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Oncolytic viruses (OVs) preferentially infect and selectively
replicate in cancer cells. OVs have been tested in clinical trials
as monotherapy or in combination with chemotherapy, radio-
therapy, and immunotherapy. However, the dense extracellular
matrix hampers the intratumoral spreading and efficacy of
OVs. Previously we described VCN-01, an oncolytic adenovirus
expressing a soluble version of human sperm hyaluronidase
(hyal) PH20, which exhibited enhanced intratumoral distribu-
tion and antitumor activity in different models. Here, we
present two oncolytic adenoviruses designed to increase the
secretion of PH20 compared to VCN-01. ICO15K-
40SAPH20, encoding PH20 under an Ad40 splice acceptor,
and ICO15K-E1aPH20 expressing PH20 fused to the E1A
gene by P2A peptide.We demonstrate that increased hyal activ-
ity improves antitumor efficacy in both a sensitive immunode-
ficient model and an immunocompetent model. Moreover, we
show that hyal activity impacts T cell accumulation in tumors,
highlighting the value of a hyaluronidase-expressing virus for
combinations with other immunotherapies in cancers
involving dense stroma.

INTRODUCTION
Solid tumors are complex organ-like structures consisting of cancer
cells, vasculature, extracellular matrix (ECM), stromal, and immune
cells. One of the main ECM components is hyaluronic acid (HA),
which accumulates in many solid tumors, including pancreatic ductal
adenocarcinomas,1 breast, colon, and prostate cancer,2 among others.
HA is associated with immunosuppression, metastatic potential, and
poor prognosis.3–6 Moreover, HA retains water molecules thereby
increasing tumor interstitial pressure, which plays an important
role in resistance to drugs’ extravasation.7,8

Oncolytic viruses (OVs) have the ability to selectively replicate in can-
cer cells without harming normal tissues.9,10 OVs lyse tumor cells and
trigger a pro-inflammatory response that may induce antitumor im-
munity, making them attractive for immunotherapy combinations.11

However, their intratumoral spread is hampered by the ECM, which
acts as a physical barrier for viral distribution.12 ECM-degrading en-
zymes are commonly exploited to enhance viral penetration in solid
tumors.13 Our group generated a hyaluronidase-expressing oncolytic
adenovirus (OAd), called VCN-01.14 VCN-01 has exhibited a favor-
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able toxicity profile and potent antitumor efficacy in different models
of cancer.14–17 VCN-01 is currently under clinical trial investigation
to treat advanced pancreatic cancer (NCT02045602, NCT020455
89), retinoblastoma (NCT03284268),16 and head and neck cancers
(NCT03799744). While the results of VCN-01 are promising, in
this work we hypothesize that increased levels of hyaluronidase
(hyal) expression may improve oncolytic activity. Accordingly, we
generated OAds with higher hyal activity to assess the impact of
HA degradation on antitumor efficacy and immune response.
RESULTS
Generation of OAds with enhanced hyal activity compared to

VCN-01 and preserved oncolytic properties

We have previously reported the generation of OAd ICOVIR15K18

(abbreviated here as ICO15K) and VCN-01 (also known as ICO-
VIR17K or ICO17K) expressing a soluble version of the human
PH20 hyal under IIIa splice acceptor19 (Figure 1A). To obtain viruses
with higher hyal activity, we designed and generated four new hyal-
expressing OAds (hyal-OAds; Figure 1B). First, the transgene splice
acceptor IIIa was replaced with a previously reported strong splice
acceptor from the long fiber gene of Adenovirus 40, known as
40SA splicing acceptor,20 generating ICO15K-40SAPH20. Then, to
test different genomic locations, the PH20 was introduced down-
stream of the E4 unit with the two splice acceptors, obtaining
ICO15K-E4.IIIaPH20 and ICO15K-E4.40SAPH20. In another strat-
egy, hyal was expressed as an early gene fused to E1A by means of
the self-cleavable peptide P2A20 to generate ICO15K-E1aPH20.

