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Abstract: In this work, we study the Josephson dynamics, a coherent tunneling of particles
between two Bose-Einstein condensates, spatially confined in a double-well potential, at zero tem-
perature. We have derived the dynamical equations of our system by using the Gross-Pitaevskii
equation as theoretical framework, together with a two-mode approximation. We have investigated
the tunneling dynamics within the Standard Two-Mode model, neglecting the overlap of nonlinear
interaction terms, as well as within the Improved Two-Mode approximation, without neglecting
them. We have obtained the interaction ranges where the Improved Two-Mode is necessary in order
to accurately describe the dynamics of the system.

I. INTRODUCTION

In 1924, Albert Einstein, following the research done
by Satyendra Nath Bose’s paper on quantum statistics,
predicted a new state of matter: the Bose-Einstein con-
densate (BEC). It is formed when a spatially restricted
dilute gas of bosons is cooled down to temperatures of the
order of nanokelvin (nK) [1]. Bosons, unlike fermions, are
particles that can occupy the same single-particle quan-
tum state due to the symmetry under permutations in
their wave function. This symmetry produces the ab-
sence of the Pauli exclusion principle. At extremely
low temperatures, a considerably large fraction of bosons
occupy the lowest energy single-particle state. The de
Broglie wavelength of the particles depends on the tem-
perature as λ ∝ T−1/2. When T −→ 0, the average
distance between the particles and the wavelengths of
this particles overlap losing their particle identity, and
generating a matter wave. This phenomenon gives rise
to a unique coherent macroscopic entity, which can be
described by a single-particle wave function. This sys-
tem allows quantum properties to become apparent on a
macroscopic scale, the BEC.

The Josephson effect [2] is going to be the subject
of our study. It is a quantum phenomenon, first pre-
dicted in superconductors by Brian David Josephson in
1962. It corresponds to a a coherent flow of Cooper pairs
(pairs of electrons), which are bosonic in nature, tunnel-
ing through a barrier in the presence of a chemical poten-
tial gradient. The first experimental observation of the
Josephson effect was in 1963, and it is attributed to P.W.
Anderson and J.M. Rowell. In superconductors, the two
interacting systems are separated by a thin insulating
layer [3]. Josephson effect has also been experimentally
observed between two weakly-interacting BECs [4]. In
our study, a double-well symmetric potential plays the
role of the thin insulator or barrier. The external poten-
tial also acts as a trap in order to confine the bosons,
enabling the condensation of the boson gas in both wells,
when the system is cooled down to T ' 0.

The Two-Mode (TM) approximation enables the study
of the dynamics of the system as if there were two trapped
condensates, one on each side of the well [5]. There are

two kinds of TM approximations: the Improved Two-
Mode (I2M) approximation [6], which takes into account
the overlap of the left and right wave functions, and The
Standard Two-Mode (S2M) approximation [7], which ne-
glects the overlap. We will investigate the tunneling dy-
namics and the different regimes in both approximations,
as well as in which regime the I2M is necessary when
studying the tunnelling between two weakly-linked BEC.

II. THEORETICAL FRAMEWORK

A. The Gross-Pitaevskii equation

We use the Gross-Pitaevskii (GP) equation as our the-
oretical framework. It is a non-linear Schrödinger-like
equation and has the form of a mean-field equation. This
framework provides good results when the number of
bosonic particles, N , is large enough so that quantum
fluctuations can be neglected, temperature is sufficiently
low, and the system is weakly interacting.

The many-body Hamiltonian of a system of N weakly
interacting bosons trapped in an external potential,
Vext(r), in the limit of low temperature, T ' 0, can be
written as:

H =

N∑
i=1

(
−

~2

2m
∇2
i + Vext(ri)

)
+ g

∑
i<j

δ(ri − rj) , (1)

where we have considered contact interacting particles.
Here g = 4π~2as/m is the coupling constant, which acts
as an effective atomic interaction, and is proportional to
the s-wave scattering length, as. From Eq. (1), it follows
the energy functional.

E = N

∫
d3r

(
~2

2m
|∇Φ(r)|2 + Vext(r)|Φ(r)|2 +

gN

2
|Φ(r)|4

)
.

