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Abstract: β decay is the process most nuclei go through in order to become more
stable. The goal of this work is to obtain a more precise theoretical prediction of the half
live of the 23Ne to 23Na β decay. After calculating the wavefunctions corresponding
to 23Ne and 23Na using the shell model code Nathan, I evaluate the nuclear matrix
element of a subleading β decay operator for the first time. This correction reduces
the half lives of the decay branches studied up to 3%.

I. INTRODUCTION

A. Motivations

When some process is described theoretically, initially
it is done in a simple way in order to understand its
main features. In a second step, the goal is to improve
the model in order to gain precision and reproduce better
the experimental results. The Standard Model is one of
the widest theories that mankind has ever created. To
test if its predictions agree with experiments, one thing
that one can do is to make high precision experiments
and compare them to the theoretical results, which have
to be also precise. This is doable in the case of the β
decay [1], a process that occurs in nearly all the nuclei
[2] (except the heavier ones). This work calculates more
precisely the half live and the decay probability of some
possible decays between 23Ne and 23Na, transitions which
are expected to be measured with high precision in the
near future.

B. Beta Decay

β decay are not one but several possible processes: β−,
β+ and electron capture (EC):

β− : n −→ p+ e− + ν̄e, (1)

β+ : p −→ n+ e+ + νe, (2)

EC : p+ e− −→ n+ νe. (3)

Since the neutron n is slightly more massive than the pro-
ton p, (1) can happen in the vacuum for a free neutron,
but (2) cannot. Here e− and νe are the electron and the
electronic neutrino, while e+ and ν̄e are their respective
antiparticles.

There are two leading types of β decays: if the projec-
tion of the spin of the nucleon involved remains the same,
then it is a Fermi β decay; if there is a shift, then it is
a Gamow-Teller β decay. Since both are available decay
channels, the β decay half live of a nucleus involves both
processes:

t1/2 =
κ

f0(BF +BGT )
, (4)

Where κ = 6147s, f0 is a phase integral involving the
lepton kinematics and BF and BGT are the reduced tran-
sition probabilities of the Fermi and the Gamow-Teller β
decay, respectively. Those reduced transition probabili-
ties depend directly on the reduced matrix elements of
the Fermi and Gamow-Teller transition operators:

BF =
g2V

2Ji + 1
|MF |2, (5)

BGT =
g2A

2Ji + 1
|MGT |2. (6)

Where gV = 1.0 is the vector coupling constant and
gA = 1.27 is the axial-vector coupling constant. Ji is
the initial angular momentum. In turn, the reduced ma-
trix elements depend on the reduced single-particle ma-
trix elements (evaluated between single-particle states)
MF (ab) and MGT (ab):

MF =(Jf , Tf ‖
∑
j

Ijτ
±
j ‖ Ji, Ti) (7)

=δJi,Jf
∑
ab

MF (ab) · (Jf , Tf ‖ [c†acb]0 ‖ Ji, Ti),

MGT =(Jf , Tf ‖
∑
j

σjτ
±
j ‖ Ji, Ti) (8)

=
∑
ab

MGT (ab) · (Jf , Tf ‖ [c†acb]1 ‖ Ji, Ti).

Here, c†a is called a creation operator, since it creates a
particle in the state a, and cb is a annihilation operator,
since it destroys a particle in the state b. They define the
one-body transition density. σ represents the spin and τ±

are the isospin operators that transform a neutron into
a proton (-) or viceversa (+). Also, Ti and Tf are the
initial and final isospin and Jf is the final total angular
momentum. In this work I will evaluate reduced single-
particle matrix elements for operators beyond the Fermi
and Gamow-Teller ones.

C. Shell Model

A nucleus is a system of Z protons and N neutrons
that interact with each other mainly via the strong in-
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FIG. 1: Harmonic oscillator single-particle levels. Initially
the energy levels depend exclusively on n and l, and when the
spin-orbit coupling is applied, those levels split in two. Large
energy gaps divide the spectrum in shells. From [3].

teraction. In other words it is a system of A = N + Z
fermions that strongly interact with each other. Restrict-
ing to two-body interactions, the Schrödinger equation to
solve reads[∑

i

−~2∇2
i

2mi
+
∑
i<j

V (~ri, ~rj)
]
Ψ(~r1, ..., ~rA) = (9)

EΨ(~r1, ..., ~rA).

