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Abstract

Epidemic modeling has proven to be an essential framework for the study of
contagion phenomena in biological, social, and technical systems. Albeit epi-
demic models have evolved into powerful predictive tools, most assume mem-
oryless agents and independent transmission channels. Nevertheless, many
real-life examples are manifestly time-sensitive and show strong correlations.
Moreover, recent trends in agent-based modeling support a generalized shift
from edge-based descriptions toward node-centric approaches.

Here I develop an infection mechanism that is endowed with memory of
past exposures and simultaneously incorporates the joint e↵ect of multiple
infectious sources. A notion of social reinforcement/inhibition arises organ-
ically, without being incorporated explicitly into the model. As a result, the
concepts of non-Markovian dynamics and complex contagion become intrin-
sically coupled. I derive mean-field approximations for random degree-regular
networks and perform extensive stochastic simulations for nonhomogeneous
networks.

The analysis of the SIS model reveals a sophisticated interplay between
two memory modes, displayed by a collective memory loss and the disloca-
tion of the critical point into two phase transitions. An intermediate region
emerges where the system is either excitable or bistable, exhibiting funda-
mentally distinct behaviors compared to the customary healthy and endemic
phases. Additionally, the transition to the endemic phase becomes hybrid,
showing both continuous and discontinuous properties.

These results provide renewed insights on the interaction between mi-
croscopic mechanisms and topological aspects of the underlying contact net-
works, and their joint e↵ect on the properties of spreading processes. In partic-
ular, this type of modeling approach that combines memory e↵ects and com-
plex contagion could be suitable to describe ecological interactions between
biological and social pathogens.





Resum

El modelatge epidèmic ha demostrat ser un marc essencial per a l’estudi dels
fenòmens de contagi en sistemes biològics, socials i tècnics. Tot i que els
models epidèmics han evolucionat cap a potents eines de predicció, la majoria
assumeixen agents sense memòria i canals de transmissió independents. No
obstant això, molts exemples de la vida real mostren fortes correlacions tem-
porals i estructurals. A més, les tendències recents en la modelització basada
en agents donen suport a un canvi generalitzat de les descripcions basades en
els enllaços cap a enfocaments on els nodes són centrals.

Aquí desenvolupo un mecanisme d’infecció dotat de memòria a exposi-
cions passades i que simultàniament incorpora l’efecte conjunt de múltiples
fonts infeccioses. Una noció de reforç/inhibició social sorgeix de manera
orgànica, sense incorporar-se explícitament al model. Com a resultat, els
conceptes de dinàmica no markoviana i contagi complex s’acoblen intrínse-
cament. Derivo aproximacions de camp mitjà per a xarxes aleatòries de grau
fix i realitzo extenses simulacions estocàstiques per a xarxes no homogènies.

L’anàlisi del model SIS revela una interacció sofisticada entre dos modes
de memòria, que es manifesta mitjançant una pèrdua de memòria col·lectiva
i la dislocació del punt crític en dues transicions de fase. Apareix una regió
intermitja on el sistema és excitable o bistable, amb comportaments fonamen-
talment diferents en comparació amb les fases sanes i endèmiques habituals.
A més, la transició a la fase endèmica esdevé híbrida, mostrant propietats con-
tínues i també discontínues.

Aquests resultats proporcionen una visió renovada sobre la interacció en-
tre mecanismes microscòpics i aspectes topològics de les xarxes de contacte
subjacents, i el seu efecte conjunt sobre les propietats dels processos de propa-
gació. En particular, aquest tipus de modelització que combina efectes de
memòria i contagi complex podria ser adequat per descriure interaccions eco-
lògiques entre patògens biològics i socials.
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Chapter 1

Introduction

1.1 The history of epidemiology
Since its dawning, humankind has endured the burden of disease. The earliest
evidence of smallpox, for example, traces back to 3rd century BCE Egyptian
mummies [28]; however, it is believed to have appeared in the first agricultural
settlements around 6000 BCE [86]. Despite major improvements in public
health management, humanity of the 21st is far from overcoming the hurdle of
infectious diseases. Global warming has driven the spread of malaria, dengue,
and yellow fever into new regions [175, 137]. Misuse and overuse of antibi-
otics has accelerated the appearance of drug-resistant strains of tuberculosis,
pneumonia, and ghonorrea [178]. And the ongoing AIDS and COVID-19 pan-
demics leave no doubt about the latent threat of novel infections [62, 49].

For centuries, shamans, menders, doctors, and scientists have attempted
to fathom the outbreak and spread of these illnesses. Besides curing the sick,
they devised and evaluated strategies such as inoculation and isolation plans
in order to reduce mortality rates. Over the years, epidemiology became a
cornerstone of public health and preventive medicine. Nowadays, epidemic
modeling is one of the principal tools to study the spreading mechanisms of
pathogens, predict the evolution of an outbreak, and assess containment pro-
tocols.

The first systematic epidemiological study appeared in 1662, when John
Graunt published his analysis of births, deaths, and causes of death in Lon-
don [146, 50]. A pioneer in demography and descriptive analytics, he pre-
sented one of the first life-tables and reported time-trends for many diseases.1
Almost a century later, Europe was immersed in a devastating smallpox epi-
demic. Motivated by the controversy surrounding mass inoculation in France,
Daniel Bernoulli developed a revolutionary analytical approach to quantify the
benefits of eradicating the disease [58, 13]. His 1766 paper concluded that, in

1He also refuted the idea that plague outbreaks coincide with the reign of a new monarch.
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absence of smallpox, the life expectancy at birth in Breslau would increase by
around 3 years, and that the median age of the population would jump from
about 11.5 to 25.5 years.

This brief review of early advances ends with John Snow, often credited as
the founder of modern epidemiology. His investigations during the 1854 Lon-
don cholera outbreak identified a well in Soho as the source of one of the in-
fection hotspots [154, 71]. Although he lacked conclusive biological evidence
about the harm posed by the water, the cluster of a↵ected households around
the water pump persuaded the local authorities to disable it (see Fig. 1.1). His
work also refuted the then-prevailing miasma theory [105], which blamed high
infection rates in impoverished areas on bad air quality instead of addressing
the underlying issues of poor nutrition and sanitation.

1.2 Mathematical modeling of infectious diseases

The previous examples—as well as many other e↵orts—preceded the devel-
opment of modern germ theory during the late 19th century [21]. A major
breakthrough came with the ability to di↵erentiate infectious diseases, which
can be passed between individuals (for instance, influenza), from noninfec-
tious diseases, which develop over an individual’s lifespan (think about arthri-
tis, for example). In addition, advances in microbiology allowed to classify
pathogens as either micro- or macroparasitic. The former are small (usually
single-cell) organisms such as viruses, bacteria, protoza, or prions. The lat-
ter are any larger form of pathogens, including helminths, flukes, and other
parasitic worms. Macroparasites exhibit a complex life-cycle within the host,
which must be modeled explicitly. In contrast, microparasitic infections de-
velop rapidly, so the internal dynamics of the pathogen within the host can
often be safely ignored [98].

The comprehensive understanding of the biology behind the spread of in-
fections allowed for evermore sophisticated models, which lead to the estab-
lishment of epidemiology as a core pillar of preventive medicine. Over time,
the increasing demand in statistical rigor attracted a variety of scientists and
prompted the foundation of a new interdisciplinary subfield, nowadays identi-
fied as mathematical epidemiology. For instance, in their attempt to describe
the recurrence of measles outbreaks, Pyotr Dimitrievich En’ko (in 1899) and
William Hamer (in 1906) independently introduced the hypothesis of homo-
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Figure 1.1: 1854 Broad Street cholera outbreak. Aided by Reverend Henry
Widehead, John Snow tracked down the homes of the deceased (black stacks)
and identified a pump on Broad Street as the source of the Soho outbreak
(brown dot, other nearby pumps in green). It was later discovered that the
public well had been dug less than a meter from an old cesspit that had begun
to leak feacal bacteria. Map originally published in [154], adapted from [153].

geneous mixing [63, 50, 86, 152]. Inspired by the law of mass action, they
assumed individuals interact uniformly with all others. Nobel Prize winner
Ronald Ross used a similar approach in 1911, when he developed a host-vector
model for the transmission of malaria between mosquitos and humans [86, 21].

