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Abstract

Metabolic adaptations to complex perturbations, like the response to pharmacological treat-

ments in multifactorial diseases such as cancer, can be described through measurements

of part of the fluxes and concentrations at the systemic level and individual transporter and

enzyme activities at the molecular level. In the framework of Metabolic Control Analysis

(MCA), ensembles of linear constraints can be built integrating these measurements at both

systemic and molecular levels, which are expressed as relative differences or changes pro-

duced in the metabolic adaptation. Here, combining MCA with Linear Programming, an effi-

cient computational strategy is developed to infer additional non-measured changes at the

molecular level that are required to satisfy these constraints. An application of this strategy

is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that

characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer

cells. Decreases and increases in transporter and enzyme individual activities required to

reprogram the measured changes in fluxes and concentrations are compared with down-

regulated and up-regulated metabolic genes to unveil those that are key molecular drivers

of the metabolic response.

Author summary

Deciphering the essential events in the reprogramming of metabolic networks subjected

to complex perturbations, including the response to pharmacological treatments in multi-

factorial diseases like cancer, is crucial for the design of efficient therapies. Yet, tools to

infer the molecular drivers sustaining such metabolic responses remain elusive for large

metabolic networks. Here we develop an efficient computational strategy that integrates

measured changes at systemic and molecular levels and combines metabolic control
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analysis with linear programming tools to infer key molecular drivers sustaining the meta-

bolic adaptations to complex perturbations, such as an antitumoral drug therapy. The col-

lective behavior is approximated using linear expressions where the adaptation of

systemic concentrations and fluxes to a perturbation is described as a function of the

molecular reprogramming of transport and enzyme activities. Starting from measured

changes in fluxes and concentrations, we identify changes in the reprogramming of trans-

porter and enzyme activities that are required to orchestrate the metabolic adaptation of

colon cancer cells to a cell cycle inhibitor.

Introduction

Metabolism is a structured network of metabolites connected by transporters and enzyme-cat-

alyzed reactions. The onset of multifactorial diseases like cancer and their response to pharma-

cological treatments are associated with complex metabolic adaptations [1,2]. Such metabolic

adaptations are responses to large perturbations and often involve metabolic reprogramming

driven by multiple changes in transporter and enzyme activities. At the systemic level, vari-

ables such as metabolite concentrations or reaction fluxes (i.e., transport and reaction rates)

depend on the system’s collective behavior and are measurable using various experimental

methods [3]. In particular, complete estimations of the distribution of reaction fluxes through-

out a metabolic network can be achieved with metabolic flux analysis supported by stable iso-

tope-resolved metabolomics (SIRM) techniques [4,5].

These systemic variables depend on variations at the molecular level, such as individual

transporter and enzyme activities. Given a perturbation, mathematical models are used to

describe the adaptation of systemic concentrations and fluxes as a function of reprogramming

at the molecular level. There are multiple modeling approaches for integrating information at

the systemic and molecular levels. On the one hand, when there is a lack of detailed informa-

tion at the molecular level, the dependencies between systemic reaction fluxes can be explored

by stoichiometric models [6]. These models rely on reaction stoichiometry constraints to find

viable steady-state intracellular flux distributions. These are the constraints used in the integra-

tion of SIRM data to obtain quantitative estimations of flux distributions, although limited to

small or medium-sized metabolic networks. Alternatively, stoichiometric models can be

applied at the genome-scale coupled to various optimization methods and the integration of

multiple layers omics data [7–9]. On the other hand, when there is enough information at the

molecular level, the dependencies of concentrations, fluxes, and individual activities, among

others, can be explored with kinetic models [9–11]. By integrating kinetic rate laws for reaction

and transport processes in systems of time-dependent ordinary differential equations, kinetic

models explicitly describe reaction fluxes as a function of metabolite concentrations and indi-

vidual activities, enabling dynamic simulations of systemic concentrations and fluxes. There

are different kinetic modeling frameworks, each providing advantages and limitations [12].

Unfortunately, they are often limited by the availability of kinetic data and by the fact that the

cell environment is far from the ideal conditions that are assumed by most kinetic models

[13,14]. Several frameworks have been developed in this context of uncertainty, including

approximate rate laws, such as (log)-linear or power-law based on linear Taylor’s approxima-

tion [11]. These strategies are valid in the proximity of a reference steady-state and usually are

associated with Metabolic Control Analysis (MCA) [15–19] or the closely related Biochemical

Systems Theory (BST) [20,21]. They provide the advantage of simplified formulations and are

frequently used in different computational methodologies based on optimization [22–25] and
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sampling [17,26–28]. The ultimate objective of all these methodologies is the extraction (i.e.,

inference, prediction, identification) of new information from sets of observations and

assumptions, which constitute groups of constraints that must be satisfied.

Both MCA and BST can be equivalently applied using sensitivity coefficients to quantify the

variations at systemic and molecular levels in response to system perturbations. Sensitivity coef-

ficients are implicitly associated with kinetic models and most frequently explicitly derived

from them. MCA has been defined using formulations that are slightly different

[15,16,18,19,28], although equivalent, to those used in BST [21,29], and where the dependencies

of sensitivity coefficients at the systemic and molecular levels are explicitly described. At the sys-

temic level, sensitivity coefficients can formally be divided into control and response coeffi-

cients. They describe variations in metabolite concentrations and reaction fluxes in response to

perturbations in transporter and enzyme individual activities (control coefficients) or, in gen-

eral, to any other parameter p (response coefficients). Analogously, at the molecular level, elas-

ticities are described as variations in transporter and enzyme activities in response to

perturbations in metabolite concentrations (metabolite elasticities) or, in general, to any other

perturbation (parameter elasticities). In Table 1, formal definitions of these sensitivity coeffi-

cients and the dependencies among them are provided for a metabolic network with n internal

metabolites (i = 1,. . .,n), and m transport and transformation processes (j = k = 1,. . .,m), where

each xi describes a metabolite concentration, each Ji the systemic reaction flux (rate) through a

particular process, and each vk the transport or enzyme activity of a particular process.

Each sensitivity is a dimensionless coefficient, which measures the fractional change in

some variable A per fractional change in some parameter B around a steady-state (xio,Jko =

vko). In control and response coefficients, the variations in systemic concentrations and fluxes

are the result of the collective adaptation of the entire system after a transient period of adjust-

ment, which is indicated using total derivatives [19]. In contrast, regarding elasticities, the

changes in transport or enzyme activities happen as isolated individual processes. A positive

sign indicates that variations in A and B magnitudes follow the same direction, both decreasing

or both increasing. A negative sign indicates that variations in A and B magnitudes follow

opposite directions, one increasing and the other decreasing.

Starting from the definition of concentration and flux response coefficient (RJ
p; R

x
p),

Rxi
p ¼

p
xi0

dxi½v1½p�; � � � ; vm½p��
dp

ð1Þ

RJj
p ¼

p
Jj0

dJj½v1½p�; � � � ; vm½p��
dp

ð2Þ

Table 1. Sensitivity coefficients.

A B dependencies

conc. control coefficients Cxi
vk
¼

vko
xio

dxi
dvk
¼

dlogxi
dlogvk

xi vk
Pm

k¼1
Cxi

vk
¼ 0 and

Pm
k¼1

CJj
vk ¼ 1

(summation theorems)
Pm

k¼1
Cxa

vk
� εvkxb ¼ 0;

Pm
k¼1

Cxa
vk
� εvkxa ¼ � 1, (a6¼b) and

Pm
k¼1

CJj
vk � εvkxi ¼ 0

(connectivity theorems)

(see Fig 1 to other flux and concentration stoichiometric dependencies)

flux control coefficients CJj
vk ¼

vko
Jjo

dJj
dvk
¼

dlogJj
dlogvk

Jj vk

“metabolite” elasticities εvkxi ¼
xio
vko

@vk
@xi
¼

@logvk
@logxi

vk xi

conc. response coefficients Rxi
p ¼

p
xio

dxi
dp ¼

dlogxi
dlogp

xi p Rxi
p ¼

Pm
k¼1

Cxi
vk
� εvkp

RJj
p ¼

Pm
k¼1

CJj
vk � εvkpflux response coefficients RJj

p ¼
p
Jjo

dJj
dp ¼

dlogJj
dlogp

Jj p

“parameter” elasticities εvkp ¼
p
vko

@vk
@p ¼

@logvk
@logp

vk p

https://doi.org/10.1371/journal.pcbi.1009234.t001
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with a direct application of the chain rule, Eqs (1) and (2) can be expanded to express response

coefficients as a function of special elasticities and control coefficients [30–33]:

Rxi
p ¼

Xm

k¼1
Cxi

vk
� εvkp ¼ Cxi

v1
� εv1

p þ � � � þ Cxi
vm
� εvmp ð3Þ

RJj
p ¼

Xm

k¼1
CJj

vk � ε
vk
p ¼ CJj

v1
� εv1

p þ � � � þ CJj
vm � ε

vm
p ð4Þ

Each control coefficient ðCx
v ;C

J
vÞ describes the variations in a concentration or flux to the

perturbation of one particular activity. Altogether, the complete set of control coefficients pro-

vides a full description of the potential behavior when a unique activity is perturbed. In

response to a perturbation, each response coefficient in Eq (3) and (4) is a function of all con-

trol coefficients weighted by parameter elasticities (εvp). Each response coefficient describes the

overall variation in a concentration or reaction flux in response to a perturbation in some

parameter p that can affect one or multiple activities simultaneously, i.e., including any pertur-

bation leading to a complex metabolic response.

