
Study of Shor’s factoring algorithm using IBMs quantum computers

Author: Berta Casas Font
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Bruno Juliá Dı́az

Abstract: We study Shor’s algorithm for number factorization using quantum systems. The
fundamental parts of this algorithm, quantum Fourier transform and phase estimation, are presented
in this work. To gain insight into the key elements of the algorithm we have first implemented it
using classical techniques. Afterwards, we have implemented the quantum version using IBMs qiskit
language. We have tested the performance of the algorithm both on a simulator and on real quantum
computers for a case study of factoring N = 15.

I. INTRODUCTION

Shor proposed an algorithm which has become one of
the most important in the field [1]. This describes a way
of solving a well-known problem in a quantum computer
(QC): integer factorization. The problem is so hard to
solve that even RSA public key cryptosystem (the widely
used system for secure data transmission) is based on the
lack of methods to solve the number factoring in polyno-
mial time, i.e. such that the time to solve the problem
scales polynomially on the size of the number to be fac-
tored. Shor’s algorithm is able to factor in polynomial
time in a QC. This is one of the reasons why a great
amount of effort has been made to build such quantum
devices.

In this work we analyse the fundamental parts of the
algorithm and implement it on the IBMq devices [3]. In
section II, we describe the main concepts for understand-
ing the algorithm, such as the discrete Fourier trans-
form (DFT) and its quantum generalization, the quan-
tum Fourier transform (QFT) and one of the most im-
portant applications of QFT: phase estimation. Then in
section III we present the structure of the algorithm and
discuss its main features. We begin with an illustrative
classic case and, finally, we perform the quantum imple-
mentation on an IBM quantum device for N = 15. Then,
in section V we present the main conclusions we obtain
based on the results.

II. THEORETICAL BACKGROUND

In this section we briefly describe the fundamental el-
ements entering in Shor’s algorithm.

A. Discrete Fourier Transform

Given a set of N complex numbers, x0, x1, ..., xN−1,
we can perform the DFT and obtain another set of N
numbers y0, y1, ..., yN−1, also complex, defined by

yk =
1√
N

N−1∑
j=0

e−2πijk/Nxj . (1)

B. Quantum Fourier Transform

QFT is a powerful tool for performing Fourier trans-
forms of quantum mechanical amplitudes. This unitary
operation, applied on a q qubit state and expressed in an
orthonormal basis |0〉, ..., |N − 1〉, with N = 2q can be
represented as [2]

|j〉 −→ 1√
N

N−1∑
k=0

e2πijk/N |k〉. (2)

j can go from 0 to N − 1 and it is a representation of
a state of n qubits, j = j1j2...jn, with ji = {0, 1}. For
example, for n = 4, our state could be j = |13〉 = |1101〉.

As we can observe, Eqs. (1) and (2) are formally the
same, except for the sign in the exponential, which is
defined like this for convention. In QFT we obtain a
quantum state, instead of a set of numbers like in DFT.
Hence, when we measure, we will not have access to all
the amplitudes and states at the same time.

The QFT can be written more conveniently for circuit
implementation as [2]

1

2n/2
(
|0〉+ e2πi0.jn |1〉

(
|0〉+ e2πi0.jn−1jn |1〉

)
. . .(

|0〉+ e2πi0.j1j2···jn |1〉
)
.

(3)

Where we have applied the binary representation of an
integer and a fraction which are, respectively

j1j2...jn = j = j12n−1 + j22n−2 + ...+ jn20

0.j1j2...jn = j12−1 + j22−2 + ...+ jn2−n.
(4)

An example of the QFT circuit for 3 qubits is given
in Fig. 1. We have used the Hadamard gate, H, which
acts on a single qubit state like H|0〉 = 1√

2
(|0〉+ |1〉) and

H|1〉 = 1√
2
(|0〉 − |1〉), and the controlled phase, P(φ),

which acts on the target qubit, only if the control qubit
is set to the state |1〉, like P|0〉 = |0〉 and P|1〉 = eiφ|1〉. If
we apply a P operation on a target qubit in the state |qt〉
controlled by a qubit in a superposition of states H|0〉,
we have the state 1√

2
(|0〉⊗ |qt〉+ |1〉⊗P |qt〉) and now we

can not treat these qubits states separately.

