount of PE (surprise) elicited by a stimulus from its probability
of occurrence, and also fits well with the model adjustment
hypothesis of MMN (Winkler, 2007). The Bayesian perspective
on surprise also stresses the importance of the observer’s beliefs:
when the observer cannot make confident predictions, any event
holds little surprise value, no matter how improbable it is by itself.

In predictive coding models of brain function, confidence
in the predictions derived from the internal model is tied
to the concept of precision. Predictive coding proposes that
the prediction error signal is weighted by an estimate of its
expected precision, which inversely relates to the prediction
error’s variability (Feldman and Friston, 2010). This precision-
weighting mechanism allows adjusting the relative weights of
prior beliefs and sensory evidence in the inference process
considering contextual factors, such as the amount of noise. Thus,
the magnitude of sensory deviance detection signals elicited
by a highly improbable deviant stimulus should reflect the
confidence (precision), such that it should be down-weighted
when contextual factors lead to highly variable signals. In other
words, a highly improbable event will elicit less surprise when
the situation does not allow constructing an internal model that
reliably predicts the stimulation.

In sum, modern perspectives on the MMN-generating process
place the concept of confidence or precision as a central
parameter in the elicitation of MMN. However, until quite
recently, among the myriad of studies on MMN there have
been surprisingly very few that directly addressed this aspect.
Nevertheless, classic MMN literature has shown that the MMN
is modulated by factors that reflect the clarity or the certainty
of a change (Fitzgerald and Todd, 2020). First, MMN will only
be elicited to deviants presented with a probability of 0.30 or

below (Kujala et al., 2007), and MMN amplitude increases with
decreasing probabilities of the deviant (Näätänen, 1990, 1992).
It is well-established that the MMN is larger for deviants that
are more physically different (Winkler et al., 1992; Tiitinen
et al., 1994; Amenedo and Escera, 2000; Daikhin and Ahissar,
2012), differ in more dimensions (Schröger and Wolff, 1998) or
are more discriminable (Sams et al., 1985) from the standard
(Näätänen, 1990, 1992). Much less research has focused on
exploring the impact of the way the regularity is presented, that
is, the characteristics of the standards rather than the deviants.
Nevertheless, there is evidence indicating that the stability or
strength of the regularity, or the amount of evidence gathered
to support it, affects MMN amplitude. MMN increases after a
greater number of repetitions of the standard (Baldeweg et al.,
2004; Costa-Faidella et al., 2011a,b), after a longer period of
stable regularity (Todd et al., 2011) or when the rate of standard
repetitions is higher (with shorter ISIs; Pekkonen et al., 1995).
Importantly, not only the amount of evidence collected for the
regularity but also the clarity of this evidence plays a role. In this
sense, factors that diminish the information extracted from the
standard attenuate MMN (e.g., backward masking, Winkler and
Näätänen, 1992), and introducing some variability in the specific
characteristics of the repeating standard stimulus also decreases
the amplitude of the MMN (Winkler et al., 1990).

All in all, although there is evidence indicating that confidence
or precision may play an important role in the MMN-generating
process, a simple dedicated paradigm is lacking that would allow
to measure the effects of precision understanding the MMN
as an index of a Bayesian inference process. Such a paradigm
should allow isolating confidence without being confounded by
refractoriness, which is tied to the deviant probability. Moreover,
a clear operational definition of confidence applied to the
oddball paradigm is missing to facilitate research in this aspect
and hopefully lead to a better understanding of the MMN-
generating process.

To investigate the influence of precision in sensory deviance
detection signals, we propose a new oddball paradigm in which
we vary the confidence on the model (inferred from the regularity
established by the repetition of the standard stimulus), by
manipulating the stability of the standard stimulus, while holding
the deviant probability constant. To isolate effects of precision
not confounded by refractoriness differences, we focus on the
analysis of the deviant stimuli, which should elicit a precision-
weighted PE signal reflecting the deviance detection process.
If the MMN reflects the probability of the deviant stimulus,
responses to the deviant should not differ between conditions.
On the contrary, if it is a prediction error signal weighted by the
confidence given by the overall variability of the stimulation, we
would expect the amplitude of the deviant responses to be graded
by the probability of the standard tone.

MATERIALS AND METHODS

Participants
Twenty-five healthy volunteers with no self-reported history
of neurological, psychiatric, or hearing impairment and with
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normal or corrected-to-normal visual acuity participated in
the experiment. From this sample, five participants had to be
excluded due to problems during the recording session (N = 2)
or large artifacts in the Electroencephalogram (EEG) signal
(N = 3), resulting in a final sample of 20 participants included
in the study (mean age: 34.5 years; age range: 21–55 years; 8
males; all right-handed). All volunteers gave written informed
consent in accordance with the guidelines of the Clinical
Research Commission of the Hospital Universitari Institut Pere
Mata and the Ethics Committee of the Institut d’Investigació
Sanitària Pere Virgili before their participation and after the
procedures were explained to them. The study conformed
to the Code of Ethics of the World Medical Association
(Declaration of Helsinki) and was approved by the Clinical
Research Commission of the Hospital Universitari Institut Pere
Mata, the Drug Research Ethics Committee of the Institut
d’Investigació Sanitària Pere Virgili and the Bioethics Committee
of the University of Barcelona. Recordings were performed at the
Hospital Universitari Institut Pere Mata.