A variety of optimization methods have exploited the dependencies among steady-state

concentrations, fluxes, and system parameters such as enzyme levels or variations of them.

They can take advantage of the particular formulation of the rate laws used in time-dependent

differential equations, such as (log)-linear in MCA [34–36] and S-system and Generalized

Mass Action (GMA) in BST [22–25,37]. At steady-state, mass balances provide sufficient con-

straints to account for all dependencies. The potential behavior is fixed through variables, such

as metabolite elasticities for MCA, or their equivalent kinetic orders with BST. In the (log)-lin-

ear formulation [34,35,38], reformulated for mixed-integer linear programming (MILP), loga-

rithmic deviations of the metabolite concentrations and enzyme levels take the role of decision

variables, together with binary decision variables, in mass-balance derived linear constraints.

The objective was to determine which enzymes should be present at different levels, the extent

of such changes, and the accompanying modifications in the regulatory structure that optimize

metabolic outputs, such as metabolite production [34,35]. Also, looking for steady-state opti-

mizations in the BST framework, mass-balance derived constraints have been applied using

the S-system and GMA power-law formulations [22–25]. In GMA, a power-law for each sepa-

rate reaction is used to describe each metabolite’s mass balance. In contrast, in S-system, the

mass balance for each metabolite is represented by two competing power-law functions, one

resulting from the aggregation of the separate power-laws for synthesis and the other from the

aggregation of the separate power-laws for consumption [20]. Fixing rate constants and kinetic

orders, the advantage of S-system representation is that in logarithmic coordinates the steady-

state mass balances are linear equations, enabling the use of linear optimization techniques fol-

lowing a linear programming (LP) / MILP form [23,37,39–43]. GMA does not allow for a lin-

ear reformulation. However, efficient optimization tasks have also been performed using

alternative optimization methods taking advantage of the structural regularity of the GMA

representation, such as those relying on geometric programming techniques [23,24,44,45].

Another alternative optimization strategy that takes advantage of GMA is to apply outer

approximation algorithms that decompose the target problem into master MILPs and slave

nonlinear programming problems [22,46,47].

The formulation of optimization strategies using linear constraints enables to solve them

using LP efficiently while guaranteeing convergence to an optimum solution point (minimum

or maximum) [7]. In the methodology proposed in this paper, by combining MCA and LP,

required decreases and increases previously unknown are extracted from linear constraints

involving continuous domains in the form of bounded (closed) intervals measuring the
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differences in reaction fluxes, metabolite concentrations, and individual activities comparing

the initial and final states during the adaptation to a metabolic perturbation. Subject to a set of

predetermined experimental values in the form of some initially restricted domains, the feasi-

ble range of values for all domains (previously restricted or not) is determined by successively

minimizing and then maximizing the value for each reaction. Those domains reduced to only

negative or positive values will identify required decreases or increases to be satisfied, respec-

tively. Among them, changes required at the molecular level in individual activities will iden-

tify molecular drivers required for the metabolic adaptation.

As proof of concept, we use two case studies based on previously published experimental

data. First, a glycolysis-case study covering the upper glycolysis and the oxidative branch of the

pentose phosphate pathway (PPP) [48,49]. Second, a more complex cancer-case study

expanded to all central carbon metabolism, associated with a set of experimental measure-

ments obtained in cultured human colon cancer cells (HCT116) following the inhibition of

cyclin-dependent kinases 4 and 6 (CDK4/6) [50]. A complete kinetic model reconstructed

from experimental data supports the first case study. This model is built by assuming a full and

ideal description of the system behavior, and it is used as a “toy” model to illustrate the pro-

posed methodology. Under more realistic experimental conditions, the second study is built in

a context of uncertainty, with partial knowledge and associated with a complex metabolic

adaptation to a large perturbation. This study provides an example of the adaptation to simul-

taneous and coordinated changes in multiple activities, supported by a SIRM-based descrip-

tion of the altered flux distribution, together with the measurements of some metabolite

concentrations and the analysis of the differential gene expression. Gene expression analyses

are commonly applied to identify metabolic drivers, and therefore potential vulnerabilities to

be exploited as targets in drug therapies. Although changes in gene expression should be

related to changes in individual activities of their encoded products, alternative “moonlight-

ing” roles cannot be discarded [51]. Also, although individual activities can be directly associ-

ated with enzyme concentrations measurable by specific activities, it is worth noting that they

are also dependent on other measurable events, such as inactivation/activation by phosphory-

lation/dephosphorylation. Evidence supporting the role as a key molecular driver of an altered

metabolic gene could be provided by the correspondence in the changes in transcript levels

and the changes in the predicted activity of the encoded product, the latter being imposed by

the changes observed at the systemic level. With the cancer-case study, we illustrate the appli-

cation of the proposed methodology identifying such metabolic drivers by comparing changes

in gene expression and changes required in the transporter and enzyme activities identified by

the combination of MCA and LP.

Results

Response to a large perturbation

Response coefficients and special elasticities measure the response to infinitesimal (or small)

perturbations around a particular steady-state. However, metabolic adaptations in response to

the large perturbations will lead to complex changes in the qualitative steady-state leading to

two separate states, before and after the perturbation. The control coefficients are redistributed

during the adaptation from one state to the other. Taking a known flux control coefficient,

assuming that variations in enzyme activity are small enough for this control coefficient to be

constant, approximate predictions can be made about the change in the flux value by applying

the following expression [16,21,52]:

DlogJj � CJj
vk � Dlogvk ð5Þ
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which corresponds to the integration of the definition of flux control coefficients in Table 1.

Predictions for larger perturbations in enzyme activities can be made, although with an

increasingly approximate value. Analogously, for perturbations involving several transporters

and enzymes for fluxes and concentrations we expand the above expression to the following

equations:

Dlogxi ¼ Cxi
v1
� Dlogv1 þ � � � þ Cxi

vm
� Dlogvm ¼

Xm

k¼1
Cxi

vk
� Dlogvk ð6Þ

DlogJj ¼ CJj
v1
� Dlogv1 þ � � � þ CJj

vm � Dlogvm ¼
Xm

k¼1
CJj

vk � Dlogvk ð7Þ

which are directly associated with Eqs (3) and (4), respectively, but constraining control coeffi-

cients with differences in reaction fluxes, metabolite concentrations, and individual activities.