Study of Shor’s factoring algorithm using IBMs quantum computers Berta Casas Font

FIG. 1: Circuit implementation of the QFT for 3 qubits with
IBM convention. Therefore, j1 = q2, j2 = q1 and j3 = q0. A
swap gate (the last one in the figure) is needed to match with
Eq. (3).

FIG. 2: Schematic circuit implementation of the phase esti-
mation algorithm in Eq. (6). We have j qubits on the first
register (first line) and the eigenstate |u〉 below. We apply
one Hadamard gate to each of the first register qubits. Then
we apply several powers of U , each one controlled by the first,
second, until j−1 qubit, respectively. Finally, an inverse QFT
(executed by inverting and swapping the order of the gates of
the QFT circuit) is performed on the register qubits and we
measure the resulting state.

C. Phase estimation

Suppose an unitary operator U such that U |u〉 =
e2πiϕ|u〉. The circuit which allows us to estimate the
phase ϕ is the one in Fig. 2. The execution of U con-
trolled by a register qubit produces a phase kickback in
the above qubits. For example, if we apply U to |u〉 con-
trolled by H|0〉 ∝ (|0〉+ |1〉) we have

|0〉 ⊗ |u〉+ |1〉 ⊗ ei2πϕ|u〉 = (|0〉+ ei2πϕ|1〉)⊗ |u〉. (5)

The phase has been transferred to the first register qubit,
despite the fact that the gate was not directly applied to
it.

After applying all the powers of the controlled U in
Fig. 2, the remaining state is

1

2j/2

(
|0〉+ e2πi2

j−1ϕ|1〉
)(
|0〉+ e2πi2

j−2ϕ|1〉
)
...(

|0〉+ e2πi2
0ϕ|1〉

)
⊗ |u〉

(6)

If we use Eq. (4) we have ϕ = ϕ12−1 + ϕ22−2 + ... +

ϕj2
−j . Then, for the first term e2πi2

j−1ϕ = e2πi2
−1ϕj =

e2πi0.ϕj , since all the other exponential are 1, as they are
multiples of 2πi. Following an analogous argument for
the rest of register qubits states, we can write the state
in Eq. (6) like

1

2n/2
(
|0〉+ e2πi0.ϕj |1〉

) (
|0〉+ e2πi0.ϕj−1ϕj |1〉

)
. . .

(
|0〉+ e2πi0.ϕ1ϕ2···ϕj |1〉

)
=

1√
2j

2j−1∑
k=0

e2πiϕk|k〉 ⊗ |u〉,
(7)

where in the last equality we have used that ϕ < 1 and
the comparison between Eq. (3) and Eq. (2). We can see
that this expression is the same in Eq. (2), except for
the factor N = 2j dividing the exponential. Hence, if we
perform an inverse QFT on the first register qubits we
obtain the state |2jϕ〉|u〉. Measuring on this state, we
get the value 2jϕ and we recover the phase ϕ, dividing
by 2j .

III. SHOR’S ALGORITHM

The goal of the algorithm is to find the prime factors
of an integer number N , i.e. the prime numbers in which
we can decompose N . It fails for even numbers, but then
2 is a trivial factor of the number. The algorithm has the
following structure:

(1) Find a random number a < N .

(2) If gcd(a,N) = 1 (the great common divisor of a and
N), then we compute f(x) = ax (mod N) (the re-
mainder of ax divided by N). If gcd(a,N) 6= 1, we
have found a factor of N .

(3) Find the order of the function, i.e., the period r such
that f(x+ r) = f(x).

(4) Once we have found r, if it is odd or ar/2 + 1 = 0
(mod N), then we have to go back to (1).

(5) Otherwise, at least one of gcd(ar/2 + 1, N) or
gcd(ar/2 − 1, N) are factors of N .

Because f(0) = a0 = 1 (mod N) ∀x, and ∀N , it is
equivalent to define r to be the least positive integer such
that ar = 1 (mod N). Then, ar − 1 = 0 (mod N), which
means that ar − 1 = k · N , for some integer k. Thus,
N divides ar − 1 = (ar/2 + 1)(ar/2 − 1). Therefore, if r
does not fall at (4), at least one of these two terms gives
a factor of N when we compute the gcd with it.