Auditory Stimuli
Eleven pure tones (44.1 kHz sampling rate; 50 ms duration;
5 ms hanning windowed rise/fall ramps) of different frequencies
corresponding to musical notes, from A4 as the lowest pitch and
Eb7 as the highest, spaced in steps of 3 semitones (440; 523.25;
622.25; 739.99; 880; 1046.5; 1244.51; 1479.98; 1760; 2093; and
2489.02 Hz), were generated with Matlab (R2020a; Mathworks)
and delivered binaurally via Sony MDR-ZX110 headphones at
70 dB SPL using Psychtoolbox-3 functions implemented in
Matlab environment [Psychophysics Toolbox Version 3 (PTB-3)]
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

Sound Sequences
Auditory stimuli were arranged in four separate sequences
(see Figure 1A), each containing 1650 pure tones delivered
randomly at 333 ms SOA. Each sequence constituted one
experimental block (i.e., one condition; ca. 9 min duration).
Sequences differed mainly in the probability of appearance
of the 880 Hz tone [from now on termed Standard (S)]:
Oddball, p(S) = 10/11; High confidence, p(S) = 7/11; Low
confidence, p(S) = 4/11 and Random (no tone repetition
allowed), p(S) = 1/11. The probability of appearance of the
1046.5 Hz tone [from now on termed Deviant (D)] was kept at
p(D) = 1/11 in all sequences. The remaining nine tones were
presented as equiprobable fillers (from 440 to 2489.02 Hz, spaced
in 3 semitone steps, excluding the D and S tones) with a combined
probability of appearance of p(fillers) = 1−[p(S) + p(D)]. Each
sequence was created by concatenating 150 microsequences of
11 tones (150∗11 = 1650), generated according to the required
characteristics. If a microsequence started with the same tone as
that appearing at the previous microsequence ending (except for
the S tone in the Oddball, High confidence and Low confidence
sequences), a different microsequence was generated to avoid
repetition. Albeit acknowledging that the S/D terms may not be
appropriate for a sequence such as the Random one, in which
all 11 tones are presented equiprobably, we decided to follow
the traditional terminology of human auditory ERP studies on

deviance detection (Näätänen, 1992; Näätänen et al., 2007) for
consistency with past literature, readability, and because it reflects
best our experimental manipulation of interest: the parametric
variation of S probability.

Procedure
During the EEG recording session, participants sat in a
comfortable chair in a sound-attenuated room and listened
passively to the four sound sequences, delivered in random order,
while reading a book (or a magazine or newspaper) of their own
choosing. The total duration of the recording session was 40 min
approximately (4 blocks × 9 min + pauses), plus EEG recording
preparation (around 20 min).

EEG Recording and Preprocessing
EEG was continuously recorded from 16 Ag/AgCl electrodes and
digitized at a sampling rate of 500 Hz by a BrainVision V-AMP
amplifier (Brain Products, Germany) using the BrainVision
Recorder version 1.21.0303 (Brain Products, Germany)
acquisition software. Eleven electrodes were mounted in a
nylon cap (EasyCap, Germany) at standard locations according
to the international 10-20 system (Fp1, Fp2, F3, Fz, F4, T3, C3,
Cz, C4, T4, Pz); additionally, two electrodes were positioned over
the left and the right mastoids (M1 and M2, respectively), and
three electrodes were used to record the electrooculogram [one
placed below the left eye (VEOG); the remaining two placed at
the outer canthi of the eyes (HEOG)]. The ground electrode was
placed at AFz and the common reference electrode at the tip of
the nose. All impedances were kept below 5 k� during the whole
recording session.