The hyal activity of the new hyal-OAds was assessed in A549 cells as a
reference cell line for adenovirus infection after 72 h. The superna-
tants (SNs) were harvested and concentrated to perform a HA degra-
dation assay (turbidimetric assay). The viruses with hyal downstream
of E4 did not show any transgene activity. ICO15K-E1aPH20 and
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Figure 1. Selection of Hyal-OAds

(A) ICO15K carries the E1AD24 mutation and E2F binding

sites in the promoter of the gene (represented as brown

triangles), and the RGDK motif in the fiber shaft also

known as a RGDK fiber. ICO15K was used to introduce a

soluble version of human PH20 (sPH20) after fiber (Late 5

gene, L5) under IIIa splice acceptor (represented in blue)

restricted to major late promoter (MLP) generating

ICO17K or VCN-01. (B) ICO15K was engineered to

generate all hyaluronidase (hyal)-expressing viruses.

sPH20 was inserted after fiber under Ad40 long fiber SA

(40SA, represented in red), or downstream E4 gene with

IIIa or 40SA splice acceptors and fused with P2A

sequence (represented in green) to the E1A gene. (C)

A549 cells were infected at MOI 20 for 72 h and SNs were

harvested and concentrated 30-fold to assess the hyal

activity by a turbidimetric assay. The fold change of hyal-

activity versus VCN-01 (positive control) is represented.

Mean of triplicates ± SEM is plotted; the dotted line in-

dicates the hyal activity threshold set by ICO15K (negative

control). (D) A dose-response cytotoxic assay was per-

formed in vitro in a panel of human cancer cells 96 h after

infection: lung adenocarcinoma (A549), pancreas carci-

noma (MIA Paca-02), connective tissue fibrosarcoma (HT-

1080), melanoma (Sk-mel-28), breast adenocarcinoma

(MDA-MB-231), and pharynx squamous cell carcinoma

(FaDu). The mean of IC50 triplicates ± SD is represented

and assessed by Kruskal-Wallis with Dunn’s post hoc

test. (E and F) Total virus production in (E) culture cell

extracts (CEs) or in (F) SNs. The A549 cell line was infected

at MOI 20 for 4 h. Then, virus excess was washed and

cells were incubated for 24, 48, or 72 h. CEs and SNs

were collected, and virus production was determined

using anti-hexon staining. Results are expressed as

transducing units (TUs) produced per cell. Mean ± SD of

triplicates is shown.
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ICO15K-40SAPH20 showed higher hyal activity than VCN-01 (Fig-
ure 1C). In line with these results, ICO15K-40SAPH20 and ICO15K-
E1aPH20 were selected for further development, having obtained
comparable titers to VCN-01 (Table S1).

To focus on the role of hyal expression, viruses with cytotoxic prop-
erties similar to VCN-01 were needed. We addressed the oncolytic
potential of ICO15K-40SAPH20 and ICO15K-E1aPH20 compared
to VCN-01 by employing dose-response cytotoxic assays in a panel
of cancer cell lines. Cytotoxicity was first evaluated in A549, yielding
comparable oncolytic potency (IC50 values) among the selected vi-
ruses. Then, six cancer cell lines were tested without significant differ-
ences in IC50 between ICO15K-40SAPH20, ICO15K-E1aPH20, and
VCN-01 (Figure 1D). Of note, the IC50 values observed in the Sk-
mel-28 model are particularly similar.
28 Molecular Therapy: Oncolytics Vol. 22 September 2021
As another parameter of virus fitness, we as-
sessed the virus production kinetics of the new
viruses in A549 by measuring the infective viral
yields (transfecting units, TU) released to SNs
and inside the cell (also called cell extract, CE).
No significant differences in total virus production were found among
the different viruses compared to VCN-01 (Figures 1E and 1F).
Though not statistically significant, it is worth mentioning that
ICO15K-E1aPH20 produced the lowest amount of TU per cell
(Figure S1A).