Thus, scaling by Δ log p, the two expressions are rewritten as:

Dlogxi
Dlogp

¼ Cxi
v1
�
Dlogv1

Dlogp
þ � � � þ Cxi

vm
�
Dlogvm
Dlogp

¼
Xm

k¼1
Cxi

vk
�
Dlogvk
Dlogp

ð8Þ

DlogJj
Dlogp

¼ CJj
v1
�
Dlogv1

Dlogp
þ � � � þ CJj

vm �
Dlogvm
Dlogp

¼
Xm

k¼1
CJj

vk �
Dlogvk
Dlogp

ð9Þ

where Δ log xi, Δ log Jj , and Δ log vk are differences between the measurements before and

after perturbation. The above expressions for a large perturbation are an approximation of the

description of response coefficients as a function of control coefficients and special elasticities

in Eqs (3) and (4), being equivalent for an infinitesimal perturbation. Accordingly, response

coefficients and special elasticities could be approximated for large perturbations as:

Rxi
p �

Dlogxi
Dlogp

;RJj
p �

DlogJj
Dlogp

; εvkp �
Dlogvk
Dlogp

ð10Þ

Inference by bound contraction

Given a mathematical model that constrains the values of variables, such as concentrations,

fluxes, and individual activities, this model must allow for the description of the different

experimental situations that may potentially occur. Once the model is defined, it can be

applied by adjusting the variables to reproduce particular conditions. In MCA, in the context

of Eqs (3) and (4), or Eqs (6) and (7) for larger changes, the first level of “model description”

can be provided by using control coefficients with fixed values. Once the model is established,

a second level of “model application” can be done by adjusting the fluxes, concentrations, and

individual activities. These variables can be taken as continuous domains in the form of

bounded (closed) intervals measuring the differences in reaction fluxes, metabolite concentra-

tions, and individual activities that are comparing the values before and after the adaptation to

a metabolic perturbation. Because any combination of values for the variables must satisfy all

model constraints, the restriction of the range of possible values for a part of the variables can,

in turn, serve to infer new information in the form of additional restrictions on the values of

any of the model variables. Starting with Eqs (6) and (7), an optimization-based procedure for

bound contraction is reformulated following LP, where each variable is successively minimized

and then maximized. In this reformulation, differences in fluxes, concentrations, and individ-

ual activities can be taken as decision variables in linear constraints, with control coefficients

taken as the constant coefficients, fixed according to the available information. Therefore,

given,
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a. a complete description of the potential behavior, in the form of known control coefficients,

b. a metabolic response (adaptation), expressed using continuous domains for all differences

in fluxes, concentrations, and individual activities; with generic lower and upper limits for

all of them, and subject to additionally restricted lower and upper bounds for some of them

based on experimental measurements,

and then, redistributing the terms in Eqs (6) and (7), we can define linear systems of equations

with the following equalities,

� Dlogxi þ
Pm

k¼1
Cxi

vk
� Dlogvk ¼ 0

� DlogJj þ
Pm

k¼1
CJj

vk � Dlogvk ¼ 0
ð11Þ

(

where, control coefficients are defined as constant parameters, and differences in fluxes, con-

centrations, and individual activities are defined as variables, for which initial lower (lb) and

upper bounds (ub) of the initial domains are set in the form of inequalities ðlbin
xi
� Dlogxi

� ubin
xi
; lbin

Jj
� DlogJj � ubin

Jj
; lbin

vk
� Dlogvk � ubin

vk
Þ. Taking all variables as decision variables, a

series of LP problems can be solved. Each problem is solvable if all the model constraints and

initial domains are satisfied, in other words, if all initial constraints are compatible. If the prob-

lem is solvable, each initial domain should contain at least one value satisfying all inequalities

and constraints in Eq (11). Otherwise, the complete problem formulation must be discarded.

The following maximization / minimization LP formulation is solved for each variable, one at

a time:

maximize ðand minimizeÞ z ¼ Dlogxi;DlogJj;Dlogvk 8i 2 N; 8j; k 2 M

subject to � Dlogxi þ
Pm

k¼1
Cxi

vk
� Dlogvk ¼ 0 8i

� DlogJj þ
Pm

k¼1
CJj

vk � Dlogvk ¼ 0 8j

lbin
xi
� Dlogxi � ubin

xi
8i

lbin
Jj
� DlogJj � ubin

Jj
8j

N ¼ 1; � � � ; n lbin
vk
� Dlogvk � ubin

vk
8k

M ¼ 1; � � � ;m Dlogxi;DlogJj;Dlogvk 2 R

ð12Þ

where any logarithm base would lead to the same results. The analysis is repeated for each

decision variable (Δ log Jj, Δ log xi, Δ log vk ); therefore, a total of 2n+4m LP analyses are per-

formed to solve the complete problem. Each application of LP returns a combination of values

for the complete set of decision variables that satisfies at the same time the set of constraints

and inequalities in the initial domains, including the lower or upper bound of the minimized

or maximized decision variable. Starting with an initial domain, taking the minimum and

maximum solutions, this LP formulation provides a reduced final domain for each decision

variable. Therefore, applying LP twice per each sensitivity coefficient will provide final lower

and upper inequalities satisfying all conditions

ðlbfi
xi
� Dlogxi � ubfi

xi
; lbfi

Jj � DlogJj � ubfi
Jj ; lb

fi
vk
� Dlogvk � ubfi

vk
Þ.

Previously, in the context of GMA-based applications of the outer approximation algorithm

to analyze stress responses in yeast, a bound-contraction strategy was systematically applied

[22,46,47]. The objective was to identify parameter regions in enzyme levels containing admis-

sible solutions, and therefore changes, that were compatible with the considered physiological
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constraints. Our use of LP is equivalent to that done in the framework of these stoichiometric

models (Flux Variability Analysis) [53], where the mass balance around each metabolite is a

system of linear constraints involving reaction fluxes. Subject to predetermined experimental

values for a few fluxes, the feasible range of flux values is determined by minimizing and then

maximizing the value for each reaction [53–58]. As the problem formulation is based on line-

arization, our objective can be qualitative but not quantitative. Accordingly, the objective was

to obtain collections of negative and positive signs, looking to capture the trends of the

changes, decreases (negative) or increases (positive), and whether these trends are significant.

Fixed-sign final domains that are required to explain all the initial constraints will be identified

from domains that have only negative or only positive values. Although each final domain

identifies a range of values that is required, it does not imply that, in turn, this domain is suffi-

cient alone to constraint the initial domains. Therefore, in the context of the metabolic adapta-

tions, signs will identify changes that are required, although not necessarily sufficient, to

sustain all the initial constraints.

Flow chart of the proposed analysis

Starting with the control coefficients calculated in Fig 1, Fig 2 illustrates the application of the

formulation presented above using the model of the glycolysis-case study as a toy model. In

this figure a flow chart is provided:

1. Setting a model description. Each problem formulation implies a model description in the

form of a complete set of constant control coefficients. For the estimation of control coeffi-

cients, different related matrix formulations have been developed in the context of MCA

[31,32,59–62], which are closely related to those applied in the context of BST [20]. Accord-

ingly, the complete set of constant control coefficients is usually presented as a matrix,

where each element is a control coefficient. Setting the values of all metabolite elasticities

and the steady-state ratios of dependent fluxes and concentrations, the system’s potential

behavior is fixed and described in the form of known control coefficients. These matrix

methods are formulations that imply all summation and connectivity dependencies in

Table 1, together with the stoichiometric dependencies of fluxes and concentrations of spe-

cies involved in moiety conserved cycles. The dependencies among control coefficients in

the panel A of Fig 2 were a consequence of these flux and concentration stoichiometric

dependencies for the glycolysis-case in the panel C of Fig 1. A detailed description of this

case-study and a detailed explanation of the calculation of control coefficients is provided

in Material and Methods and Fig 1.

2. Setting initial domains. The variables are continuous domains measuring the differences

in reaction fluxes, metabolite concentrations, and individual activities. First, common

lower and upper bounds are set for the domains of all variables to be enclosed between a

minimum lower bound and a maximum upper bound, assuming that differences outside

this enclosure are not accepted. Although this enclosure is arbitrarily set, it can be adapted

depending on the observed changes and contributes to reducing the space of solutions. In

both case studies (initial domains in panel C in Fig 2 for glycolysis-case), common lower

and upper bounds were set to be -3 and +3, which was consistent with the magnitude of

expected changes. Second, the domains for differences in concentrations, fluxes, and indi-

vidual activities measured experimentally are additionally restricted using the measured

confidence intervals as bounds. These additional restrictions are a fundamental part of the

problem formulation because the objective is to see the effect of these additional restrictions

on all other variables, to see if new previously unknown fixed-sign domains finally appear.
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As an example, for the glycolysis-case the observed metabolic adaptation, expressed using

additionally restricted domains (initial domains in red, panel C Fig 2), could be: “an

increase in the flux through the first step (J1) has been observed, although neither the con-

centrations of most of the intermediaries (x1, x2, x3, x4), nor the individual activity through

one of the branches (v5), have changed”. As for the model description, each problem formu-

lation implies a complete set of initial domains, with some of them additionally restricted.