(2)
By minimizing (2) under variations of Φ, with the nor-

malization constraint,
∫

d3 r |Φ(r)|2 = 1, it follows the
time-dependent GP equation [2]:

i~
∂

∂t
Ψ(r) =

(
−

~2

2m
∇2 + Vext(r) + g|Ψ(r)|2

)
Ψ(r) , (3)
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where now, for convenience, we have used Ψ =
√
NΦ.

B. Two-mode approximation

We consider two weakly-interacting BECs at T ' 0.
The system is confined by a double-well symmetric poten-
tial, which ensures a weak link while allowing tunneling
between the two sides. This confining potential can be
obtained by the combination of a centered Gaussian bar-
rier, and an harmonic potential with trapping frequency

ω [8]: Vext = 1
2r

2 + Vbe
− r2

2 , where Vb is the height of the
barrier. Dimensionless units are assumed, the distances
are scaled by

√
~/(mω), and energies by ~ω.

When the overlap between the left and right compo-
nent of the system is small, the total wave function can be
expressed as the superposition of two time-independent
spatial wave functions ΦL(r) and ΦR(r), mostly local-
ized on the left and right well, respectively. Both wave
functions are normalized in unity. In the mean-field ap-
proximation, in presence of a weak link, the total wave
function can be written as: Ψ(r, t) = Ψ(r, t)L + Ψ(r, t)R,
referring to the the left and right condensates wave func-
tions. This yields the two-mode ansatz [2, 7]:

Ψ(r, t) = ψL(t)ΦL(r) + ψR(t)ΦR(r) . (4)

This wave function is normalized to N . The spatially lo-
calized wave functions ΦL(R)(r) can be constructed from
the linear combination of the ground state and the first
excited state of the double-well potential [7].

Due to the coherence properties of a BEC [2], one can

define ψj(t) =
√
Nj(t)e

iφj(t), where φj(t) is the phase of
the wave function, and Nj(t) the number of particles in
the left (j = L) or right (j = R) well. The total number
of particles, N = NL +NR, is constant.

Inserting (4) into the time-dependent GP Eq. (3), one
obtains a system of coupled equations. Since ΦL(r) and
ΦR(r) are weakly linked, one can, in first approximation,
neglect the overlap of high-order mixed products between
ΦR and ΦL (nonlinear interaction terms), obtaining the
so-called S2M approximation [5, 7]:

i~
∂ψL(t)

∂t
= [ε+ U ·NL]ψL(t)−KψR(t)

i~
∂ψR(t)

∂t
= [ε+ U ·NR]ψR(t)−KψL(t) ,

(5)

where we have defined:

εi =
∫
d3r

[
~2

2m
|∇Φi(r)|2 + |Φi(r)|2Vext(r)

]
,

K = −
∫
d3r

[
~2

2m
∇Φi(r)∇Φj(r) + Φi(r)Vext(r)Φj(r)

]
,

Ui = g
∫
d3r |Φi(r)|4.

(6)
In this paper, we will also study the case where the in-

teraction integrals involving high-order mixed products
are not neglected. This model is called the I2M approx-
imation. Analogously to Eqs. (5) one obtains the I2M

equations taking into account the overlapping nonlinear
interaction terms [6]:

i~
∂ψL(t)

∂t
= [ε+ U ·NL]ψL(t)−KψR(t),

+I [NRψL(t) + (ψ∗
L(t)ψR(t) + ψL(t)ψ∗

R(t)) · ψR(t)] ,
−F [NψR(t) + (ψ∗

L(t)ψR(t) + ψL(t)ψ∗
R(t)) · ψL(t)] .

i~
∂ψR(t)

∂t
= [ε+ U ·NR]ψR(t)−KψL(t),

+I [NLψR(t) + (ψ∗
R(t)ψL(t) + ψR(t)ψ∗

L(t)) · ψL(t)] ,
−F [NψL(t) + (ψ∗

R(t)ψL(t) + ψR(t)ψ∗
L(t)) · ψR(t)] ,

(7)
where F and I are defined as:

Fi = −g
∫
d3r Φ3

i (r)Φj(r),

I = g
∫
d3r |Φi(r)|2|Φj(r)|2.

(8)

Since Vext is symmetric, the parameters in (6) and (8)
are independent of whether the condensate is confined in
the left or right well, i = L,R.