A. Finding the period classically

As an example, we show how we can implement the al-
gorithm classically, by finding the period using the DFT.
For this purpose, we try to factorizeN = 765. We choose,
for example, a = 7. As gcd(765, 7) = 1, 7 is not a factor
of N and we can continue.

We compute f(x) = 7x (mod 765). In order to find r,
we have implemented a DFT, given by Eq. (1). This

is shown in Fig. 3. We define y0 ≡ f̂(ζ = 0) =

Treball de Fi de Grau 2 Barcelona, June 2021

Study of Shor’s factoring algorithm using IBMs quantum computers Berta Casas Font

FIG. 3: Above, representation of f(x) = 7x (mod 765) for
100 values of x. Below, semilogarithmic graph of the DFT
of f(x) = 7x (mod 765). The operation was computed with
f(x) between x = 0 and x = 104. The zoom corresponds
to ζ1 = 0.0208, frequency which corresponds to a period of
T = 1/ζ1 ≈ 49.

FIG. 4: Schematic procedure of the circuit implementation

of Shor’s Algorithm. The exponent k on U2k gives the first
register qubit which controls the operation performed on the
state |1〉.

1√
N

∑N−1
j=0 f(xj). Since f(x) is always positive, when we

compute the DFT we have a peak at ζ = 0. However, we
are interested in the lower frequency peak, because this
gives us the larger periodicity of the function, r.

We obtain the period by computing T = r = 1/ζ1 =
1/0.0208 ≈ 48. Since r is not odd and 748/2+1 6= 0 (mod
765), we can proceed with step (5). gcd(748/2 ± 1, 765)
will give us at least one factor of 765. We obtain 17
and 45. These two numbers divide N : 765/17 = 45 and
765/45 = 17.

In conclusion, we have found two integers p = 17 and
q = 45 such that 765 = p · q. However 45 is not a prime
factor of 765. We would have to implement the algorithm
for N = 45 and find its prime factors.

B. Circuit implementation

Given an integer N , the circuit needs two registers of
qubits: the first register with t qubits (N2 ≤ 2t ≤ 2N2)
all set to zero and the second register initially in the state
|1〉 (in decimal representation), with at least as many
qubits as we need to represent N in binary. Later we
will discuss why we need these numbers of qubits.

Following Shor’s algorithm circuit in Fig. 4, we apply

FIG. 5: Circuit implementation for the operator U that per-
forms U |y〉 = |7y(mod 15)〉 with y = q3q2q1q0 and 1 ≤ y ≤ 15.

Hadamard gates to all the t first register qubits, achieving

a superposition of states 1√
2t

∑2t−1
x=0 |x〉, with x expressed

in decimal basis. In some manner, this is the ‘domain’ of
our function. After this, we use an operator U such that,
given an N and an a, performs the operation

U |y〉 = |ay(mod N)〉. (8)

For example, for N = 15 and a = 7 we have U |1〉 = |7 ·
1(mod 15)〉 = |7〉, U2|1〉 = U |7〉 = |4〉 and, following this
line, Ur|1〉 = |1〉. As we can see, |1〉 is not an eigenstate
of U , but it is of Ur. The circuit for the implementation
of this particular U gate is given in Fig. 5.

If we apply all the other powers of the controlled U
gate, we arrive at the state

1√
2t

2t−1∑
x=0

|x〉|f(x)〉. (9)

Hence, we have a state which is a superposition of all
the possible values of f(x), stored in the second register
qubits. After all these operations, we have to perform an
inverse QFT. Now we are going to see how the periodicity
of f(x) is stored in the state and how we can extract it.

1. Phase Estimation in Shor’s algorithm

We might notice that the circuit in Fig. 4 has the same
structure as the phase estimation circuit in Fig. 2. The
only difference is that now the state on the second reg-
ister, |1〉, is not an eigenstate of the operator U . To see
how we can link this with phase estimation, let us define
the state

|us〉 =
1√
r

r−1∑
k=0

e
−2πisk

r |ak (mod N)〉. (10)

This state is composed by all the possible values that
f(x) = ax (mod N) can take, because it contains all the
domain of f(x) contained in one period (until r − 1).
Hence, U acting on this state only swaps one position of
each one of the elements that compose the state. If we
also take into account the phase of every state, then

U |us〉 = e
2πis
r |us〉. (11)

Treball de Fi de Grau 3 Barcelona, June 2021

Study of Shor’s factoring algorithm using IBMs quantum computers Berta Casas Font

FIG. 6: Implementation of Shor’s algorithm for 3 register
qubits in an IBM simulator. Above, we show the circuit of
the algorithm, where the U gate is the one in Fig. 5. Below,
the results of the simulation with 3000 measurements on the
first register qubits (|q2q1q0〉).