3. Solving final domains to identify negative and positive signs. Once the problem has been

formulated, the maximization / minimization LP formulation in Eq (12) is solved for each

variable, one at a time. In the analyzed example (final domains in panel C in Fig 2), the

problem was solvable; therefore, all initial constraints were compatible. The system was

constrained enough to reduce the domain for most of the variables, even restricting some

of them, fluxes and individual activities, to have fixed-sign domains with only positive val-

ues. As a measure of this bound contraction, a percentage gain metric has been added for

each variable to quantify the percentage of reduction in the size of their final domains with

respect to their initial domains. Looking at the molecular level, the required change in indi-

vidual activities identifies four key molecular drivers (v1, v2, v3, v4) that are required,

although not sufficient, to explain the whole set of constraints for the observed metabolic

adaptation.

Starting with calculated control coefficients and initial values, a Mathematica notebook is

provided to solve the final domains and identify negative and positive signs (see Calculations

in Material and Methods).

Constraints propagate in all directions among systemic and molecular levels. However, as

shown in previous works, the analyses of alternative topological designs under MCA [63] and

BST [64] applying sampling techniques highlight the relevance of the structural constraints on

the possible values of sensitivity coefficients. The control coefficients provide a complete

description of the potential collective behavior, which implies not only summation and con-

nectivity theorems but also all stoichiometric flux and concentration dependencies. As

highlighted in panel C Fig 2 for the glycolysis-case (see labels a, b, and c), by setting the poten-

tial behavior with known control coefficients, all these dependencies for control coefficients in

panel A are also implicit in the linear formulation for the differences in fluxes and

concentrations.

The first case study was used to illustrate the application of the proposed analysis using a

toy model. In contrast, the second case study is an example of a more complex metabolic

response to a large perturbation. A detailed description of this second case-study is provided

in the Material and Methods section and S1 and S2 Tables.

Adding constraints among individual activities to the problem formulation

In addition to a larger number of metabolites and processes, the problem formulation can

require additional constraints. In the formulation in Eq (12) alone, it is implicit that each indi-

vidual activity corresponds to an independent variable. However, as happens in the cancer-

case study, some activities can be interdependent, such as the two activities (R13 and R14) cata-

lyzed by transketolase (TKT), or can be assumed to behave as a coordinated block. Thus, addi-

tional constraints were added in the problem formulation to include dependencies among

Fig 1. Glycolysis-case study. (A) Network scheme. (B) Rate laws and parameters. (C) System of ordinary differential equations

(ODEs) and stoichiometric dependencies of fluxes and concentrations. (D) Calculation of control coefficients.

https://doi.org/10.1371/journal.pcbi.1009234.g001
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transporter/enzyme activities. On the one hand, a constraint was added for the two activities

for TKT:

Dlogv13 ¼ Dlogv14 ð13Þ

On the other hand, in the initial part of glycolysis, the consecutive activities for glucose

(Glc) transport (Glc transp) (R01) and the reactions catalyzed by hexokinase (HK) (R02), phos-

phofructokinase (PFK) (R04), and enolase (ENO) (R08) were assumed to be coordinately regu-

lated (Δ log v01 = Δ log v02 = Δ log v04 = Δ log v08):

Dlogv01 ¼ Dlogv02

Dlogv01 ¼ Dlogv04

Dlogv01 ¼ Dlogv08

ð14Þ

Setting a model description: coupling the problem formulation with

uncertainty

In the glycolysis-case study, following a local perspective, a unique matrix of control coeffi-

cients was derived from a detailed kinetic model built around a well-defined steady-state.

Therefore, by solving a unique set of linear constraints. In contrast, the cancer-case study was

done under realistic experimental conditions, involving a more complex metabolic response

to CDK4/6 inhibition, with two different steady-states, before and after CDK4/6 inhibition.

On the one hand, a unique matrix of known and constant control coefficients cannot ade-

quately be applied because the values change during the adaptation to the large perturbation.

On the other hand, there is limited availability of data to estimate metabolite elasticities and

the ratios among stoichiometrically dependent fluxes and concentrations. Moving from the

local analysis, both limitations can be tackled simultaneously by applying a more global analy-

sis, solving ensembles of the complete problem, each one associated with a matrix of control

coefficients generated by random sampling methods, therefore covering a wider parameter

space as described by Kent et al. [65]. In the context of the (MCA-based) (log)-linear formula-

tion, control coefficients and response coefficients are derived under uncertainty by sampling

techniques (ORACLE) [17,28,66,67], integrating data such as flux distributions and displace-

ments of the reactions from equilibrium. When details about the enzyme’s rate expressions are

not available, elasticity values can be randomly generated. Also, stability analyses based on the

analysis of Jacobian matrices can be derived from random sampling of elasticities (Structural

kinetic modeling) [26,27,68]. We adapted these tools to our objective and data available in the

cancer-case study. An ensemble of 100 problems was formulated, each associated with a com-

plete set of control coefficients estimated by direct sampling of metabolite elasticities. Like the

glycolysis-case study, metabolite elasticities are a function of the steady-state, transport or

kinetic mechanisms, and regulatory states. Although we did not use a complete kinetic model

accounting precisely for elasticities, together with measured fluxes, the sampling of elasticities

was constrained by different assumptions, including enzyme saturation, displacement from

Fig 2. Flow chart of the proposed analysis. (A) Model description in the form of fixed control coefficients. The values correspond to the

glycolysis-case. Inside the brown square are the dependencies among control coefficients. (B) Maximization / minimization LP formulation for

bound contraction in Eq (12). (C) Columns in Table: 1) variable (reaction flux, metabolite concentration or individual activity); 2) initial domain,

described using inequality notation, with additionally (experimentally) restricted initial domains in red; 3) final domain, described using

inequality notation; 4) % gain, comparing initial and final domains for each variable; and 5) sign, fixed positive signs (values can be only positive)

or fixed negative signs (values can be only negative). (C) All logarithms are to base two. See Material and Methods for a supplementary

description of the model and abbreviations.

https://doi.org/10.1371/journal.pcbi.1009234.g002
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equilibrium, and literature-based data regarding moiety conservations, inhibitions, and

activations.

See Material and Methods for a detailed explanation of the calculation of control coeffi-

cients coupled with the sampling of metabolite elasticities.

Setting initial domains

The model used to characterize the metabolic response to CDK4/6 inhibition covered the cen-

tral carbon metabolism, with a subset of the transport and reaction processes conforming a

core network (Fig 3) that is wrapped in a simplified network of boundary processes. As dis-

cussed above, first, common lower and upper bounds were set to be -3 and +3. Second, the ini-

tial domains for differences in all the reaction fluxes ðlbin
Jj
� DlogJj � ubin

Jj
Þ and some of the

metabolite concentrations ðlbin
xi
� Dlogxi � ubin

xi
Þ were additionally restricted according to

experimental observations. Also, part of the initial domains for differences in individual activi-

ties ðlbin
vk
� Dlogvk � ubin

vk
Þ were additionally restricted to force the adaptation of the lightly

modeled boundaries to the CDK4/6 inhibition. Thus, the individual activities (Δ log vk) for the

simplified-boundary processes, that are a link of the core network with the whole cellular met-

abolic environment, were set to have the same tightly restricted initial domains as the corre-

sponding reaction fluxes ðlbin
Jk
� Dlogvk � ubin

Jk
Þ.

See S3 Table and Material and Methods for additional details regarding the initial domains.

Solving final domains to identify negative and positive signs

Fig 4 illustrates the application of the developed strategy using the cancer-case study. Once ini-

tial values were set, the analysis was repeated over the ensemble of 100 formulated problems.

Among these analyses, 16 were not compatible with all initial domains and constraints and

were discarded. For each problem, we identified changes at the systemic and molecular levels

with fixed-sign final domains and, therefore, associated with decreases (negative) or increases

(positive) required to explain the observed differences. They included 14 individual activities,

seven concentrations, and six reaction fluxes. The analysis of the unions and intersections in

Fig 5 provides complementary information to that provided by the signs. Although the applied

analysis has a qualitative value, such unions and intersections provide a numerical summary to

assess the magnitude of these changes, which was significant in all the cases, and also (as the

signs) tell us about the dependence on the sampling. A coincidence of the lower and upper

bounds of the unions and the intersections will correspond to a no dependence on the sam-

pling of metabolite elasticities.