Data preprocessing was performed offline using EEGlab
v2021.0 software (Delorme and Makeig, 2004) running on Matlab
R2020a. Data were bandpass filtered between 1 and 40 Hz
(Kaiser window; β = 5.65; transition bandwidth = 0.5 Hz).
Periods contaminated by non-stereotyped muscle artifacts
were rejected by visual inspection. Independent component
analysis decomposition was applied using the SOBI algorithm
(Belouchrani and Cichocki, 2000). Independent components
related to blinks, horizontal eye movements and heart rate,
identified on the basis of their scalp topography and time course
(Jung et al., 2000), were removed. After eliminating VEOG and
HEOG channels from the set, artifact corrected data were cut
in epochs from −0.1 to 0.3 s, time-locked to each auditory
stimulus onset, and baseline corrected from −0.1 to 0 s. Epochs
containing improbable data 3 SD above or below the mean
probability distribution of values across all epochs were excluded
(EEGlab’s function pop_jointprob.m). Epochs corresponding to
the D tone and the closest preceding S tone were selected for
further analyses. Across participants, the mean (and SD) of the
number of included trials per condition was: Oddball, D tone,
134.4 trials (7.2), S tone, 135.3 trials (5.7); High confidence, D
tone, 135.9 trials (5.6), S tone, 136.3 trials (5.2); Low confidence,
D tone, 133.95 trials (9.7), S tone, 133.4 trials (6.5); Random, D
tone, 135.45 trials (4.7), S tone, 135.4 trials (5.7). No significant
differences were found between the number of trials used in each
condition (D tone: Kruskal-Wallis test, χ2 = 0.5, p > 0.5, df = 3;
S tone: Kruskal-Wallis test, χ2 = 2.35, p > 0.1, df = 3). Data
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FIGURE 1 | (A) Experimental design. (B) ERP waveforms from Fz electrode evoked to D stimuli in the Oddball (odd; dark red), High confidence (high; orange), Low
confidence (low; cyan) and Random (rand; dark blue) conditions. Correlation values (Pearson’s r) between S tone probability and D tone ERP amplitudes at each
time point are plotted in a dotted black line. The gray shaded area marks the temporal extent of the significant cluster of correlation values (122–202 ms). (C) P50,
N1 and MMN/P2 scalp potential distribution maps per condition separately. (D) Boxplot series illustrating the distribution of mean amplitude ERP values extracted
from Fz around the maximum correlation peak (170 ms) in our sample of participants, separately per condition. The boxplots represent the median value (middle
line), the interquartile range (full box) and the extreme values (whiskers; outliers are plotted as separate dots). Significance of post hoc tests: ****p < 0.001;
*p < 0.05. (E) Time-electrode evolution of Pearson’s r-values. The gray shaded area marks the temporal extent (122–202 ms) of the significant (***p < 0.005) cluster
of correlation values, while the white dots (electrodes) denote its spatial extent.

was then converted to fieldtrip format (Oostenveld et al., 2011),
epochs were averaged separately per participant, tone type and
condition and the resulting ERPs were lowpass filtered at 25 Hz
with a zero-phase forward and reverse 6th order Butterworth
IIR filter (hamming window). Difference waves (DW) were
computed by subtracting, per participant and condition, the S
tone ERP from the D tone ERP.

EEG Analyses
To investigate the influence of precision on deviance detection
signals, we focused on the analysis of the D stimulus under
different levels of precision, with the hypothesis that ERP

amplitudes to the D tone would be modulated by the
probability of the S tone. We computed a correlation analysis
(Pearson’s correlation) introducing the probability of the S
tone as the independent variable (i.e., predictor; 10/11, 7/11,
4/11, 1/11 corresponding to the Oddball, High confidence,
Low confidence and Random conditions, respectively) and
the ERP amplitudes to the D tone (in the 4 experimental
conditions) as the dependent variable. In order to overcome
the problem of multiple comparisons over electrodes (n = 13)
and time points (from −0.1 to 0.3 s; 200-time points at
500 Hz sampling rate), a mass-univariate, two-dimensional (time,
electrode) cluster-based correlation analysis was conducted,
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performed using a non-parametric randomization procedure
(Maris and Oostenveld, 2007; in Fieldtrip, ft_timelockstatistics
function with the options cfg.statistic = “correlationT” and
cfg.type = “Pearson”). Neighboring electrodes were defined by the
distance separating each other in a 2D projection of the montage,
centering a 2.5 cm radius circle at each electrode and selecting
those electrodes falling within. A minimum of two nearby
electrodes was set per cluster. Correlation coefficient T-statistics
were then computed at each time point and electrode (two-tailed)
with the non-parametric Monte Carlo method. The Monte Carlo
significance probability (p-value) was determined by calculating
the proportion of 2D samples from 20,000 random partitions of
the data that resulted in a larger test statistic than those on the
observed test statistic. Then, clusters were created by grouping
adjacent 2D points exceeding a significance level set to 0.05. The
weighted cluster mass (Hayasaka and Nichols, 2004) was taken
as the cluster-level statistic. The significance probability of the
clusters was assessed with the described non-parametric Monte
Carlo method. Values of p < 0.05, corrected for two-tailed tests,
were considered significant. For each significant cluster we report
its temporal spread, cluster statistic and p-value. To facilitate
comparability of our results to previous MMN deviance detection
studies, we complemented the analyses performed on D stimuli,
analyzing the modulation caused by the probability of the S tone
on the S tone ERP itself and on the D-S DW, following exactly the
same statistical approach. However, note that differences in the S
responses between conditions do not only reflect differences in
precision, but also differences in refractoriness or adaptation as
the manipulation of precision entails the manipulation of the S
stimulus repetition rate. Therefore, we base our conclusions on
the analysis of the D stimuli, whose probability was held constant
across conditions.

