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Abstract: Quantum Cellular Automata (QCA) are lattices with a quantum system at each site
that have discrete time evolution with finite information propagation speed. They have been showed
very promising, for instance, as a model for lattices evolving via time-dependent Hamiltonians. In
this work we will explain that 1D QCA are equivalent to Matrix Product Unitaries and classify
them according to their information flow. This allows to realize that all 1D QCA are compositions
of finite depth quantum circuits and shift operations.

I. INTRODUCTION

Classical cellular automata are systems of discrete vari-
ables at each site of a lattice, which evolve in time via it-
erations of a local rule applied over all sites. Interestingly,
even when the local rule is simple it is possible to observe
very complex dynamics. For example, it has been proved
that they can efficiently simulate Turing machines, traffic
models, biological pattern formation or fluids dynamics
[1]. This work is focused on quantum versions of classi-
cal cellular automata, that is, lattices systems of identical
particles evolving in discrete time by locality preserving
unitary transformations [2].

It has been shown that quantum cellular automata
(QCA) are able to efficiently simulate quantum circuits
[3, 4]. They could therefore be an alternative quantum
computation model. An advantage they would have over
the circuit model is that the computation could be car-
ried out with homogeneous operations applied over all
particles, and individual particles operations would not
be necessary. QCA have the potential to simulate quan-
tum field theory dynamics [5], lattices evolving via time-
dependent Hamiltonians [6] or quantum lattice gases [7].
But QCA are interesting in their own right as we will see
here. In principle, a QCA could be defined on any graph.
We will however limit ourselves to one-dimensional QCA
with qudits at the lattice sites.

This work is organized as follows. In Section II QCA
will be defined mathematically and some examples will be
given. In Section III matrix product unitaries (MPU) will
be introduced and shown to provide a useful representa-
tion of QCA. Section IV is devoted to the classification
of QCA through an index theory that characterises their
information flow. We provide an outlook in Section V.

II. QUANTUM CELLULAR AUTOMATA

We consider a lattice L, which could be infinite or fi-
nite. When the lattice is finite, we will assume peri-
odic boundary conditions. We identify each site x with a
Hilbert spaceHx. It would only be natural to study QCA
using the tensor product Hilbert space H = ⊗x∈LHx.
However, such tensor product spaces bring mathematical

difficulties when the lattice is infinite. To avoid them, a
common strategy is to work in Heisenberg picture instead
of Schrödinger picture, and exploit locality. For this rea-
son, our description of a QCA will sometimes be in terms
of C∗-algebras of local operators, {Ax : x ∈ L}, instead
of local Hilbert spaces of states, {Hx : x ∈ L}. The alge-
bra of operators associated with a region Λ ⊂ L is defined
in terms of those of each lattice site as AΛ = ⊗x∈ΛAx.
Such algebras act nontrivially on systems in Λ and as the
identity on the rest of the lattice [8]. Then,

AL =
⋃

Λ⊂L
AΛ

is the algebra of local observables on the whole lattice,
i.e. observables supported on finite regions of L. The
discrete dynamics of a QCA can be described by a local
automorphism:

αx : Ax → AN (x),

where N (x) ⊂ L denotes a finite neighbourhood of x.
This implies that the evolution is locality-preserving,
that is, evolving an operator localized at x produces an
operator whose support is contained in the neighbour-
hood N (x) of x, as illustrated in figure 1. For finite lat-
tices there will be an unitary U such that αL(·) = U†(·)U .
However, not every automorphism can be constructed in
this way for infinite lattices.

Besides, we will restrict ourselves to translationally in-
variant QCA, that is, αx = α for all x in L. This al-
lows us to assume, without loss of generality, that any
QCA is a nearest neighbour QCA, i.e. N (x) ⊆
{x− 1, x, x+ 1}, which we can always achieve by block-
ing sites into large enough units; a supersite of k qudits
will have an effective local dimension deff = dk.

FIG. 1: QCA of radius equal to 2. Representation of an
operator O localized at a site of a 1D lattice to which α is
applied. α(O) is localized in a nearby region of 5 sites.
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Examples.- An example of a QCA is a depth-2 quan-
tum circuit, represented graphically as:

In this circuit, each box represents a two-qudit unitary
gate. We are going to call finite depth quantum cir-
cuits (FDQC) those QCA built with a finite number of
circuits layers (this means that when raising the number
of qudits the number of layers does not increase). An ex-
ample of a QCA that is not an FDQC is the right shift,
represented as:

In Heisenberg picture the right shift QCA σ acts on an
operatorO located at site x as σ(Ox) = Ox+1. Obviously,
the left shift is σ−1(Ox) = Ox−1.