Both S2M and I2M approximations can be solved nu-
merically, Eq. (5) and (7), respectively. However, ex-
pressing these equations in terms of two new variables:
the population imbalance, z(t), and the phase difference
between the right and left side of the potential barrier,
δφ(t), make some physical features emerge more natu-
rally:

z(t) =
NL −NR

N
, δφ(t) = φR(t)− φL(t) . (9)

Rewriting (5) and (7) in terms of these new
variables, and expressing the time in units of
the corresponding Rabi frequency, ωS2M

R = 2K/~ and
ωI2M
R = 2(K + FN)/~, one arrives at the following di-

mensionless systems of two non-linear coupled equations
for the S2M and I2M, respectively:

∂z(t)

∂t
= −

√
1− z2(t) sin δφ(t),

∂δφ(t)

∂t
= Λz(t) +

z(t)√
1− z2(t)

cos δφ(t).

(10)


∂z(t)

∂t
= −

√
1− z2(t) sin δφ(t) + ζ(1− z2) sin 2δφ,

∂δφ(t)

∂t
=Λ̃z(t)+

z(t)√
1− z2(t)

cos δφ(t)− ζz(2 + cos 2δφ).

(11)

The parameters Λ and Λ̃ are dimensionless and quantify
the strength of the mean-field interactions. They are
defined as:

Λ =
NU

~ωS2M
R

; Λ̃ =
NU

~ωI2M
R

. (12)

The parameter ζ is defined as: ζ = NI/2(K + FN).
Notice that it arises in the I2M, when the mixed over-
lap products integrals are not negligible. Indeed, when
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F = I = 0, hence, ζ = 0, one returns to the S2M equa-
tions (10).

Analogously, from the density functional (2), one can
derive the Hamiltonian of the system. Notice that the
Hamiltonian for I2M is not the same as for S2M:

HS2M(z, δφ) =
Λ

2
z2(t)−

√
1− z2(t) cos δφ(t) , (13)

HI2M(z, δφ) =
Λ̃

2
z2−

√
1− z2 cos δφ+

ζ

2
(1−z2)(2+cos 2δφ) .

(14)
The variables z(t) and δφ(t) behave as canonical conju-
gate variables:

ż(t) = −
∂Hα
∂δφ

; δφ̇(t) =
∂Hα
∂z

α = {S2M,I2M}, (15)

with them one recovers Eqs. (10) and (11). These sys-
tems can be solved when a set of initial values for the
population imbalance, z0 ≡ z(0), and phase difference,
δφ0 ≡ δφ(0), is provided.

C. Dynamical regimes

Our system yields two distinct dynamical behaviours
conditioned by the strength of the interaction, Λ or Λ̃,
for the S2M and I2M respectively, and the initial condi-
tions. These regimes are the Josephson effect (JE) regime
and the Macroscopic Quantum Self-Trapping (MQST)
regime.

Josephson dynamics is characterized by a fast oscillat-
ing tunneling of population (bosons) crossing across the
potential barrier, in our case it is symmetrical and high
enough to secure a weakly-linked system, but not as high
to have two independent and non-interacting BEC.

The system, when in Josephson’s regime, evolves fol-
lowing closed trajectories in the (z, δφ) plane, around ei-
ther a maximum or a minimum point of the system. In
addition, the JE is characterized by a mean population
imbalance over time equal to zero, 〈z〉t = 0.

On the other hand, MQST occurs when tunneling is
strongly suppressed, confining a great fraction of parti-
cles in one side of the well. In this regime, the oscillations
yield 〈z〉t 6= 0. Additionally, another feature of MQST is
that the population imbalance does not change sign dur-
ing the evolution. MQST occurs due to the nonlinearity
of the GP equation.

It is possible to analytically find the critical value of
both Λ and Λ̃, where the transition between the JE and
MQST regimes occur, imposing that the corresponding
Hamiltonian, Eqs. (13) and (14), has to be equal or
greater than Hα(0, π), with α = {S2M,I2M} [5]. Be-
low the critical value JE dominates, contrarily, when the
critical value is surpassed, MQST reigns. The critical
values of the interaction parameters are:

Λc =
1 +

√
1− z20 cos δφ0

z20/2
, (16)

Λ̃c = Λc +
ζ

z20

[
3− (1− z20)(2 + cos 2δφ0)

]
. (17)

For non-zero values of ζ, the additional term in (17) is
always greater than zero. This means that when taking
into account the nonlinear interaction terms (I2M), the
region of oscillating tunneling around z = 0 is larger,
hence, the Josephson domain is enhanced.