The degree of identifiability of the signs depends on the degrees of freedom for each vari-

able, and therefore, on the available information. A detailed local description of the variations

in all fluxes and concentrations around a process will impose variations in the associated indi-

vidual activity. As shown in Fig 4, signs identified for some of the variables were repeatedly

negative or positive signs, thus independent of the sampled metabolite elasticities. The signs

largely depended first on structural constraints [63,64], although a part of them was also

dependent on metabolite elasticities. Among others, metabolite elasticities are a function of

reversibility levels, which were fixed values in all the formulated problems (see Material and

Methods for the cancer-case description). For example, the required increase in fumarate

(Fum) concentration and glutaminase (GLS) activity disappear when the reactions R25 (revers-

ible hydration of Fum in malate (Mal)) and R35 (transport of glutamine (Gln)), respectively,

are switched to be far from equilibrium (ρ = 0.9 to ρ = 0). As another example of the depen-

dence on metabolite elasticities, the constraints associated with the sampled elasticities can be
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Fig 3. Cancer-case study. Scheme of the core network.

https://doi.org/10.1371/journal.pcbi.1009234.g003
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enough to require a decrease in the individual activity of HK, as shown in the 3rd model for-

mulation (Fig 4), while for the rest of the model formulations the additional constraints in Eq

(14) connecting the changes in the activity of HK with those for Glc transp, PFK and ENO are

needed.

Fig 4. Identification of fixed signs. Cancer-case study. Each column with a number in the top is equivalent to the last column of the table in the panel C (sign) for the

glycolysis-case study in Fig 2, for each of the first 20 solved problems of the ensemble of 100 formulated problems. Percentages of negative (% -) and positive (% +) signs

refer to the solved problems. The average % gain for all variables and the 100 formulated problems was 29%. In orange, signs dependent on the constraint in Eq (14) that

assumes a coordinated regulation changing in parallel the individual activities of Glc transp, HK, PFK, and ENO. See Fig 5 for a numerical summary of the final domains.

See Material and Methods for a supplementary description of the network and abbreviations.

https://doi.org/10.1371/journal.pcbi.1009234.g004
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For those variables that were more occasionally associated with repeated negative or posi-

tive signs or associated with a mixture of signs, such as glutamate (Glu) transport (Glu-transp),

the presence of signs was more dependent on the uncertainty associated with the sampling of

metabolite elasticities. Although an important level of uncertainty was permitted, the assump-

tions related to levels of saturation, moiety conservations, inhibitions, and activations, alto-

gether affected the numerical value of the bounds of final domains in almost all variables. This

can be shown in Fig 5 by comparing the interval unions and interval intersections of the final

domains for each variable. Further availability of mechanistic data should constrain the

Fig 5. A numerical summary of the final domains. Cancer-case study. Interval unions and interval intersections of the ensemble of final domains for each variable in Fig

4. All logarithms are to base two.

https://doi.org/10.1371/journal.pcbi.1009234.g005
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metabolic elasticities, where the maximum restriction is achieved with a complete kinetic

model, as for the glycolysis-case study.

Supporting the role as metabolic drivers of differentially expressed genes

In our previous work [50], we demonstrated that the inhibition of CDK4 and CDK6 resulted

in the perturbation of fundamental regulators of the metabolic activity. Thus, in response to

CDK4/6 inhibition, in combination with MYC’s upregulation and the activation of the PI3K/

Akt-mTOR signaling axis, the hypoxia-inducible factor 1 (HIF1) was strongly downregulated.

A detailed screening was performed among the differentially expressed genes detected in an

Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. A subset of them was experimen-

tally verified by qRT-PCR (Fig 3). Also, our experimental observations supported previous

reports sustaining that part of these differentially expressed genes were HIF1-dependent genes

[69–71]. The effect on gene expression of hypoxia and CDK4/6 inhibition was the opposite for

several genes [50], therefore suggesting that the effects of CDK4/6 inhibition were in part

driven by HIF1 downregulation. In particular, among the selected genes, SLC2A3, HK2,

PFKFB4, ENO2, PDK1, and PDK3 were upregulated in response to hypoxia and downregu-

lated in response to CDK4/6 inhibition. Based on these evidences we assumed a coordinated

regulation by the transcriptional regulator HIF1 of glycolytic SLC2A3, HK2, PFKFB4, and

ENO2 genes, and therefore the coordinated regulation of the individual activities of their

encoded products (Glc transp, HK, PFK, and ENO, respectively) in Eq (14).

For illustrative purposes, those genes coding for products known to directly affect individ-

ual activities of the core part of the model are listed in Table 2. The table provides the percent-

ages of identified changes in the activities affected by their encoded products.

The percentages of negative and positive signs were used to assess if the computational

analysis qualitatively supports a possible role as molecular drivers of the metabolic adaptations

for the measured changes in gene expression. There was, in general, a good correspondence

that supported this role for most of these analyzed genes. In Table 2 (last column), we have

classified these changes as “supported” or “supported, but sampling dependent” and “not sup-

ported, but sampling dependent”. The role as key drivers of the metabolic adaptation for IDH2
and GLS1 was supported by the high percentages of signs indicating that the changes predicted

in metabolic activities are going in the same direction as the changes expected from the

Table 2. Decreases/increases expected from measured genes differentially expressed and decreases/increases predicted in the metabolic activities affected by their

encoded products.

Gene ID qRT-PCR Affy.GCh Affected ind. activity ID Expected Predicted Role as a driver of the metabolic adapt.

% - % +

SLC2A3 -0.8 -1.2 Glc-transp/HK/PFK/PGM/ENO(HIF1) – 40 0 supported, but sampling dependent

HK2 -0.9 -0.7

PFKFB4 -1.8 -0.8

ENO2 -2.3 -1.3

PDK1 -1.2 -0.5 PDH + 36 0 not supported, but sampling dependent

PDK3 -1.2 -1.3

IDH2 -0.7 -0.6 ACO/IDH – 93 0 supported

GLS1 +1.0 +0.6 GLS + 0 87 supported

Numbers for qRT-PCR and Affymetrix GeneChips (Affy-GCh) are log2-fold changes. Expected signs in the changes for individual activities are based on the direction

observed in gene expression, while the predicted percentages of negative and positive signs correspond to the percentages in Fig 4. See Table 3 for a description of the

role of the encoded products of the selected genes.

https://doi.org/10.1371/journal.pcbi.1009234.t002

PLOS COMPUTATIONAL BIOLOGY Integrating systemic and molecular levels in metabolic adaptations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009234 July 23, 2021 17 / 30

https://doi.org/10.1371/journal.pcbi.1009234.t002
https://doi.org/10.1371/journal.pcbi.1009234


measurements in gene expression. For the rest, the lower percentages do not allow for any con-

clusion, rather than this will depend on the sampling of metabolite elasticities.

Assuming the coordinated regulation of glycolytic SLC2A3, HK2, PFKFB4, and ENO2 by

the constraints in Eq (14), the required decreases in their affected activities followed the mea-

sured reduction in HIF1. This assumption strongly reduced the space of solutions, facilitating

the appearance of signs supporting the requirement of such transcriptional co-regulation, as

measured experimentally. However, the signs (in orange, Fig 4) disappeared when the con-

straints assuming the coordinated regulation were not included.

Although some negative signs were predicted for the HIF1-dependent mitochondrial pyruvate

dehydrogenase complex (PDH) activity, the downregulation of PDK1/PDK3 should drive an

increase in PDH activity. This discrepancy is helpful as it indicates that additional information for

the post-translationally regulated PDH activity is required to explain the observed behavior.

Finally, the required increase in the activity of GLS, supported by western blot analysis, fol-

lowed the expected up-regulation of MYC-dependent GLS1, since MYC upregulates GLS

activity by suppressing the expression of miR-23a and miR-23b, which target the GLS1 tran-

scripts [73]. Indeed, in our published analysis, the combined inhibition of GLS activity and

CDK4/6 was experimentally validated as a promising synergetic combination for the efficient

and selective killing of cancer cells.

Discussion

Exploring the dependencies of metabolic variations measured in concentrations, fluxes, and

transporter and enzyme activities can be done using kinetic models that accurately simulate

the system behavior. Undeniably, coupling kinetic models with optimization methods

Table 3. Description of the role of the encoded products of the selected genes.

Gene ID Name; direct metabolic role Affected ind.

activity ID

SLC2A3 Solute carrier family 2, facilitated glucose transporter member 3; facilitative Glc

transporter that mediates the uptake of Glc and various other monosaccharides

across the cell membrane.