The establishment of epidemic modeling is usually attributed to Kermack
and McKendrick, who published a series of seminal papers between 1927 and
1933 [99, 100, 101]. In short, their modeling scheme consists in i) dividing the
population into a discrete number of categories (i.e., homogeneous compart-
ments), ii) translating all biological properties of the disease into mathematical
parameters, and iii) specifying the rules that govern the transitions between
compartments (see Fig. 1.2). The success of their approach lies in the balance
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healthy exposed infectious healthy EPIDEMIOLOGICAL

MEDICALhealthy incubation diseased healthy

infection time

pathogen
symptoms

Figure 1.2: Timeline and stages of an infection. Schematic evolution of the
pathogen dynamics (orange) and host immune response (purple). Medically,
the host becomes diseased after a period of incubation. From an epidemiolog-
ical point of view, the host first undergoes an exposed period, during which it
is not yet infectious. Note that medical and epidemiological compartments are
not necessarily correlated.

between generality and simplicity; this versatility allows to study a large va-
riety of pathologies and gauge the e↵ect of di↵erent preventive interventions.
Nevertheless, the use of di↵erential equations implicitly assumes continuous
variables, which presents a major drawback when (some of) the population
groups are small. For these cases, the model developed by Reed and Frost
is more suitable [74, 72]. First mentioned in a Cutter lecture at Harvard in
1928, it was not deemed worthy of publishing by the authors.2 Their micro-
scopic, probabilistic approach provided an easy mapping between stochastic
and deterministic formalisms, a feature that proved fundamental for later de-
velopments.

Mathematical epidemiology experienced a surge in the mid-to-late 20th
century [6, 4]. The possibility of including a wide array of factors, such as age,
birth, death, migration, or immunity, allowed for evermore sophisticated and
accurate models [98]. A noteworthy development was the ability to thoroughly
evaluate inoculation strategies, which could aid in achieving herd immunity.
These theoretical advances led to the design of aggressive, global vaccina-

2In fact, it did not appear in print until 1976.
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tion programs. Success—and worldwide joy—arrived on May 8, 1980, when
the 33rd World Health Assembly o�cially declared the eradication of small-
pox [28]. Nowadays, compartmental-like models remain the starting point of
the majority of research e↵orts.

1.3 Network epidemiology
The birth of network science in the late 90s revolutionized many fields, in-
cluding epidemiology. Old-fashioned homogeneous mixing was gradually re-
placed by the idea that individuals interact with a limited number of peers.
This is nicely represented through a network: a collection of nodes that are
connected by a set of links [1, 123]. As it turns out, the structural properties of
the underlying contact network play an essential role when it comes to disease
propagation.

One of the first important findings was that many real-life networks are
small-world [173]. This means that i) my contacts usually also interact be-
tween them,3 and ii) I can reach any other individual with the help of only
a small number of intermediary contacts.4,5 In terms of spreading, the small-
world e↵ect significantly increases the propagation speed; consequently, weak-
er pathogens are able to evolve into endemic outbreaks. Another pioneering
result was the discovery of fat-tailed distributions in real-life networks. While
the large majority of individuals have very little contacts, only a handful are
connected to many others. This scale-free property was found in a wide variety
of social [142, 108], biological [114, 92], and technical systems [67, 2, 89]. A
new, suitably modified theoretical framework showed that the epidemic thresh-
old vanishes in scale-free networks, implying that even the weakest infection
could cause a persistent outbreak [134].6

Faced with the threat of super-weak–but–mega-destructive pathogens, one
could be tempted to give up on transmission-reducing interventions. Taking
a look at the implications for vaccinations, however, reveals a much brighter
picture. If we select individuals randomly, we would have to immunize 95% of

3In technical words, the networks have high clustering.
4In technical words, the networks have a small diameter.
5In the field of sociology, this feature was discovered in 1967 by Milgram in his famous

“six degrees of separation” experiment [116, 160].
6This striking result sparked a heated debate between theorists and experimentalists

alike [61, 16, 95, 149].
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Figure 1.3: Spread of the bubonic plague in Europe. Merchant ships flee-
ing the Crimean port city of Ka↵a transported the disease to Constantinople,
Venice, Messina, Genoa, and Marseille. From there it slowly spread over land
at an almost constant pace (see dates in legend). Green indicates areas with
little or no incidence; white lines correspond to contemporary borders. Cities
are included for reference. Image derived from [181].

the population in order to eradicate measles [4]. Similarly, random immuniza-
tion strategies for computer viruses would require to install the appropriate
antivirus software on more than 99% of devices [136]. On the other hand,
only a small number of nodes would need to be inoculated if we choose those
with the highest number of connections [135, 57]. Unfortunately, this targeted
strategy requires a detailed map of the interactions, which we often lack. An
alternative is acquaintance immunization, where we start at a random node and
proceed iteratively by randomly selecting one of their neighbors [42]; given
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the topological properties of the contact network we only need a few steps to
reach a highly connected individual. By replicating this procedure in multiple
parts of the network, eradication can be achieved with an immunization rate
as low as 30%.

Killing an estimated 200 million people world-wide, the Black Death is
the deadliest pandemic recorded in human history [54]. People in the 14th
century traveled by land and water, causing a slow, wave-like propagation of
the bubonic plague (see Fig. 1.3). In our day and age, airplanes take us to the
other side of the Earth in no time, and diseases fly with us [44, 43]. The poten-
tial dangers derived from an evermore globalized world materialized during
the 2003 SARS epidemic. Being the first outbreak to be monitored live by the
scientific community, thorough analysis of the disease dynamics and spread-
ing patterns has demonstrated the crucial role played by human mobility (see
Fig. 1.4). For example, 144 of Singapore’s 206 cases (roughly 70%) were
traced back to the wanderings of only four superspreaders [112, 125].

Luckily, the widespread use of digital technologies has enabled the ac-
quisition of detailed, multi-scale mobility data. Combined with the theoret-
ical advances of network epidemiology, this has lead to the development of
powerful predictive tools such as the global epidemic and mobility (GLEAM)
project [8, 9]. This team of scientists was successful in forecasting the peak of
the 2009 swine flu pandemic—two months in advance [10, 159]. Additionally,
these comprehensive models allow to accurately gauge and quantify preven-
tive interventions such as travel bans. For example, the 40% drop in air tra�c
to and from Mexico delayed the global spread of the swine flu by only 2 days.
Moreover, if restrictions had reached 90% the outbreak would have simply
been shifted by 2 weeks [7]. Although still in its infancy, predictive epidemic
modeling has consistently proven its potential7 and is gradually becoming an
indispensable tool to inform and shape public health policies.

1.4 Spreading beyond infectious diseases
As I mentioned in passing in the previous section, epidemic modeling can be
straightforwardly applied to the propagation of digital viruses in computers
and mobile devices [170, 180]. Nonetheless, the framework can be adapted

7Some examples are the 2012–2014 MERS [141] and 2015–2016 Zika [182] outbreaks,
or the on-going COVID-19 pandemic [33].
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Figure 1.4: Worldwide spread of the 2003 SARS epidemic. The outbreak
was first identified in mid November 2002 in Foshan, China; the disease had
been exported to Vietnam and Canada by the end of February 2003. A few
months later, cases had been confirmed in Brazil, Colombia, South Africa,
United States, and various countries in Asia, Europe, and Oceania (see dates
in legend). Green indicates countries that were not a↵ected. Based on data
from [56].

to a variety of “pathogens”. Already in the 1960s various studies explored
the mapping from diseases to information and rumors [79, 50]. In recent
years, this approach has been redirected toward the spread of true and fake
news [94, 167] and the circulation of memes and viral content on social me-
dia [5, 174]. Another relevant topic is the di↵usion of social, cultural, and tech-
nological innovations. Examples include the uptake of menstrual cups [130],
the adoption of VoIP services [96], and the dissemination of scientific ad-
vances [12, 55]. Last but not least, spreading phenomena also occurr in so-
ciotechnical systems. Typical cases are routing and congestion in commu-
nication networks [126], and the spread of cascading failures in power net-
works [145].

