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Abstract: Over more than 100 years, water diffusivity in ionic solutions has been a matter
of debate and still some gaps need to be filled in order to understand and reproduce experimental
results at their best. Here a coarse-grained model for ions in water is used to test the empirical Jones-
Dole relation as well as to study the behaviour of the so-called “structure breaker” and “structure
maker” ions. The model reproduces qualitatively the experimental phenomenology by assuming
that the main effects of the ions is on the intensity of the water hydrogen bonds. The model clarifies
that, at fixed temperature, the Jones-Dole relation holds only for a limited range of concentrations
that depends on pressure. The breakdown of the Jones-Dole marks also the end of the simplified
distinction between “structure breaker” and “structure maker” ions.

I. INTRODUCTION

Water is by far one of the most familiar substances
to humankind as it is essential for life. Still, after cen-
turies and efforts trying to understand its properties
there are at least sixty anomalies that are documented for
water dynamics, thermodynamics and structure, whose
explanations lack general scientific consensus [1]. Here
we focus on ionic water solutions and their dynamics
when both ion concentration and pressure of the solution
change, at constant temperature. Starting from the ex-
perimental observation, we develop a phenomenological
model based on the Franzese-Stanley (FS) coarse grained
water model.

Our everyday experience tells us that adding salt to
water changes its properties as its boiling temperature,
its density, or its conductivity, among others. Studies on
this topic date back from 1847 Poiseuille’s experiments
on the effect of some ions in water viscosity. It was not
until 1929 that Jones and Dole proposed [3] an empirical
expression that relates the viscosity of an ionic solution,
η, to the viscosity of pure water, ηW , and to the ion
concentration, c:

η

ηW
= 1 +Ac1/2 +Bc+O(c2), (1)

where A and B are ion-dependent coefficients. While
A ≥ 0 for almost all the cases, B is either positive or
negative depending on the solute. In literature, ions
with B > 0 are said structure makers (kosmotropes),
while those with B < 0 are called structure breakers
(chaotropes). As in general |B| � |A|, structure maker
ions are related to an increase in the viscosity respect to
pure water (η > ηW ) and structure breakers to a decrease
(η < ηW ). In Eq. (1), O(c2) and higher-order terms are
usually neglected.

Molecular dynamics simulations of salts in atomistic
water models have shown to be unable to reproduce the
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experimental results [2]. In particular, simulations of
rigid, nonpolarizable models at room temperature show
that none of the commonly used force fields (SPC/E,
TIP3P, TIP4P, TIP4P/2005, and TIP5P water models),
neither the most used polarizable water models (SWM4-
DP and AMOEBA), each combined with the correspond-
ing force fields for ions, can reproduce the experimen-
tally observed trend for the concentration dependence of
diffusivity and viscosity for both structure-breaking and
structure-making salts [2].

Here, to study the validity of the empirical Jones-Dole
relation, we adopt a coarse-grained model and perform
diffusive Monte Carlo simulations to calculate, at fixed
ion concentration c, pressure p and temperature T , the
water diffusion coefficient D defined as

D ≡ lim
τ→∞

〈
[~r(τ + t0)− ~r(t0)]

2
〉

4τ
, (2)

where r(t) is the position of a water molecule at the time
t and the thermodynamic average is performed over all
the water molecules. Assuming valid the Stokes–Einstein
relation at constant T (η ∝ D−1) , we evaluate the Jones-
Dole relation.

II. METHOD

A. The FS water model at zero ion concentration

For sake of simplicity, we consider the FS model in
its version for a water nanoconfined monolayer, with
periodic boundary conditions in the plane and height
h = 0.5 nm, and total volume V , hydrating structure-
less hydrophobic walls [4–6]. The system is kept at con-
stant T and p, allowing V to fluctuate, with a constant
number N of water molecules. The volume V is parti-
tioned into N equal cells in a square lattice, each with
volume v ≡ V/N . The square lattice reproduces the
structure of four-coordinated water, as observed in the
experiments for a water monolayer in hydrophobic nano-
confinement [7]. At fully hydration, N = N , each cell is
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FIG. 1: Cartoon of the model with oxygens (in red), hydro-
gens (in white) and acceptor pair of electrons (gray sticks) of
each molecule. In the model acceptor and donor electrons are
treated equally. Hydrogen bonds are displayed as gray sticks
between water molecules, while not connected sticks repre-
sents broken hydrogen bonds. The partitioning is shown by
the withe square grid.

chosen with a volume equal to the average proper volume
of each water molecule. Hence, if v0 is the van der Waals
(vdW) volume of a water molecule, v0/v is the water den-
sity. Here, to facilitate the diffusive dynamics, following
Ref. [8], we consider the surface at 75% hydration, hence
N = N × 75%, and we assign a variable ni = 1 to each
occupied cell i, and ni = 0 otherwise.