The first term is the kinetic energy, the second one is the
interaction between nucleons, E is the total energy of the
system and Ψ is the wavefunction. The system can be
approached defining a mean field as

H = T +
∑
i

v(~ri) + V −
∑
i

v(~ri) = T +
∑
i

v(~ri) + VRES

(10)
In this case, the first two terms of the hamiltonian define
a mean field that can be described with one-body poten-
tials, such as the harmonic oscillator. Its eigenvalues are
called the single-particle energies of orbitals. Adding a
spin-orbit coupling term, the magic numbers, numbers
of protons and/or neutrons at which nuclei become very
stable (corresponding to large energy gaps in the shell
model) are well reproduced.

On the other hand, VRES contains all the interaction
between nucleons. I will obtain the wavefunctions of 23Ne
and 23Na within the shell model. In particular, I will
use the code Nathan [4] and the interactions USD and
USDB [5]. What one can see from experiments is that
a closed shell has a total angular momentum J=0. This
makes things easier, because if a nucleus has a closed
shell, its contribution to the total angular momentum
will be none, and in addition, its nucleons would not
likely occupy more energetic levels because their config-
uration is very stable. In fact, in the shell model the low

energy nucleons are approximated to form a core, which
is represented by a single Slater determinant. The rest
of the nucleons are approximated to be in the valence
space, the next shell over the core, represented by a lin-
ear combination of Slater determinants. Higher shells are
neglected. This does not mean that the core must be ne-
glected, since its interaction with the valence space leads
to an effective hamiltonian, so that the equation to solve
is [6]

Heff | J, T 〉 = E | J, T 〉, (11)

with Heff being the version of H that operates in the
valence space considered. In this work, the core will be
a 16O nucleus (8 protons and 8 neutrons) and the va-
lence space will be the sd shell (i.e. the orbitals with
n=0 and l=2 and the orbital with n=1 and l=0, being
n the principal quantum number and l the orbital angu-
lar momentum quantum number. Therefore, the valence
space used in this work lies between the magic numbers
N = Z = 8 and N = Z = 20, as shown in Fig. 1.

D. Angular momenta and spherical tensors

The spin and the relative motion between nucleons are
angular momenta, and the angular momentum of a sys-
tem is the result of coupling all the angular momenta of
the components of the system [2]. Starting with a sys-
tem of two well-defined angular momenta |j1,m1〉 and
|j2,m2〉,

|j1, j2; j,m〉 =
∑
m1,m2

(j1,m1, j2,m2|j,m)|j1,m1, j2,m2〉

=
∑
m1,m2

(−1)j1−j2+mĵ

(
j1 j2 j
m1 m2 −m

)
|j1,m1, j2,m2〉

(12)

where |j1 − j2| < j < j1 + j2 is the coupled angular mo-

mentum, m = m1 + m2 its projection and ĵ =
√

2j + 1
with Clebsch-Gordan coefficients (j1,m1, j2,m2|j,m),
and their alternative definition, the 3j-symbols which is
the object in parenthesis in (12). In the case of coupling
3 angular momenta the total angular momenta does not
depend on the coupling order but so do the states [2].
The change from the basis generated in one order to an-
other can be done by using the 6j-symbols:

|j2, j3(j23), j1; j,m〉 = (13)∑
j12

(−1)j1+j2+j3+j ˆj12 ˆj23,

{
j1 j2 j12
j3 j j23

}
|j1, j2(j12), j3; j,m〉

Similarly, but with the coupling of 4 angular momenta,
there are the 9j-symbols that appear in (18).