Albeit their similarities, biological and social contagions are fundamen-
tally distinct [30, 29]. While repeated contact with an infected individual can
increase the likelihood of catching the disease, this is not the case when we
think about the adoption of a novel technology. For instance, I would never
buy a fax machine if only one of my friends owned one —even if they insisted
on repeated occasions. However, if my whole group of friends switched to
faxing I would need to buy one in order to stay in touch. Therefore we distin-
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guish simple contagion, for which a single contact may su�ce, from complex
contagion, which requires reinforcement from distinct contacts.8

These two contagion mechanisms interact very di↵erently with the meso-
scale structure of the underlying network. Real networks are organized in com-
munities; roughly speaking, nodes are more densly linked within their com-
munity than outside of it [73]. On one hand, links between communities (weak
ties) allow simple contagions to permeate the network more rapidly [82, 127].
On the other, the existence of links within a community (strong ties) facilitates
social reinforcement, as required by complex contagion [30, 20, 174]. Com-
bining spreading mechanisms with network topologies o↵ers a virtually end-
less array of possibilities, as reflected by the vast amount of modeling schemes
that have appeared in the last decade (see [26, 84] for examples).

Earlier I described the di↵usion of news, information, and ideas, but I pur-
posely omitted the topic of opinion formation. For example, imagine that you
and I have opposing opinions about a particular issue. Through dialog and
discussion, each of us can cause the other to switch their opinion; i.e., both
you and I can transmit our opinion. However, this is not the case for infec-
tions. While an infected individual is capable of transmitting the pathogen to
its contacts, a healthy individual is unable to spread antibodies that can heal
the ill. From a modeling point of view, opinions are symmetric and contagious
diseases are not. This fundamental di↵erence warranted the development of
a parallel field of spreading phenomena, generically identified as opinion dy-
namics [26]. One of the most noteworthy contributions is the voter model,
which describes the formation of opinions by random imitation [40, 88]. Re-
cently, this simple mechanism was used to explain the statistical fluctuations
observed in 1980–2012 U.S. presidential elections [70].

Unfortunately, the simplicity of mathematical models is often overthrown
by the complexities of human behavior. In 2016, 74% of world-wide deaths
were due to noncommunicable diseases (NCDs); i.e., pathologies that are
not transmitted through an infectious agent [177]. That same year, the lead
cause of death was cardiavascular disease, accounting for a staggering 27%
of global deaths. This and other NCDs are associated to unhealthy practices
such as smoking, excessive alcohol consumption, or lack of exercise. These
risk factors possess a high social component: people smoke and drink more
abundantly at social gatherings, and physical activity is often performed in

8Interestingly, some memes spread as simple pathogens while others are governed by the
rules of complex contagion [174].



10 Chapter 1. Introduction

groups. Research has shown that bad health attitudes such as obesity [37],
smoking [38], and substance abuse [39] are transmitted as a complex con-
tagion and facilitate contracting NCDs. Additionally, the coupling between
opinion dynamics and disease propagation is very relevant in the context of
social awareness. For instance, the dissemination of prophylactic measures
for preventing HIV [41], initiatives to quite smoking [122], or mass vaccina-
tion campaigns [81] are heavily reliant on their acceptance by the general pub-
lic; resistance by rebel factions (e.g., anti-vaccination movements) can cause
tremendous harm in terms of public health [148, 25]. Finally, studies have
shown competitive dynamics between positive (jogging) and negative (smok-
ing) health practices [104]. Altogether, these advances pave the way toward a
framework of ecological interactions among lifestyle choices, health attitudes,
and biological pathogens.

1.5 The assumption of Markovianity
The evolution of epidemic outbreaks is highly nondeterministic; therefore,
their randomness can be adequately modeled via stochastic processes. The
Markov property requires that the conditional probability of future states, con-
ditioned on both past and present states, depends only on the present state; the
sequence of preceding events is irrelevant. Stochastic processes that satisfy the
Markov property are called Markovian or, in less technical jargon, mermory-
less; mathematically, they are characterized by exponential interevent time
distributions [48, 83].

A widespread approach when modeling spreading phenomena is to assume
Markovian dynamics; nevertheless, empirical observations contrast starkly
with this assumption. The clearest evidence is found for infectious periods,
i.e., the lag between infection and recovery: instead of being exponentially dis-
tributed, recovery times typically follow a bell curve and have a well-defined
average and bounded spread9 [123]. Aditionally, nonexponential incubation
periods10 have been measured for HIV [14], Ebola [36], and foot-and-mouth
disease and smallpox [157]. On the other hand, social contagion is strongly
influenced by the fact that human activity patterns are predominantly bursty,
showing stretches of high activity separated by long periods of inactivity [168,

9For example, 2–7 days in the case of dengue fever [176].
10The lag between being exposed and being infectious.
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169]. Mathematically, this translates into heavy-tailed interevent time distri-
butions,11 which have been found in email responses, online gaming sessions,
and financial transactions [97].

Although acknowledging the blatant discordance between model and data,
most research e↵orts continue to apply the Markovian assumption. The reason
for this apparent contradiction is simple: non-Markovian dynamics are much
harder to tackle; their analytic tractability is low, and their computational com-
plexity is high. Recent advances in terms of processing capacity have encour-
aged some researchers to surmount this hindrance. These early explorations
have yielded promising results and lead the way toward a scarcely explored
but potentially transformative area of epidemic modeling.

1.6 Thesis outline
Roughly speaking, the forefront of research in epidemic spreading can be di-
vided in three areas. In terms of modeling transmission mechanisms, the cur-
rent focus is on cooperation and competition between pathogens [31, 140, 90].
These ecological interactions are also of prominent interest in social conta-
gion [121, 93] and coupled opinion-disease dynamics [75, 161]. Regarding
the topological properties of the underlying contact structures, attention is dis-
tributed among embeddings and metric spaces [22, 129, 76], multilayer [53,
51, 138] and temporal networks [158, 162, 163, 140, 179], and descriptions
that go beyond pairwise interactions [91, 11]. Finally, concerning the techni-
cal details of the temporal dynamics, many e↵orts are directed toward over-
coming the assumption of Markovianity. This can be achieved by introducing
nonexponential recoveries [103, 52, 109] or infections [165, 155, 110, 164],
or both [102, 151, 68]. Alternatively, memory e↵ects can be included in-
directly. For instance, through two-step infection processes [35, 34], time-
varying transmission probabilities [59, 113, 171, 183], or non-Markovian ac-
tivation times in temporal networks [158, 179].

This thesis contributes to the examination of memory e↵ects in spreading
phenomena. However, the premise is to deviate from the typical framework of
edge-based transmissions and recast the infection process as a node-centric
mechanism. In short, the memory-induced complex contagion model de-
scribes individuals that aggregate past exposures to multiple infectious sources.

11By definition, heavy-tailed distributions are not well described by an exponential.



12 Chapter 1. Introduction

A notion of social reinforcement/inhibition arises organically, and the concepts
of non-Markovian dynamics and complex contagion become intrinsically cou-
pled. This combined approach could be particularly suitable to describe eco-
logical interactions between biological and social pathogens. Notwithstand-
ing, the motivation behind this research is of a more theoretic nature. Besides
exploring potentially novel phenomenology, this work also challenges and val-
idates the robustness of established modeling assumptions.

The focus of the thesis is the systematic analysis of the memory-induced
complex contagion infection mechanism and its interaction with other com-
ponents and properties of various spreading phenomena. I begin in Chapter 2
with the SI model, the simplest description of epidemic spreading, where the
only possible transition is from healthy to infected. Afterward, in Chapter 3
agents are allowed to recover (SIR model), and I include reinfections (SIS
model) in Chapter 4. Throughout the thesis, I combine analytic approxima-
tions with extensive simulations. Chapter 5 is dedicated to studying the in-
terplay with nonhomogeneous network topologies, and in Chapter 6 I explore
the e↵ects of the memory-induced complex contagion mechanism in the voter
model, a paradigmatic description of opinion dynamics. Chapter 7 investigates
the merits and shortcomings of epidemic modeling by analyzing an empirical
dataset of airport delays. Finally, Chapter 8 summarizes the results and com-
ments on potential ways forward. Regarding additional material, mathemati-
cal derivations are detailed in Appendix A, and Appendix B provides notes on
the generation of synthetic networks. Furthermore, Appendix C outlines var-
ious computational implementations, and supplementary figures are included
in Appendix D.

As I mentioned earlier, epidemic-like models are employed for a variety of
dynamics, such as opinion formation, rumor spreading, and innovation adop-
tion. Although I use the original disease-specific terminology throughout this
work, the scope and applicability of the analysis extends to all these fields.