The Hamiltonian of the model is defined as it follows:

H ≡ HvdW +HHB +HCoop, (3)

where the first term refers to the vdW attraction between
molecules and repulsion of the electrons, described by a
Lenard-Jones interaction:

HvdW ≡
∑
ij

U(rij) ≡ 4ε
∑
ij

[(
r0
rij

)12

−
(
r0
rij

)6
]

(4)

for distances r0 < rij < rc, with r0 ' 2.9�A, the vdW
water diameter, and rc = 5r0, the cut-off distance, above
which by definition we set U(rij) = 0. ε is the vdW
energy parameter.

Two neighbour molecules are considered bonded if the
hydrogen bond (HB) between them is set. Each water
molecule can form up to four HBs, i.e., has four bond-
ing indices. Defining the bonding index of a molecule
i with respect to a molecule j as σij = 1, . . . , q, be-
ing q the different possible states, the HB is set if the
two molecules have indices in the same bonding state:
σij = σji. Because in real space this happens when the
hydrogen atom between the two coupled oxygens forms

an angle ÔOH ∈ [−30o, 30o] with respect to the O-O
axis, and this corresponds to 60o/360o = 1/6 of all the
possible orientations in the plane defined by the three

atoms, we set the number of bonding states equal to
q = 6, to correctly account to the configurational en-
tropy decrease for each molecule due to a HB formation.
For each formed HB, the total energy decreases by J .
This is accounted for in the Hamiltonian term HHB :

HHB ≡ −JNHB ≡ −J
∑
<ij>

ninjδσij ,σji
, (5)

where the sum runs over the nearest neighbours (nn) and
δσij ,σji

= 1 if σij = σji and 0 otherwise.
When the number of HBs, NHB ≡

∑
<ij> ninjδσij ,σji

,
is large, HB cooperativity, i.e., the effect of non-
additive many-body quantum interactions, becomes rel-
evant. This effect is modeled via the third Hamiltonian
term:

HCoop ≡ −Jσ
∑
i

ni
∑
(k,l)i

δσik,σil
, (6)

where (l, k)i runs over the six pairs of bonding indices σij
between the molecule i and its four nearest neighbours.
By setting Jσ � J we guarantee that the coopertive
rearrangement of the HBs only occurs whenNHB is large.

Under this condition, i.e., NHB � 1 with many co-
operative HBs, water molecules rearrange as in tetra-
hedrons (that are distorted in a monolayer, but still
present), inducing a decrease of the total water density.
This is accounted for in the model by adding for each
formed HB, an average volume increases, vHB � v0, so
that the total water volume is by definition

VW ≡ Nv0 +NHBvHB . (7)

Following previous works [4–6, 8, 9], we set vHB/v0 = 0.5,
ε ' 5.5 kJ/mol, J/4ε = 0.5, Jσ/4ε = 0.05.

B. The FS water model with ions

As shown in calculations with monovalent ions [10], HB
strength depends linearly on the charge transfer between
ions and water molecules but also whether the ions are
cations or anions. Here, we hypothesise that this effect
can be included in the FS model by considering that on
average the parameter J depends on the ion concentra-
tion c, at least as long as the ions are homogeneously
distributed in water and fully solvated.

If every ion affects both water molecules participating
in a HB with probability p(c), at low ion concentrations,
we can approximate the HB energy between the two wa-
ter molecules, at the first order, as

J(c) ∼ JW − f(T )p(c)2, (8)

where f(T ) is a temperature dependent coefficient and
JW ≡ J(c = 0). The probability that an ion affects
the entire hydration shell of a single water molecules
is phs(c) = p(c)4 and, within mean-field approximation,
phs(c) ∼ c. This leads to J − JW ∝ c1/2.
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Depending if J−JW > 0 or J−JW < 0, two situations
can be identified. In the first case, J is larger than in pure
water, which results in an increase of the HB strength,
as assumed for the structure-maker ions. On the other
hand, J is smaller than in pure water, which results in
a decrease of the HB strength, as hypothesised for the
structure-breaker ions.

Based on these considerations, we can rewrite the
Jones-Dole relation, Eq. (1), as

η

ηW
= 1 +A′(JW − J) +B′(JW − J)2 + · · · , (9)

and, assuming η ∝ D−1,

D−1 = D−1W +A′′(JW − J) +B′′(JW − J)2 + · · · , (10)

where DW is the diffusion constant of pure water and all
the other coefficients are as in Eq. (1) apart from constant
factors.