So we have found another eigenstate of U with an inter-
esting phase, which contains the periodicity of f(x). If
we knew how to prepare the eigenstate |us〉 for a certain
s we could estimate s/r with the phase estimation algo-
rithm. However, to do this we would need to know r, that
is what we are looking for. Fortunately, this eigenstate
fulfils

1√
r

r−1∑
s=0

|us〉 = |1〉. (12)

This is because the only term that survives is the one with
k = 0 in all the sums in Eq. (10). The other cancel each
other due to the phases. Eq. (12) is powerful, because it
says that, no matter what r we have, the state |1〉 will be
a linear combination of eigenstates of U . Knowing this,
we are able to interpret the circuit in Fig. 4.

First, we apply the Hadamard gates to the first regis-

ter. Then, the U20 gate on the |1〉 state controlled by the
first register qubit (q0). We have the state

1√
2t

(|0〉0 + |1〉0U|1〉)(|0〉1 + |1〉1)...(|0〉t−1 + |1〉t−1)⊗ |1〉,

where the superscripts are referring to the qubits of the
first register and U|1〉 means that the operator only acts
on the second register state. From now on, we are drop-
ping the tensor product on the first register for simplicity.
After applying the operator U|1〉, we use Eq. (12) and the
phase kickback mechanism discussed in Eq. (5). Then,
we rewrite

1√
2tr

r−1∑
s=0

[
(|0〉0 + e

2πis
r |1〉0)...(|0〉t−1 + |1〉t−1)⊗ |us〉

]
.

If we take into account that Uk|us〉 = e
2πiks
r |us〉, and we

continue applying all the controlled powers of the U gate,
we obtain

1√
2tr

r−1∑
s=0

[(
|0〉+ e

2πi20s
r |1〉

)(
|0〉+ e

2πi21s
r |1〉

)
...

(
|0〉+e 2πi2ts

r |1〉
)]
|us〉,

where we have defined φs = s/r. This equation is very
similar to (6), except for the sum and the order of the
first register qubits, which is inverted due to the fact that
now we are using qiskit notation, discussed previously. If
we perform an inverse QFT, like in the phase estima-
tion algorithm, we obtain a superposition of states with
phases φs for 0 ≤ s ≤ r − 1,

1√
r

(
|2t · 0

r
〉+ |2t · 1

r
〉+ ...+ |2t · r − 1

r
〉
)
. (13)

Therefore, if we measure the state on the first regis-
ter qubits, we will obtain one of the equiprobable state
|2t · sr 〉, for every s. Repeating the process and perform-
ing different measures on the previous state, we can use
the continued fraction expansion classic algorithm to es-
timate the phase r.

IV. TESTING THE ALGORITHM WITH N = 15

We will use t = 3 qubits on the first register, [log2 15] =
4 in the second and a = 7. The circuit and the simulation
results of Shor’s Algorithm implementation are shown in
Fig. 6.

The resulting states we obtain are |0〉, |2〉, |4〉, |6〉 (in
decimal basis). Since we are obtaining |2tφs〉, we have to
divide this result by 23. Therefore, the set of values φs{

0

23
,

2

23
,

4

23
,

6

23

}
= {0, 0.25, 0.5, 0.75} =

{
0

1
,

1

4
,

1

2
,

3

4

}
,

let us infer that r = 4, because it appears in two of the
results. However, when s = 0 and when s is not co-prime
to r, we do not obtain directly s/r. For this reason it
is important to measure as many times as necessary to
make sure we will obtain all the possible output states.

In this case, r is not odd and 74/2 + 1 6= (mod 15),
then we can continue. We compute gcd(72 ± 1, N) =
gcd(49 ± 1, 15)=3 and 5. Therefore, we have solved the
problem of factoring N = 15.