RESULTS

Grand-average (N = 20) ERP waveforms evoked to the D tone
(1046.5 Hz; probability of appearance in the sequence = 1/11)
in the Random, Low confidence, High confidence and Oddball
conditions, extracted from a frontocentral electrode (Fz),
are illustrated in Figure 1B. As expected, the tone evoked
prototypical P50 (ca. 50 ms) and N1 (ca. 100 ms) auditory
ERP components in all conditions. A gradient in the ERP
amplitude, becoming more negative with increasing S tone
(880 Hz) probability across conditions (1/11, 4/11, 7/11 and
10/11 for the Random, Low confidence, High confidence and
Oddball conditions, respectively), can be appreciated between
ca. 120 and 200 ms, a time range consistent with that of
MMN/P2 auditory ERPs. The scalp potential distribution maps
of these ERP components are plotted in Figure 1C for each
condition separately.

A mass-univariate correlation analysis between the probability
of the S in the different experimental conditions (independent
variable) and the amplitude of the ERP to the D tone (dependent
variable), corrected for multiple comparisons in time and space
(i.e., number of electrodes) using a cluster-based approach,
yielded a significant fronto-central negative cluster between

122 ms and 202 ms (wcm = −247.48; p < 0.005; see Figure 1E),
peaking at Fz electrode at 170 ms (Pearson’s r = −0.43; see
Figure 1B), corroborating the observation that D tone ERP
amplitudes become more negative as S probability increases. This
result was supported by a further confirmatory non-parametric
statistical analysis on the mean ERP amplitudes at Fz extracted
from each subject in a 160 to 180 ms time window (20 ms around
the correlation peak; Kruskal-Wallis test, χ2 = 16.59, p < 0.001,
df = 3; see Figure 1D). Post hoc tests corrected for multiple
comparisons (Tuckey-Kramer) revealed that D ERP amplitudes
at Fz during that time range were significantly more negative in
the Oddball condition than in the Random (p < 0.001) and in the
Low confidence (p < 0.05) conditions.

In order to evaluate the modulation that increasing a tone
probability has on the activity evoked to that tone itself, the
activity evoked to the S tones was submitted to the very same
analysis. Grand-average ERP waveforms evoked to the S tone
(880 Hz) in the Random, Low confidence, High confidence
and Oddball conditions, extracted from Fz, are illustrated in
Figure 2A. A gradient in the N1 amplitude (ca. 110 ms) can
be observed, becoming less negative with increasing probability,
as well as a reduced P50 (ca. 45 ms) in the Oddball condition
as compared to the rest. The scalp potential distribution maps
of these ERP components are plotted in Figure 2B for each
condition separately.

However, these observations were not supported by statistical
analyses, as the mass-univariate correlation analysis performed
between the probability of the S in the different experimental
conditions (independent variable) and the amplitude of the
ERP to the S tone (dependent variable), corrected for multiple
comparisons in time and space (i.e., number of electrodes) using
a cluster-based approach, yielded no significant clusters.

For completeness, we submitted the DW ERPs (D ERP
– S ERP) to the same analysis. Grand-average DW ERPs in
the Random, Low confidence, High confidence and Oddball
conditions, extracted from Fz, are illustrated in Figure 3A. As
expected from the activity patterns elicited to the D and S tones,
the DWs exhibit an increase in positivity around the P50 time
range (ca. 40 ms) with increasing S tone probability, as well
as a prominent MMN (ca. 140 ms) in the Oddball condition.
The negativity at the MMN time range gradually increases with
increasing S tone probability. The scalp potential distribution
maps of both DW peaks are plotted in Figure 3B for each
condition separately.

The mass-univariate correlation analysis between the
probability of the S in the different experimental conditions
(independent variable) and the amplitude of the DW ERP
(dependent variable), corrected for multiple comparisons in
time and space (i.e., number of electrodes) using a cluster-based
approach, yielded a significant central-frontocentral positive
cluster between −6 ms and 58 ms (wcm = 166.71; p < 0.01;
see Figure 3D), peaking at Fz electrode at 38 ms (Pearson’s
r = 0.43; see Figure 3A), and a significant frontocentral
negative cluster between 108 ms and 190 ms (wcm = −234.54;
p < 0.005; see Figure 3D), peaking at Fz electrode at 142 ms
(Pearson’s r = −0.42; see Figure 3A). These results corroborate
the observations that DWs increase in positivity at the P50

Frontiers in Human Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 734200

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-734200 September 22, 2021 Time: 18:48 # 7

SanMiguel et al. Precision in the Oddball Paradigm

FIGURE 2 | (A) ERP waveforms from Fz electrode evoked to S stimuli in the Oddball (odd; dark red), High confidence (high; orange), Low confidence (low; cyan) and
Random (rand; dark blue) conditions. Correlation values (Pearson’s r) between S tone probability and S tone ERP amplitudes at each time point are plotted in a
dotted black line. (B) P50, N1, and P2 scalp potential distribution maps per condition separately.

