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Abstract: In this study, we present a phase-field model formulation of two and three dimensional
system couple with Navier-Stokes fluid. We apply this formulation to a 3D Poiseuille flow. We study
cell interface introducing two stream functions on the procedure. Some morphologies are obtained
for 2D case model and properties as the energy and the volume of the cell will be shown.

I. INTRODUCTION

Every human body contains millions of cells. These pe-
culiar objects develop essential functions inside us each
second of our entire life. Cells are very complex struc-
tures that contains the fundamental molecules of life
which composed all living things. In this study we want
to focus on a concrete part of them: the cell membrane.
Cell membrane show very specific properties which were
not shown in any other material (such as non-classical
elastic behaviour). This membrane has a high capacity
of deformation and it defines the frontier between the
interior of the cell and the outside environment.

Canham-Helfrich theory [1]-[2] can describe the free
energy of a cell membrane. If we assume there is no
homogeneities in the membrane the bending free energy
will be:

Fb =
κ

2

∫
S

H2dS, (1)

where H is the mean curvature and κ the bending rigid-
ity.

From this point, we will work in a phase-field model.
We can describe the phase-field methodology introducing
an order parameter in the lines of the Ginzburg-Landau
theory. The order parameter describes the two phases:
the extracellular (φ = +1) and the intracellular (φ =
−1). Following this fundamentals, we can describe the
bending energy [3] as a function of the phase-field:

Fb[φ] =
κ

2

∫
V

(Φ)2dV with Φ(φ) = −φ+φ3−ε2∇2φ. (2)

The membrane dynamics should be couple to hydro-
dynamical effects of the surrounding fluid. It is usual to
incorporate Navier-Stokes equation to describe the dy-
namics of the fluid and both equations are coupled de-
scribing the interaction membrane-fluid.

It is possible to build the order parameter temporal
evolution. This evolution will be essential along the
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study; we will be able to predict the dynamics of cell
membrane. Following with the previous information, we
can develop an equation for time evolution adding D as
the diffusion coefficient and if we couple it with the ve-
locity field of a Navier-Stokes fluid, the final equations of
our model will be:

∂tφ = D∇2µm −−→v ·∇φ, (3)

ρ (∂t
−→v +−→v · ∇−→v ) = −∇P + η∇2−→v − φ∇µm. (4)

where µm is the functional derivative of the free energy.
In this paper we focus on the behaviour of red blood

cells while flowing in confined channel which is domi-
nated by elasticity and deformity. For this purpose we
study the problem on three dimensions to obtain more
complete information. The most remarkable novelty is
the formulation of the model in 3 dimensions introduc-
ing two stream functions. We will obtain the shape of
velocity, vorticity and the two stream functions for a 3D
flow. Then, we carry on introducing the cell through the
phase-field equations on a Navier-Stokes Poiseuille flow
to obtain the main equations of the 3D system. Finally
we will obtain the initial interface of the 3D cell and re-
sults of 2D red blood cells confined in a microchannel will
be shown as well as a proof of concept.

II. ADDING A FLUID FLOW INTO A
PHASE-FIELD MODEL

First of all, we introduce the chemical potential as [4]:

µm = µb + γ1∇2φ+ γ2·(φ (φ2 − 1)) + γ3. (5)

where µb is the functional derivative of the free energy:

µb =
δFb[φ]

δφ
= κ [(3φ2 − 1)Φ[φ]− ε2∇2Φ[φ]]. (6)

Adding Lagrange multipliers (γi) in the bending free
energy will let us impose a constant surface area and a
constant volume.

As we are at very low Reynolds numbers, the velocity
and the distances which we are working will be enough
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small to consider a non inertial system. Adding the in-
compressibility of the fluid to this, we can approximate
Eq. 4:

Re =
ρvL

η
∇−→v ∼ 0 ∂t

−→v ∼ 0

→ ρ (∂t
−→v +−→v · ∇−→v ) ∼ 0.

(7)

If we regroup with Eq. 4 and Eq. 7 we finally obtain:

0 = −∇P + η∇2−→v − φ∇µm, (8)

∂tφ = D∇2µm −−→v ·∇φ, (9)

∇·−→v = 0. (10)

Let focus on Eq. 8. If we take the curl of non zero part
of Eq. 8 we find:

0 = −∇× (∇P ) + η∇× (∇2−→v )−∇× (φ∇µm). (11)

In our system we will apply a pressure gradient towards
only one direction, thus first term of Eq. 11 is 0. In third
term, as it deals with scalar functions, we can separate
the curl product as (∇φ) × (∇µm). Then, if we ma-
nipulate second term a little we finally obtain the main
equations of our study:

∇× (∇×−→ω ) = −1

η
(∇φ)× (∇µm),

∂tφ = D∇2µm −−→v ·∇φ.
(12)

The aim will be to study the dynamics between the
membrane and the fluid through the phase-field model
avoiding the explicit calculation of −→v . Instead of it, we
will use the vorticity −→ω and it will appear the stream
functions.