Chapter 2

The SI model

2.1 Standard SI model

The susceptible-infected (SI) model describes a population of individuals that
can be either susceptible (healthy) or infected (infectious). Infected agents
transmit the pathogen to their susceptible nearest-neighbors, which forever
more remain in the infected state (they cannot recover). The population is em-
bedded on a contact network, encoded by the adjacency matrix a. In this
work we limit our analysis to undirected and unweighted networks, hence
ai j = aji = 1 if nodes i and j are connected and ai j = 0 otherwise. Moreover,
the network is nonspatial (it carries no information about the agents’ physical
position) and static (it remains fixed over time). A typical application of the
SI model is innovation di↵usion, where individuals that have adopted a new
technology are modeled as infected, and susceptible agents refer to individuals
that have not yet adopted the innovation.

Consider i and j, a pair of healthy neighbors. At time t = 0, node i be-
comes infected and the transmission from i to j is activated. Inevitably, at
some time t > 0 node j will also become infected (because nothing else can
happen). The standard SI model assumes memoryless dynamics. With contin-
uous time, this implies that the instantaneous transmission probability does not
vary over time, i.e., the transmission rate, �i! j, is constant. Now imagine sus-
ceptible node j with two infected neighbors, i1 and i2. The standard SI model
additionally assumes simple contagion. This means that the transmission from
i1 to j is completely una↵ected by the fact that the transmission from i2 is also
active (and vice versa). So we can write the total instantaneous probability that
node j becomes infected as ! j = �i1! j + �i2! j. In this work we limit our anal-
ysis to homogeneous transmission rates (the same for all pairs), thus ! j = �z j,
with z j the number of j’s neighbors that are infected.
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2.1.1 Analytic approximation
Globally, the system has an unstable absorbing state where all agents are
healthy (no one can start an outbreak) and a stable attractor where all agents
are infected; note that this attractor is also absorbing (no healthy targets re-
main). Thus any small perturbation to the healthy state will evolve toward a
fully infected state. The interesting analysis is to characterize the transient
from the former to the latter.

At time t, node i is described by its state ni(t), a discrete variable that
takes two values, ni = 0 if it is susceptible or ni = 1 if it is infected. The state
of node i only changes when it transitions from healthy to infected. A rele-
vant nonindependent variable is the number of i’s neighbors that are infected
at time t, zi(t) =

P
j ai jn j(t), with ai j the elements of the adjacency matrix.

The evolution of these variables is governed by a microscopic, dichotomous,
stochastic process ⇡. Susceptible node i becomes infected (⇡i = 1) or remains
susceptible (⇡i = 0) given by the hazard rate !i(t) = �zi(t). In short, !i(t)dt
measures the probability that the infection of node i takes place between t
and t + dt, conditioned on not having occurred before time t [48]. At O (dt),
the corresponding probabilities are

⇡i =

(
1 !i(t)dt
0 1 � !i(t)dt . (2.1)

The state of node i at time t + dt is

ni(t + dt) = ni(t) + (1 � ni(t))⇡i , (2.2)

where the first term corresponds to node i being infected (and remaining so)
and the second term corresponds to node i being susceptible (1 � ni(t)) and be-
coming infected (⇡i). In order to obtain the dynamic equation, we first compute
the expectation value conditioned on time t, which only a↵ects the stochastic
variable

E[ni(t + dt) | t] = ni(t) + (1 � ni(t))E[⇡i | t] (2.3)
= ni(t) + (1 � ni(t))!i(t)dt (2.4)
= ni(t) + (1 � ni(t))�zi(t)dt . (2.5)

Taking the ensemble average yields

hni(t + dt)i = hE[ni(t + dt) | t]i = hni(t)i + �h(1 � ni(t))zi(t)idt , (2.6)



2.1. Standard SI model 15

from where we find

dhni(t)i
dt

=
hni(t + dt)i � hni(t)i

dt
= �h(1 � ni(t))zi(t)i . (2.7)

Finding a closed-form solution for this equation ranges from achievable to
impossible, depending on the topology of the contact network.

2.1.2 Random degree-regular networks
For now we consider random degree-regular networks, where all nodes have
the same degree k and edges are placed completely at random. This choice
eliminates any interference from the network topology and allows us to con-
centrate solely on the infection mechanism. Applying a mean-field approxi-
mation for uncorrelated networks, the topology term in the RHS of Eq. (2.7)
can be written as [133]

h(1 � ni(t))zi(t)i = h(1 � ni(t))
X

j

ai jn j(t)i (2.8)

=
X

j

ai j(hnj(t)i � hni(t)nj(t)i) (2.9)

⇡
X

j

kik j

Nhki (hnj(t)i � hni(t)ihnj(t)i) , (2.10)

with ki and k j the degrees of nodes i and j, respectively, and hki the average
degree. Particularly, in random degree-regular networks we have ki = k j =

hki = k, and due to homogeneity, hni(t)i = hnj(t)i = ⇢(t). Then we find an
equation for the prevalence, ⇢(t), which measures the fraction of infected in-
dividuals at time t

d⇢(t)
dt
= �k⇢(t)(1 � ⇢(t)) . (2.11)

The solution is a sigmoid-like curve1

⇢(t) =
⇢0e�kt

1 � ⇢0 + ⇢0e�kt , (2.12)

1See Appendix A.1 for a detailed derivation.
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with ⇢0 the fraction of infected individuals at t = 0. As expected, the preva-
lence increases monotonically; after an initial exponential growth it gradually
saturates at ⇢ = 1 (all agents infected). Note that we can rescale time as
t0 = �kt without changing the functional form of the solution (see Fig. 2.1).

2.1.3 Gillespie algorithm

We perform simulations in order to verify the mean-field approximation and
to gauge any finite-size e↵ects. The state of our system changes whenever a
susceptible agent becomes infected, yielding a sequence of events that con-
stitute a mixture of temporal point processes. Since we assume memoryless
processes, the global dynamics can be simulated using Markovian stochastic
algorithms capable of generating statistically exact realizations, such as the
seminal method developed by Gillespie [77, 78].

Consider at time t0 a set of M statistically independent, discrete, stochas-
tic, memoryless processes. The interevent time distribution for process j is
 j(⌧) = ✓ je�✓ j⌧, with ✓ j its constant hazard rate. This means that, with prob-
ability  j(⌧)d⌧, the interval between process j’s activation and occurrence is
of length ⌧. Globally, the next-occurring event will take place in the inter-
val t 2 (t0, t0 + ⌧] with probability ⌅(⌧) = 1 � e�⌧⇥ and will correspond to pro-
cess i with probability ⇧i = ✓i⇥

�1, where ⇥ =
P

j ✓ j. Algorithm-wise, two
uniform random numbers are needed, u1, u2 2 U(0, 1). u1 samples the interval,
⌧ = � log(u1)⌦�1, and u2 the next-occurring process from the discrete distri-
bution ⇧. If the system is in an absorbing state (M = 0) the algorithm diverges
(⌦�1 ! 1) and the simulation must be halted.

In the standard SI model, each link that connects an infected node with
a susceptible one represents a possible transmission event. Since all of these
infectious links are equivalent (they have the same transmission rate �), the
most e�cient option is to keep a list of the NT active links. Then the total
hazard rate is ⌦ = �NT and the probability that the next event corresponds to
active link i is simply ⇧i = 1/NT. Before moving to the next iteration, time
is increase (t  t + ⌧) and the system’s state is updated (a node switches state
and the corresponding links become infectious or deactivated).

Our simulations start with a single randomly chosen infected node in a
fully healthy system and terminate when all nodes are infected.2 We use a ran-

2See Appendix C.1.1 for an outline of the core algorithm.
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Figure 2.1: Temporal evolution of the prevalence in the standard SI model.
Results for a random degree-regular network with k = 4 and N = 104. (a) An-
alytic approximation (red) and 20 independent simulations (purple) of single-
seed outbreaks with transmission rate � = 1. (b) Average (solid curve) and
standard deviation (shaded area) of 100 independent simulations (transmission
rate in legend). (c) Averaged curves (colors as in b) and analytic approxima-
tion (red) with scaled time t0 = �kt.
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dom degree-regular network with degree k = 4 and N = 104 nodes3 and com-
pute the prevalence as ⇢(t) = NI(t)/N, with NI(t) the number of infected nodes
at time t.4 As we can see in Fig. 2.1(a), each of the 20 realizations is slightly
di↵erent but all present the same qualitative behavior. The analytic curve
(Eq. (2.12) with ⇢0 = 1/N = 10�4) reproduces the functional form but under-
estimates the characteristic outbreak time and duration.5 Figure 2.1(b) shows
the average trajectory of 100 independent simulations for di↵erent transmis-
sion rates.6 As expected, a more virulent outbreak (higher transmission rate �)
requires a shorter time to invade the population. Finally, in Fig. 2.1(c) we
verify that time can be rescaled as t0 = �kt.