Margolus Partitioning.- There is a mathematical
way of writing any one-dimensional translationally in-
variant QCA, showed in [9]: the generalized Margolus
partioning. It involves an ancillary lattice La, that is, a
complementary lattice that will help us in the application
of the QCA but it must start and finish in a trivial state.
A map from L to La and another map from La to L will
be enough to describe any nearest neighbour QCA.

The key idea in this method is that La slightly breaks
translational invariance: dimensions of qudits at even
sites (d1) may be different than dimensions of qudits at
odd sites (d2) of the lattice La . However, it must always
be true that d1d2 = d2, where d is the dimension of the
qudits of the lattice L.

Let {Bx : x ∈ La} denote C∗-algebras supported on
each site of La. We define two (translationally invariant)
maps:

µ : A2x ⊗A2x+1 → B2x ⊗ B2x+1 ,

ν : B2x−1 ⊗ B2x → A2x−1 ⊗A2x .

This maps, µ and ν, are required to be unitary mappings
between algebras of the same dimension, thus we can find
suitable bases in each site such that µ(·) = U†µ(·)Uµ and

ν(·) = U†ν (·)Uν , where Uµ and Uν are unitary matrices
(even when L is infinite). Any QCA automorphism can
be constructed applying a µ followed by ν at each site,
α(·) = ν(µ(·)) = U†νU

†
µ(·)UµUν . Figure 2 illustrates a

construction of a QCA through this method.
For example, for a right shift, we have that d2 = d2

and d1 = 1. Whereas for a FDQC, d2 = d and d1 = d.
Notice that for FDQC the ancillary lattice La would not
be needed and ν and µ would be automorphisms.

Following the notation of the circuits any one-
dimensional transitionally invariant QCA can repre-
sented as:

FIG. 2: Representation of a nearest neighbour QCA con-
structed by the Margolus Partitioning method. Algebras Ax

supported on L and algebras Bx on La.

The legs between the unitaries been drawn dashed to
represent d1 dimensions, dotted to represent d2 dimen-
sions and plain lines (input and output legs) correspond
to the d-dimensional qudits at the physical lattice L.
This diagram would only represent an FDQC if dimen-
sions of all legs where equal.

III. MATRIX PRODUCT UNITARIES

We now turn to matrix product unitaries (MPU). We
consider again a one-dimensional finite lattice L with a
d-dimensional qudit at each site and periodic boundary
conditions. A translationally invariant matrix product
operator (MPO) is defined as:

O(N) =
∑

i1...iN
j1...jN

ci1...iNj1...jN
|i1...iN 〉 〈j1...jN | , (1)

the coefficients c are given by the expression:

ci1...iNj1...jN
=

∑
α1...αN

T i1j1α1α2
T i2j2α2α3

...T iN jNαNα1
,

where T is a rank-4 tensor with indices i, j (the physical

ones) and α, β (the bond or auxiliary indices): T ijαβ . As
we have d-dimensional qudits d will be the rank of the
physical indices (i, j = 1, 2, ..., d). The rank of the bond
indices will be denoted D, and referred to as bond dimen-
sion (α, β = 1, 2, ..., D). Also, N is the number of sites
of the lattice and |i1...iN 〉 = ⊗x∈L|ix〉, where |ix〉 is the
state of the qudit at site x. Therefore, O(N) can be seen
as a matrix of dN × dN dimensions. MPO are commonly
used to describe quantum spin systems and are suitable
to simulate efficiently time evolution [10, 11].

An MPU is an MPO which is unitary for all lattice
sizes [8], that is:

O(N)†O(N) = 1⊗N . (2)

This condition imposes very strong constraints on T ,
we will call “tensor generating MPU” those tensors that
meet these constrains. MPUs have been used to describe
evolution of one-dimensional spin lattices nearest neigh-
bour Hamiltonians [12]. It is very useful to use a graphic
notation to work with operators (and states) constructed
from contraction of tensors [11]. As a useful example, we
will represent a vector vi as a box with a leg, a matrix
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Mij as a box with two legs and the tensor T ijαβ as a box
with four legs:

Vertical legs of T ijαβ represent the physical indices and
the horizontal ones the bond indices. Joining two legs
will represent contraction, thus multiplication and the
trace is depicted as follows:

Then eq. 1 can be written as:

...

where the bent legs (at the beginning and the end) in-
dicate that these two are also connected, i.e. periodic
boundary condition. If we denote T̄ the resulting tensor
after transposing the physical indices and conjugating all
coefficients of T , eq. 2 can be now represented as:

We will denote Tk the blocking of k T tensors, that is:

...

where the rank of the thick legs indices is equal to dk.
The rank of horizontal legs is still equal to D.