FIGURE 3 | (A) Difference waveforms (D ERP—S ERP) from Fz electrode in the Oddball (odd; dark red), High confidence (high; orange), Low confidence (low; cyan)
and Random (rand; dark blue) conditions. Correlation values (Pearson’s r) between S tone probability and DW ERP amplitudes at each time point are plotted in a
dotted black line. The gray shaded areas mark the temporal extent of the significant clusters of correlation values (–6–58 ms; 108 to 190 ms). (B) P50 and MMN time
range scalp potential distribution maps per condition separately. (C) Boxplot series illustrating the distribution of DW mean amplitude values extracted from Fz
around the maximum correlation peaks (38 ms; 142 ms) in our sample of participants, separately per condition and P50/MMN time ranges. The boxplots represent
the median value (middle line), the interquartile range (full box) and the extreme values (whiskers; outliers are plotted as separate dots). Significance of post hoc tests:
***p < 0.005. (D) Time-electrode evolution of Pearson’s r-values. The gray shaded areas mark the temporal extent (–6–58 ms; 108–190 ms) of the significant
(***p ≤ 0.005) clusters of correlation values, while the white dots (electrodes) denote their spatial extent.
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time range and increase in negativity at the MMN time range
with increasing S tone probability. Further confirmatory
non-parametric statistical analyses on the mean DW amplitudes
at Fz extracted from each subject confirmed these findings: P50
time range, 33–43 ms time window (10 ms around the correlation
positive peak), Kruskal-Wallis test, χ2 = 15.49, p < 0.005, df = 3;
see Figure 3C; MMN time range, 132–152 ms time window
(20 ms around the correlation negative peak), Kruskal-Wallis
test, χ2 = 14.26, p < 0.005, df = 3; see Figure 3C. Post hoc tests
corrected for multiple comparisons (Tuckey-Kramer) revealed
that DW ERP amplitudes at Fz during the P50 time range were
significantly more positive in the Oddball condition than in the
Random (p < 0.005) and in the Low confidence (p < 0.005)
conditions. DW amplitudes during the MMN time range were
significantly more negative in the Oddball condition than in the
Random (p < 0.005) condition.

DISCUSSION

Predictive coding models propose that sensory event-related
brain potentials reflect the transmission of precision-weighted PE
from lower to higher areas of the sensory hierarchy. According
to this view, electrophysiological deviance detection signals like
the MMN reflect the greater amount of PE elicited by the deviant
(mispredicted) compared to the standard (predicted) stimuli
(Friston, 2005; Garrido et al., 2009). Moreover, the gain of the PE
is adjusted on the basis of an estimation of its precision, whereby
more variable (uncertain) contexts lead to lower confidence and
down-weighted PE signals compared to more stable (certain)
contexts. To test whether the amplitude of sensory evoked
responses reflecting PE varies as a function of uncertainty, we
recorded ERPs elicited by 1046.5 Hz tones presented with p = 0.1
and manipulated the degree of variability of the rest of the
sounds of the sequence, which were always drawn from a pool
of 10 tones ranging between 440 and 2489.02 Hz. We found
that the amplitude of the sensory response evoked by a low
probability sound correlates linearly with the variability of the
sound sequence in which it is embedded. Specifically, the lower
the variability, the more negative the evoked response recorded
over frontocentral electrodes between 122 and 202 ms. This
gradual increase in negativity in the D tone ERP resulted in an
MMN response in the D-S difference waves which decreased
linearly with decreasing S tone probability. These results provide
strong support for the idea that evoked potentials in the time
range of the MMN reflect precision-weighted PE.

Traditionally, the MMN has been considered to be automatic
and tied to sensory memory, thus operating on short time scales
(< 30 s, Winkler et al., 2002) and reflecting local probability
statistics (Fitzgerald and Todd, 2020). However, evidence has
accumulated indicating that MMN is influenced by higher-
order factors such as prior experience, foreknowledge through
instruction (Frost et al., 2018), first impression biases (Todd et al.,
2011, 2013) and attention (Auksztulewicz and Friston, 2015).
These findings challenge the classic views on the computations
underlying the MMN, centered on relatively simple mechanisms
of deviance detection and regularity extraction, and push toward

a broader conceptualization of the MMN as an index of more
sophisticated learning processes in a world of sensory uncertainty
in which precision plays a key role (Mathys et al., 2011;
Fitzgerald and Todd, 2020).

In order to better understand the processes indexed by the
MMN, here we have proposed a paradigm studying the impact
of precision on sensory deviance detection focusing on the
analysis of the D stimulus responses. We have chosen the term
precision to refer to our manipulated variable. However, different
terms relating to this idea (precision, confidence, uncertainty,
variability, signal-to-noise ratio, predictability, context, second-
order predictions, etc.) are used somewhat interchangeably in
the literature, each stressing slightly different aspects. In general,
they all relate to the hypothesis that, to cope with the many
factors that limit the reliability of sensory information about the
world, the brain encodes information probabilistically, in the
form of probability distributions (“Bayesian coding hypothesis,”
Knill and Pouget, 2004). These distributions represent all possible
values of any parameter, along with the associated probabilities
for each value. Uncertainty typically refers to the width of the
belief (or subjective probability) distribution (Ma and Jazayeri,
2014), and its inverse is the precision (Feldman and Friston,
2010). Thus, broader distributions (more variance) correspond
to greater uncertainty and lower precision. Precision is also often
defined as second-order predictions, or the predictions of context
(Koelsch et al., 2019; Auksztulewicz and Friston, 2016), referring
to contextual factors that influence predictability. That is, besides
making a (first-order) prediction on content, the brain would
make a (second-order) prediction, based on context, on how
predictable an event is, or in other words, how likely it is that
the content prediction will be correct (confidence). Therefore,
uncertainty can also be defined as a measure of unpredictability
or expected surprise (Feldman and Friston, 2010).