A. Factoring with different values of a

We have tested the circuit in Fig. 6 with a = 2, 7, 8,
9, 11 and 13. The results of the measurement executed
in the simulator and on an IBM open-access QC (’ibm-
q-melboure16’) are shown in Fig. 7.

Treball de Fi de Grau 4 Barcelona, June 2021

Study of Shor’s factoring algorithm using IBMs quantum computers Berta Casas Font

FIG. 7: Results obtained implementing Shor’s algorithm us-
ing the circuit in Fig. 6 with different values of a. Above is
shown the results of the simulation and below the results of
IBM quantum computer melbourne-16. Blue corresponds to
a = 2, magenta to a = 7, purple to a = 8, yellow to a = 11
and orange to a = 13.

The simulator gives us the probabilities we expected
from the study of the algorithm. We obtain r = 2 for
a = 11 and r = 4 for all the other cases. Nevertheless, the
result measured in the QC has a significant probability
in all of the eight possible states that can be measured.
The worse case is for a = 11, in which we only had two
possible resulting states in the simulator and we obtain
almost the same probability in all the states in the QC
measure. A similar behaviour is found for the rest of a
values.

1. Analysis of the results

The results we have obtained are not good enough to
factor a number. There might be some reasons that
caused these outcomes. On the one hand, QC have to
deal with noise, which can be caused by interference or
lost of quantum coherence. This can severally affect the
states and, therefore, the measurements. On the other
hand, this algorithm requires a large amount of gates, i.e.
a great number of U gates, which at the same time are
composed by single-qubit gates, among others. This op-
eration consumes a substantial amount of time and raises
the probability of interference and decoherence. Even
Shor in his article mentions that ”The bottleneck in the
quantum factoring algorithm [...] is modular exponentia-
tion.” [1].

2. Number of qubits

Shor’s algorithm requires that we use t qubits in the
first register, such that N2 < 2t ≤ 2N2. This condition
ensures that we have at least N different values of x that
gives the same value of f(x), even for r approaching N/2.
However, N = 15 is not a good example for the requisite

of qubits. For a = 7, a2
k

(mod 15) = 1 for k ≥ 2.
Therefore, only applying two controlled U gates, we will
collect the periodicity of the function. Nevertheless, for
larger numbers this will not be the case and we need more
qubits to collect enough values of f(x) [4].

Due to the actual limitation of open-access QC, we
have performed the algorithm for only 3 register qubits.

V. CONCLUSIONS

In this work we have performed a detailed study of
Shor’s factoring algorithm. In the quantum implementa-
tion we have focused our attention on the role of phase
estimation. Applying these concepts, we tried the algo-
rithm with a classic example and then using a quantum
computer to factor 15.

We have observed that classically we can perform the
DFT of f(x) = ax (mod N) for obtaining the frequency
and, therefore, the periodicity of the function. On the
other hand, for the quantum implementation we have
used a circuit that requires modular exponentiation and
QFT. The results in the simulator are the expected.
However, when we try the algorithm in an IBM QC, the
results we obtain do not allow us to factor 15. We have
argued that this can be caused due to the actual limi-
tations of these systems. We hope near future advances
in QC will allow the correct implementation of Shor’s
algorithm and thus profit its power.

Acknowledgments

I would like to thank Dr. Bruno Juliá Dı́az for his
guidance and support during the course of the project.

[1] P. Shor, Polynomial-Time Algorithms for Prime Factoriza-
tion and Discrete Logarithms on a Quantum Computer,
arXiv:quant-ph/9508027 (1996).

[2] M. A. Nielsen, and I. L. Chuang. Quantum Computation
and Quantum Information, Cambridge University Press,
(2010).

[3] IBM Quantum Experience. https:

//quantum-computing.ibm.com, (2016)
[4] D. Mermin. Quantum Computer Science: An Introduc-

tion, Cambridge University Press, (2007).
[5] Qiskit, Shor’s Algorithm, <https://qiskit.org/

textbook/ch-algorithms/shor.html>, (2021).
[6] Lieven M. et al. Experimental realization of Shor’s quan-

tum factoring algorithm using nuclear magnetic resonance,
Letters to nature, pages 883-887, (2001).

[7] L. Garrido’s notes from Classical and Quantum Informa-
tion Theory, UB Physics degree, (2020).

Treball de Fi de Grau 5 Barcelona, June 2021

