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Abstract: This TFG discusses Conservation of Momentum in the context of Torricelli’s law. We consider a large tank 

filled with water with a tiny hole near its base, and compute the horizontal force exerted on the fluid by the container walls in 

two ways, finding that the results differ by a factor of 2. We obtain that 𝐹𝑥 = 2𝜌𝑔ℎ𝑆2, where 𝑆2 is the cross-sectional area of 

the hole, after applying conservation of momentum, and 𝐹𝑥 = 𝜌𝑔ℎ𝑆2  using Cauchy’s hypothesis. We analyze the assumptions 

made in these calculations, and perform experiments to confirm that some of them are not realized, identifying the sources of 

the discrepancy. Specifically, the assumption that the pressure is hydrostatic everywhere in the tank except at the hole and that 
the velocity is strictly horizontal are the key reasons for our discrepancy. Finally, we discuss Borda’s Mouthpiece and redefine 

the selected control volume as a way to reconcile both approaches to obtain the force.

I. INTRODUCTION 

The conservation of momentum is a well-known principle 

in mechanics and it is a fundamental tool at finding solutions 

in complex problems. When it comes to hydrodynamics, the 

conservation of momentum is also really useful at providing 

results in stationary fluids. Choosing the right control volume 

will lead to obtain results that would be more difficult to obtain 

via alternate means. In this document I apply the conservation 

of momentum to a classical problem, the discharge of an ideal 
fluid from a large tank through a tiny hole in its base. 

The system of study, shown in Fig. 1, is a tank with a large 

section 𝑆1 filled with an ideal fluid up to a height 
𝑦0. The tank has a tiny hole with section 𝑆2 ≪ 𝑆1, at a distance 

ℎ from the free surface. The exit velocity 𝑣 at 𝑆2 is given by 

the well-known Torricelli’s Law, which is a classical result 

more than three hundred years old. Explicitly Torricelli’s law 

states that [1-6] 

 𝑣 = √2𝑔ℎ , (1) 

where 𝑔 is the gravitational acceleration. This result expresses 

energy conservation: potential energy density of material 

particle at free surface (𝑈 = 𝜌𝑔ℎ) transforms into kinetic 

energy density at the orifice (𝐾 =
1

2
𝜌𝑣2). This transformation, 

from potential to kinetic energy, is only possible in absence of 
friction effects which is justified since we are considering ideal 

fluid flow. 

To obtain Torricelli’s Law more formally, it is common to 

start from Bernoulli’s equation [2] 

 1

2
𝑣2 + Φ +

𝑃

𝜌
= const, (2) 

where 𝑣 is the velocity of the fluid in a streamline, Φ is the 

gravitational potential energy, 𝑃 is the pressure of the fluid 

along the streamline, and 𝜌 its density. This expression applied 

along a streamline between point 1 on the free surface and 

point 2 at the exit hole where the fluid exits the tank, 

Bernoulli’s equation gives 

 1

2
𝑣1

2 + Φ1 +
𝑃1

𝜌1

=
1

2
𝑣2

2 + Φ2 +
𝑃2

𝜌2

 . (3) 

Now, considering that 𝑃1 = 𝑃2 = 𝑃0 , the atmospheric 

pressure, that �⃗�1 ≈ 0, because 𝑆1 ≫ 𝑆2, and that Φ1 − Φ2 =
ℎ𝑔, we obtain: 

ℎ𝑔 =
1

2
𝑣2

2 → 𝑣2 = √2𝑔ℎ 

which is the Torricelli’s Law. 

II. CONSERVATION OF MOMENTUM  

Conservation of momentum applied to a control volume 𝑉 

that is fixed in space can be written as [3] 

 𝑑

𝑑𝑡
∫ �⃗�𝑝𝑑V

𝑉

= − ∮ 𝑢 · 𝑑𝑆
𝑆

+ ∫ 𝜌�⃗�𝑉𝑑V ,
𝑉

 (4) 

where 𝑆 is the surface surrounding 𝑉, �⃗�𝑝 = 𝜌�⃗� is the density 

of momentum, �⃗�𝑉 is a volume force, and 𝑢 is the momentum 

flow tensor, defined as [3]: 

𝑢 = 𝜌�⃗��⃗� − 𝜎 

where 

𝜎 = −𝑃𝐼 + 𝜎′ 

is the stress tensor, with 𝜎′ the viscosity stress tensor. For an 

ideal fluid 𝜎′ = 0. The 𝜌�⃗��⃗� term in 𝑢, is a velocity tensor that 

represents the transport of momentum 𝜌�⃗� by particles with 

velocity �⃗�. 