R01 (Glc-transp)

HK2 Hexokinase-2; catalyzes the initial step of glycolysis, the phosphorylation of Glc

to produce G6P. Predominant isoform found in skeletal muscle.

R02 (HK)

PFKFB4
(�)

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4; bifunctional enzyme

that catalyzes the synthesis (kinase activity) or degradation (phosphatase activity)

of fructose 2,6-bisphosphate (F26BP), an allosteric regulator that activates the

glycolytic PFK resulting in increased glycolysis. Isoform originally identified in

testis, over-expressed in human cancers, functions predominantly to synthesize

F26BP (has far more kinase activity than phosphatase activity), therefore

increasing the glycolytic flux.

R04 (PFK)

ENO2 Gamma-enolase; catalyzes the dehydration of 2-phosphoglycerate to PEP as part

of the glycolytic pathway. Isoform primarily expressed by mature neurons and

cells of neuronal origin.

R08 (PGM/ENO)

PDK1
PDK3

Pyruvate dehydrogenase (acetyl-transferring) kinase isozymes 1/3,

mitochondrial; inactivate by phosphorylation the pyruvate dehydrogenase

complex (PDH) activity, which catalyzes the first step of the Krebs cycle.

R19 (PDH)

IDH2 Isocitrate dehydrogenase [NADP], mitochondrial isozyme; catalyzes the

oxidative decarboxylation of isocitrate to α-ketoglutarate.

R21 (ACO/IDH)

GLS1 Kidney glutaminase (KGA) and glutaminase C (GAC) isoforms; catalyze the

hydrolysis of Gln to Glu and ammonia. Alternative splicing isoforms

ubiquitously expressed in various tissues. Overexpression of both isoforms

confirmed by isoform-specific antibodies in our HCT116 cells.

R36 (GLS)

(�) [72]

https://doi.org/10.1371/journal.pcbi.1009234.t003
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provides great advantages in metabolic modeling. However, even if these models are based on

approximated rate laws, they require detailed knowledge of enzyme kinetics inaccessible in
vivo. To overcome this limitation, sampling strategies can be applied in a context of partial

knowledge, although with the disadvantage of having a large space of solutions to be explored.

Coupled with sampling strategies, our proposed method exploits the advantages of both

approaches. First, a limited ensemble of control-coefficient matrices is generated by sampling

metabolite elasticities, which together describe the partial knowledge of the system behavior.

This is then used to formulate problems based on linear constraints. Finally, the dependencies

of the reaction fluxes, concentrations, and individual activities are exhaustively explored by

linear optimization methods in light of these linear constraints.

With the goal of identifying molecular drivers of the changes observed in metabolic adapta-

tions to perturbations, the applied analysis is based on a combination of the MCA description

of response coefficients as a function of special elasticities and control coefficients [30–33],

and the subsequent reformulation as part of a linear optimization-based strategy for bound

contraction in the context of large changes. This reformulation takes advantage of linearization

around a reference steady-state and therefore cannot be applied for large changes with a quan-

titative aim. However, it can be used to capture the trends of the changes, increases (positive)

or decreases (negative). Accordingly, the objective was to obtain a collection of positive and

negative signs, whose repetition will allow us to assess the significance of these changes when

the problem is coupled with uncertainty. First, the glycolysis-case study allowed us to illustrate

this method using a unique matrix of control coefficients derived from an unambiguously

reconstructed system around a steady-state. Second, the study of the effects of CDK4/6 inhibi-

tion, coupled with uncertainty, was performed in more realistic conditions, i.e., for a more

complex perturbation and with partial knowledge, solving an ensemble of problems derived

from sampling techniques. The interpretation of the solutions for this ensemble of problems

must be made from a more global perspective [65]. Although each solved problem satisfies the

constraints associated with our knowledge of the metabolic system, the ensemble describes dif-

ferent possible behaviors as a measure of uncertainty. By analyzing the set of resulting final

domains for each variable, the requirement for negative or positive signs in just a few cases is

of null relevance. In contrast, repeated signs in the entire set are very relevant. For some vari-

ables, the required changes were largely independent of the sampling of metabolite elasticities

and dependent on the applied observations and assumptions. The set of 100 ensemble formu-

lated problems was sufficient to provide a qualitative assessment of the significance of the

changes. However, this number should be adapted depending on the size of the analyzed prob-

lem, and a more robust test with statistical value could be addressed in future work.

In summary, in the context of the well-known central carbon metabolism, therefore appro-

priate to illustrate the proposed methodology, this analysis was applied to support the role as

metabolic drivers of genes differentially expressed. Our procedure successfully enabled the

inference of required changes, although not necessarily sufficient, to sustain the whole set of

constraints and inequalities associated with the mixture of observations and assumptions used

to characterize a metabolic adaptation.

Material and methods

Glycolysis-case study

Background. This case study was mostly based on a published kinetic model covering the

upper glycolysis [48], which was derived from experiments performed on mice muscle

extracts. This published model describes a linear pathway at a given steady-state. In our glycol-

ysis-case study, one ramification and one moiety conservation were added by including the
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first step of the oxidative PPP, which was taken from another published kinetic model in rat

liver cells [49]. For all reactions were available kinetic laws, parameters, as well as steady-state

concentrations and fluxes.

Abbreviations. G6P, x1, glucose-6-phosphate; F6P, x2, fructose-6-phosphate; FbP, x3,
fructose-1,6-diphosphate; NADP (NADP+) and NADPH, x4 and x5, oxidized and reduced

forms of nicotinamide adenine dinucleotide phosphate; HK, R1, hexokinase; GPI, R2, glucose-

phosphate isomerase; PFK, R3, phosphofructokinase; ALD, R4, aldolase; G6PD, R5, glucose-

6-phosphate dehydrogenase; and NADPase, R6, irreversible process accounting for all pro-

cesses oxidizing NADPH.

Network description. The network analyzed in this glycolysis-case study includes five sys-

tem-dependent metabolites and six enzyme-catalyzed reactions, with one moiety conservation.

Fig 1 provides a complete scheme of the associated kinetic model, including also the associated

system of ODEs, rate laws for all the enzyme-catalyzed reactions, parameter values, and stoi-

chiometric dependencies of fluxes and concentrations.

Model description using control coefficients. A unique set of control coefficients was

derived from the detailed kinetic model, therefore permitting a unique problem formulation.

Control coefficients were estimated by following this procedure: 1) steady-state concentrations

and fluxes are calculated by setting the initial conditions and solving the system of ODEs; 2)

metabolite elasticities are calculated using the steady-state concentrations and fluxes; 3) stoi-

chiometric flux and concentration dependencies are derived and used in the form of flux and

concentration ratios, together with metabolite elasticities, to calculate control coefficients by

applying the matrix method developed by Cascante et al. [31,32] (panel D in Fig 1).

Cancer-case study

Background. A second study spanning all central carbon metabolism was also analyzed,

based on our previous work covering the effects of CDK4/6 inhibition in the HCT116 colon

cancer cell line [50]. The study characterized the metabolic reprogramming, both at the sys-

temic and molecular levels, in response to CDK4/6 inhibition. To this aim, at the molecular

level, downregulations and upregulations for gene levels were measured using transcriptome

microarrays and qRT-PCR. At the systemic level, differences on the levels for all fluxes and

some metabolites (alanine, aspartate, citrate, Glu, Mal, NADPH, pyruvate, and α-ketogluta-

rate) were measured for control cells (before perturbation) and CDK4/6-inhibited cells. A stoi-

chiometric model for the central carbon metabolism was constructed and solved by applying

SIRM techniques to estimate all flux distributions throughout the metabolic network, includ-

ing forward and reverse reaction rates when required. For this, direct extracellular measure-

ments, such as oxygen consumption, and consumption and production rates for Glc, lactate,

and all amino acids, as well as protein synthesis rates, were combined with 13C isotopologue

(mass isotopomer) enrichments measured in several metabolites. Such enrichments emerge

from the propagation of 13C from labeled Glc and Gln to metabolites through the network and

are informative of the underlying flux distribution. The metabolites analyzed for label propa-

gation included lactate and amino acids from incubation media, glycogen, ribose from RNA,

palmitate, and several other internal metabolites.