Simple tensors.- We will say that T is a simple ten-
sor if there exist two tensors, a and b, that satisfy the
following two conditions:

(3)

Therefore, any simple tensor generates MPU, since:

i.e. condition of eq. 2 is satisfied.
Conversely, it can be proved that for any tensor T gen-

erating MPU there is a k0 ≤ D4 such that for any k ≥ k0,
Tk is simple. This means that by blocking a tensor gen-
erating MPU one can always get a simple tensor. In ad-
dition, once we have a simple tensor, if we keep blocking

the resulting tensor will remain simple, [13, Theorems 3
and 5] and [14, Theorem 2].

Tensors T can be reshaped and written as dD × dD
matrices. In fact, depending on how the indices are
combined, two different matrices can be obtained. We
will call M1 the matrix obtained by combining the left
auxiliary and down physical indices as well as the right
auxiliary and up physical indices, and M2 the other
combination of the physical and auxiliary indices. Let

Mi = V †i DiUi (i = 1, 2) denote the singular value de-
composition of these matrices, where Vi, Ui are isome-
tries, and Di is a positive diagonal matrix of dimension
r for M1 and dimension ` for M2. Thus r and ` are the
rank of the matrices M1 and M2. We will call r “the right
rank” and ` “the left rank”. It is immediate that we can
find two matrices (or tensors) such that Mi = XiYi [14].
For M1 we can represent this decomposition as:

The diagonal double line means to combine the indices
to build the matrix, the legs that are not separated by
the diagonal are combined. The dotted legs mean that
the rank of these legs is equal to r. And the rank of thick
legs is equal to dD. At last step, the legs of X1 and Y1

have been uncombined into the originals. Thus, we can
decompose T as (for M2 blue is used instead of red):

The dashed legs mean that the rank of these legs is `. The
ranks r and ` depend on each tensor T generating MPU,
however rl = d2 if and only if T is simple [14, Theorem
8]. Remember that d is the dimension of the qudits and,
therefore, the rank of the physical indices, but after the
blocking the dimension of the effective qudits increases.

To finish, we will define two operators u and v:

These are unitary as shown in [14], again, if and only if
T is simple.

Equivalence with QCA.- We can now show that any
MPU is equivalent to a one-dimensional transitionally
invariant QCA [14]. The automorphism associated with
an MPU:

α(·) = U (N)†(·)U (N)

is a QCA, since U (N) is unitary, and it can be seen that
it commutes with the translation operator. Thanks to
the conditions of eq. 3 it can be proved that the radius
of this QCA would be less or equal than D4.

To prove the converse, we take the decomposition for
T and we immediately see that the following is true (if
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T is simple, which can always be achieved by blocking):

If we now use the definition of u and v, then we have:

which is exactly the diagram we found at the end of sec-
tion II for a nearest neighbour QCA. If we compare the
legs of the two diagrams we see that: r = d2 and ` = d1.

IV. INDEX THEORY

We are going to define an index that will assign a real
number to each QCA. This index will classify the QCA,
that is, two QCA have the same index if and only if there
is a continuous path of QCA that joins them. The for-
malism of tensor networks, more specifically the equiva-
lence of QCA with MPUs, will help us in this definition.
We will clearly see that the index will measure the net
amount of quantum information that flows. Intuitively
one can realize that shifts add information flow while,
a priori, FDQCs do not seem to introduce it. In other
words, the QCA automorphisms form a group and the
index will classify the different QCA into subgroups.

The index of a simple tensor T is defined as [14]:

ind(T ) =
1

2
[log2 (r)− log2 (`)] .

Since this index is defined for simple tensors, it might be
necessary to do some blocking until Tk becomes simple
in order to compute ind(T ).

As we have said, this index helps us classify QCA,
therefore the index of T should not change by blocking.
That is, Tk0 and Tk should have the same index if k ≥ k0

and k0 is the smallest k for which Tk is simple. To prove
this, we can write Tk and do the decomposition as:

It is seen that the right rank rk ≤ dk−k0rk0 . If we now
write the Tk as the result of blocking Tk0 and Tk−k0 (i.e.,
the reverse of what has been done previously), we see
that for the left rank: `k ≤ dk−k0`k0 . As Tk is simple,
`krk = d2k, inequalities become equalities, therefore:

ind(Tk) =
1

2
log2

(
rk
`k

)
=

1

2
log2

(
rk0
`k0

)
= ind(Tk0) .

Index Theorem.- Index, as defined above, is a com-
plete topological invariant. That is, by changing continu-
ously the coefficients of the tensor T one cannot alter the
index, and two tensors T and T ′ have the same index if

and only if they are path-equivalent, i.e. there is a family
of tensors W(x), where x ∈ [0, 1] such that W(0) = T
and W (1) = T ′ (ancillas may be added to one of the
tensors). In proposition IV of [14] it is explained that
this family exists and its ranks would be r(x) and `(x)
(continuous functions), but as ranks can only be integers
they must be constant, and, therefore, the index should
remain the same.

Another important property that can be seen is that
the index is additive by tensoring and composition [14]:

where the circle and the box represent two different ten-
sors generating MPU.