Altogether, the degree of variability (unpredictability) stands
out as a crucial factor modulating sensory deviance detection, but
variability can take myriad different forms. Indeed, different types
of uncertainty have been proposed to drive different modulatory
processes (Yu and Dayan, 2005), and, in principle, precision
can refer to the belief distribution (the model), the predictions
derived from it, the PE, or the stimulation itself. Logically, these
are interrelated, as, for example, more variable contexts will lead
to more uncertain predictions (Mathys et al., 2011). Nevertheless,
both the precision of the prediction and the precision of the PE
need to be considered to estimate the net effect of the sensory
input on each observation (Kwisthout et al., 2017). In fact, the
precision-weighted PE can be viewed as a Student’s t-statistic,
where to assess the significance of the difference between two
distributions (the prediction and the observation) the difference
in means (PE) is divided by its standard error (inverse variance
or precision) (Feldman and Friston, 2010).

Hence, the question remains, what exactly does precision
refer to? What types of variability or uncertainty specifically
influence the magnitude of a deviance detection signal like
the MMN? Given the multiple perspectives on how to define
confidence, it seems necessary to empirically explore different
types of manipulations to understand the significance of
precision for the MMN.
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The degree of predictability has been manipulated in many
different ways in deviance detection studies. First of all, the very
definition of the MMN as a deviance detection signal implies that
it depends on predictability: only when the stimulation contains
some type of statistical regularity that can be violated will there be
the possibility to elicit an MMN. In fact, presenting the deviant
sounds with the same probability embedded in a sequence of
random (unpredictable) sounds (our Random condition) is an
established control to isolate the MMN (Schröger and Wolff,
1996; Ruhnau et al., 2012). Indeed, Hsu et al. (2015) showed
that relative to predicted stimuli, mispredicted stimuli (deviants
violating the established regularity) elicited enhanced negative
responses while unpredicted stimuli (presented in the absence of
a rule) elicit attenuated responses.

Thus, the question is rather whether, when there is a statistical
rule to be violated, the amplitude of the deviance detection
signals depends on the degree of predictability. Previous studies
have manipulated the strength of the rule by manipulating the
number of consecutive repetitions of the standard presented
immediately before the deviant (Baldeweg et al., 2004; Haenschel
et al., 2005; Costa-Faidella et al., 2011a,b), or more generally
the degree of repetitiveness of the sequence (Quiroga-Martinez
et al., 2019, 2020) reporting greater MMN amplitudes with
increased repetition. However, one concern with these types
of studies is whether the effects observed reflect a modulation
of the deviance detection process, or whether they reflect
refractoriness differences.

The strength of the rule can also be weakened by
introducing small variations in the characteristics of the repeating
standard stimulus. Winkler et al. (1990) varied sound intensity
across standard stimulus exemplars. In different blocks, the
“substandards” covered a wider or narrower range of intensity
values around a common mean. MMN elicited by intensity
deviants decreased as the range of variation in the standard
increased. In a similar design, Daikhin and Ahissar (2012)
found that jittering the standard frequency reduced responses
to frequency deviants, but only when the deviance magnitude
was small. Importantly, in both these studies the deviants were
defined by being outside the range of variation of the standard,
thus adaptation differences could play a role in these effects as
well, and the standard was always varied, thus no repetition rule
was established.

We have proposed a parametric manipulation based on the
stability of the standard stimulus, akin to a manipulation of
signal-to-noise ratio, directly manipulating the strength of the
rule (the rule being the standard tone and the noise being the
rest of the tones). Aiming to investigate the effects of precision
on the “true” MMN, or the part of the MMN which is due to
predictive processes and not local adaptation or refractoriness
mechanisms (i.e., repetition effects), we focused on the analysis of
the responses to deviant stimuli with identical probability across
the different standard stability conditions (a similar strategy to
using a random control, Schröger and Wolff, 1996; Ruhnau et al.,
2012). The results show a clear gradation of the D response with
a time-course and scalp distribution compatible with the MMN.
However, the MMN is typically extracted calculating the D-S
difference wave, canceling out sensory responses and isolating

the deviance detection signal. Therefore, the response elicited by
the D stimulus cannot directly be considered an MMN. Both
modulations of the D stimulus and the S stimulus responses
affect the canonical MMN signal. In classic paradigms, ideally,
the S and D responses are extracted from different conditions
in a block design, so that they are elicited by the same physical
stimulus under the two different roles. In our paradigm, the S
and D tones are different physical stimuli. However, the mode
of presentation of the D stimulus in our Random condition
is identical to how the control S stimulus is presented in the
well-established “many standards” or random control condition,
used in previous studies to isolate the “true” MMN (Schröger
and Wolff, 1996; Ruhnau et al., 2012). Therefore, the difference
between the D ERP in the Oddball and the Random conditions
is indeed the MMN response, and we can observe a clear gradual
modulation of this response across the levels of our parametric
precision manipulation.