Spherical tensor operators TL are a special type of
operators which have components (like vectors) that are
operators themselves. Specifically, a spherical tensor has
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2L + 1 components: TLM . L is the angular momentum
(also named rank) of the spherical tensor and M is its ẑ

axis projection. In fact, ~J is a spherical tensor itself of
angular momentum 1 (its components are J+1, J0, J−1),
such as the position ~r. The isospin ~τ is also a spherical
tensor with components τ+1, τ0, τ−1. Likewise angular
momenta, spherical tensors can also be coupled to a cer-
tain total momentum:

[TL1
,SL2

]LM = TLM =∑
M1,M2

(L1,M1, L2,M2|L,M)TL1,M1
SL2,M2

. (14)

The reduced matrix element of a tensor operator is de-
fined via the Wigner-Eckart theorem:

〈ξ′j′m′|TLM |ξjm〉 = ĵ′
−1

(jmLM |j′m′)(ξ′j ‖ TL ‖ ξj),
(15)

where ξ represents the additional quantum numbers.
Note that reduced matrix elements do not depend on
the projection. Here are two of them that will be enough
for our calculations:

(j′ ‖ I ‖ j) =δj,j′ ĵ, (16)

(j′ ‖ J ‖ j) =δj,j′~
√
j(j + 1)(2j + 1), (17)

In fact, the identity is a spherical tensor of rank 0. An-
other expression I use is the following

(j1j2j ‖ TL ‖ j1′j2′j′) = (18)

ĵĵ′L̂

 j1 j2 j
j1
′ j2

′ j′

L1 L2 L

 · (j1 ‖ TL1
‖ j1′)(j2 ‖ SL2

‖ j2′),

where TLM = [TL1
,SL2

]LM . Here, TL1
operates in the

|j1,m1〉 space and SL2
operates in the |j2,m2〉 space.

II. DEVELOPING SECTIONS

This work has two main contributions: one analytical
and another numerical. In particular, I have obtained
new results for the single-particle matrix elements, and
implemented a new subroutine for the most relevant β
decay correction into the shell model code Nathan.

In this work I focus on the β decay

23
10Ne −→ 23

11Na + e− + ν̄e, (19)

which begins in the ground state of 23Ne, with total an-
gular momentum J=5/2 and a positive parity. It ends
in four possible states of the 23Na: its ground state, with
J=3/2 and 3 excited states, with J= 3/2, 5/2 and 7/2.
All states have positive parity. The experimental energy
for all those states is very well determined [7], but I will
also calculate them numerically to test the quality of my
calculations.

For these transitions MF = 0, because the lowest lying
state of the 23Ne has an isospin T=3/2, while for the

low energy states of 23Na T=1/2, and
∑
jτ
−
j does not

connect states with different isospin. Therefore
∑
jτ
−
j

only connects with the T=3/2, Tz=1/2 and JP = 5
2

+
,

which is at higher energy than the 23Ne ground state as
shown in Fig. 2. That implies that BF = 0 in (4).

Recently, [7] has introduced an improved expression
for the β decay of 23Ne:

t−11/2 =
f0
κ
BGT (1 + δshape). (20)

This equation takes into account the nuclear shape and
helps me to be more precise in the calculations of the
transition probabilities. The shape correction is [7]

δshape ≈
2

3
Qβ

[√
2

(f ‖ M̂V
1 /q ‖ i)

(f ‖ L̂A1 ‖ i)
− (f ‖ ĈA1 /q ‖ i)

(f ‖ L̂A1 ‖ i)

]
,

(21)

with β decay operators [7]

L̂A1 (q) =
igA

2
√

3π

∑
j

~σjτ
±
j , (22)

ĈV0 (q) =
gV

2
√
π

∑
j

τ±j , (23)

M̂V
1 (q) =

i

2
√

6π

q

mN

∑
j

[gV ~Lj + µ ~σj ]τ
±
j , (24)

ĈA1 (q) =− igA

2
√

3π

q

mN

∑
j

[~rj( ~σj · ~∇j) +
1

2
~σj ]τ

±, (25)

L̂V0 (q) =− gV
12
√
π

q

mN

∑
j

[3 + 2~rj · ~∇j ]τ±j . (26)

HereQβ = m(23Ne)−m(23Na)−me is the energy released
in the β decay, where m denotes the mass. µ ' 4.706 is
the isovector magnetic moment and q is the transferred
linear momentum. The first two operators (Gamow-
Teller and Fermi) appear at leading order, while the other
three are smaller since they are inversely proportional to

the nucleon mass: q
mN
≈ Qβ

mN
. I have identified q ≈ Qβ

since in the two extreme scenarios (the electron or the
antineutrino keeping all the kinetic energy ) and in the
symmetric one the approximation is better than 30%.