III. NUMERICAL RESULTS

Our study will be based on the parameters extracted
from Refs. [6, 9]. Furthermore, in Sect. III A, we are going
to use (z0 = 0.8, δφ0 = π) as our initial conditions, hence,

we find different Λ̃c depending on the used parameters:

• From [6]: N = 105, K = 1.2915× 10−3~ω,
F = 2.0245× 10−8~ω, and I = 3.9960× 10−10~ω.
So, ζ = 0.0068, and Λc = 1.25, Λ̃c = 1.27.

• From [9]: N = 1150, K = 1.89× 10−2~ω,
FN = 2.51× 10−2~ω, and IN = 5.62× 10−3~ω.
So, ζ = 0.06, and Λc = 1.25, Λ̃c = 1.43.

A. Population imbalance evolution

We have obtained the dynamical evolution by solving
the differential equations (10) and (11), S2M and I2M
respectively, by using a Runge-Kutta method of order 4.
We have used a fixed set of initial values, and a certain
value of the interaction parameter, Λ0 (numerical value

of Λ and Λ̃ used to solve the differential equations).

When Λ0 /∈ [Λc, Λ̃c], where tunneling is strongly sup-
pressed, both I2M and S2M yield the same qualitative
results. In some cases, e.g. see Fig. 1, even the quantita-
tive results from both approximations are roughly equal.
In this figure, the value of Λ0 is greater than Λ̃c. Con-
sequently, the characteristic periodic oscillations around
z 6= 0, without a sign change in z(t), that corresponds to
a MQST regime can be observed. If Λ0 < Λc one would
observe a behaviour corresponding to a JE regime.

FIG. 1: Population imbalance as a function of time with ini-
tial values z0 = 0.8 and δφ0 = π, for Λ0 = 2.00. S2M results
(red) and I2M results (blue). We have used the same param-
eters as in [6].
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FIG. 2: Population imbalance as a function of time, z0 = 0.8
and δφ0 = π, for Λ0 = 1.26. S2M results (red) and I2M results
(blue). The panel above represents the parameters from [6],
the panel below from [9].

From Fig. 2 it is noticeable that for Λ0 = 1.26, the S2M
and I2M lead to two completely different behaviours. In
this interaction regime, Λ0 ∈ [Λc, Λ̃c], one should include
the nonlinear interaction terms for a more accurate de-
scription of the transition between the two dynamical
regimes.

Regardless of the value of ζ, both panels in Fig. 2 give
rise to the same qualitative results. For the S2M, one can
observe periodic oscillations around a population imbal-
ance different from zero. Moreover, the sign of z does
not vary over time. These features are characteristic of
the MQST regime. On the other hand, when studying
the I2M, one can observe that for the same interaction
parameter and initial conditions as in the S2M, the peri-
odic oscillations occur around z = 0, meaning that when
averaged over time 〈z〉t = 0. The dominant regime cor-
responds, in this case, to JE. Consequently, one can say
that in the studied region of Λ0, the suppression of tun-
neling happens for a higher Λ0 for the I2M than in the
S2M. In other words, the range of JE increases when the
effects of the overlap are not neglected.

The results shown in Figs. 1 and 2, are in remarkable
qualitative accordance with the behaviours from the two-
mode approximations studied in Ref. [8].

B. Stability comparison between S2M and I2M

In this section we study the classical energy surfaces
of the system, in the (z, δφ) plane, from Eqs. (13-14).
Firstly, it is necessary to find the stationary points of the
system in both approximations. Then, using the Hessian
matrix, the stability of the stationary points can be stud-
ied.

We only consider repulsive interactions, Λ, Λ̃ > 0.
The stationary points resulting from the S2M approxi-
mation (13), are: (z0, δφ0) = {(0, 0), (0,±π), (±A,±π)},
with A =

√
1− Λ−2. We have studied the stability of

these stationary points, summarized in Table I.

(z0,δφ0) Stationary Minimum Saddle Maximum

(0,0) ∀Λ ∀Λ — —

(0,±π) ∀Λ — Λ > 1 Λ < 1

(±A,±π) Λ > 1 — — Λ > 1

TABLE I: Stationary points and stability of the system de-
pending on the value Λ in the S2M approximation.