Nevertheless, to provide a complete picture and for ease of
comparison to the previous literature, we also analyzed the S
stimulus responses, and found no significant correlation between
the S tone ERP and the parametric precision manipulation. While
this finding suggests that precision affects only the D and not the
S responses, it should be interpreted with caution, as precision
effects on the S responses might have been compensated with
refractoriness effects, given the manipulation of the S stimulus
probability across precision conditions. Thus, albeit precision can
of course affect both S and D responses, and both effects would
impact the MMN signal, practical issues regarding the design of
the paradigm make it quite difficult to study both these aspects at
the same time. Here we have focused on the investigation of the
effects of precision on the deviance detection signal per se, which
is elicited by the D, not the S stimulus, and contributes directly to
the canonical MMN response.

In any case, again to facilitate comparison to previous studies,
we also report the classic D-S difference waves, where the
MMN can be clearly identified in the Oddball and the High
confidence conditions, as expected. The modulations observed
on the MMN response isolated in this way show the same pattern
as the modulation observed on the D tone ERP in the MMN
time window, with an additional earlier significant modulation
affecting the P50 response. Again, given that the difference waves
reflect both modulation of the S tone and the D tone ERPs and
that the S tone ERP is also affected by refractoriness differences,
this result should be interpreted with caution, and we prefer
to refrain from making any firm conclusions based on the
difference wave ERPs.

Thus, we have based our conclusions on the analysis of
the D tone ERPs which had a fixed probability throughout
the experiment. Despite their fixed probability, it could be
argued that co-adaptation from nearby frequency channels
could modulate deviant responses differentially across conditions
(Jääskeläinen et al., 2004; May and Tiitinen, 2010; for a
review of animal and human studies on stimulus-specific
adaptation, see Escera and Malmierca, 2014). However, our
results are inconsistent with this hypothesis, as co-adaptation
in nearby frequency channels should render the responses to
the deviant in the oddball condition smaller than in the rest of
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experimental conditions. Instead, previous studies have shown
that neuronal responses scale with the spectral distribution of
auditory stimulation, a finding showing a dynamic variation
in stimulus-specific adaptation, interpreted as adaptation to
stimulus statistics (Herrmann et al., 2013, 2014). Indeed, several
findings indicate that alphabet size (Winkler et al., 1992; Barascud
et al., 2016; Auksztulewicz et al., 2017; Quiroga-Martinez et al.,
2019, 2020) or the width of the distribution (Garrido et al., 2013;
Larsen et al., 2020) of the stimulation sequence are reflected
on neural signals, supporting the idea that variability in the
stimulation (inverse precision) plays a role in the modulation
of deviance detection. In our study, decreasing the confidence
(from oddball to random) increases the spectral variability of
the stimulation (i.e., tones of different frequencies become more
probable), without broadening the spectral range of the sequence.
As the low probability stimulus (D) falls at the center of the
mean log spectral distribution of the stimulation (1046.5 Hz),
the better the model representing the spectral distribution, the
more reduced neural responses would be expected (Daikhin and
Ahissar, 2012; Garrido et al., 2013) as the D tone becomes a
prototype exemplar of the rule. Thus, encoding the distribution
of stimulation features, such as tone frequency, could stand as
a possible mechanism underlying precision-weighting of PE in
variable contexts.

An interesting question is whether variability in one feature
affects only deviance detection processes with respect to that
feature, or whether reduced model confidence down-weights
PE signals arising from violations of any of the stimulation
parameters. Here, we have directly manipulated the predictability
of the stimulus feature in which the deviant differs from
the standard. However, confidence can also be manipulated
varying the number of features that are predictable. Some
findings suggest that variability in one feature does not affect
deviance detection with regards to other features (Quiroga-
Martinez et al., 2019, 2020). However, there is also evidence that
manipulating the variability in one feature affects the detection
of deviations in a second (stable) feature (Winkler et al., 1990).
Notably, introducing temporal uncertainty (variability) reduces
repetition suppression (Costa-Faidella et al., 2011a) and impairs
the ability to detect new rules (Sohoglu and Chait, 2016).
Thus, future studies using our paradigm could explore how
the spectral variability manipulation across confidence levels
affects responses to deviations in other features (e.g., duration or
intensity deviants).