Effect of enhanced hyal activity expressed by oncolytic

adenoviruses in tumors

The Sk-mel-28 model was selected to test the efficacy of the hyal-ex-
pressing viruses, as we previously reported that these tumors are rich
in HA content.21 Moreover, we confirmed the hyal activity in this
model in a pilot in vivo. The lack of HA staining near replication
sites (E1A protein staining) in Sk-mel-28 treated tumors confirmed
the PH20 activity of VCN-01 and ICO15K-40SAPH20 (Figure S2).
To assess efficacy, we subcutaneously implanted NSG mice with



Figure 2. Antitumor efficacy of Hyal-OAds in Sk-mel-

28 in vivo

(A) Sk-mel-28 tumors implanted in NSGmice were treated

(2e10 vp/animal intravenously) at a mean volume of

180 mm3 and monitored for 81 days. Mean tumor growth

is represented + SEM. *p < 0.05 significant versus cor-

responding group (color) by two-way ANOVA and Tukey

post hoc test. (B–E) Detailed tumor growth of treated tu-

mors from the same experiment. Dotted lines on y axis at

20% and �30% indicate the criteria for clinical status.

Progressive disease R 20%, stable disease < 20% to >

�30%, partial response % �30%, complete response =

�100%.

www.moleculartherapy.org
Sk-mel-28 tumors and treated them intravenously with 2 � 1010 vp
per animal. After 25 days of treatment, all viruses presented signifi-
cant antitumor activity compared to PBS (Figure 2A). After day 35,
increased tumor growth control of ICO15K-40SAPH20 and
ICO15K-E1aPH20 compared to VCN-01 was observed. ICO15K-
40SAPH20 and ICO15K-E1aPH20-treated groups regressed almost
to initial tumor volumes (tumor growth 15% and 8% at the endpoint,
respectively), while the VCN-01 group maintained a slow but sus-
tained tumor growth (146%; Figures 2C–2E). At the endpoint, macro-
scopic observations indicated that some tumors were mainly necrotic
and fibrotic areas, whereas some tumors presented viable growing tu-
mor nodules. VCN-01-treated tumors had more viable nodules (Fig-
ure S3A) than other treated groups. These macroscopic observations
were confirmed with hematoxylin and eosin staining (H&E) to iden-
tify viable zones (blue staining of the nucleus) and non-cellular zones
(red staining, Figures S3B and S3C). The new hyal-OAds showed
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approximately 7% tumor viability at the
endpoint compared to 17% of VCN-01 (Fig-
ure S3D). The results also indicate a greater anti-
tumor efficacy than estimated by tumor volume.

Hyal-OAds had significant long-term control of
xenograft models in immunodeficient mice.
With the aim of assessing the relevance of hyal
expression for the immune response against
the tumor, we used an immunocompetent
mouse model. However, human adenoviruses
do not replicate in most murine cell lines;22

they poorly translate late virus genes and trans-
genes in late transcription units.23 Taking this
into account, we evaluated virus production in
the semi-permissive mouse cell line CMT64.6,
generated by our group.24 Virus production
was around 4 TU per infected cell for all viruses
at 72 h post-infection (Figures S4A and S4B).
Considering that the IC50 values in this model
ranged from 75 TU/cell to 49 TU/cell after
4 days of infection, progression of the cytopathic
effect was clearly limited (Figure S4C). Consis-
tent with the restricted expression of late viral
genes, hyal activity was detected only in ICO15K-E1aPH20 superna-
tants, as PH20 expression in this virus was linked to the early gene
E1A (Figure S4D). Thus, we considered VCN-01 as a minimal hyal-
expressing virus and ICO15K-E1aPH20 as a high hyal-expressing vi-
rus in this model.