In conclusion, the mean-field approximation derived in Section 2.1.2 cor-
rectly captures the qualitative behavior of the system’s evolution but fails to
produce a satisfactory quantitative estimation. Furthermore, finite-size e↵ects
are adequately described by the average and spread of independent realiza-
tions.

2.2 Memory-induced complex contagion
SI model

A reasonable alternative to the standard model is to assume that nodes become
infected by the joint e↵ect of multiple infectors. We develop a model that
moves away from the customary edge-based description and, instead, includes
a node-centric infection mechanism. The memory-induced complex contagion
(micc) model describes infected nodes as infectious sources that spread doses
of pathogen to their neighbors. Susceptible nodes, on the other hand, gather
the toxins from all their neighbors and become infected given the total viral
load they have amassed. Hence the infection process is mediated by the viral
load, a sort of “messenger variable” that aggregates all the infectious sources
and blurs the causality chain from infector to infectee.

This conceptual framework requires to mathematically characterize the ac-

3See Appendix B.1 for details on how to generate these synthetic networks.
4See Appendix C.1.3 for simulation details.
5It is known that pairwise approximations are more suitable for random degree-regular

networks, but the math is considerably more involved [102, 106].
6Note that there is no need to average over network realizations since random degree-

regular networks are self-averaging.
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cumulation of viral load and the infection probability, which can be more or
less sophisticated. For instance, we could use nonlinear growth to describe
beyond pairwise interactions or model interacting pathogens through a com-
mon viral load but distinct infection probabilities. Nevertheless, for starters we
keep things simple: we consider that infected nodes have a constant infectivity
rate, �, and continuously spread doses of contagion toward their entire neigh-
borhood. They target all of their first neighbors equally, transmitting pathogen
along each edge at constant rate �. Susceptible nodes collect these toxins from
all their neighbors, amassing a total viral load , and transition to the infected
state with probability  ⇤inf()d, where  ⇤inf() is the infection probability den-
sity. Infected nodes are una↵ected by the toxins they receive (their viral load
does not change).

In 1983, Sellke introduced a construction in terms of exposition times akin
to ours, but only as a byway for some mathematical proofs [150]. More re-
cently, Dodds and Watts applied the idea to a generalized model of conta-
gion [59, 60], and Wang et al. proposed a general social contagion model with
reinforcement derived from nonredundant information memory [171, 183].
However, both these models present two major di↵erences with respect to our
contribution. First, we use continuous time instead of discrete temporal steps,7
and second, infection threshold are stochastic and annealed rather that deter-
ministic and quenched.8 Hypothetically, quenched thresholds would interfere
with the model’s intrinsic properties,9 an e↵ect we wish to minimize.

2.2.1 Infection probabilities and interevent times

Consider susceptible agent j, characterized by its infection probability density,
 ⇤j(), and corresponding “survival” probability,

 ⇤j() =
Z 1



 ⇤j(
0)d0 . (2.13)

7Discretizing time leads to restrictions on the parameter values that can be accurately
studied, can a↵ect the value of the epidemic threshold, and produces biased results when
using synchronous-type updating schemes for numerical simulations [69].

8With deterministic thresholds, a susceptible node becomes infected inevitably if its viral
load surpasses a fixed value, whereas any amount of viral load can cause the infection if
thresholds are stochastic.

9As observed, for example, with degree distributions [133].
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 ⇤j()d measures the probability that node j becomes infected when it has ac-
cumulated viral load in the interval (,  + d]. Additionally,  ⇤j() measures
the probability that node j becomes infected when it has amassed a viral load
of  or more. Conversely,  j(t)dt measures the probability that node j’s in-
fection occurs between t and t + dt, with  j(t) the corresponding interevent
time distribution. The infection probability density and the interevent time
distribution are related through the normalization condition

 j(t)dt =  ⇤j()d . (2.14)

Since the activity in j’s neighborhood varies over time (more and more
neighbors become infected over time), the rate at which it accumulates viral
load is generally nonconstant. Imagine that at time t it has amassed  j(t) units
of viral load and has z j(t) infected neighbors. If the system remains unal-
tered in an interval dt, node j will accumulate an additional d = �̃ j(t)dt, with
�̃ j(t) =

Pz j(t)
i=1 �i its instantaneous amassment rate and �i the infectivity rate of

infected neighbor i. Substituting in Eq. (2.14) we find

 j(t) = �̃ j(t) ⇤j( j(t)) , (2.15)

and for the survival probability we have

 j(t) =
Z 1

t
 j(t0)dt0 =

Z 1

 j(t)
 ⇤j(

0)d0 =  ⇤j( j(t)) , (2.16)

which yields the instantaneous hazard rate

! j(t) =
 j(t)
 j(t)

= �̃(t)
 ⇤j( j(t))
 ⇤j( j(t))

. (2.17)

For a Poisson point process, the interevent times are distributed exponentially
and the hazard rate is therefore constant. In general, interevent time distribu-
tions that decay slower (respectively, faster) than exponential lead to asymp-
totically decreasing (increasing) hazard rates [83].

Note that we can always write t = t0 + ⌧, with t0 the time at which the sys-
tem last changed and ⌧ � 0. Then the instantaneous amassment rate remains
constant in the interval (t0, t], so �̃ j(t) = �̃ j(t0) and  j(t) =  j(t0) + ⌧�̃ j(t0).
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2.2.2 Weibull distribution
In general, the infectivity rate, �i, and the infection probability density,  ⇤i (),
may vary from node to node. For example, one could model distinct age
groups by segregating the population and assigning di↵erent values of the pa-
rameters to each subpopulation. Notwithstanding, in order to eliminate the
e↵ects of node heterogeneities, in the present work we use the same � and
 ⇤inf() for all nodes. Since all infectors have the same infectivity rate, the in-
stantaneous amassment rate of susceptible node j becomes �̃ j(t) = �z j(t), with
z j(t) the number of its neighbors that are infected at time t.

Infections are governed by the versatile Weibull distribution, with shape
parameter ↵ and scale parameter µ

 ⇤inf() = ↵µ
↵↵�1e�(µ)↵ (2.18)

 ⇤inf() = e�(µ)↵ . (2.19)

For ↵ > 1 it presents a peak, resembling a bell curve, ↵ = 1 corresponds to
an exponential distribution, and for ↵ < 1 it has power law–like fat tails (see
Fig. 2.2(a)). These characteristics are reflected in the coe�cient of variation

CV(↵) =

s
h2i
hi2 � 1 =

s
2↵�(2↵�1)
⇥
�(↵�1)

⇤2 � 1 , (2.20)

with �(x) the gamma function. This coe�cient is independent of the scale
parameter, satisfies CV(1) = 1, and decreases monotonically [143]. Then for
↵ < 1 there is no characteristic scale, while for ↵ > 1 nodes must accumulate
a well-defined amount of viral load in order to become infected. Finally, the
instantaneous hazard rate is

!inf(t) = �↵µ↵z(t) [(t)]↵�1 , (2.21)

with z(t) the number of infected neighbors at time t. When ↵ > 1 (respectively,
↵ < 1), !inf(t) increases (decreases) monotonically with (t) (see Fig. 2.2(b)).

Notice that with ↵ = 1 we recover the customary expression of the standard
model, !inf / z(t). For ↵ , 1, however, Eq. (2.21) cannot be written as a
linear superposition of independent transmission channels. Hence the agent’s
memory induces a complex contagion scheme, even though the model does
not explicitly incorporate any social reinforcement/inhibition mechanisms.
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Figure 2.2: Weibull distribution. (a) Infection probability density and (b)
hazard rate for µ = 1 (shape parameter in legend). Note the double log-scale
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2.2.3 Simple and complex contagion
Simple contagion describes purely dyadic interactions, thus we can identify
each edge that connects a healthy node with an infected one as an isolated
transmission channel. Consider at time t a susceptible node j and its infected
neighbor i, which became infected at ti < t. The probability that node i infects
node j within the interval (t, t+ dt] is !i! j(t | ti)dt, regardless of the rest of the
system. If node j has z j(t) infectors at time t, the previous statement holds for
each of them.