C. Monte Carlo simulations

We perform diffusive Monte Carlo (MC) simulations
of N = 1200 water molecules situated in a square lat-
tice with M × M cells and M = 40, corresponding to
75% hydration. Each simulation has 25× 106 MC steps,
and each step is made of 5 × N trials. In each trial, a
random water molecule and a random integer n ∈ [0, 4]
are selected. Depending on the value of n, we have two
different cases:

1. If n = 4, we attempt to move the molecule to one
of its nearest cells, at random, and the move is
accepted with probability P :

P ≡ min {1, exp{[−β(∆H − T∆S)]}} , (11)

where β ≡ 1/kBT , being kB the Boltzmann con-
stant, and ∆H ≡ Hnew −Hold, ∆S ≡ Snew − Sold
are the differences in enthalpy and entropy between
the new and the old configuration. These are calu-
lated as

∆H = ∆H+ p∆V, (12)

∆S = NkB ln

(
V new

V old

)
, (13)

where p is the pressure.

2. If n 6= 4, we set the bonding indices σij at random
to one of the q = 6 possible states, and we accept
the move with probability P in Eq. (11).

Finally, at each trial, we choose at random a sign and
a value 0 < |∆V | < vHB and accept the change from V
to V + ∆V with probability P in Eq. (11). For each MC
step, we calculate the new total energy and save the new
configuration.

At each pressure and ion concentration, we use the first
5 × 106 MC steps for equilibration. We divide the next
20 × 106 MC steps in 400 groups of 5 × 104 MC steps
each, and save the calculations every 500 MC steps. In
each group, we calculate the mean square displacement〈

[~r(τ + t0)− ~r(t0)]
2
〉

. Finally, we average the calcula-

tions over all the 400 groups.
To estimate the errors, we simulate several state points

(J∗ ∈ {−0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1}) with six different
seeds of the random numbers generator to get statisti-
cally independent averages and we compute their mean
value and standard deviations. Notwithstanding, as it
can be seen in the figures of the Results section, error
bars, where calculated, are smaller than the symbols size.
Hence, we assume that the statistical errors are small also
for those state points where we did not calculate them
explicitly. Further commentary on the effect of seeds is
reported in the Appendix.

III. RESULTS

In the following we use reduced quantities: J∗ ≡ J/4ε,
J∗σ ≡ Jσ/4ε, T

∗ ≡ kBT/ε, p
∗ ≡ pv0/ε. We set T ∗ = 0.7

and pressures vary from p∗ = 0.2 to p∗ = 0.8.
We calculate the diffusion constant D, Eq. (2), as de-

scribed in the Appendix, and check, for J∗ ≡ J∗(c) ∈
[−0.1, 1.1], when D−1 −D−1W /(J∗W − J∗) has a linear de-
pendence on J∗W−J∗, as predicted by the Jones-Doyle re-
lation, Eq. (10). We find a linear regime for each consid-
ered pressures, for both J∗ > J∗W and J∗ < J∗W (Fig. 2).
However, we observe clear deviations from linearity, in
particular, at J∗ > J∗W and low pressure.
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FIG. 2: Checking the Jones-Dole relation at T ∗ = 0.7 and
p∗ ∈ [0.2, 0.8] for J∗ ∈ [−0.1, 1.1]. The linear fits of (D−1 −
D−1
W )/(J∗

W − J∗) as a function of J∗
W − J∗ mark where the

relation holds.

For J∗ > J∗W , at any pressure, (D−1 − D−1W )/(J∗W −
J∗) < 0, hence (D−1 − D−1W ) > 0, i.e., the viscosity in
the ionic solution is larger than in pure water. This is
consistent with our hypothesis that setting J∗ > J∗W is
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enough to reproduce the behavior expected for structure
makers.

For moderate J∗ < J∗W and moderate pressure, (D−1−
D−1W )/(J∗W − J∗) < 0, hence (D−1 − D−1W ) < 0, i.e.,
the viscosity in the ionic solution is smaller than in pure
water. This is consistent with our hypothesis that setting
J∗ < J∗W is enough to reproduce the behavior expected
for structure breakers.

However, for high enough J∗W − J∗ and pressure, we

find (D−1 − D−1W ) > 0, i.e., a viscosity increase that is
apparently inconsistent with the simple interpretation of
structure breakers. For p∗ = 0.8 this happens around
J∗ = 0.1 (J∗W − J∗ = 0.4) and for p∗ = 0.7 somewhere
near J∗ = 0. We will discuss this apparent inconsistency
in the conclusions.