We tested the efficacy of VCN-01 and ICO15K-E1aPH20, treating
C57BL/6 mice bearing CMT64.6 tumors. Animals were injected
with 1 � 109 TUs intratumorally to maximize virus presence in tu-
mors. ICO15K-E1aPH20 presented a statistically delayed tumor
growth after day 13, compared to PBS and VCN-01 (Figure 3A). At
the end of the experiment, spleens were harvested, and an enzyme-
linked immunosorbent assay (ELISpot) was performed to analyze
the cellular immune responses elicited against 4 different tumor neo-
epitopes described for CMT64.6 (Ndufs1, Itgav, Arghef10a.2, and
Cep192A), as well as against one viral protein (E1b). We detected
erapy: Oncolytics Vol. 22 September 2021 29
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Figure 3. Hyal expression is crucial for in vivo

efficacy against CMT64.6 tumors

(A) Tumor growth of CMT64.6 tumors was monitored

every 3–4 days until the end of the study (each group had

n R 10 tumors). The mean + SEM is plotted. *p < 0.05

versus other groups (colors) by two-way ANOVA and

Tukey’s post hoc test. (B) Spleens were collected (nR 3/

group) to perform an ELISpot against 4 CMT64.6 neo-

epitopes and the E1b viral epitope. Mean + SD of IFN-g

spots with background subtraction is plotted. (C)

Spearman correlation between Itgav spots and E1b spots

in VCN-01 and ICO15K-E1aPH20 groups together (n = 7).

(D) There was no correlation between Itgav spots and the

% of tumor growth at the endpoint (n = 10). The mean of

duplicate with background value subtracted is shown for

each animal in each correlation.
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responses against E1b and Itgav tumor neoepitope in VCN-01- and
ICO15K-E1aPH20-treated groups (Figure S5), but responses were
heterogeneous among mice, and statistical significance as a group
was not achieved (Figure 3B).

No differences in immune responses were observed between VCN-
01- and ICO15K-E1aPH20-treated animals; consequently, we group-
ed all animals for correlation analyses. There was a significant positive
correlation between the number of interferon-g (IFN-g) spots against
E1b and Itgav (Figure 3C), suggesting that anti-viral immune re-
sponses collaterally also induced anti-tumoral immune responses.
Nevertheless, the immune response against Itgav did not correlate
with tumor growth control (Figure 3D). Other tumor neoepitopes
not evaluated in this study may be contributing to the antitumor
response. Considering that the only difference between treatments
was the hyal activity, these results are supportive of PH20 expression
being responsible for the enhanced efficacy.

Role of hyal in enhancing T cell accumulation

We aimed to analyze the relevance of hyal expression within the tu-
mor and the immune response in a more controlled experimental sys-
tem. To focus on the role of hyal in T cell infiltration separately from
the role of the virus, we used a recombinant human soluble PH20 pro-
tein and an OAd capable of engaging T cells with the tumor through
the secretion of a Bi-specific T cell engager. We previously published
the generation of such an OAd, ICO15K-cBTE (formerly virus
“ICO15K-cBiTE,” renamed for trademark issues), which expresses a
30 Molecular Therapy: Oncolytics Vol. 22 September 2021
T cell engager formed by a single-chain variable
fragment (scFv) against the human CD3 present
in T cells fused to another scFv against human
EGFR (present in tumor cells), thereby recruit-
ing T cells to EGFR-positive tumors.25

We wanted to evaluate the relevance of HA in
the tumor as a barrier for T cell penetration
and the role of hyal activity in allowing T cell
recruitment and local amplification. Therefore,
NSG mice bearing EGFR-positive (A549) subcutaneous tumors
were intratumorally treated with ICO15K-cBTE as monotherapy or
combined with recombinant human hyal. 3 days following treatment,
tumors were injected with PBS (virus monotherapy) or a second dose
of hyal (virus/hyal combination). 7 days after the first treatment, lucif-
erase-expressing T cells were intravenously infused and monitored
for 4 days by in vivo imaging system (IVIS, Figure 4A) to assess hom-
ing and local amplification in the tumor.

At the endpoint (day 11), the tumor volume of the virus/hyal combi-
nation group was significantly lower than that for the group treated
with virus alone (Figure 4B). The number of adenovirus genomes
in the tumors treated with hyal was higher than those treated only
with ICO15K-cBTE (Figure 4C). The injected luciferase-expressing
T cells were detected by luminescence emission in the tumors. Lumi-
nescence increased substantially in both treated groups 4 days post-T
cell administration. However, tumors treated with ICO15K-cBTE
combined with hyal presented higher luminescence at the endpoint
than in tumors treated with virus alone. These results support the
role of hyal in enhancing T cell recruitment and local amplification
in established solid tumors (Figure 4D).