On the other hand, the stationary points result-
ing from the I2M approximation (14), are the fol-
lowing: (z0, δφ0) = {(0, 0), (0,±π), (±B,±π)}, where

B =
√

1− (Λ̃− 3ζ)−2. In Table II we have studied the

stability of these stationary points for ζ = 0.06 [9].

(z0,δφ0) Stationary Minimum Saddle Maximum

(0,0) ∀Λ̃ ∀Λ̃ — —

(0,±π) ∀Λ̃ — Λ̃ > 1.18 Λ̃ < 1.18

(±B,±π) Λ̃ > 1.18 — — Λ̃ > 1.18

TABLE II: Stationary points and stability of the system de-
pending on the value Λ̃ in the I2M approximation.

FIG. 3: Energy surfaces for Λ = Λ̃ = 1.12. The lines on the
(z, δφ) plane describe constant energy trajectories. Top panel
corresponds to the S2M approximation, and bottom to the
I2M, with the parameters from [9].
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FIG. 4: Map of the energy surfaces for Λ = Λ̃ = 1.12. Left
panel: S2M approximation, and right panel: I2M, with the
parameters from [9]. The lines represent trajectories of con-
stant energy.

From Tables I and II, it is worth noticing that the
stationary point (z0, δφ0) = (0,±π) has an inconclusive

behaviour when Λ = 1 and Λ̃ = 1.18, respectively.
The system, around either a maximum or a minimum,

allows for closed orbits around that stationary point.
However, when the stationary point is a saddle point,
the system can no longer follow a closed orbit around it.
Hence, JE can only be observed around a maximum or
a minimum, together with the condition 〈z〉t = 0. For
the MQST regime, the situation is more complex. There
are two different types of MQST depending of the evo-
lution of the phase difference, δφ. If the phase difference
evolves bounded in time, the MQST is called either the
zero-mode or π-mode, when δφ0 = 0,±π, respectively.
In our study the zero-mode cannot be observed since it
is exclusive for attractive interactions [7]. These modes
are represented by closed orbits around the maximum or
minimum. Contrarily, when the phase difference evolves
unbounded, increasing or decreasing in time, one can ob-
serve orbits that are not closed. These kind of trajectories
correspond to the so-called running phase mode.

Figs. 3 and 4, show that around δφ = ±π, only in
the I2M approximation 〈z〉t = 0, which means that the
system still exhibits Josephson oscillations. However,
when studying the S2M approximation, the closed or-
bits around δφ = ±π are not centered in z = 0, mean-
ing that 〈z〉t 6= 0. This feature, as we have already
mentioned, corresponds to MQST, specifically a π-mode

MQST. The running phase mode is not observable for
the initial conditions and interaction parameters used in
our study. Nevertheless, keeping the same initial condi-
tions, and increasing Λ(Λ̃), this mode would appear in
both Figs. 3 and 4.

IV. CONCLUSIONS

In this work, we have studied the tunneling dynam-
ics between two weakly-linked BECs. By using the two
mode approximation, S2M and I2M, we have analyzed
the importance of the overlap of the right and left wave
functions. The numerical results, for both the temporal
evolution of the population imbalance, and the stabil-
ity of our system, lead to the conclusion that the I2M
is indeed necessary when working in the range of criti-
cal values of the interaction parameters, Λ0 ∈ [Λc, Λ̃c].
In this range, the transition between the two dynamical
regimes occurs. In the I2M, tunneling is supported in a
wider range of interaction values, hence, the range where
JE dominates is increased. One could expect this result,
since for bosons, tunneling from the left to the right well,
or vice-versa, is favoured when the effects of the overlap
of the condensates wave functions are not neglected. For
values of Λ0 /∈ [Λc, Λ̃c], the S2M yields similar results to
the I2M. Accordingly, it would not be necessary to use
the I2M outside that range.

Further work in this direction could be to numerically
solve the GP equation, for example using the Crank-
Nicolson method. This would allow to compare the re-
sults for a broader set of initial conditions and interaction
parameters. Additionally, one could study how the sys-
tem behaves when the condensates are not identical, the
most common case is a binary mixture.
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