Using our assumptions, c∗ ∝ (J∗ − J∗W )2 if J∗ > J∗W
and c∗ ∝ (J∗W − J∗)2 if J∗ < J∗W , and the validity of
the Stokes–Einstein relation, we can calculate how the
relative viscosity η/ηW changes as a function of ion con-
centration c (Fig. 3). Again, also in this representation
of our results, we observe clearly that structure makers
always lead to a viscosity larger than in pure water, while
structure breakers decrease the viscosity at low pressure
for all the concentrations, but not at high p∗ ≥ 0.7 and
large c∗ > 0.16. The effect can be further emphasized by
representing D/DW as a function of c∗ (Fig. 4). Struc-
ture makers always induce a decrease of the relative dif-
fusion coefficient D/DW < 1, while structure breakers
show a non monotonic behavior at any pressure and large
enough c∗, and for p∗ ≥ 0.7 lead to D/DW < 1.
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FIG. 3: Relative viscosity η
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of ionic solutions with respect

to pure water as a function of ion concentration c∗ for T ∗ =
0.7 and p∗ ∈ [0.2, 0.8]: η

ηW
> 1 corresponds to structure

maker ions, while η
ηW

< 1 to structure breakers. Note that at

high enough pressure and large enough c∗, the ionic solution
can change from breaker to maker.

IV. DISCUSSION AND CONCLUSIONS

The Monte Carlo simulations of the FS coarse-grained
water adapted to ionic solutions, presented here, displays

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

D
/D

W

c*

p*=0.2
p*=0.3
p*=0.4
p*=0.5
p*=0.6
p*=0.7
p*=0.8

FIG. 4: Relative diffusion D
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and p∗ ∈ [0.2, 0.8], show a behavior that is monotonic and
decreasing for structure maker ions, but is non-monotonic for
structure breakers.

a behavior that is in apparent contrast with the start-
ing hypothesis of the model. In particular, we assume
that the model can account for the effect of ions homoge-
neously solvated in water by tuning the water-water HB
strength J∗ as a function of the ion concentration c∗. By
mean field reasoning, we argue that c∗ ∝ (J∗W−J∗)2, with
J∗ > J∗W of pure water if the ion is a structure maker
and J∗ < J∗W if it is a structure breaker. Next, we find
that for makers the diffusion constant is always smaller
than for pure water and decreases monotonically with in-
creasing c∗, consistent with the starting hypothesis, while
for breakers, the diffusion constant has a non-monotonic
behavior that depends on pressure, and at high enough
pressure and c∗ the breakers become makers, at variance
with what expected.

Surprisingly, this unexpected behavior is perfectly con-
sistent with the experiments, as shown in Fig. 3 of
Ref. [11] and discussed in Fig. 1 of Ref. [2]. Further-
more, it cannot be reproduced by atomistic models at
room temperature, even if polarization is included [2],
clearly showing that classical water models do not ac-
count correctly for many-body effects.

The FS model, instead, is built on the basis that the
interplay of many-body interactions with competing pair
interactions is the origin of the water anomalies, includ-
ing those related to the diffusion [8]. Hence, it is able to
account for the subtle effect of solvated ions on the water
HB network.

In particular, the model is able to show that the
empirical Jones-Dole relation holds only in a pressure-
dependent range of salt concentrations. When the Jones-
Dole relation fails at large enough concentration for the
breakers, the simple interpretation of breakers shows its
limitation. Therefore, we can conclude that the distinc-
tion between structure maker ions and structure breaker
ions looses its sense under extreme conditions. Although
we observe this effect at high pressures, our results sug-
gest that this conclusion would be true also for lower
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pressures but at higher ions concentrations. Under these
conditions, we expect, as well, that the Jones-Dole rela-
tion would be no longer valid. Further work is necessary
to test this prediction.

V. APPENDIX

We check the convergence of the results with different
seeds for the random number generator and a number of
values of J and pressure (Fig. 5 and Fig. 6). Although
there are fluctuations, these are within the fourth decimal
digit and practically do not deviate from the mean value.
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FIG. 5: Evolution of the average of the diffusion coefficient
D, calculated in different time intervals, for J∗ = 0.1 and
p∗ = 0.2, and different seeds of the random number generator.

0.0296

0.0297

0.0298

0.0299

0.0300

0.0301

0.0302

0.0303

 0  10000  20000  30000  40000  50000

D

MC steps

seed 1
seed 2
seed 3
seed 4
seed 5
seed 6

FIG. 6: Evolution of the average of the diffusion coefficient D,
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deviation of the behaviour of seed number 4 with respect to
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