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Abstract: We analyzed a theory of gravity with a non-minimally coupled scalar field, writing
down its equation of motion and the Einstein equations in a spherically symmetric Lemâıtre-Tolman-
Bondi (LTB) metric. This is motivated by the possibility that a non-minimally coupled scalar could
alleviate the “Hubble tension” that exists between measurements of the Hubble parameter H0, using
Supernovae or CMB. In particular, the aim of this work is to provide the necessary equations, in
order to investigate the relation between the cosmological value of the scalar field and its local value
within a cosmic structure, described here by the LTB metric.

I. INTRODUCTION

In this work we study a scalar-tensor theory of
gravity, where the metric is coupled non-minimally
to a scalar field. Our motivation lays in the fact
that in the standard cosmological model (ΛCDM)
within Einstein’s theory, there is a disagreement
between different methods of measuring the Hub-
ble constant [1], in particular when comparing late-
time local measurements (using supernovae) with
early time measurements (using CMB). This is the
so-called “H0 tension”, and it could be alleviated
by a non-minimal scalar field that evolves changing
in time [2]. This represents a variation in time of
the Planck mass, or equivalently of the Newton’s
constant. These theories, however, are subject to
a set of constraints for the scalar field inside the
solar system that constrain significantly the possi-
bility of alleviating the Hubble tension. However,
in [2] the cosmological value of the field has been
used to include such a constraint, and it is not clear
whether the local value is close to the cosmological
value. We will thus start to investigate this issue:
what is the relation between the inner and outer
scalar field values in a cosmic structure (having
in mind a cluster, a galaxy or even smaller struc-
tures). Moreover, it could be of general interest to
understand how to match the local and the cosmo-
logical value of the scalar field in modified gravity
models that include an extra scalar. To do so,
we use an exact solution of the Einstein equations
that describes a non-homogeneous blob inside a ho-
mogeneous universe. They will be represented by
the spherically symmetric Lemâıtre-Tolman-Bondi
(LTB) and the Friedmann-Lemâıtre-Robinson-
Walker (FLRW) metrics respectively, which will
match smoothly at the border. We introduce the
Einstein’s equations and Klein-Gordon’s equation
for such scalar field in these metrics.

As we will see the scalar field value will be di-
rectly related to Newton’s gravitational constant,
G, which implies that G is no longer a constant,
but depends on space-time position. For simplic-
ity, we will consider that the scalar field has only
dependence on temporal and radial coordinates,

φ = φ(r, t). Throughout the report we will use
natural units: c = 1, ~ = 1, and we used the soft-
ware Mathematica to compute some of our results.

II. THE MODEL

Our model is described by a scalar field non-
minimally coupled to the Ricci scalar R . We as-
sume that the scalar field does not have a potential
contribution. The action reads:

S =
∫
d4x
√
−g[ 1

2 (M2+βφ2)R− 1
2∂µφ∂

µφ+Lmat],
(1)

where Lmat represents any matter contribution.
One should notice that in this model M does not
coincide with the Planck Mass that we observe
today, since the effective Planck mass squared is
given instead by M2

Pl = M2 + βφ2 ≡ 1/(8πG)
and thus the cosmological effective Newton’s con-
stant will depend on the value of φ. By varying the
action with respect to the metric and the scalar
field we have verified that the Einstein equations
and the equation of motion for φ, or Klein-Gordon
equation, that follow from this action are respec-
tively [3]:

Gµν = 1
M2+βφ2 [Tmatµν + Tφµν

+ β(∇µ∇ν − gµν�)φ2)],
(2)

βφR+ �φ = 0, (3)

where Gµν is Einstein’s tensor, ∇µ stands for
the covariant derivative and � ≡ ∇µ∇µ.This is a
general result for any given metric. We will study
their behaviour for FLRW and LTB metrics.