Tumors were also assessed by immunohistochemistry (IHC), con-
firming the presence of virus (E1A) in all treated groups (Figure 5A,
left). Virus foci were surrounded by necrotic areas proving its onco-
lytic activity in vivo. The infused human lymphocytes were detected
in each group by hCD3 staining. Tumors treated with ICO15K



Figure 4. Hyal enhances T cell accumulation in

tumors

(A) NSG mice bearing human A549 were treated intra-

tumorally with 2e9 vp/tumor ICO15K-cBiTE (n = 10) or

ICO15K-cBiTE and 50U of human recombinant PH20 (n =

10), and then on day 3 post-treatment the hyal group was

treated again with 50U hyal. (B) Tumor volume at endpoint

(day 11). *p < 0.05 by unpaired t test. (C) The qPCR

against the E1A gene from tumor DNA. ***p < 0.001 by

unpaired t test. (D) 4 days post final hyal injection, 5e6

luciferase-expressing T cells were injected. Biolumines-

cence in vivo was monitored for 4 days using in-vivo im-

aging system (IVIS). *p < 0.05 by RM-two-way ANOVA

and Sidak’s post hoc test.
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expressing the T cell engager showed a higher percentage of hCD3
staining and non-viable areas around T cells (Figure 5A, center), sug-
gesting their contribution to the treatment’s antitumor effect. Hyal
was not sufficiently detected (data not shown), and no significant dif-
ferences were observed in the collagen fibers staining (Masson stain-
ing, Figure S6). In contrast, the combination of virus and rPH20
yielded decreased HA staining compared to other groups (Figure 5A,
right, and 5B). Furthermore, more extensive necrotic areas and hCD3
staining were found in rPH20-treated tumors (Figure 5B), supporting
hyal activity as an enhancer of T cell recruitment, local amplification,
and intratumoral spreading of T cells and virus.

DISCUSSION
HA has been identified as an obstacle for cancer therapies7 including
OVs, hampering drugs’ extravasation and intratumoral spreading.8

An OAd expressing hyaluronidase, VCN-01, enhanced the spread of
tumor lysis in several relevant models,15,17 which led to the testing of
VCN-01 in clinical settings.16 We hypothesized that a virus expressing
higher amounts of hyal (PH20) might improve antitumor efficacy and
the translational relevance of a hyaluronidase-expressing adenovirus.

As proof of concept, we generated a panel of viruses, which demon-
strated that the insertion site downstream of E4 offers a poor transgene
Molecular Th
expression, in line with previous results.26,27 In
contrast, the splicing acceptor of Adenovirus 40
long fiber (40SA) produced considerably high
amounts of transgenein late, thereby increasing
the hyal activity of VCN-01. Furthermore, link-
ing PH20 expression to the viral E1A also offered
higher activity compared to VCN-01. The novel
viruses ICO15K-40SAPH20 and ICO15K-
E1aPH20 showed comparable cytotoxicity and
production yields to VCN-01, confirming that
enhanced PH20 expression did not hamper their
oncolytic properties. It is worth mentioning that
the P2A-virus production yields were the lowest
after one replication round, though this was not
significant. However, this could have an influ-
ence after several rounds of replication, in line
with published P2A-armed oncolytic adenoviruses,28,29 at least in the
A549 cell line.

We demonstrated that in a HA-sensitive model, such as Sk-mel-28,21

enhanced hyal expression increases antitumor activity with impressive
long-term tumor growth control and significant regressions in immu-
nodeficient mice. VCN-01 has already been proven to show an anti-
tumor effect in less sensitive models, including even in patients.
Although further studies should be performed with the novel viruses,
we speculate that they would likely maintain the efficacy of VCN-01, as
viral replication is not significantly affected by enhanced hyal activity.

