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Abstract:We did a behavioural study of persons playing collective games. We’ve seen how players
interact with each other when they have to accomplish a shared goal and completed a study of how
the in-game unequalities are distributed using the Gini Coefficient. Finally, we did a study (through
Mutual Information) of how the betting profile of the individuals matched with others and how
much of this match was due to sociodemographical traits.

I. INTRODUCTION

Trying to measure social phenomena through some
physics isn’t something new [1]. Here we are trying to
understand the cooperation between humans under cer-
tain circumstances through statistical physics. Making
an approach study of complex systems using modern
tools. Our objective is, from public experiments made
on citizen science [2] trying to measure how the acts of
other ones influences our own.

We have used three different datasets coming from the
experiments following the methodology from [4]. Two of
them had the same idea behind them. 6 players starting
with a total pot of 40e each one and they are playing to-
gether. They can view what the others are betting round
per round (see Fig 1). There are 10 rounds. The betting
possibilities are 0, 2 or 4. And the goal is to accumulate
a total collective pot of 120e and can keep the money
units not invested to their own. But if they don’t reach
the pot they lose all money. This game was invented in
[3] As you can see, a player alone hasn’t enough pot (nor
time) to achieve it alone. So everyone will need to play as
a group without having any kind of communication but
the quantity that each player is betting. This will create
some tensions between the greedy ones, the logical ones
or the kind ones. We are going to look at these tensions.

The same dilemma also posed with a little diference.
The starting pot is unequal. This has been made this
way to detect if the ones with more are the ones who
give more or not. The data coming from this variation
conforms the last dataset.

Apart from the contribution for each player per round
we have another amount of info. The sociodemographic
of each player (gender, level of studies, age range...).

To realize the study below we: do the data cleaning,
search for useful representations that give us informa-
tion of whatever type and finally, model how different
kind of strategies does the people follow for betting and
if the shared strategies mean shared sociodemographic
features.
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FIG. 1: Representation of how the game works. The black
arrows meaning the player’s bet and the red ones the output
they’re recieving. The output is the bets the other persons
made before. Figure extracted from [4].

II. DEVELOPING SECTIONS

A. Data

We had three different games and each game was
packed into different datasets containing pieces of infor-
mation. The evolution for each serie, information of the
players, contributions and more (see Table 1).

So, first of all, we need to do a data-preprocessing. We
ended having a Pandas Dataframe per game which gave
us the contribution of each player, the evolution (sum
of contributions) per player, the overall money per game
id, average values and extremes. We were searching for
a unified way to organize the data too because we would
like to use the same code to perform different algorithms.
We also had to use some package like regex to clean the
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Aigua Games (# 30)

Sociodemographics (age, studies, location...)

Personal Contribution (# 180 players)

Viladecans Games (# 21)

Rounds

Sociodemographics (age, studies, location...)

Personal Contribution (# 126 players)

Clima Games (# 35)

Rounds

Sociodemographic (age, studies, location...)

Personal Contribution (# 210 players)

TABLE I: The 3 different datasets. And how is the data
distributed inside of each one.

data. You can follow all this process on the Github link
in the appendix.

B. Behavioral Patterns

In order to start the study that follows, the best way
was to simply see the contribution per game during each
round.

The first feature is the probability computation of the
contribution per bet. As we can see in the following
figure, certainly they followed some strategies. In Fig 2

FIG. 2: Here we can observe on the y axis the probability of
each betting value (0, 2 or 4) for each round on the y axis.

each one of the probability lines sharing color are from
the different games. We can see that the trend is similar
in all three different experimental settings. Despite the
different locations or the initial game settings all three
are sharing certain universalities. That’s why from now
on we are considering all as one. And, as we can see
above, the probability of a bet with a value of 0 at the
first round it’s almost zero. But in the last rounds, once
the goal is accomplished it clearly increases, showing a

probability higher than 0.5. It’s worth noticing that the
most usual play is to bet 2 (a conservative one) but it’s
closely followed by betting 4 at the start of the game. It
looks like the individuals have a rush on accomplishing
the goal and show a tendency to be generous before seeing
what others contributed.

If they were irrational players the betting expected
would be an almost constant averaged contribution of
2 per round.

The game explains collective behaviour and this may
lead to some strategies. To answer this question we pro-
posed different approaches. The first one was to search
if there was some kind of pressure in your decisions or
if there were some genuine greedy players or genuine
kind ones. We looked for the Gini Coefficient inside each
game. The Gini Coefficient is defined as [1]:

G =

n∑
i=1

n∑
j=1

|xi − xj |

2n2x̄
, (1)

where xi is the bet of one player and xj is the bet of the
other one. In the denominator we have the number of
players squared (n = 6 in this case) and the average value
of the bet on each time step. This gives us an idea of the
evolution of the inequalities formed by the bets through
the game. This can give us an idea of the nature of

FIG. 3: Representation of the Gini coefficient of the ”aigua”
dataset. The y axis shows us the inequality and the x one the
round where we are. To simplify this visualitzation we have
used only 9 games and the mean (dashed line).