III. 3D FLOW MODEL

A. Introducing 2 Stream functions

As we know, there are flows that have an axis of sym-
metry relative to which the velocity field is rotationally
invariant. In these cases, we properly know how to obtain
the equations of motion using just one stream function if
the fluid is incompressible. In our case, due to introduce
the phase-field method to describe the cell membrane dy-
namics and morphology, the symmetry is broken. Thus
we will need at least two stream functions. Let us prove
that we just need two stream functions to describe our
situation:

The continuity equation on 3-D is given by:

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0. (13)

A theorem by Jacobi [5] shows that Eq. 13 has a general
solution given by 2 arbitrary stream functions:

ξ1(x, y, z), ξ2(x, y, z). (14)

Once we have proved that just two stream functions are
necessary to work on 3-D, we carry on with the velocity.

Velocity vector from [5] is given by :

−→v = ∇ξ1 ×∇ξ2, (15)

and the vorticity is given by:

−→ω = ∇×−→v = ∇×∇ξ1 ×∇ξ2. (16)

B. Equations with a cell and initial conditions

Through combining equations 12 and 16, we finally ob-
tain the three equations in terms of vorticity, first stream
function and second stream function that we will have to
try to compute:

∂tφ = D∇2µm −−→v ·∇φ = D∇2µm − (∇ξ1 ×∇ξ2)·∇φ,
(17)

−→ω = ∇×∇ξ1 ×∇ξ2, (18)

∇× (∇×−→ω ) = −1

η
(∇φ)× (∇µm), (19)

where Eq. 18 and Eq. 19 have 3 components each one.
But if we want to solve this partial derivative equa-

tion system, we will need to know the initial conditions
without the cell. Thus we should describe very clear ev-
erything we need. Imagine we apply a pressure gradient
along the channel ∆P in the x direction. L is the channel
length and 2R is the channel height (R is the cylindrical
radius) [6]:

FIG. 1: Poiseuille flow 3D.
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If we solve N-S equation without a cell in 3D we obtain:

vx =
∆P

4ηL
(R2 − ((z −R)2 − (y −R)2),

ωy =
−∆P (z −R)

2ηL
ωz =

∆P (y −R)

2ηL
.

(20)

Thus, if we try to obtain the two stream functions, we
have to solve:

∂ξ1
∂y

∂ξ2
∂z
− ∂ξ1
∂z

∂ξ2
∂y

=
∆P

4ηL
(R2−(z−R)2−(y−R)2), (21)

There are infinite solutions if we do not have more
equations. Let ξ1 and ξ2 be like ξ =

∑
i,j,k aix

i + bjy
j +

ckz
k. The shape of Eq. 21 will be:

∂ξ1
∂y

∂ξ2
∂z
− ∂ξ1

∂z

∂ξ2
∂y

= Ax0y0z0 +Bx0y2z0 + Cx0y0z2.

(22)
Let k1, k2 the resulting term product of each possible
subtraction. In order to have an easy solution we choose
for example the cases where the result of the subtraction
consists on assume that all the terms (k1, k2) are equal to
0 excepting the 3 terms of Eq. 22. I.e., we do not consider
cases that k1 − k2 = 0 where k1, k2 6= 0 excepting the
terms of Eq. 21 which are non zero:


k1x

iyjzk − k2xiyjzk = 0 {i, j, k} /∈ {2, 0, 0}
k1x

iyjzk − k2xiyjzk = 0 {i, j, k} /∈ {0, 2, 0}
k1x

iyjzk − k2xiyjzk = 0 {i, j, k} /∈ {0, 0, 0}
.

(23)
Thus the terms that remain are the terms on y3, z3, y, z
and a constant. Considering this, the stream functions
would be like:

ξi(y, z) = ai(y −R)3 + bi(z −R)3+
+ci(y −R) + di(z −R) + ξi(0, 0, 0).

(24)

And if we solve this we finally obtain two possible stream
functions:

ξ1(y, z) =

√
∆P

12Lη
((y −R) + (z −R)) + ξ1(0, 0, 0),

ξ2(y, z) =

√
∆P

12Lη
((y −R)3 − (z −R)3 + (y −R)

+(1 + 3R2)(z −R)) + ξ2(0, 0, 0).
(25)

These expressions give us a specific solution of the two
stream functions. Combining equations 25 and 20 we
finally acquire the initial conditions. Through these im-
portant results we will be able to solve the partial deriva-
tive equation system of the phase field (Eq. 17) and study
the vorticity and cell evolution.

C. Discussion of current 3D results

Here we present some results of the 3 dimensional sys-
tem of the formation of the cell interface without coupling
fluid flow:

FIG. 2: Interface 3D cell formation with ∆t = 50 where each
∆t are 2500 steps.

FIG. 3: Comparison of energy and volume evolution on 2D
(beyond) and 3D (above) model through ∆t = 50.

The figure 2 shows the formation of the interface in
absence of fluid. This part of the simulation is essential
to create the correct initial conditions. Apart from the
evolution of the shape, we also can study the evolution
of the energy and the volume. To compute the energy of
the membrane we define the energy as:

E =

∫
V

µmdV. (26)

As we can observe in Fig. 3 the volume maintains con-
stant. This was a requirement for the cell model that
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is being fulfilled. Meanwhile if we focus on the energy
evolution (Fig. 3) we obtain that it tends to stationary
state. This shows us that the diffuse interface is formed.