Model abbreviations. Metabolites: AcoA.c/AcoA.m, x01/x02, cytosolic/mitochondrial ace-

tyl-CoA; ADP/ATP, x03/x09, adenosine di/triphosphate; αKG, x04, α-ketoglutarate; Ala, x05,
alanine; Asn, x07, asparagine; Asp, x08, aspartate; Cit, x11, citrate; CoA.c/CoA.m, x12/x13, cyto-

solic/mitochondrial coenzyme A; Cys, x14, cysteine; FBP, x18, fructose 1,6-bisphosphate; Fum,

x19, fumarate; Gln, x23, glutamine; Glu, x24, glutamate; Ile, x27, isoleucine; Leu, x29, leucine;

Mal, x31, malate; Met, x32, methionine; NADH.c/NADH.m, x33/x34, cytosolic/mitochondrial
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reduced form of nicotinamide adenine dinucleotide; NADP/NADPH, x35/x36, oxidized/

reduced form of nicotinamide adenine dinucleotide phosphate; NAD.c/NAD.m, x37/x38, cyto-

solic/mitochondrial oxidized form of nicotinamide adenine dinucleotide; OAA.c/OAA.m, x39/
x40, cytoplasmic/mitochondrial oxaloacetate; P5C, x41, Δ1-pyrroline-5-carboxylate; PEP, x43,
phosphoenol pyruvate; Phe, x44, phenylalanine; Pro, x45, proline; Pyr, x46, pyruvate; Ser, x48,
serine; Suc, x49, succinate; and Val, x53, valine. Transport and reactions processes: Glc-transp,

R01, glucose transport; HK, R02, hexokinase; PFK, R04, phosphofructokinase; PGM/ENO, R08,

phosphoglycerate mutase / enolase pool; PK, R09, pyruvate kinase; oxid. PPP, R12, oxidative

part of pentose-phosphate pathway; TKT, R13 and R14, transketolase; TA, R15, transaldolase;

PDH, R19, pyruvate dehydrogenase complex; ACO/IDH, R21, aconitase / isocitrate dehydroge-

nase pool; αKGDH/SCS, R22, α-ketoglutarate dehydrogenase / succinyl-CoA synthetase pool;

SDH/CII, R23, succinate dehydrogenase / oxidative phosphorylation from complex II of respi-

ratory chain; FH, R25, fumarate hydratase; MDH.m, R26, malate dehydrogenase (mitochon-

drial); PC, R27, pyruvate carboxylase; ACLY, R28, citrate lyase; ME, R30, malic enzyme; ALT,

R31, alanine transaminase; ASP, R33/R34, mitochondrial/cytosolic aspartate transaminase; Gln-

transp, R35, glutamine transport; GLS, R36, glutaminase; GDH, R37, glutamate dehydrogenase;

Glu-transp, R38, glutamate transport; His-transp, R44, histidine transport; Trp-transp, R52,

tryptophan transport; and PYCR, R60, pyrroline-5-carboxylate reductase.

Network description. The network analyzed in this cancer-case study includes 53 system-

dependent metabolites (S1 Table) and 76 transport processes and enzyme-catalyzed reactions

(S2 Table), with moiety conservations involving six pairs of metabolites (ACoA.c/CoA.c;

ACoA.m/CoA.m; ATP/ADP; NAD.c/NADH.c; NAD.m/NADH.m; and NADP / NADPH).

The associated stoichiometric model did not include rate laws, but rather just the reaction stoi-

chiometry. A subset of the transport and reaction processes (R01 –R38) conforms a core net-

work, including all processes with a significant flux. This core network includes the enzyme-

catalyzed reactions for glycolysis, glutaminolysis, PPP, and TCA cycle, together with the mea-

sured uptake of Glc, Gln, and Ser, the release of Ala and Glu, and the fueling of mitochondrial

respiration by NADH and succinate for ATP production. Fig 3 provides a scheme of the core

network. The rest of the reactions (R39 –R76) are associated with simplified pools of reactions

accounting for boundary processes, such as the release, uptake, and oxidation of the rest of

amino acids, fatty acid synthesis, and glycogen synthesis. Among these simplified processes

are protein synthesis, which was included to balance the exchange and utilization of amino

acids, reactions for ATP and NADPH utilization, and the recycling of mitochondrial acetyl-

CoA. All of them were included to have appropriate balances of productions and

consumptions.

Model description using control coefficients. In a context of uncertainty, multiple prob-

lem formulations were solved, each one associated with a complete set of control coefficients.

To estimate each matrix of control coefficients, all metabolite elasticities were simultaneously

generated by applying random sampling. The sampling of metabolite elasticities was done sat-

isfying different constraints, including restricted domains for them.

A first restriction that can be applied refers to the “positive” role of substrates and activators

and the “negative” role of products and inhibitors:

εvM > 0; M is a substrate or activator of v.

εvM < 0; M is a product or inhibitor of v.

where the lower or upper bound, respectively for positive or negative elasticities, is set to a

value of zero and corresponded to a situation of total saturation by M. However, the values of

the metabolite elasticities also depend on other constraints. For a particular transport [74,75]

PLOS COMPUTATIONAL BIOLOGY Integrating systemic and molecular levels in metabolic adaptations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009234 July 23, 2021 21 / 30

https://doi.org/10.1371/journal.pcbi.1009234


or enzyme-catalyzed reaction [15], characteristics such as the particular mechanism, the level

of saturation, and the displacement of the reaction with respect to the chemical equilibrium

determine the domains of possible values of the metabolite elasticities for this process [27,66–

68,76–78]. Thus, taking a general reversible reaction:

v ¼ vf � vr ð15Þ

where v corresponds to the net rate of the reversible reaction, vf the forward reaction rate and

vr the reverse reaction rate, the values of metabolite elasticities for vf and vr can be additionally

restricted. The elasticity for a mass-action rate law is equal to the order of reaction of the reac-

tants, while the elasticities derived for more complex rate laws, such as those associated with

mechanisms for mediated transport and enzyme-catalyzed reactions, can range from zero to

different values depending on the mechanism and the curve of saturation. For example, for

reactions following cooperativity, which follow a non-hyperbolic curve of saturation, the limit

is the Hill coefficient (0 < εvfS < h), such as for the reaction catalyzed by PFK in the glycolysis-

case model (Fig 1). For transport and enzyme-catalyzed reactions following a hyperbolic

Michaelis-Menten type curve of saturation, all metabolite elasticities of the forward and reverse

reaction rates range between zero and one [27,66,68]:

0 < ðεvfS ; ε
vr
P Þ < 1; � 1 < ðεvfP ; ε

vr
S Þ < 0 ð16Þ

where 0 means total saturation and S and P refer to a substrate and a product, respectively, in

reactions with one or more substrates and products. The elasticities for the overall reaction

rate v will be a function of these elasticities for the forward and reverse reaction rates and the

levels of displacement with respect to the equilibrium.

Assuming, for simplicity, that all modeled transport and reaction-steps follow a Michaelis-

Menten type saturation, with metabolite elasticities for all forward and backward reaction

rates ranging between 0 and +1 or -1 (Eq (16)), the limits for the elasticities of the net reaction

rates can be described as:

0 < εvS < N; � N < εvP < 0 ð17Þ

where N depends on the level of displacement from equilibrium. At steady-state, the net, for-

ward and reverse reaction rates can be expressed as a function of the disequilibrium ratio (ρ)

[16],

vf ¼
v

1 � r
� 0; vr ¼

r� v
1 � r

� 0 ð18Þ

where,

0 < r ¼
vr
vf
¼

G

Keq
<1; G ¼

products
substrates

; and at equilibrium G ¼ Keq ð19Þ

and the following equation can describe the metabolite elasticity of the net rate:

εvR ¼
vf � εvfR � vr � εvrR

v
¼
εvfR � r� εvrR

1 � r
ð20Þ

where v can be positive or negative, R is a reactant (substrate or product), in reactions with

one or more substrates and products, Keq is the equilibrium constant, Γ is the mass-action

ratio, and ρ is the disequilibrium ratio. Given three extreme situations:

• ρ = 0, the reaction is irreversible (v = vf and vr = 0) and εvR ¼ ε
vf
R
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• ρ = 1, the reaction is in equilibrium (vf = vr) and εvR ¼ 1; � 1 (indeterminate)

• ρ =1, the reaction is irreversible (vf = 0 and v = −vr) and εvR ¼ ε
vr
R

Accordingly, N in (17) will tend towards infinity for metabolite concentrations close to

equilibrium [15,79,80].