In order to evaluate these operators I will need to cal-
culate first the initial and final states, which I obtain
using the shell model code Nathan. Fig. 2 shows the
results in comparison to experiment. The two calcula-
tions correspond to two different Heff : USD and USDB
[5]. USD is a little bit more accurate than USDB. In any
case, the difference between the calculations and the ex-
periment do not exceed 0.2 MeV, so that the calculated
excited energies are very accurate for the three lower ex-
cited states.

Once I have the initial and final states, I need to evalu-
ate the reduced single-particle matrix elements as shown
in (7) and (8). The Fermi and Gamow-Teller ones are
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FIG. 2: Shell model spectrum calculations and experimental
result for the ground state and four excited states of 23Na.
The left line represents the initial 23Ne state, placed at the Qβ
value of the transition. The 23Na states are placed relatively
to it, with the ground state at the origin.

well known:

(nf , lf ,
1

2
, jf ‖ I ‖ ni, li,

1

2
, ji) =δni,nf δli,lf δji, jf ĵi (27)

(nf , lf ,
1

2
, jf ‖ σ ‖ ni, li,

1

2
, ji) = (28)

√
6δni,nf δli,lf ĵiĵf (−1)lf+jf+

3
2

{
1
2

1
2 1

ji jf lf

}
.

In addition, in (24)-(26) there are new operators. First
of all, there is the L operator. It does not affect the
radial part and describes how the angular momentum of
the nucleon involved in the decay affects the transition
probability. Using (18), I obtain:

(nf , lf ,
1

2
, jf‖L‖ni, li,

1

2
, ji) = δni,nf δli,lf× (29)

ĵiĵf~
√
lf (lf + 1)(2lf + 1)(−1)3/2+lf+ji

{
lf li 1
ji jf

1
2

}
,

On the other hand, the last two operators r·∇ and r(σ·∇)
operate on the radial part. These two operators are re-
lated to the recoil that the nucleus suffers due to momen-
tum conservation. With the help of [8] and using (14), I

(f ||~σ τ−||i) (f ||~L τ−||i)
( 5
2
)+GS −→ ( 3

2
)+GS 0,30 (2) 2,52 (2)

( 5
2
)+GS −→ ( 3

2
)+∗
2 0,213 (3) 0,057 (7)

( 5
2
)+GS −→ ( 5

2
)+1 0,32 (3) 1,96 (3)

( 5
2
)+GS −→ ( 7

2
)+1 0,085 (6) 1,14 (2)

(f ||L̂A1 ||i) (f ||M̂V
1 ||i)

( 5
2
)+GS −→ ( 3

2
)+GS 0,063 (5) 0,00213 (6)

( 5
2
)+GS −→ ( 3

2
)+∗
2 0,04537 (7) 0,000186 (1)

( 5
2
)+GS −→ ( 5

2
)+1 0,066 (5) 0,00167 (8)

( 5
2
)+GS −→ ( 7

2
)+1 0,018 (2) 0,000435 (3)

TABLE I: Value of the reduced matrix elements for the main
operators in the 23Ne to 23Na β decay.

have found the reduced single-particle matrix elements:

(nf , lf ,
1

2
, jf‖r·∇‖ni, li,

1

2
, ji) = (30)

−
√

3ĵi〈nf , lf , jf |r
d

dr
|ni, li, ji〉,

(nf , lf ,
1

2
, jf‖r·(σ·∇)‖ni, li,

1

2
, ji) = (31)

−
√

3(−1)li+1 · ĵiĵf
1 + (−1)lf−li

2

(
ji jf 1
1
2 −

1
2 0

)
×
[
δji,li+ 1

2
·li · δni,nf + δji,li− 1

2
·(li + 1)δni,nf

−(δji,li+ 1
2
− δji,li− 1

2
)〈nf , lf , jf |r

d

dr
|ni, li, ji〉

]
.