each player. In Fig 3, it’s appreciable how at the start is
the moment with the most uncertainty in the inequality
(or Gini Coefficient). But it has a subtle trend to be
the moment with more bias while beeing the round with
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most inequality. But then this Gini Coefficient decreases
until finding an almost stable value. This means that
the low betters at the start gets cohibited by the high
ones and feel some kind of pressure that pushes them
to increase the amount of money in-game. The same
thing happens with the high ones that they feel like they
had already did what it needed to be done and reduce
the intensity of the betting. The fact that the value of
the Gini Coefficient is maintained constant but not zero
shows that there are different types of strategies. If all of
us played the same way the value of the Gini Coefficient
would’ve been almost 0 and stable through the game.
The fact we are looking to different slopes show that there
are unequal fluctuations of money inside each game.

C. Mutual Information

The model we tried was to see if there is some kind of
information inherent from each person, meaning which
are the main demographic characteristics that made peo-
ple bet as they did and if that information makes them
follow similar patterns when it comes to betting. Once
to this point, one thing that we had to do was to choose
one method to calculate this shared information. We had
two options here. To calculate the well-known Pearson
Correlation or to use the Mutual Information (MI) al-
gorithm. As it’s discussed in [5] the mutual information
has a very distinctive point that plays in his favour. The
non-linearity. This leads us to high variations on the MI
for little variations on the correlation. That’s why we
decided to go with Mutual Information.

We define a pair of players as:

Ni(t)→ X = x0, x1, ...xn (2)

Nj(t)→ Y = y0, y1, ...yn (3)

where the subindex means the number of the move and
n is the total of moves possible. In our case is 9 since
each player has 10 possible bets to do. And, as we’ve
seen before this number of bets in order has meaning.
So, according to [7], we compute the Mutual Information
as:

MI(X,Y ) =
∑
y

∑
x

p(xt, yt)logm
p(xt, yt)

p(xt)p(yt)
(4)

where

p(xt) =

∑n
i=0 δxt,xi

n

and, applying bayes theorem,

p(xt, yt) = p(xt|yt)p(yt).

Once we made this we have a symmetrical squared
matrix with a side equal to the number of players that
we have where Aij is the shared information between the

player i and j. We can print a heatmap. That says to us
the intensity of the shared information between all the
players.

This heatmap resulted to be to noisy. With this in
mind, we had built a mask function.

Our mask has 2 different parts. The first one consists in
calculate again the MI but this time we have had shuffled
the array of each player. The elements of this matrix
will be called Bij . All of them are shuffled randomly
so the shufflings between the i player and the j array
have nothing in common. Furthermore, the shuffling of i
calculated with the element j it’s different from the one
with j+1.

And we apply Heaviside’s Theta (Θ) to the difference
between (Aij − Bij). To filter out automatically rele-
vant values. The effectivity of this filter is calculated as
follows: ∑

i

∑
j

Aij ·Θ(Aij −Bij)∑
i

∑
j

Aij
∼ 70%.

So 30% of our data was noise. Also, we normalize the
heatmap (See Fig 4). The normalization is going to be:

A′
ij =

Aij

max(Aij)
(5)

FIG. 4: Mutual Information on the three games unified ma-
trix already filtered and normalized. The red lines are the
separations between each dataset.

To increase the readability of the heatmap above we
have used a Python package called ”NetworkX” which
has helped us to do a proper representation (Fig 5). The
heatmap above it’s a matrix where each point is the re-
lation between those 2 players. Since it has been cleaned
from the noise some values are zero. On the graph be-
low, each node represents a player. We can see what was
before Aij as the links between the nodes. The function
used to print this takes into account the minimum num-
ber of correlation necessary to draw a connection. Since
our objective here it’s purely a representation we have
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used a minimum of 0.7. The intensity of each link the
higher the value of the connection between those players.
And the size of each node means more links starting at
that point.

FIG. 5: Network representing all the players and it’s connec-
tion. For clearness we have deleted the labels of the player.
But the user1 is the one occuping the 15’ of the sphere and it
follows an counterclockwise order.

We tried two more things related with the Mutual In-
formation: Compute the symbolical mutual information
using markov chains registering the variation between 2
consecutive bets instead of the values of the bets we’ve
done before. And trying to find leaders through the data.
This was made by, on the MI expression [4] advancing one
of the two players and computing it then. But we hadn’t
enough data to draw practical conclusions about this two
things so we dropped them.

D. Clustering

After reading [6] chapter 9 about clusterization we have
decided to go with a KMeans algorithm over a DBSCAN
or an HDBSCAN. We did it following 2 main reasons:
We wanted a determined number of clusters (which is the
only hyperparameter needed on the KMeans). And we
had a lot of hyperparameters to tune with DBSCAN or
HDBSCAN. But it would be interesting to try to cluster
using those algorithms.