However, with the aim of understanding the relevance of hyal activity
in an immunocompetent model, we tested a high hyal-expressing vi-
rus (ICO15K-E1aPH20) and minimally hyal-expressing virus (VCN-
01) in an Ad replication-restricted murine context. It is known that
late genes and transgenes of human adenovirus are not translated
in murine cells,23 as we confirmed in CMT64.6 model. The intratu-
moral administration of VCN-01 did not show any antitumor activ-
ity, as previously published.30 In contrast, ICO15K-E1aPH20 delayed
tumor growth. Elevated immune responses against the virus (anti-
E1B) correlated with a greater antitumor response (anti-Itgav), sug-
gesting that the two immune responses are associated, as previously
erapy: Oncolytics Vol. 22 September 2021 31
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Figure 5. ICO15K-cBTE antitumor effect via

oncolysis and T cell engagement

(A) Immunohistochemistry (IHC) against viral protein (E1A,

left column), infused T cells (hCD3, central column), and

hyaluronic acid (HA, right column). Necrotic areas are

indicated with (N). Representative images from each

group are presented. (B) Random tumor areas (n > 6) were

quantified for the % of necrosis (left), hCD3 staining

(center), and HA (right) using FIJI software. *p < 0.05, **p <

0.01 by one-way ANOVA and Tukey’s post hoc test.
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indicated by pre-clinical31,32 and clinical data.33 In spite of this, only
the virus expressing high levels of PH20 showed efficacy, highlighting
this feature as crucial for antitumor activity in this model. It should be
pointed out that the immune analysis is not exhaustive, and responses
against other neoepitopes might be possible. However, different neo-
epitope responses between viruses being the driving force of the dif-
ferential activity seems unreasonable as the capsid and most of the
genes are identical. Nonetheless, PH20 expression is the only varia-
tion between viruses; thus it should be contemplated that expressing
a human protein within the murine tumor might induce some addi-
tional immune response. However, the virus itself generates a strong
immune induction, and human PH20 has 60% homology with mu-
rine PH20. Therefore, an extra-immune response against human
PH20-mediating tumor efficacy seems unlikely. Perhaps a more
reasonable explanation highlights the role of PH20 activity in im-
mune response leading to the antitumor activity. Data supporting
this assumption have been published, demonstrating that pericellular
HA impedes the lymphocyte-mediated cytolysis, NK recognition, and
the binding of therapeutic antibodies to their targets.34–36
32 Molecular Therapy: Oncolytics Vol. 22 September 2021
In pursuit of amore controlled system, we used a
previous experimental setting published by our
group.25We combined an adenovirus expressing
a T cell engager to promote T cell infiltration
with two intratumoral PH20 injections, to
degrade the HA within the tumor and evaluate
whether HA is a barrier for T cell infiltration.
As expected, we observed an enhanced anti-
tumor efficacy in combination with hyal;37

more viral genomes were detected in tumors
treated with hyal in addition to increased T cell
accumulation, proposing for the first time that
hyal activity increases T cell infiltration and local
spreading. Virus and T cells were localized sur-
rounding necrotic areas, proving their involve-
ment in the antitumor effect. Despite the lack
of hyal detection, likely due to its short half-
life,38 its effect is evidenced by the lack of HA,
extended necrotic areas, and lower tumor vol-
umes with the combined treatment.

Several promising immunotherapies such as
CAR T cells, adoptive cell transfer, and immune
checkpoint inhibitors have shown limited efficacy in “cold” solid tu-
mors. Given that oncolytic adenoviruses are capable of inducing anti-
virus and antitumor immune responses and that hyal activity in-
creases both the oncolytic antitumor effect and T cell accumulation,
we propose that a virus with a high-hyal activity could be a suitable
agent for combinations with other immunotherapies, especially
CAR T cell therapy.