Both elements depend on the radial operator r ddr . As-
suming the radial harmonic oscillator single particle
stats, then (30) and (31) become:

(nf , lf ,
1

2
, jf‖r·∇‖ni, li,

1

2
, ji) = (32)

−
√

3ĵi ·
[
li〈nf , lf | ni, li〉 −

√
n2i − ni〈nf , lf | ni − 2, li + 2〉

+
√

(ni + li + 3/2)·(ni + li + 5/2)〈nf , lf | ni, li + 2〉
]
,

(nf , lf ,
1

2
, jf‖r·(σ·∇)‖ni, li,

1

2
, ji) = (33)

−
√

3(−1)li+1 · ĵiĵf
1 + (−1)lf−li

2

(
ji jf 1
1
2 −

1
2 0

)
×
[
(2li + 1)δji,li− 1

2
〈nf , lf | ni, li〉 − (δji,li+ 1

2
− δji,li− 1

2
)

·(
√

(ni + li + 3/2)·(ni + li + 5/2)〈nf , lf | ni, li + 2〉

−
√
n2i − ni〈nf , lf | ni − 2, li + 2〉)

]
.

Finally, the reduced matrix elements are given by a
combination of single-particle matrix elements and the
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FIG. 3: Normalized reduced transition probability with (red)
and without the shape correction (black).

one-body transition density:

(Jf , Tf ‖
∑
j

Tλjτ
±
j ‖ Ji, Ti) = (34)

λ̂−1
∑
ab

(a ‖ Tλ ‖ b) · (Jf , Tf ‖ [c†acb]1 ‖ Ji, Ti).

In addition to the matrix elements reduced in the angular
momentum space, the isospin can be treated also as a
t=1/2 angular momentum, with projections tz=-1/2 for
the proton and tz=1/2 for the neutron. In β− decay we
are ”changing” a neutron for a proton, so we need to
operate with the -1 projection of the isospin operator:
〈 12 ,−

1
2 | τ

− | 1
2 ,

1
2 〉 = 1√

2
〈 12 ,−

1
2 | τ−1 |

1
2 ,

1
2 〉 = 1. This

change of a neutron into a proton is represented by the
one-body transition density operator in (7), (8) and (34).

Using the Gamow-Teller matrix element already im-
plemented in Nathan and my implementation of the L
matrix element, I evaluate (22) and (24). Table I shows
the results. I have checked the numerical results for (24)
comparing them to electromagnetic transitions [9] using
the Wigner-Eckart theorem (in a electromagnetic tran-

sition the isospin does not change, so that the isospin
operator is τ0 instead of τ−)

〈Tf =
1

2
, Tzf =

1

2
|
∑
j

Ljτ
−
j | Ti =

3

2
, Tzi =

3

2
〉 = (35)

1√
2

( 3
2 ,

3
2 , 1,−1 | 12 ,

1
2 )

( 1
2 ,

1
2 , 1, 0 |

3
2 ,

1
2 )
〈3
2
,

1

2
|
∑
j

Ljτ
0
j |

1

2
,

1

2
〉 =

1√
6
〈Tf =

3

2
, Tzf =

1

2
|
∑
j

Ljτ
0
j | Ti =

1

2
, Tzi =

1

2
〉,

where the initial state in the electromagnetic transitions
is the T=3/2, Tz=1/2 and J=5/2 state in 23Na shown
in Fig. 2 as the highest excited state.

Fig. 3 summarizes the correction to the half live of the
subleading term in the transitions studied in 23Ne. The
δshape correction is in every case of the order of 1%. It is

specially small in the case of the 5
2

+

GS
−→ 3

2

+

2
transition

where it amounts to ≈ 0.5%, while in the other cases it
is ≈ 3%.

III. CONCLUSIONS

USD and USDB interactions are pretty accurate in
reproducing experimental spectra. I have calculated a
correction on the half live of the 23Ne to 23Na β decay.
This correction is about 3%, so it should be taken into
account when comparing to high precision experiments
such as [1]. In this work, the second term in (21) has not
been treated due to lack of time. Nevertheless, it could
be very interesting to calculate this additional correction
in future work.
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