III. FLRW METRIC

As we said, we will consider the scalar field
outside the blob to be homogeneous, φ = φ(t).
The FLRW (spatially flat) metric is gµν =
diag(−1, a2(t), a2(t), a2(t)). If we introduce the
Hubble ratio, H ≡ ȧ(t)/a(t), the Ricci scalar reads:
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R = 12H2 + 6Ḣ. (4)

If we develop further eqs. (2) and (3) we get:

H2 = 1
3(M2+βφ2) [ρ+ 1

2 φ̇− 6βHφφ̇], (5)

Ḣ = −1
2(M2+βφ2) [ρ− p+ φ̇− 8βHφφ̇

+ 2β2φ2R+ 2βφ̇2],
(6)

φ̈+ 3Hφ̇− βφR = 0. (7)

where ρ is the energy density and p the pressure
of matter. We shall solve eq. (7) for late times,
when the universe is dominated by non-relativistic
matter (dust), with p = 0. We ignore for simplicity
the contribution of a cosmological constant. This
gives a(t) ∝ t2/3 and thus:

φ̈+
2

t
φ̇− 4

3t2
φ = 0. (8)

This equation has power-law solutions φ(t) =
Ctα, where C is an arbitrary constant related to
the initial conditions and

α = −1

2
±
√

1

4
+

4

3
β. (9)

One solution decays faster than the other and can
thus be neglected. Note also that for β < −3/16
has an imaginary part, which means that the so-
lution has oscillations. Such solutions have been
used in [2] to alleviate the Hubble tension.

IV. LTB METRIC

We will use this metric to describe a blob with
a generic density profile. This metric is spherically
symmetric but inhomogeneous, and given by:

ds2 = −dt2+S2(r, t)dr2+R2(r, t)(dθ2+sin2 θdψ2).
(10)

We consider here only dust, in addition to the
scalar field. We have chosen coordinates (r, θ, ψ)
comoving with dust and proper time t. S(r, t) and
R(r, t) are arbitrary functions. It is interesting
to mention that the FLRW metric is a particu-
lar case of the LTB metric, the homogeneous case,

and can be recovered if: S(r, t) = a(t)√
1−kr2 and

R(r, t) = a(t)r, where k is the spatial curvature
constant (0, 1 or −1).

From now on we will use: ∂rA ≡ A′ and ∂tA ≡
Ȧ. The Einstein tensor is given by:

G0
0 = −

(
R′

SR

)2

− 2 R′′

SR2 + ṠṘ
SR

+ 1
R2 + Ṙ2

R2 + 2S
′R′

S3R ,

(11)

G1
1 = −

(
R′

SR

)2

+ 1
R2 + Ṙ2

R2 + 2 R̈R , (12)

G2
2 = G3

3 = ṠṘ
SR + S̈

S + R̈
R + S′R′

S3R −
R′′

S2R , (13)

G01 = 2ṠR′−2SṘ′

SR . (14)

We have expressed the non-diagonal component
with both indices lowered for later convenience.
Computing the right-hand side of eq. (2), we get
the dust and field contributions:

G0
0 = −1

M2+βφ2

[
ρ+ 1

2 φ̇
2 + 1

2
1
S2φ

′2

+ 2β
(

1
S2φφ

′′ −
(
Ṡ
S + 2 ṘR

)
φφ̇

+ 1
S2

(
S′

S + 2R
′

R

)
φφ′ + 1

S2φ
′2)],

(15)

G1
1 = 1

M2+βφ2

[
−p+ 1

2 φ̇
2 + 1

2S2φ
′2

+ 2β
(
−φφ̈− φ̇2 − 2 ṘRφφ̇+ 1

S2
R′

R φφ
′
)]
,

(16)

G2
2 = G3

3 = 1
M2+βφ2

[
−p+ 1

2 φ̇
2 − 1

2S2φ
′2],

(17)

G01 = 1
M2+βφ2φ

′φ̇. (18)

The non-diagonal term usually vanishes in LTB
with dust, but it does not vanish now in presence
of φ.

For further developments we will consider that
the scalar field is a ‘test’ field, which feels the LTB
metric (sourced by dust), but such that the metric
is not affected by the scalar field. In other words,
we will assume that the scalar field is negligible
compared to matter. We will also be consider-
ing late times, where the universe is dominated
by dust. Thus, the only non-vanishing term of the
Einstein’s tensor is G0

0 and the Einstein equations
reduce to Gµν = 8πG(Tmat)

µ
ν . Now we are in the

case of the standard LTB solution with dust [7];
the non-diagonal component G01 is zero, which im-
plies:

Ṡ/S = Ṙ′/R′ =⇒ S2(r, t) =
R′2(r, t)