MATERIALS AND METHODS
Cell lines

The cancer cell lines A549, MDA-MB-231, HT1080, MIA PaCa-2,
and FADU were obtained from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA). The CMT.64 cell line was pro-
vided by Dr. Stephan Kubicka (Hannover Medical School, Hann-
over, Germany), and the most permissive clone to adenovirus
infection was previously isolated and expanded by our group, gener-
ating the CMT64.6.24 All cell lines were maintained with DMEM
supplemented with 10% FBS (GIBCO) and maintained at 37�C,
5% CO2.
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Recombinant adenoviruses

ICO15K18 and VCN-0119 were previously described. The new recom-
binant adenoviruses were generated by homologous recombination in
bacteria using PCR fragments, as described.39,40 Briefly, the PCR frag-
ment of the desired modification (primers available by request) was
introduced in electrocompetent bacteria containing a bacterial artifi-
cial chromosome, which encodes for the ICO15K backbone with a se-
lection gene in the desired location. Once recombined, the new
plasmid was transfected into HEK293 cells, and the resulting virus
was amplified in successive rounds in A549 cells and purified on a
CsCl gradient according to standard protocols.

Virus cytotoxic assays

Virus cytotoxicity assays were performed as previously described.18

Briefly, a serial dilution of viral TU was used to infect the desired
cell line in triplicate. The initial multiplicity of infection (MOI; TU/
cell) and the number of cells should be carefully adjusted depending
on the cell line. After 4 days of infection, the cell viability was assessed
by bicinchoninic acid assay (BCA, Pierce Biotechnology). Absorbance
was quantified, and the number of TU per cell required for 50% inhi-
bition (IC50) was estimated from a dose-response non-linear regres-
sion with a variable slope, calculated with GraphPad Prism v6.02
(GraphPad Software).

Production assay

A549 (105 cells) or CMT64.6 (3 � 105 cells) were seeded in 24-well-
plates and incubated overnight. Cells were infected with the parental
virus and tested viruses at MOI of 20 (A549) or 400 (CMT64.6), in
500 mL of DMEM 5% FBS for 4 h. Then cells were washed once
with PBS and fed with fresh media. CEs and SNs were collected
over desired time points and were prepared by 3� freeze/thaw cycles.
The functional titer was determined with the anti-hexon staining
method.41 Results are expressed as the number of TU produced by
a single cell, considering the functional titer and the number of cells
on the day of the infection.

Turbidimetric assay

The turbidimetric assay protocol was previously described.19 SNs of
infected cells were harvested and concentrated 20-fold with Amicon
Ultra-15 filter units with a molecular weight cutoff of 30 kDa (Merck
Millipore) or not, as indicated. SNs were mixed with HA (Sigma) at
0.03% w/v solution in phosphate buffer (300 mN sodium phosphate
monobasic, pH = 5.35 at 37�C) and incubated overnight (12–18 h) at
37�C. The next day, the reaction was stopped by adding 5 volumes of
acid albumin solution (24 mM sodium acetate, 79 mM acetic acid,
and 0.1% of bovine albumin [pH = 3.75]), and the absorbance at
600 nm was measured. Low absorbances indicate low quantity of HA.

In vivo antitumor efficacy

The in vivo studies were performed at Biomedical Research Institute
of Bellvitge (IDIBELL) facility (AAALAC unit 1155) and approved by
the Ethics Committee for Animal Experimentation off IDIBELL. 6- to
8-week-old NOD/scid/IL2rg–/– (NSG) female mice (bred in house)
were implanted with Sk-mel-28 subcutaneous tumors. Animals
were randomized into treatment groups (n R 7 tumors per group)
when tumors reached a mean of 180 mm3. Mice were treated with
an intravenous injection of 2 � 1010 vp/animal in 200 mL of PBS,
and tumor volume was monitored for 81 days. At the endpoint, tu-
mors were collected for IHC analyses. 6-week-old female C57BL/6J
mice (Charles River) were implanted with CMT64.6 tumors (subcu-
taneous) in both flanks. Mice were randomly allocated to groups (n =
10 tumors per group) when tumor volume average reached 80 mm3.
Then tumors were injected at 1 � 109 TUs in 30 mL of PBS. Tumor
volume was monitored for 18 days and mice were sacrificed to isolate
splenocytes for ELISpot.