The strategies discussed so far modulated precision
manipulating always low-level features of the stimulation;
that is, physical differences between standards and deviants.
However, predictability can also be increased by imposing
additional higher-level rules or constraints. When participants
are informed about the rules, the MMN is modulated (Frost et al.,
2018; but see Koelsch et al., 2019 for an opposing argument).
Moreover, stimuli that violate a local rule elicit smaller PE signals
if they at the same time conform to a global rule (Sussman
et al., 1998; Wacongne et al., 2011). It should be noted that
manipulating predictability by imposing a higher order rule, is
not the same as directly making the single existing rule more
or less noisy. Nevertheless, these studies show that information
from different levels of the representation hierarchy is integrated

and top-down information from higher levels seems to be able to
readjust precision at lower levels. Similarly, recent studies have
shown that the MMN is affected by the rule stability estimated
over time scales that must necessarily involve higher-order
structures. In these studies, volatility is manipulated having
the standard and deviant change roles more or less rapidly
throughout the stimulation sequence, showing that MMN is
larger during more stable stimulation stretches (Todd et al., 2011,
2013; Dzafic et al., 2020).

All in all, studies manipulating predictability in one way or
another have shown that deviance detection signals are higher in
less variable (more predicable) conditions. However, in general,
the studies discussed above made comparisons between certain
vs. uncertain conditions, but did not show a gradation of different
levels of uncertainty. Thus, it is interesting to understand whether
deviance detection is a process that varies parametrically with
precision whenever precision is manipulated through the degree
of regularity. Alternatively, there could be an “all-or-none”
turning point when a given predictive model of the stimulation
is accepted as valid, and only from that point on is the system
actually using it to make predictions. For example, in a study
investigating the effects of deviance magnitude, Horváth et al.
(2008) gradually manipulated the frequency distance between
deviant and standard and argued that the “true” MMN (when
adaptation is controlled) is categorical, an all-or-none process.
We performed a gradual manipulation of the rule strength
across 4 levels of uncertainty, and found that responses to
the deviant scale with rule precision, pointing to a continuous
process. Nevertheless, at a descriptive level, we also observed
a possible qualitative change between the oddball and the high
precision conditions. Topographically, the process that varied
parametrically with precision was centrally distributed. However,
careful observation of the topographies of the oddball condition
suggests the presence of an overimposed frontocentral negativity
in this condition only, that is already not observable in the high
confidence condition. This change in topography could reflect
the activation of frontal generators (Deouell, 2007), suggesting
that highly precise PEs may reach higher hierarchical levels
before they can be silenced. The presence or absence of filler
tones might also represent an important qualitative change in
the stimulation leading to different strategies in the deviance
detection process. Nevertheless, on the classic D-S difference
waves, a clear MMN response can be observed both for the
Oddball and the High confidence conditions, while no MMN
is elicited in the Random condition, as expected from previous
studies, and the signal elicited by the Low confidence condition
lies somewhere in between. This indeed seems to suggest that the
signal reflects a continuous rather than an all or none underlying
process, however, additional research is needed to clarify this
point. Specifically, it could be interesting to add more confidence
steps to the design to further evaluate the gradation of the
responses, and to extend the electrode montage to be able to
perform a reliable source analysis, or use a technique with a
higher spatial resolution, that would allow dissociating multiple
hypothetical contributing sources.

In conclusion, in our paradigm, we have tapped into
precision by manipulating pitch predictability gradually, going
from random frequencies within a limited range, to a strong
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(low-level) repetition rule. However, contrary to other studies
that have manipulated repetitiveness, we focus on the response
to D sounds of equal probability, thereby avoiding adaptation
confounds. In our study, decreasing repetitiveness of the S rule
means increasing spectral variability, similarly to alphabet size or
distribution width manipulations, but critically our D stimulus
falls on the center of the distribution and the range of values
was equal across conditions, manipulating only the repetitiveness
of the S within this range. We show that gradually lowering
the precision of the pitch rule, gradually weakens responses
to pitch deviants. The results support the view that sensory
responses to the D sound are a manifestation of precision-
weighted PE, in the context of a Bayesian inference process.
However, as we have reviewed, there are various ways to define
precision and manipulate it at multiple levels. Further research
is needed to clarify whether all these effects reflect the same
underlying process or not.

With this paradigm, we hope to demonstrate a viable,
gradual manipulation of precision in the investigation of
prediction and prediction errors in the auditory modality,
which addresses the “true” MMN controlling for adaptation.
Experimental manipulations tapping onto precision can be
powerful tools to explore predictive processing and learning
and their dysfunctions, and can be used to test the hypothesis
of aberrant precision-weighting in schizophrenia and autism
(Adams et al., 2013; Lawson et al., 2014, 2017; Haarsma et al.,
2020). We believe our paradigm can shed some light on the
concept of precision and the precision-weighting of prediction
error signals in the Bayesian inference process, contributing to
continuously advance the understanding of the MMN-generating
process toward a broader conceptualization of the MMN as
a signal of sophisticated learning processes in a world of
sensory uncertainty.
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