The total probability that node j becomes infected at time t depends on all
of its incoming transmission channels. Since these are statistically indepen-
dent, we can write

! j(t) =
z j(t)X

i=1

!i! j(t | ti) , (2.22)

where ! j(t) is the instantaneous hazard rate of node j’s infection process (i.e.,
the probability per unit of time that node j becomes infected at time t). Using

⌦ j(t) =
1

z j(t)

z j(t)X

i=1

!i! j(t | ti) (2.23)

we can write Eq. (2.22) as

! j(t) = ⌦ j(t)z j(t) , (2.24)
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thus the total hazard rate is proportional to the number of current infectors.
When !i! j(t | ti) = � are constants (and homogenous for all pairs of nodes),
we recover the standard SI model with the familiar expression ! j(t) = �z j(t).
If the transmission rates !i! j are time-dependent, the dynamics has memory
e↵ects; thus simple contagion can be non-Markovian (as in [165, 155], for
example).

When the dynamics are described by interactions that are not strictly dya-
dic, the contagion becomes complex. These processes usually incorporate an
explicit social reinforcement or inhibition mechanism. Although the classi-
fication of complex contagion processes is yet to be formalized, they can be
broadly categorized into two groups:

• Edge-centric approaches still consider the transmission channel from
infected node i to susceptible node j. Now, however, the transmission
rate !i! j is a↵ected by the neighborhoods of i and/or j . Considering
only nearest-neighbors, the transmission rate from node i to node j at
time t, !i! j(t | zi(t), z j(t)), is a function of their current infected neigh-
bors, zi(t) and z j(t). Although we can still write the total hazard rate
! j(t) as in Eq. (2.22), the instantaneous average defined in Eq. (2.23)
has an explicit dependence on zi(t) and z j(t). Consequently, ! j(t) can be
superlinear (reinforcement) or sublinear (inhibition) with the number of
current infectors, z j(t) (for specific examples see [139, 80, 111]).

• On the other hand, node-centric approaches forgo the notion of transmis-
sion channels and directly prescribe the instantaneous hazard rate ! j(t).
These usually incorporate thresholds, such as ! j(t) = �(T j � z j(t)) [172]
or ! j(t) = z j(t)⇥(T j � z j(t)) + �⇥(z j(t) � T j) [131], which explicitly ev-
idence the nonlinearity of ! j(t) with z j(t).

2.2.3.1 Memory-induced complex contagion

Consider an isolated pair of nodes i and j in the miccSI model; both are healthy
when node i becomes infected at time ti. The total amount of viral load that j
has amassed at time t > ti is  j(t) = ��ti, with �ti = t � ti. The instantaneous
hazard rate of node j’s infection is

! j(t) = �↵µ↵z j(t)[ j(t)]↵�1 , (2.25)
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but, since j has only one infected neighbor, it is given solely by the exposure
to node i: ! j(t) = !i! j(t | ti), with

!i! j(t | ti) = �↵µ↵[��ti]↵�1 . (2.26)

Imagine at time t0 a group of healthy nodes, formed by susceptible node j
and its first-neighbors. After a while, at time t node j has a set of {i} infected
neighbors that became infected at times {ti}, with t0 < ti < t, 8i = 1, 2, ..., z j(t).
The total amount of viral load that j has amassed at time t is

 j(t) =
z j(t)X

i=1

��ti . (2.27)

By substituting Eq. (2.27) in Eq. (2.25) we find

! j(t) = �↵µ↵z j(t)

2
6666664

z j(t)X

i=1

��ti

3
7777775

↵�1

, (2.28)

which, using Eq. (2.26), can be written for ↵ , 1 as

! j(t) = z j(t)

2
6666664

z j(t)X

i=1

h
!i! j(t | ti)

i 1
↵�1

3
7777775

↵�1

. (2.29)

Notice that the second term cannot be written as Eq. (2.23), a linear superpo-
sition of transmission channels. Therefore, while the exposures to infectious
sources are initially described as isolated events, the agents’ memory causes
them to become entangled.

With ↵ = 2, for instance, Eq. (2.29) can be written as

! j(t) = ⌦(t)[z j(t)]2 , (2.30)

which has an explicit quadratic dependence on z j(t). The simple contagion of
the standard SI model can be recovered only with ↵ = 1, for which Eq (2.25)
equates with Eq (2.24). In conclusion, the non-Markovianity of the miccSI
model induces an e↵ective social reinforcement/inhibition even though it was
not incorporated in the initial description of the model.
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Figure 2.3: Viral load accumulation in the miccSI model. (a) Small system
considered in example. (b) Evolution of A’s viral load. Before t0, node A’s
neighborhood is completely healthy and it cannot become infected (!A = 0).
A grows at rate � between t0 and t1 and at rate 2� in the interval t 2 [t1, t2].
After node A’s infection at time t2 its viral load remains unaltered.

2.2.4 Analytic approximation

For illustrative purposes, consider the small system depicted in Fig. 2.3(a),
where all nodes are initially healthy except for D. Node C becomes infected
at time t0 and subsequently infects B at t1. During the interval t 2 [t0, t1], node
A’s viral load, A, grows with rate �, but from t1 onward it will increase with
rate 2�. Finally, node A becomes infected at t2 and A stops growing. Fig-
ure 2.3(b) shows the evolution of A.

We need two variables to describe node i at time t in the miccSI model: its
state ni(t) and its viral load i(t). As before, the former is a discrete variable
that can take two values: ni(t) = 0 if it is susceptible or ni(t) = 1 if it is infected.
The viral load, on the other hand, is a continuous variable with i(t) � 0. Re-
call that the number of infected neighbors is zi(t) =

P
j ai jn j(t), with ai j the

elements of the adjacency matrix.

The state of node i only changes when it transitions from healthy to in-
fected; on the other hand, the viral load only increases while node i is suscep-
tible (proportionally to the number of infected neighbors). The evolution of
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these variables is again governed by the infection process

⇡i =

(
1 !i(t)dt
0 1 � !i(t)dt , (2.31)

where the instantaneous hazard rate of node i is !i(t) = �↵µ↵zi(t) [i(t)]↵�1.
The equation for the state of node i at time t + dt reads

ni(t + dt) = ni(t) + (1 � ni(t))⇡i , (2.32)

where the first term corresponds to node i being infected (and remaining so)
and the second term corresponds to node i being susceptible (1 � ni(t)) and
becoming infected (⇡i). Additionally, the equation for the viral load of node i
at time t + dt is

i(t + dt) = i(t) + (1 � ni(t))(1 � ⇡i)�zi(t)dt , (2.33)

where the first term indicates the accumulated viral load until time t (i(t),
which never disappears) and the second term corresponds to node i being sus-
ceptible (1 � ni(t)) and amassing additional viral load (�zi(t)dt), but not be-
coming infected (1 � ⇡i).

Applying the same procedure as in Section 2.1.1 (expectation value con-
ditioned on time t followed by ensemble average), we find the dynamic equa-
tions10

dhni(t)i
dt

= �↵µ↵h(1 � ni(t))zi(t) [i(t)]↵�1i (2.34)

dhi(t)i
dt

= �h(1 � ni(t))zi(t)i . (2.35)

These equations are coupled through the nonlinear term [i(t)]↵�1 and also
with the equations of other nodes (through the variable zi(t)). Adding the
explicit temporal dependency and the nontrivial contact topology, the search
for an analytic solution presents itself as a quixotic endeavor. We rather resort
directly to simulations.

10See Appendix A.2 for a detailed derivation.
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2.2.5 Non-Markovian Gillespie algorithm
Overall, the system’s evolution is determined by the set of infection processes
(one for each node). Here we describe the generalized non-Markovian Gille-
spie algorithm, capable of simulating memoryfull dynamics in continuous
time [17]. Consider a set of M statistically independent, discrete, stochastic
processes, each with an interevent time distribution  j(⌧) and corresponding
survival probability  j(⌧) =

R 1
⌧
 j(⌧0)d⌧0. If process j was activated at time

t = 0, its next event will occur at time t 2 (⌧, ⌧ + d⌧] with probability  j(⌧)d⌧.
Moreover, the next event of process j will occur at time t � ⌧ with probabil-
ity  j(⌧).