Furthermore, regarding metabolite elasticities for both forward and backward directions,

they are not independent, and the following constraints should also be considered [27,68]:

εvfR � ε
vr
R ¼ 1; R ¼ S for 0 < r < 1; R ¼ P for 1 < r <1 ð21Þ

εvfR � ε
vr
R ¼ � 1; R ¼ P for 0 < r < 1; R ¼ S for 1 < r <1 ð22Þ

Taking 0<ρ<1, and therefore for v>0, by substituting in Eq (20) εvrS and εvfS according to

the equality in Eq (21) for S (εvrR ¼ ε
vf
R � 1 and εvfR ¼ εvrR þ 1) and εvrP and εvfP according to the

equality in Eq (22) for P (εvrR ¼ ε
vf
R þ 1 and εvfR ¼ εvrR � 1), the following equations are derived

[15,79], respectively:

εvS ¼
r

1 � r
þ εvfS ¼

1

1 � r
þ εvrS ð23Þ

εvP ¼ �
r

1 � r
þ εvfP ¼ �

1

1 � r
þ εvrP ð24Þ

which permitted in our calculations the indirect calculation of εvS and ε
v
P from the sampled val-

ues for εvfS and εvfP , respectively. The first and second right-hand terms in Eqs (23) and (24)

correspond to the so-called regulatory saturation term and thermodynamic or mass action

term, respectively [79,80]. It should be noted that the application of Eq (24) implies that even

for reactions far from equilibrium (ρ = 0), we will account for products’ effect, consistent with

the fact that in multienzyme systems the products’ concentrations are rarely zero [15,81].

Accordingly, for each problem formulation, metabolite elasticities with respect to substrates

and products were sampled for the forward flux (Eq (16)), and then used to calculate the elas-

ticities for the net reactions applying Eq (23) for substrates and Eq (24) for products. This

required an estimation of the disequilibrium ratios (S2 Table). Most of the reactions associated

with transport and simplified pools of reactions accounting for boundary processes were

assumed to be far from equilibrium. For some other processes, disequilibrium ratios known to

be closer to equilibrium in biological conditions were set to ρ = 0.9, except for some cases for

which ρ were corrected to lower values using as an approximation SIRM-estimated reverse to

forward rates (Eq (19)). The upper level of 0.9 for ρ was selected as a compromise to avoid

unrealistic values of control coefficients. In addition, although kinetic details were unknown,

some constraints and bounded domains for metabolite elasticities were added from literature.

These included constraints associated with known substrate/product competitive inhibitions

[82–85]: ATP/ADP for PK, PC and ACLY; PEP/Pyr for PK; CoA.m/ACoA,m for PDH; Suc/

Fum for SDH; αKG/Pyr and Glu/Ala for ALT; αKG/OAA and Glu/Asp for AST; Glu/αKG for

GDH; and P5C/Pro and NADP/NADPH for PYCR. Then, an additional constraint was con-

sidered that must be satisfied for each of these competitive inhibitions involving a substrate

and a product [76]:

0 < εvS þ ε
v
P ¼ ε

vf
S þ ε

vf
P ¼ ε

vr
S þ ε

vr
P < 1 ð25Þ
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Also, elasticities accounting for other inhibitions and activations were considered, which

are affecting the activity of the following enzymes: PFK inhibited by ATP and Cit, and acti-

vated by ADP [86]; PK inhibited by Ala, Cys, Met, Phe, Val, Leu, Ile and Pro, and activated by

FBP and Ser [87]; PC inhibited by Glu [88]; PC activated by ACoA.m [89]; SDH inhibited by

Mal [90]; SDH inhibited by OAA.m [91]; GLS activated by ADP [92]; and GDH inhibited by

ATP (GTP), and activated by ADP and Leu [93]. For them, values were sampled into ranges

between zero and one:

0 < εvA < 1; � 1 < εvI < 0 ð26Þ

where A and I refer to an activator and an inhibitor, respectively. These constraints and

bounded domains were imposed during the sampling of metabolite elasticities.

Following the applied matrix formulation [31,32], control coefficients are not only a func-

tion of metabolite elasticities, but also a function of the ratios between dependent fluxes and

concentrations. The steady-state values for the flux ratios were approximated using average

values for the reaction fluxes for control cells (before perturbation) and for CDK4/6 inhibited

cells (S2 Table), which presented close flux distributions. For the moiety conservations involv-

ing six pairs of metabolites, the ratios for concentrations were set from literature as: 1) ACoA.

c/CoA.c = 0.019 (cytosolic acetyl-CoA and CoA) and ACoA.m/CoA.m = 0.33 (mitochondrial

acetyl-CoA and CoA) [94]; 2) ATP/ADP = 8, NAD.c/NADH.c = 120 and NAD.m/NADH.

m = 6 [95]; and 3) NADP/NADPH = 0.52 [50].

Only matrices with all control coefficients within a -3.5 to +3.5 range were selected. As for

the differences in concentrations, fluxes, and individual activities, values outside this enclosure

were not accepted. Although it is arbitrarily set, this enclosure was added to avoid models with

unrealistic sensitivities. In our particular application, to select 100 matrices of control coeffi-

cients, a total of 4686 were generated.

The S2 Table contains the list of reactions, stoichiometry, reaction fluxes, and disequilib-

rium ratios.

Initial domains. The initial domains for differences in all the reaction fluxes ðlbin
Jj
�

DlogJj � ubin
Jj
Þ and some of the metabolite concentrations ðlbin

xi
� Dlogxi � ubin

xi
Þ were

restricted according to experimental observations comparing measurements at the states

before the perturbation (logJjo; logxio) and after the perturbation (logJjp; logxip).:

Dlogxi ¼ logxip � logxio þ s;DlogJj ¼ logJip � logJjo þ s ð27Þ

A logarithm base of two was used, and therefore the differences are expressed as log2-fold

changes. Lower and upper bounds were estimated from the lower and upper bounds of confi-

dence intervals (fluxes) and mean ± standard deviation (concentrations) of the measured val-

ues after perturbation. Other factors, such as variations in volume, could lead to a proportional

bias of all fluxes, concentrations, and activities in one state with respect to the other. In the

original study, quantities for fluxes and concentrations were expressed as quantities per cell.

Assuming a uniform distribution of the metabolic species in the cells, a normalization or cor-

recting factor σ was applied to compare quantities per cell volume. The S3 Table contains the

list of initial domains with additionally reduced bounds based on the measured differences.

Calculations

All calculations were done using “WolframMathematica 11/12” (www.wolfram.com). In par-

ticular, the function “LinearProgramming” was used to apply LP.

PLOS COMPUTATIONAL BIOLOGY Integrating systemic and molecular levels in metabolic adaptations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009234 July 23, 2021 24 / 30

http://www.wolfram.com/
https://doi.org/10.1371/journal.pcbi.1009234


A Mathematica notebook, “DomainSolver.nb”, is provided to solve the final domains and

identify negative and positive signs starting from calculated control coefficients and initial val-

ues. This makes the procedure fully reproducible, permitting the generation of the final

domains used in Fig 2 (glycolysis-case) and Figs 4 and 5 (cancer-case). The Mathematica note-

book contains an interactive script that requires to open two (glycolysis-case) or three (cancer-

case) excel files (xlsx) with: 1) one matrix (glycolysis-case) or an ensemble of control-coeffi-

cient matrices (cancer-case); 2) list of initial domains (glycolysis-case and cancer-case); and 3)

additional constraints for individual activities (only cancer-case, Eqs (13) and (14)). Also, a

second Mathematica notebook, “ControlSolver.nb”, is provided to generate the control coeffi-

cients by random sampling of metabolite elasticities for the cancer-case study. This notebook

contains another interactive script that requires to open one (cancer-case) excel file (xlsx) with

a description of the network structure, flux values, disequilibrium ratios, substrate/product

competitive inhibitions (Substrate competitions), inhibitors, activators, and moiety conserva-

tions. Two documents are provided with the instructions for use. These files are freely available

on Zenodo at link http://dx.doi.org/10.5281/zenodo.5081161.

Supporting information

S1 Table. List of metabolites.

(PDF)

S2 Table. List of reactions, stoichiometry, reaction fluxes, and disequilibrium ratios.

(PDF)

S3 Table. List of initial domains with reduced bounds.

(PDF)
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