Examples.- Let us look at two examples of index com-
putation:

- FDQC: the ranks of 4 legs of the unitaries (u and
v) representing a FDQC, γ, should be equal, therefore
r = ` = d and ind(γ) = 0.

- Shifts: all the information flows in one direction,
thus ` = 1 and r = d2 for the right shift (` = d2 and r = 1
for the left shift). This means that: ind(σ) = log2 (d) for
the right shift (ind(σ−1) = − log2 (d) for the left shift).

One of the most remarkable results that follows is that,
as the index can only take certain values, there is no con-
tinuous path of tensors joining any FDQC with a shift
(there is no path between a right shift and a left shift ei-
ther) and shifts introduce information flow; any QCA can
be expressed as a composition or tensoring of circuits and
shifts (after blocking and adding ancillas) [15]. Therefore
the index will show the logarithm of “net” shifts.

Alternative approach.- We close this section by pre-
senting an alternative formula for the index [6], where
the information theoretic interpretation is more mani-
fest. Let us consider a copy of the whole algebra A, and
get the algebra A ⊗ A. The maximally entangled state
of two qudits reads

|ω〉 =
1√
d

d∑
j=1

|jj〉 .

This state acts on A ⊗ A as ω(x ⊗ y) = tr(xyT ). Then
we define the Choi state of the QCA α:

φ = (α⊗ 1) (ω) .

We split the algebra A at any point n in the lattice:

AL ≡ A≤n and AR ≡ A>n ,

where A>n = {x ∈ A | x > n} and A≤n = {x ∈ A | x ≤
n}. Similarly AL′ and AR′ are copies of AL and AR
respectively.

The index will be defined in terms of a difference of
mutual informations of the Choi state. The mutual in-
formation of a state φ on AA ⊗ AB is then defined as
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I(A : B)φ = S (φ, φA ⊗ φB), where S (φ, φA ⊗ φB) is the
relative entropy defined as S (φA) + S (φB)− S (φ), here
S is the Von Neumann entropy. On infinite lattices, rela-
tive entropies can be computed as limits, proposition 4.6
of [6]. However, the index will be locally computable.

The index of a QCA α can be calculated as [6]:

ind(α) =
1

2

(
I (L′ : R)φ − I (L : R′)φ

)
.

With this approach it can clearly be seen that the index
measures the difference in information flows, left to right
minus right to left (figure 3).

As every QCA can be decomposed as shifts and cir-
cuits, the validity of this reformulation of the index can
be checked by computing it for these two types of QCA.

For a FDQC γ: |φ〉 = ULR ⊗ 1L′R′ |ω〉LL′ |ω〉RR′ . As
L and R are entangled with L′ and R′ respectively and
|φ〉 is pure: S (L′1)φ = S (L)φ, S (R′)φ = S (R)φ and

S (L′R)φ = S (LR′)φ ⇒ I (L′ : R)φ = I (L : R′)φ ⇒
ind(γ) = 0. And for a right shift σ, looking at figure
3, it can be seen that I(L : R′) = 0, since L and R′ are
independent, and I(L′ : R) = 2 log2 (d), since I(L′ : L) =
S(L) + S(L′) + S(LL′) = 2S(L) = 2 log2 (d) and for the
shift R becomes L. Thus, ind(σ) = log2 (d). For the left
shift would be ind(σ−1) = − log2 (d). These results are
the same as at the previous section, as expected.

V. CONCLUSIONS

Quantum cellular automata are a very promising field
of research and through this work we have presented a
small part of it explaining its fundamental concepts. The
equivalence between one-dimensional QCA and matrix
product unitaries has been exposed. This allowed us to
understand QCA from a tensor network perspective and
define an index. This index shows that QCA can be
classified according to the amount of net information they
propagate in one direction. It has also been seen that any

QCA is a composition of finite depth circuits and shift
operators, which indicates that information flow is only
added by shifts.

Very interesting results have recently been published
following this line of research. For instance, in [6] it is
showed how lattices evolving via time-dependent Hamil-
tonians satisfying Lieb-Robinson bounds can be under-
stood by QCA approximations. In addition, thanks to
the mutual information approach its index can be calcu-
lated and shown to be nought, i.e. they cannot imple-
ment shifts and propagate net information. On the other
hand, in [16] the index theory has been extended to two
dimensions, showing that it can fully classify 2D QCA
and is deeply related to the topology of the lattice. It
is also explained that it seems unlikely a complete clas-
sification for higher dimensional QCA can be obtained
through the index theorem. Finally, in [17] a physical re-
alization of QCA using lattices of ultracold atoms excited
to Rydberg states is proposed.

FIG. 3: Representation of the application of a QCA to the
algebra A⊗A. The information flows have been represented
with dashed lines. The index measures the “net” flow, the
difference between the flow from left to right minus right to
left.
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