At a certain moment in time t0, process j has been active for t j units
of time (i.e., it was activated at time t = t0 � t j). Let �(⌧, i | {tk})d⌧ denote
the joint probability that the next-occurring event takes place in the interval
t 2 (t0 + ⌧, t0 + ⌧ + d⌧] and corresponds to process i, conditioned by the set of
elapsed times {tk}. This probability density can be expressed as

�(⌧, i | {tk}) =  i(ti + ⌧)
 i(ti + ⌧)

�(⌧ | {tk}) , (2.36)

where

�(⌧ | {tk}) =
MY

j=1

 j(t j + ⌧)
 j(t j)

(2.37)

is the survival probability of ⌧, i.e., the conditional probability that no event
takes place before t0 + ⌧. Then the probability that the next event takes place
in the interval t 2 (t0, t0 + ⌧] is

⌅(⌧ | {tk}) = 1 � �(⌧ | {tk}) . (2.38)

Once the interval ⌧ is known, the probability that the next-occurring event
corresponds to process i is given by

⇧(i | ⌧, {tk}) = !i(ti + ⌧)
PM

j=1 ! j(t j + ⌧)
, (2.39)

with ! j(t) =  j(t)/ j(t) the instantaneous hazard rate of process j. Recall
that ! j(t) measures the probability per unit of time that process j takes place
between t and t + dt, conditioned on not having occurred before time t [48].11

11Note the di↵erence with  j(t), which measures the corresponding unconditional proba-
bility per unit of time.
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Eqs. (2.38) and (2.39) provide an algorithm that generates statistically cor-
rect sequences of events:

i) draw the interval by solving ⌅(⌧ | {tk}) = u, with u 2 U(0, 1),

ii) increase the system time as t  t + ⌧,

iii) draw the process from the discrete distribution ⇧(i | ⌧, {tk}),
iv) revise the list of active processes, and

v) update the set of elapsed times as t j  t j + ⌧ (setting t j = 0 for newly
activated processes).

Once again, we start our simulations with a single randomly chosen in-
fected node in a fully healthy system and stop when all nodes are infected.12

Recall that we use a random degree-regular network with degree k = 4 and
N = 104 nodes and compute the prevalence as ⇢(t) = NI(t)/N, with NI(t) the
number of infected nodes at time t. Without loss of generality, hereon forward
we use units of the viral load  such that � = 1.13 In Fig. 2.4(a) we verify
that the miccSI model with ↵ = 1 and µ = 1 is equivalent to the standard SI
model with � = 1.14 Figure 2.4(b) shows the results for shape parameter ↵ = 2.
As we can see, a larger value of the scale parameter µ causes more virulent
outbreaks; nonetheless, time can be adequately rescaled as t0 = µt. Finally,
Fig. 2.4(c) shows outbreaks for various values of the shape parameter, all with
µ = 1. We observe that the outbreak time increases with ↵ (outbreaks take
longer to take-o↵), but the final stage of invasion become shorter (outbreaks
saturate earlier); additionally, the spread decreases with ↵.

2.2.6 Discussion
Summarizing, the miccSI model allows to model a variety of scenarios. On
the one hand, ↵ < 1 yields outbreaks that evolve rapidly during their initial
phase but saturate very slowly; moreover, the wide spread indicates a large
variability between di↵erent outbreaks. Recall that the hazard rate decreases

12See Appendix C.1.2 for an outline of the core algorithm.
13See Appendix C.1.3 for simulation details.
14In general, to recover the standard SI model with ↵ = 1 we must simply substitute �

for µ.
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Figure 2.4: Temporal evolution of the prevalence in the miccSI model. Re-
sults for 100 independent simulations of single-seed outbreaks in a random
degree-regular network with k = 4 and N = 104. (a) Standard deviation for
the miccSI model (orange shaded area) with shape parameter ↵ = 1 and scale
parameter µ = 1; average for the standard SI model (purple curve) with trans-
mission rate � = 1. (b) Average (solid) and standard deviation (shaded) for
↵ = 2 (scale parameter in legend); averaged curves with scaled time t0 = µt
(dashed). (c) Average (solid) and standard deviation (shaded) for µ = 1 (shape
parameter in legend).
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monotonically with the amount of accumulated viral load. Hence nodes are
very likely to become infected with small values, causing a chain reaction of
rapid infections. However, the nodes that are not infected shortly after their
first exposure develop a sort of resistance to the pathogen, which intensifies
as time goes by. Although eventually they do become infected, the full infec-
tion of the system is greatly delayed by their opposition. This scenario could
be used, for instance, to describe early adopters, who are eager to embrace
innovative technologies and do not wish to miss out on them [144].

With ↵ > 1, on the other hand, outbreaks show a very gradual initial
growth, followed by a quick complete invasion. Di↵erent outbreaks are also
more regular in terms of temporal patterns, as indicated by the small spread. In
these cases the infection probability has a bell curve–like shape. Thus nodes
are required to amass a more or less bounded amount of viral load in order to
become infected. Consequently, healthy agents are likely to become infected
at more or less the same time, causing a very rapid system-wide expansion of
the pathogen. In terms of technology adoption, this scenario could describe
the so-called late majority, who are more conservative and typically skeptical
toward innovation [144].

All in all, the memory-induced complex contagion infection mechanism
commences to (timidly) exhibit its singular features. The true nature of this
novel infection mechanism is revealed in Chapter 3, where nodes are allowed
to recover, and specially in Chapter 4, when we include reinfections.



Chapter 3

The SIR model

3.1 Standard SIR model

As I discussed in the previous chapter, the SI model is suitable to describe phe-
nomena such as innovation adoption, where the transition from “healthy” to
“infected” is irreversible. For instance, after swapping out your old flip-phone
for a modern smartphone, you are unlikely to go back to using decades-old
technology. When we look at diseases, however, the picture is very di↵er-
ent.1 An infected individual usually recovers from their illness after a certain
amount of time, ceases to be infectious, and becomes immune.

The susceptible-infected-recovered (SIR) model extends the SI model by
including a third state, commonly referred to as recovered.2 Agents transition
spontaneously from infected to recovered, without the need of any external
mechanism. Recovered agents acquire immunity from the disease, thus re-
infections are not allowed. As before, infected agents transmit the pathogen
to their susceptible nearest-neighbors, and the population is embedded on a
contact network.

In the standard SIR model, the recovery of infected node j is described
by a memoryless process, characterized by a constant recovery rate ⌘ j. The
corresponding intervent time distribution is  j(⌧) = ⌘ je�⌘ j⌧, so that  j(⌧)d⌧
measures the probability that node j will remain infected during a period of
time ⌧. In this work we limit our analysis to homogeneous nodes, so that all
nodes have the same recovery rate ⌘. Recall that the infection of a susceptible
node is characterized by a constant transmission rate �.

1Except in some plant infections, for which the plants remain infectious until their
death [98, 124].

2Some authors prefer the use of “removed” in order to explicitly indicate that these nodes
no longer participate of the dynamics, including both recovered and deceased agents.
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3.1.1 Transient and late-time behavior
Overall, the population converges to a stable attractor where all agents are
healthy and the pathogen is eradicated from the system. This state is not
unique, however, since the proportion of susceptible to recovered agents can
vary greatly. Here we consider a patient zero scenario, where a single node
becomes infected in an otherwise susceptible population. Strong pathogens
are able to produce a sustained outbreak which a↵ects a large number of indi-
viduals, while weak pathogens are unable to maintain the transmission chains
and die out very quickly. The virulence of an outbreak is measured by r1, the
fraction of nodes that recover from the disease. Note that all the nodes that
become infected during the outbreak eventually end up in the recovered state.

We define the e↵ective spreading ratio as

� =
h⌧irec

h⌧itra , (3.1)

the ratio between the average recovery time,

h⌧irec =

Z 1

0
⌧ rec(⌧)d⌧ =

Z 1

0
⌧⌘e�⌘⌧d⌧ = ⌘�1 , (3.2)

and the average transmission time,

h⌧itra =
Z 1

0
⌧ tra(⌧)d⌧ =

Z 1

0
⌧�e��⌧d⌧ = ��1 . (3.3)

Roughly speaking, a longer average recovery time or a shorter average trans-
mission time enables infected nodes to transmit the pathogen to more con-
tacts in the period during which they remain infectious. In terms of rates we
have � = �/⌘.