IV. 2D FLOW MODEL

In this section, we will briefly introduce the model on 2
dimensions and we will study some shapes as the Cassini
oval and circumference shape. It is well known that in
2-dimensional flows the velocity can be related to just
one stream function, ξ, that satisfies [7]:

vx = ∂yξ, vy = −∂xξ, (27)

−→
A = (0, 0, ξ(x, y)), −→v = ∇×

−→
A. (28)

The vorticity is given by:

−→ω = ∇×−→v = ∇× (0, 0, ξ(x, y)) = −∇2ξ k̂. (29)

And we can simplify the equation 19:

∇× (∇× (0, 0, ω)) = −∇2ω k̂ = −1

η
(∇φ)× (∇µm) k̂.

(30)
We finally obtain the three main equations of our sys-

tem which depends on stream function and vorticity. As
we can observe, the solution of it is based on two scalar
Poisson equations [8]:

∂tφ = D∇2µm − (
∂ξ

∂y

∂φ

∂x
− ∂ξ

∂x

∂φ

∂y
), (31)

∇2ω =
1

η
(
∂φ

∂x

∂µm

∂y
− ∂φ

∂y

∂µm

∂x
), (32)

∇2ξ = −ω. (33)

A. Results for a Poiseuille flow

Imagine we apply a pressure gradient ∆P along the
channel with a d/2 radius and length L in the x direction:

FIG. 4: Poiseuille flow 2D. Vy = Vz = 0.

We can use the Navier-stokes solution for a Poiseuille
flow as initial conditions (without cell):

vx(y) = −∆P

ηL
y(d− y)→


ω =

∆P

ηL
(d− 2y)

ξ =
∆P

6Lη
y2(2y − 3d)

.

(34)

But we need the boundary conditions to compute the
code to display the different morphologies of the cell mo-
tion evolution through the flow. These are given by:

ω(y = 0) =
∆P

ηL
h, ω(y = h) = −∆P

ηL
h,

ξ(y = 0) = 0, ξ(y = h) = −∆P

6ηL
h3.

(35)

Let show the different figures obtained from several con-
ditions:

FIG. 5: Evolution of circumference shape and different
Cassini oval shape cell. ∆t is 50 and the velocity is 0.8 in
units of length/units of time.

In Fig. 5 we display a curious shape named Cassini
Oval [9] and a circumference shape cell. We have to re-
member that the cell is inside a Poiseuille flow. Just
like in [8], we can observe that with this chosen velocity
(0.8), the velocity field in the channel is the dominant
mechanism of deformation. Depending on the geometri-
cal properties of the cell, the symmetry will be broken
along one axis or another, creating a parachute or slip-
per morphology (Fig. 5). Two different Cassini ovals
with different Area-Volume relation give two different fi-
nal shapes: slipper and parachute shape [8].

As seen in Fig. 3 for the two dimensional the volume
remains constant fulfilling physical constraints.

We can compare Fig. 5 with real experiment in Fig.
6.
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FIG. 6: Evolution of a real experiment adapted from
Tomaiuolo [10].

In this figure, we can observe the mentioned morpholo-
gies. Circumference shape obtained in Fig. 5 belongs to
first states of sequence b. First Cassini Oval of Fig. 5
presents similarities with final stages of sequence a. This
shape presents slipper shape. Second Cassini Oval of Fig.
5 can be matched with final stages of sequence b. It gets
a parachute shape.

V. CONCLUSIONS AND FUTURE WORK

The expansion into the three dimensions of the phase-
field model coupled with Navier-Stokes gives us a way to
study the deformation of the cell membrane. Through
the cutting-edge technology of nowadays studies on 3 di-
mensions are essential for the understanding of biolog-
ical processes. The formulation of Navier-Stokes equa-
tions using vorticity and stream functions bring us a
phase-field model without some hard mathematical cal-

culations. Through this improvement, we have been able
to compute the model hence there is still many theoreti-
cal research to improve the implementation code.

We have defined the velocity in terms of two stream
functions and we have coupled with a Navier-Stokes fluid
ensuring the maintenance of area and volume of the cell.
This formulation allows to calculate explicitly the sur-
rounding conditions of the membrane in each temporal
step of the simulation.

The shape sequences of membranes of [10] give us an
opportunity to compare our numerical results with exper-
imental results. We can check that slipper and parachute
shape are not only a numerical result, they can be ob-
tained through a microscope and present some coinci-
dence.

Observing the parameters of the interface formation
in Fig. 3, we see that the energy evolves to a stationary
state and the cell volume maintains constant. The same
results occur in 2D model. Thus the model predicts the
same behaviour in the interface creation. We can observe
some differences on the scale of the parameters as well.
This happens because there is difference on the system
size.

However, next step will be include entirely the com-
plete equations in our simulation that we obtained cou-
pling a Navier-Stokes fluid (Eq. 17, 18 and 19) into the
phase-field model. With this progress, in the future we
will simulate the interaction between two attached red
blood cells inside a fluid flow.
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