Equation (4) tells us that the time variation of momentum 

in a control volume V occurs because of the momentum loss 

across the surface S, or due to the momentum sources, which 

are related to the volume forces. 
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FIG. 1: The system of study: a tank with cross section  𝑆1 

and a tiny hole with section 𝑆2 in its lateral surface, where 

𝑆1 ≫ 𝑆2. The tank is filled with an ideal fluid and it is 
drawn the streamline that it is taken to apply the Bernoulli 
equation. 
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It is remarkable that in steady state, we can apply this 

theorem after knowing the velocity field in S. This is especially 

useful in cases where the only information that it is known is 

in the boundaries of the control volume. 

In steady state, the derivative of the momentum drops and 

there we are only left with the surface and volume integrals. If 

we consider this case and assume that the only volume force is 

gravitational the conservation of momentum applied to an 
ideal fluid becomes: 

 
∮ 𝜎 · 𝑑𝑆

S

= ∮ 𝜌�⃗��⃗� · 𝑑𝑆
𝑆

− ∫ 𝜌�⃗�𝑑V
𝑉

 

In this equation we identify the left side integral as the contact 

force exerted on the fluid, so that 

 
�⃗� = ∮ 𝜌�⃗��⃗� · 𝑑𝑆

S

− ∫ 𝜌�⃗�𝑑V
𝑉

. (5) 

We can therefore use momentum conservation to obtain the 

contact force exerted on the fluid, without needing to know the 

velocity field in V; we only need to know it in the surface. This 

is different from the more common way to calculate forces 

through Cauchy’s Hypothesis after finding 𝜎 via the Navier-

Stokes Equations. 

III. THE HORIZONTAL COMPONENT OF 

THE FORCE EXERTED ON THE FLUID 

To prove the usefulness of the Conservation of Momentum 

Theorem we will use it to compute the horizontal force 

(projection of �⃗� onto the horizontal axis) exerted on the fluid 

by the container walls. We will also do this using the Cauchy’s 

Hypothesis. 

A. Using Conservation of Momentum Theorem 

To evaluate the force exerted by the container on the fluid, 

we choose the control volume shown in Fig. 2. This control 

volume is bounded by the following surfaces: 𝑆𝐿 (lateral 

surface of the tank wet by the fluid), 𝑆1 (free surface of the 

fluid), and 𝑆𝐵  (base of tank) and 𝑆2 (cross sectional area of the 

hole). Therefore, the total surface that surrounds V is 

𝑆 = 𝑆1 ∪ 𝑆𝐵 ∪ 𝑆𝐿 ∪ 𝑆2 

The horizontal component of �⃗�, 𝐹𝑥, is given by Eq. (5): 

𝐹𝑥 = ∮ 𝜌𝑣𝑥�⃗� · 𝑑𝑆
𝑆

. 

Note that the volume force has dropped out since it has no 

x-component (gravity is along the vertical axis, �⃗�𝑉 = −𝑔𝑗̂). 
We are left with the velocity integral, which can be easily 

computed. Since 𝑆1 ≫ 𝑆2, the velocity of the free surface as 

well as that on 𝑆𝐿 and 𝑆𝐵  can be neglected. Hence, the velocity 

is zero at almost all 𝑆, except at 𝑆2 where it is given by 

Torricelli’s Law. As a result 

𝐹𝑥 = ∮ 𝜌𝑣𝑥�⃗� · 𝑑𝑆
𝑆

= ∫ 𝜌𝑣𝑥
2𝑑𝑆

𝑆2

=  𝜌𝑣𝑥
2𝑆2 

 → 𝐹𝑥 = 2𝜌𝑔ℎ𝑆2. (6) 

Since 𝑆2 is small enough, we have considered that the exit 

velocity is constant thorough this section. 

B. Using Cauchy’s Hypothesis 

Let’s now find this force using Cauchy’s Hypothesis [5]: 

 
�⃗� = ∮ 𝜎 · 𝑑𝑆

𝑆

. (7) 

The x-component is: 

𝐹𝑥 = ∮ (𝜎 · �̂�)
𝑥

𝑑𝑆
𝑆

. 

The unitary vector �̂� is the normal vector to the surface. As it 

was mentioned in the introduction, the fluid can be considered 

ideal so that 𝜎 is just related to the pressure: 

𝜎 = −𝑃𝐼 . 