ELISpot

Lymphocyte-specific responses were evaluated by anti-IFN-g ELI-
Spot according to standard protocols, as published by our group.42

For CMT64.6 neoepitopes the peptides of Nduf1s (AAVSNMVQKI),
Arghef10a.2, (AAVKRGRSFI), and Cep192A (QIINNSVTL) were
used based on previous publications.30,43 The Itgav (SSILYVKSL)
was predicted in silico by NetMHCcons v1.0. For antiviral response,
E1b192 (VNIRNCCYI) was used. All peptides were produced by
JPT Innovative Peptide Solutions (Germany).

IHC

Paraffin-embedded blocks were cut into 4-mm thick sections. E1A and
HA staining were performed as previously published,14,21 using the
anti-Ad2/5 E1A antibody (1/200; Santa Cruz Biotechnology, SC-25)
and B-HABP (5 mg/mL; Amsbio, AMS.HKD-BC41). For human
CD3 detection, FLEX Polyclonal Rabbit Anti-Human CD3 (IR503,
Agilent DAKO) was diluted 1:10 with DAKO antibody diluent
(Dako –Agilent, S0809) for 120min at room temperature. The second-
ary antibody used was a BrightVision poly-horseradish peroxidase
(HRP)-anti-rabbit immunoglobulin G (IgG) that was biotin-free, ready
to use (Immunologic, DPVR-110HRP) incubated 45 min. Antigen-
antibody complexes were reveled with 3-30-diaminobenzidine
(K3468, Dako). H&E staining was performed according to standard
procedures. Masson trichromic staining was performed using the Ac-
custain Trichrome Stain Kit (Sigma Aldrich) according to the manu-
facturer’s indications. The percentage of stained areas in IHC images
were quantified after color deconvolution by ImageJ FIJI44 software.

T cell accumulation in vivo

6- to 8-week-old NOD/scid/IL2rg–/– (NSG) female mice (bred in
house) were implanted with A549 tumors subcutaneously (2 tumors
per animal), and then animals were randomized into treatment
groups (n = 10 tumors per group) with a mean tumor volume of
210 mm3. Mice were treated with an intratumoral injection of 2 �
109 vp/tumor w/o 50U of rPH20 (Acro Biosystems, PH0-H5225) in
30 mL of PBS. 3 days post-treatment, 50U of rPH20 or PBS (30 mL)
was injected into each tumor according to treatment group. 4 days
later (7 days from first treatment), pre-activated GFP- and CBG-lucif-
erase-expressing T cells (Luc T cells) were intravenously administered
(5 � 106 cells/animal in 200 mL) with an intraperitoneal injection of
hIL-2 (1,500 U/animal, Proleukin). Mice were given an intraperito-
neal injection of 15 mg/mL D-luciferin potassium salt solution
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(Byosinth AG) and imaged daily for 4 days using Lumina XRMS Im-
aging System (IVIS, PerkinElmer). Tumor luminescence was
measured by selecting the tumor contour and subtracting the
background.

Virus detection in tumors

Tumors were homogenized with UPHO homogenizer (Geneye,
77.GY-U001). Total DNA was extracted from 15 mL of homogenized
tissues using QIAamp DNA Mini kit (QIAGEN, 51306). VCN-11
viral genomes in total DNA were quantified by qPCR using the Light
Cycler 480 II system (Roche), and Ad18852F (50-CTTCGATGAT
GCCGCAGTG-30) and Ad19074R (50-ATGAACCGCAGCGTCAA
ACG-30) primers.

Statistical analysis

Statistical analyses were performed using Graphpad Prism Software
v8.0. All results are expressed as means ± SD or SEM, as indicated.
p value < 0.05 was used as the threshold for significance. First, data
were assessed for normality by Shapiro-Wilk test and depending on
the result parametric or non-parametric tests were performed, as
indicated in each figure. For in vivo studies, a mixed two-way
ANOVA of repeated measures (Graphpad Prism) was used to
compare the means between all groups for each measurement. Corre-
lations of parametric data were assessed using Pearson correlations,
whereas Spearman correlations were used for non-parametric data.
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