1 + 2E(r)
. (19)

Where we have conveniently chosen the integration
constant and E(r) is an arbitrary function. Using
eq. (19), one can prove that just three of the above
equations are independent: eqs. (12) and eq. (13)
are equivalent under this approximation. Then, if
we use eq. (19) in eq. (11) and we integrate eq. (12)
we get, respectively:

Ṙ2 − 2E(r)

R2
+ 2

Ṙ′Ṙ− E′(r)
RR′

= 8πGρ, (20)

Ṙ2 =
2GM(r)

R
+ 2E(r). (21)

Then if we use eq. (21) and its derivatives in
eq. (20) we get:

S2(r, t) =
R′2(r, t)

1 + 2E(r)
, (22)

1

2
Ṙ2 − GM(r)

R
= E(r), (23)

4πρ(r, t) =
M ′(r)

R2(r, t)R′(r, t)
, (24)
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where M(r) is also an arbitrary function, that cor-
responds to the mass inside the comoving sphere
of radial coordinate r. E(r) is intuitively an r-
dependent spatial curvature. These equations have
different solutions depending on the sign of E(r).
We will study the case where E(r) < 0, which cor-
responds to a closed universe. The solution is given
implicitly in terms of a parameter u as in [4]:

R =
GM(r)

−2E(r)
(1− cosu), (25)

t− tb(r) =
GM(r)

[−2E(r)]3/2
(u− sinu). (26)

where tb(r) is an arbitrary function that can be in-
terpreted as a Big Bang singular surface at which
R = 0. One of the three arbitrary functions,
E(r),M(r) and tb(r) is a gauge degree of freedom.
For instance, by reparameterizing the radial coor-
dinate we can give to M(r) a simple form as in [4]:

M(r) =
4π

3
M4

0 r
3, (27)

with M0 an arbitrary mass scale factor. One can
see that tb(r) will be negligible at late times and

for simplicity we will ignore it. If we define M̃ ≡
M2

0 /MPl, the equations read:

R =
4π(M̃r)2

−6E(r)
r(1− cosu), (28)

t =
4π(M̃r)2

3[−2E(r)]3/2
r(u− sinu). (29)

This is a parametric solution; as we will discuss it
is possible to get a simpler explicit form for R(r, t),
using an approximation, but first let us discuss the
conditions that the blob has to follow.

A. Junction conditions and restrictions on
curvature

We want the blob to match the homogeneous
universe at the border. This requirement sets addi-
tional restrictions over the values of M0 and E(r).
Let us first introduce the “curvature function”

k(r) ≡ E(r)

M̃2r2
. (30)

The metric of the blob has to match the homoge-
neous universe at the border, r = L, and so the
curvature function must satisfy the following re-
strictions. Its derivative has to vanish so the junc-
tion is achieved smoothly. In addition, if we want
it to match the flat FLRW universe, it must also
vanish at the border. Finally, the curvature must
not have a cusp at the origin. Thus the curvature
function has to verify:

k′(L) = k(L) = k′(0) = 0. (31)

Then, any curvature profile that fulfills these con-
ditions may be studied with this metric.

On the other hand, we may choose M0 such
that M4

0 coincides with the average density ρ0 at
present time t0:

M4
0 = ρ0 =

M2
pl

6πt20
⇐⇒ t0M̃ =

1√
6π
. (32)

We find a relation between the Hubble radius and

M̃ : R−1
H = H0 = 2

3t0
=
√

8π
3 M̃ .

B. Small u approximation

It is possible to introduce an approximation as-
suming that u� 1 in eqs. (28) and (29), as in [5];
this approximation can describe quite precisely the
dynamics even for δρ/ρ � 1 and it simplifies our
expressions. Expanding eq. (29) we get:

t ≈ 4π(M̃r)2

3[−2E(r)]3/2
r
(
u3

6 −
u5

5!

)
(33)

⇒
( 9[−2E(r)]3/2

4πM̃2r3
t
)1/3

= u
(
1− u2

20

)1/3
. (34)

The approximation is valid if u � 1, and it is
equivalent to:

v ≡
( 9[−2E(r)]3/2

4πM̃2r3
t
)1/3

=
√
−k(r)

(
9
√

2M̃t
π

)1/3� 1.