Thus: 

 
𝐹𝑥 = − ∮ (𝑃𝐼 ·  �̂�)

𝑥
𝑑𝑆

𝑆

. (8) 

Due to the geometry of the problem, the only surface where 

�̂� has a not null projection along the x-axis is the lateral surface 

𝑆𝐿 and 𝑆2. Consequently, the pressure integral is just 

 
∮ (𝑃𝐼 ·  �̂�)

𝑥
𝑑𝑆

𝑆

= ∫ 𝑃𝑛𝑥𝑑𝑆
𝑆𝐿∪𝑆2

 . (9) 

This integral can be easily computed if we consider that the 

fluid is at rest at 𝑆𝐿. This means that the pressure on the lateral 

surface is just the hydrostatic pressure (𝑃𝐻). This is not the case 

on 𝑆2, where the velocity is nonzero. The exit hole is open to 

the atmosphere so the pressure there is just the atmospheric 

pressure (𝑃0). Hence: 

∫ 𝑃𝑛𝑥𝑑𝑆
𝑆𝐿∪𝑆2

= ∫ 𝑃𝐻 𝑛𝑥𝑑𝑆
𝑆𝐿∪𝑆2

− ∫ 𝑃𝐻𝑑𝑆
𝑆2

+ ∫ 𝑃0𝑑𝑆
𝑆2

 . 

I first compute the pressure as if all the fluid in 𝑆𝐿 ∪ 𝑆2 is 

at rest, so that the pressure would be 𝑃𝐻 , and then I subtract the 
hydrostatic pressure and add the atmospheric pressure 

contribution on 𝑆2. The first integral (𝑃𝐻  in 𝑆𝐿) is 

∫ 𝑃𝐻𝑛𝑥𝑑𝑆
𝑆𝐿∪𝑆2

= ∫ (𝑃0 + 𝜌𝑔𝑦)𝑛𝑥𝑑𝑆
𝑆𝐿∪𝑆2

= 0. 

That is easy to see because of the symmetry of the system, the 

same pressure acts in both sides of the surface. Using this, 

∫ 𝑃𝑛𝑥𝑑𝑆
𝑆𝐿∪𝑆2

= − ∫ (𝑃0 + 𝜌𝑔𝑦)𝑑𝑆
𝑆2

+ ∫ 𝑃0𝑑𝑆
𝑆2

= 

= − ∫ 𝜌𝑔𝑦𝑑𝑆
𝑆2

= −𝜌𝑔ℎ ∫ 𝑑𝑆
𝑆2

= −𝜌𝑔ℎ𝑆2 . 

So, by Eq. (8) and (9) the horizontal force is 

 𝐹𝑥 = 𝜌𝑔ℎ𝑆2. (10) 

ℎ 
𝑦0 

𝑆2 

𝑆𝐵  

𝑆1 

𝑆𝐿 

FIG. 2: The chosen control volume of our system in 
red. 
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I emphasize that in these steps we have used the expression 

of hydrostatic pressure (𝑃𝐻 = 𝑃0 + 𝜌𝑔𝑦), where we have been 

assumed that the hole is tiny enough for the vertical coordinate 

to be considered constant. 

Comparing the forces obtained by the two different 

methods (Eqs. (6) and (10)), we see that there is a factor of two 

that differs between them. The question now is why. 

IV. DISCUSSION 

In this section I address assumptions made in the prior 

section and see if they are realized in experiments. Let us 

emphasize that despite Torricelli’s law is a classical result, the 

analysis performed reflects it contains interesting subtleties. 

So is the case that, in fact, there is recent published work 

addressing the issue [7,8]. 

 

A. Pressure Integral 

In evaluating the pressure integral when using Cauchy’s 

Hypothesis, we took the velocity equal to zero in all 𝑆𝐿. This 

allowed assuming 𝑃 = 𝑃𝐻  in that region. To address whether 

this is true, we set up an experiment in the lab. We used a 

plastic container filled with water with a tiny hole close in its 

base. We introduced little drops of ink at the wall in the 

proximities of the hole to identify streamlines and track the 

motion of the fluid. In Fig. 3, there is a snapshot of the result. 

It is notorious how the light transmission decreases near the 
hole, indicating there is a non-zero velocity in that area. Since 

there is velocity in the container surface near 𝑆2, I cannot 

longer assume that the pressure is hydrostatic there; hence, 

∫ 𝑃𝑛𝑥𝑑𝑆
𝑆𝐿∪𝑆2

≠ ∫ 𝑃𝐻 𝑛𝑥𝑑𝑆
𝑆𝐿∪𝑆2

− ∫ 𝑃𝐻𝑑𝑆
𝑆2

+ ∫ 𝑃0𝑑𝑆
𝑆2

 

B. Fluid Velocity at 𝑺𝟐 

Another source of error is to consider that the velocity is 

horizontal at 𝑆2. We assumed this in Eq. (6). In reality, the 

streamlines at 𝑆2 are not horizontal; this can be seen by 

realizing the exit jet stretches, as illustrated in Fig. 4. As a 

result: 

∫ 𝜌𝑣𝑥
2𝑑𝑆

𝑆2

≠ 𝜌𝑣𝑥
2 ∫ 𝑑𝑆

𝑆2

=  𝜌𝑣𝑥
2𝑆2 

 

We conclude that to capture reality, and obtain a correct x-

component of the force, we would need to know the right 

pressure in the proximities of 𝑆2 and the correct velocity 

distribution at the exit hole. 