Our points (remember that they consist only of the
relation between one player and how his betting is related
with others) will occupy the feature space. The KMeans
algorithm would group those points around k centroids
selected randomly and try to minimize the distance from
each point to a centroid. Usually, and in our case, the

distance used is the Euclidean one. The randomness of
the process means that the final centroids won’t always
be the same.

The KMeans clustering needs only one hyperparame-
ter, k. This k is the total number of clusters that we
want to have. To determine k it’s worthless viewing that
we would have a huge accuracy having a lot of clusters
but we would lose precision. So we are searching for a
”k” not so big to have an overkilled number of groups
but not so little (1 or 2) to take some rich conclusions.

To determine k we followed two approximations com-
monly known. Since the ”k” value it’s arbitrary we
needed to make an educated guess so we used the sil-
houette and the elbow methods. The first one measures
how similar is one point to its own cluster (cohesion)
compared with other clusters (separation). So this sil-
houette score reaches its global maximum in the optimal
k. The elbow method uses the squared error for each
point and its own centroid and it sums them on what’s
called the WSS score. Making an elbow and having its
optimal point on the minimum.

FIG. 6: Silhouette Score computed for different number of
clusters (k). In the x axis we have the number of clusters. In
the y axis we have the silhouette score.

With Silhouette Method (Fig 6), we can detect an ob-
vious maximum for 1 cluster but it would have no sense to
choose 1 for the number of clusters. So we are searching
for other maximums (see Fig 6). The abundancy of can-
didates makes difficult to choose so we’re using the Elbow
Method too. We are searching for a drop on the WSS.
But we haven’t either a clear conclusion. We have an in-
teresting drop with 4 clusters, an another one around 8.
So we are finally going with this value. Since our whole
dataset it’s from ∼ 500 players this clustering gives us
groups of 65 players.

Once we have made this we can plot an histogram of
the sociodemographic information that we have from the
players and separate them by the clusters where each one
belongs.

In Fig 7 it’s visible, how each cluster (diferentiated by
color) reigns in one or another range of sociodemographic

Treball de Fi de Grau 4 Barcelona, June 2021



Game Theory and Collective Phenomena Antoni Domènech Borrell

FIG. 7: Histogram containing the demographic information
of all the players. On x axis we can see the age. On y the
education. And the color shows the cluster predominating
each quarter.

traits. So we have some cluster that is coherent with the
age/education graph. If we dive deeper here we can see
that the level of education is more important than the
age range where you can be found.

III. CONCLUSIONS

Humans, while playing collectively follow strategies.
There are different kind of strategies. Kinder ones,
greedy others. We have seen that in Fig 2 showing the
value of the bet probabilities of each round of the game.
The first round have quite a lot more importance be-
cause the disparity there it’s when its higher (Fig 3) and
this, in general trends will play a significant role (but not
determinant) on the rest of the game.

However, following with Fig 3, we can see how the
essence of each player gets truncated by what the others
do. The fact to see what others are doing influences
our next decission. We have seen on the Fig 3 how the
inequality would decrease through the game.

For the following conclusions we think the size of our
datasets and the simplicity of the game had strongly in-
fluenced them. It would be interesting to build a more
complex game or maybe to increase the data of this one.

It’s possible to compute a Mutual Information algo-

rithm with this kind of data and it would give us really
different values. In fact, as we have seen in Fig 5, once
the data has been cleaned it gives use a considerable net-
work. And we strongly think that with the NetworkX
package we should have an amount of tools that could
bring this study further.

We indeed can see how the Mutual Information method
can be used for clusteritzation and, as we have seen in
figure 7 it is possible to abstract some conclusions from
the sociodemographics of each player. We are considering
here only sex, education and age. We could study in
deep here. Obtain more sociodemographical data and
increase our accuracy. As said before, the size of our data
prevents us from being categorical with this conclusion.
Either way, we have achieved some accurated distinctions
between the clusters made off the betting strategies.

This distinctions gave more importance to the educa-
tion than the age. But our sample is unbalanced so with
this conclusion we have to say the same that we had said
before. We should get a more balanced set.

IV. APPENDIX

All the advance in this study has been made using
GitHub and properly pushing it. You can see all the
historical of the project and more figures here: https://
github.com/menektoni/TfG. You can read also a copy
of the conclusions and some more figures in the ”readme”
section. There are the instructions to how to read the
code to.
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[4] Vicens, J and Perelló, J. ”Citizen Social Lab: A digital

platform for human behavior experimentation within a cit-
izen science framework.” Plos One (2018).

[5] Taleb, N. ”Fooled by Correlation: Common Mis-
interpretations in Social ”Science”, https://www.

academia.edu/39797871/Fooled_by_Correlation_

Common_Misinterpretations_in_Social_Science_

[6] A. Burkov, The hundred page Machine Learning Book,
(Andriy Burkov, 2019. 1st. ed.).

[7] Gutierrez-Roig, M. et al. ”Mapping individual behavior in
financial markets: synchronization and anticipation”. EPJ
Data Science (2019).

Treball de Fi de Grau 5 Barcelona, June 2021