(35)
One can see that is valid either at small times or if
the curvature |k(r)| is small, or both. Under these
conditions, one gets:

v
(
1 +

u2

60

)
' u =⇒ u ≈ v +

v3

60
, (36)

which has been solved iteratively and we have ne-
glected terms of order ∼ O(v5). In order to have
a more compact notation, we define also:

γ ≡
(9
√

2M̃t

π

) 1
3 ; R2 ≡

1

20
; τ ≡ (M̃t)

1

3
, (37)

=⇒ v ≡ γτ
√
−k(r). (38)

The approximation will be good when:

u ≈ u0 ≡ v = γτ
√
−k(r) � 1. (39)

If we stick to first order in v we recover the homo-
geneous case, that is why we need higher orders.
If we develop further the equations we get:

u2
(1

2
− u2

4!

)
+O(v6) ≈ 1

2

(
v2 − 1

20
v4
)
. (40)

Finally, if we substitute eq. (40) in eq. (28) we get:

R(r, t) ≈ π

3
γ2τ2r[1 +R2γ

2τ2k(r)]. (41)
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It is interesting to note that if we had chosen the
case where E(r) > 0 as in [5] the approxima-
tion leads to the exact same expression for R(r, t).
With this result we can analyse both situations
simply changing the sign of the function k(r) that
we choose.

C. Choice of k(r) and density profile

We are looking for density profiles that resem-
ble the structures that we find in the late time
universe, i.e. profiles that simulate compact struc-
tures, with a growing density contrast due to grav-
ity. Thus, in the center one expects to find a higher
density than near the borders. The profile density
must match the average density outside the blob
at the border, in order to have an exact solution
everywhere. To compute the density we need first
the value of R′(r, t):

R′(r, t) = π
3 γ

2τ2[1 + γ2τ2A(r)], (42)

where we have defined A(r) ≡ (rk(r))′. The den-
sity is obtained using eq. (24) and eq. (27):

ρ =
M4

0

6π(M̃t)2[1+R2γ2τ2k(r)]2[1+R2γ2τ2A(r)]
. (43)

If we use the approximation |k(r)| � 1 we can
neglect the term proportional to k(r) but we can-
not neglect its derivative, which is not necessarily
small. Then it follows:

ρ = ρ̃
1

[1 +R2γ2τ2A(r)]
, (44)

where we have defined ρ̃ ≡ M4
0

6π(M̃t)2
. Let us now

choose a function k(r); we propose:

k(r) = −k0

[
1−

( r
L

)2]
, (45)

where k0 is an arbitrary constant and L is the ra-
dius of the blob. It is interesting to study the den-

sity contrast, defined by δ ≡ ρ−〈ρ〉
〈ρ〉 . First we need

to compute the value of the average density inside
a sphere of radius r̄:

〈ρ〉 = Mtot

Vtot
=

∫
d~r
√
−gρ(r,t)∫
d~r
√
−g ≈

∫
drR2R′ρ(r,t)∫
drR2R′

= M4
0

∫
drr2∫
dRR2 = M4

0
r̄3

R3 .

(46)

Under the small u approximation, the density con-
trast is related to:

δ = − R2γ
2τ2A(r)

1 +R2γ2τ2A(r)
. (47)

If δ > 0 we will have an overdensity, otherwise we
will have an underdensity. When δ is close to -1

we will have a void-like situation. We need this
density contrast to be exactly zero at the border,
provided that is has to match the homogeneous
universe and 〈ρ〉 is computed with the average uni-
verse density. An example of a density profile is
given in Fig. (1) for two different times. We can see

t = tF

t=tF/2

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00

0.02

0.04

r/L

δ

FIG. 1: Density contrast, δ, as a function of the radial
coordinate. Here we used k0 = 0.1 and we used units
of Mpc = 1, so that H0 = 1/3000, , tF ≡ 2

3H−1
0

and a

void size of L = 1 that fulfills LH0 � 1.

in Figure (1) that at the center of the blob matter
will tend to accumulate due the gravitational at-
traction. On the other hand, after a critical radius
the density contrast turns negative, which corre-
sponds to an underdensity. One should notice as
well that as time evolves, the density contrast in-
creases.