V. AN EXACT EXAMPLE: BORDA’S 

MOUTHPIECE 

There is an experimental geometry for a mouthpiece and a 

better consideration for control volume that makes both 

assumptions correct. With respect to the pressure integral, we 

introduce Borda’s Mouthpiece. This configuration for the 

opening in 𝑆2 is designed to reenter into the volume, as shown 

in Fig. 5. By using this structure, we assure that the fluid is 
expelled only from the inner part of V and, for that reason, that 

there is no velocity in 𝑆𝐿. Second, the chosen control volume 

will be slightly different, and will follow the jet until its cross 

section is constant; see Fig. 5. Since there is a contraction of 

the fluid jet that exits the tank, the Vena Contracta, we extend 

our control volume up to when the jet straightens. This means 

that in the velocity integral, Eq. (6), the effective surface where 

there is a constant velocity 𝑣𝑥 is 𝑆𝑓 . In this situation, 

𝐹𝑥 = ∮ 𝜌𝑣𝑥�⃗� · 𝑑𝑆
𝑆𝑇

= ∫ 𝜌𝑣𝑥
2𝑑𝑆

𝑆f

=  𝜌𝑣𝑥
2𝑆f 

→ 𝐹𝑥 = 2𝜌𝑔ℎ𝑆f. 
For the pressure integral, we still have the same result: 

𝐹𝑥 = − ∮ (𝑃𝐼 ·  �̂�)𝑥𝑑𝑆
𝑆𝑇

= − ∫ 𝑃𝑛𝑥𝑑𝑆
𝑆𝐿

 

→ 𝐹𝑥 = 𝜌𝑔ℎS0. 
Equating them, we get  

2𝜌𝑔ℎ𝑆f = 𝜌𝑔ℎS0 

→ 𝑆𝑓 =
1

2
𝑆0 

FIG. 3: A snapshots of the experiment where is easy 

to see streamlines in the surface surrounding 𝑆2, 
therefore, we conclude that there is a certain 
velocity in that region.  

FIG. 4: TOP: a snapshot of the experiment 
where is possible to observe the contraction of 
the jet. BOTTOM: a sketch of the exit jet and 
the streamlines getting out of the container. 
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As we see, using Borda’s Mouthpiece we reconcile our two 

analyses and also found another result: the contraction of the 
fluid tube is in this case half the original cross section. 

One may observe that we could have done this redefinition 

of the control volume in our original system (without Borda’s 

Mouthpiece). Had we done it, we would have obtained the 

same result already found. The same contraction factor of 1/2 

would arise, but this would not be a correct result: we would 

still have velocity in the region surrounding 𝑆2, therefore the 

pressure would not be hydrostatic, and the pressure integral 

would be wrong. In fact, it is shown experimentally that the 

contraction factor is approximately 0.6 [3,4], the jet contracts 

less than with Borda’s Mouthpiece. This happens because 

there is a lower pressure in the neighborhood of 𝑆2 (due to the 

non-zero velocity), so the force exerted on the fluid by the 

walls is higher. 

VI. CONCLUSIONES 

In this TFG it has been shown some intricacies related to 

Torricelli’s experiment. We found them by calculating 𝐹𝑥 via 
two different methods, and obtaining different results. As a 

consequence, I revised the procedure and discussed that certain 

assumptions could be wrong. 

It has been shown by experiment, that the velocity in the 

vicinity of 𝑆2 is not zero. This conclusion has motived 

discussing a geometry and analysis that allowed me to 

reconciliate both results. 

Finally, I emphasize that even though this setup is hundreds 

of years old, nowadays the theorical study of a tank with a tiny 

hole near its base still raises interesting problems. It 
encouraged us to study its behavior and design different 

mouthpieces. In fact, in current days, the setup is still under 

investigation [7,8] and there are motivations to keep exploring 

it. 
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FIG. 5: Borda’s Mouthpiece at 𝑆2. 

Now the velocity in 𝑆𝐿 is truly zero. 
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