D. Klein-Gordon’s equation

We now write down the Klein-Gordon’s equa-
tion, eq. (3) in the LTB metric under the ‘test’
field approximation. We need first to compute the
value of �φ, given by:

�φ = − φ̈+ 1+2E(r)
R′2 φ′′ −

(
2 ṘR + Ṙ

R′

)
φ̇

+ 1+2E(r)
R′2

[
2R
′

R + R′′

R′ −
E′(r)

1+2E(r)

]
φ′.

(48)

We also need the value of the Ricci scalar R:

R = 2
[
2 R̈R + R̈′

R′ + 2 ṘR
Ṙ′

R′ + Ṙ2

R2 + 1
R2

+ 1+2E(r)
R′2

(
R′

R
2E′(r)

1+2E(r) −
R′2

R2

)]
.

(49)

We obtain thus:[
2 R̈R + R̈′

R′ + 2 ṘR
Ṙ′

R′ + Ṙ2

R2 + 1
R2

+ 1+2E(r)
R′2

(
R′

R
2E′(r)

1+2E(r) −
R′2

R2

)]
2βφ

− φ̈+ 1+2E(r)
R′2 φ′′ −

(
2 ṘR + Ṙ

R′

)
φ̇

+ 1+2E(r)
R′2

[
2R
′

R + R′′

R′ −
E′(r)

1+2E(r)

]
φ′ = 0.

(50)

This equation is one of our main results, in a suit-
able form for a numerical study. In order to have
some analytical intuition, we can simplify further
these expressions in the “small u approximation”.
Furthermore, we may also use a Taylor expansion
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for small k0. We will cut the series expansion at
O(k2

0). In addition, we will consider the scalar field
inside the blob to be a perturbation of the homo-
geneous scalar field, as:

φ(r, t) = φh(t) + δφ(r, t). (51)

One must notice that using this expression will let
us simplify order O(k0

0) terms, as it is the homo-
geneous case and φh(t) fulfills such equations, but
terms of order O(k1

0) will not vanish. Under these
approximations, we get an equation of the form:

δφ̈− (A0 + k0A1)δφ′′ − 2

r
(B0 + k0B1)δφ′

+

(
C0

t
+

1

t
k0C1

)
δφ̇− β

(
R0

t2
+

1

t2
k0R1

)
δφ

= β
1

t2
k0R1φh −

1

t
k0C1φ̇h.

(52)

where all coefficients are functions of r. Terms with
subscript 0 are the same as in the homogeneous
equation, and the terms with subscript 1 corre-
spond to the coefficients of first order in k0, where
we have made explicit the dependency on k0. A full
numerical solution of this partial differential equa-
tion is needed to find out the behaviour of the so-
lution, with the appropriate boundary conditions.
However, if we take into account that the order
of magnitude of the various terms is controlled by
1/r ∼ 1/L; 1/t ∼ H; ∂/(∂r) ∼ 1/L; ∂/(∂t) ∼ H,
we can attempt to understand some properties of
the behaviour of the solutions. At small times, gra-
dient terms are negligible, recovering an equation
similar to the homogeneous case. Then, as time
grows, time derivative terms lose weight compared
to gradient terms. The right side of the equation
acts a a source: if it is positive, as there is a second

derivative in time, we may expect that solutions
would try to grow (they would collapse), other-
wise solutions would be decreasing. One has to
consider also that coefficients, such as C1 and R1,
have a sign switch at a given radius. Finally, gra-
dient terms would act as an effective pressure, pre-
venting solutions to collapse or to decrease, giving
instead oscillating solutions.

V. CONCLUSIONS

We have successfully written Einstein’s equa-
tion for a scalar field non-minimally coupled to the
Ricci scalar, in an arbitrary LTB metric. We have
also found an expression for Klein-Gordon’s equa-
tion, and we wrote down its coefficients explicitly
under the ‘test’ field approximation, assuming that
the metric is not affected by the scalar field. In
addition, we have set out Klein-Gordon’s equation
under small u approximation and discussed briefly
its behaviour and the possible forms of its solu-
tions. Our work can be used straightforwardly to
study numerical solutions of such a system and de-
scribe thus the evolution of a non-minimally cou-
pled field inside a collapsing cosmic structure. This
is an important preliminary study in order to un-
derstand how to impose local constraints on scalar-
tensor theories of gravity.
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