Respectively, the e↵ective spreading ratio, �, and the late-time fraction of
recovered nodes, r1, play the roles of control and order parameters. Globally,
the system undergoes a phase transition at a critical value �c, which sepa-
rates a healthy phase (� < �c) from an epidemic phase (� > �c). In the former,
single-seed outbreaks die out very quickly and a↵ect a small number of indi-
viduals (r1 ⇡ 0). In the latter, on the other hand, outbreaks show a characteris-
tic growth-decline pattern and, with a nonvanishing probability, infect a large
fraction of nodes (r1 > 0). In epidemiological jargon, the critical value �c is
called epidemic threshold.
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3.1.2 Simulation results
While finding a closed form for the temporal evolution of the SIR model is
feasible for just a handful of contact topologies, many analytical approaches
are available to study the late-time properties of the system. Nevertheless, here
we resort to simulations. We start each run with a single randomly chosen
infected node in a fully healthy system (all other nodes are susceptible). The
realization is halted when the last remaining infected node recovers.3 Once
again, we use a random degree-regular network with k = 4 and N = 104 nodes.
We compute the prevalence as ⇢(t) = NI(t)/N and the fraction of recovered
nodes as r(t) = NR(t)/N, with NI(t) (respectively, NR(t)) the number of infected
(recovered) nodes at time t. Without loss of generality, hereon forward we use
units of time such that ⌘ = 1.4

Figure 3.1(a) shows the average trajectory of 100 independent simulations
with � = 1. The prevalence exhibits an initial growth followed by a gradual
decay; as nodes recover, the number of susceptible targets diminishes, which
inhibits the spread of the outbreak and causes its decline. Additionally, the
fraction of recovered nodes increases monotonically until reaching the saturat-
ing value r1 = limt!1 r(t). Figure 3.1(b) shows the final fraction of recovered
individuals for a range of the e↵ective spreading ratio, sampled from 1000 in-
dependent runs. We clearly identify a continuous phase transition at �c ⇡ 0.5,
which separates the healthy and epidemic phases. This value agrees nicely
with the theoretical result for the epidemic threshold in random degree-regular
networks, �c = k/(k2 � 2k) [133].

3.2 Memory-induced complex contagion
SIR model

Now we equip the SIR model with the memory-induced complex contagion
infection mechanism introduced in Section 2.2. Recall that infected nodes
have a constant infectivity rate, �, and continuously spread doses of contagion
toward their entire neighborhood. They target all of their neighbors equally,
transmitting pathogen along each edge at constant rate �. Susceptible nodes
collect these toxins from all their neighbors, amassing a total viral load , and

3See Appendix C.2.1 for an outline of the core algorithm.
4See Appendix C.2.3 for simulation details.
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Figure 3.1: Temporal evolution and late-time state of the standard SIR
model. Results for a random degree-regular network with k = 4 and N = 104.
Uncertainty intervals at 95% confidence level. (a) Average fraction of recov-
ered (orange) and infected (purple) nodes of 100 independent simulations with
� = 1. (b) Late-time fraction of recovered nodes, averaged over 1000 indepen-
dent runs.

transition to the infected state with probability  ⇤inf()d, where  ⇤inf() is the
infection probability density. Additionally, infected nodes are una↵ected by
the toxins (their viral load does not increase) and recover spontaneously after
a random time ⌧, with interevent time distribution  rec(⌧). At recovery, their
viral load is completely erased. Recovered nodes remain unaltered forever
more.

3.2.1 Dormant nodes

As in the standard model, susceptible nodes whose nearest neighborhood is
completely healthy cannot become infected. Since no active processes are as-
sociated to their state, they are irrelevant for the immediate evolution of the
system. However, these inactive nodes play a crucial role in the long-term
dynamics of the miccSIR model; we therefore assign them to an additional
compartment, which we call dormant. A dormant node transitions to suscep-
tible as soon as one of its neighbors becomes infected. Conversely, when the
last infected neighbor of a susceptible node recovers, the latter transitions to
the dormant state. At this point, the viral load it had previously amassed starts
to deteriorate with relaxation time ⇣, modeling its long-term memory. This
feature mimics the restoring of an individual’s immune system or the gradual
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Figure 3.2: Schematic overview of transitions in the miccSIR model. Nodes
transition between dormant and susceptible because of changes in their nearest
neighborhood. The infection of a susceptible node requires contact from an
infected neighbor. Infected nodes transition spontaneously to the (terminal)
recovered state.

loss of interest of an opinion, idea, or trend.
In summary, infected (I) agents spread pathogen to all their neighbors and

recover spontaneously. While susceptible (S) agents have at least one infected
neighbor and continuously accumulate viral load, dormant (D) agents have
a fully healthy neighborhood and cannot become infected. Recovered (R)
agents do not participate actively in the dynamics. There are two types of
active processes which entail one or possibly more transitions (see Fig. 3.2):

• Infection of susceptible agent j. Agent j transitions from susceptible to
infected. Additionally, all of j’s neighbors that were dormant transition
to susceptible (and resume their accumulation of viral load).

• Recovery of infected agent j. Agent j transitions from infected to re-
covered. Additionally, all of j’s neighbors that were susceptible and had
only one infected neighbor (i.e., agent j) transition to dormant (and their
viral load starts to decay).

Finally, infected agents are una↵ected by the viral load and ignore any new
doses received from their infected neighbors. When an infected agent recovers
it erases all its previously amassed viral load.

3.2.2 Parameter selection
In general, the relaxation time, ⇣i, and the recovery interevent time distribution,
 i(⌧), may vary from note to node. In order to eliminate the e↵ects of node
heterogeneities, in the present work we use the same ⇣ and  rec(⌧) for all nodes.
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Figure 3.3: Viral load accumulation in the miccSIR model. (a) Small sys-
tem considered in example. (b) Evolution of node A’s viral load. In the inter-
val t 2 [t3, t4] node A is dormant and its viral load decays instantly (orange),
at a finite nonvanishing rate (purple), or accumulates perpetually (blue). (c–e)
Node A’s instantaneous infection rate for (c) ↵ < 1, (d) ↵ = 1, and (e) ↵ > 1,
evaluated using Eq. (3.4). In the interval t 2 [t3, t4] node A’s neighborhood is
completely healthy and it cannot become infected (!A = 0).

To further isolate the e↵ects of the modified infection mechanism, we treat
recoveries as Poisson processes with constant hazard rate !rec = ⌘. Recall that
infections are governed by a Weibull distribution with instantaneous hazard
rate

!inf(t) = �↵µ↵z(t) [(t)]↵�1 , (3.4)

with z(t) the number of infected neighbors at time t (see Section 2.2.2).
Inspired by Eq. (3.1), we define the e↵ective spreading ratio as

� = �
h⌧irec

hiinf
, (3.5)
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the average time required to recover,

h⌧irec =

Z 1

0
⌧ rec(⌧)d⌧ =

Z 1

0
⌧⌘e�⌘⌧d⌧ = ⌘�1 , (3.6)

over the viral load needed to become infected,

hiinf =

Z 1

0
 inf()d =

Z 1

0
↵(µ)↵e�(µ)↵d = (µ↵)�1�(↵�1) , (3.7)

nondimensionalized by the infectivity rate, �. From here we find an expression
for the scale parameter,

µ = ⌘�(�↵)�1�(↵�1) , (3.8)

with �(x) the gamma function. Once again notice that ↵ = 1 recovers the cus-
tomary expression of the standard SIR model, � = �µ/⌘ (with transmission
rate � = �µ). Note also that this equivalence holds for all values of the relax-
ation time ⇣.

For illustrative purposes, consider the system depicted in Fig. 3.3(a), where
all nodes are initially healthy except for E. Node B becomes infected at time t0

and subsequently infects C at t1. During the interval t 2 [t0, t1], node A’s viral
load, A, grows with rate �, but from t1 onwards it will increase with rate 2�.
At t2, node C recovers and A reduces its accumulation rate back to �, and
when B recovers at t3, A starts to decay with relaxation time ⇣. Finally, D
becomes infected at t4 and A resumes its growth at rate �. Figures 3.3(b)–(e)
show the evolution of A and !A for various ⇣ and ↵.

3.2.3 Late-time and transient behavior
We start each run with a single randomly chosen infected node in a fully
healthy system (all other nodes are susceptible); the realization is halted when
the last remaining infected node recovers.5 We use a random degree-regular
network with k = 4 and N = 104 nodes and compute the prevalence as
⇢(t) = NI(t)/N and the fraction of recovered nodes as r(t) = NR(t)/N, with
NI(t) (respectively, NR(t)) the number of infected (recovered) nodes at time t.
Recall that we use units of time and viral load such that ⌘ = � = 1. As for the
relaxation time of dormant nodes’ viral load, we consider the limit cases of
instantaneous decay, ⇣ = 0, and perpetual accumulation, ⇣ ! 1.6

5See Appendix C.2.2 for an outline of the core algorithm.
6See Appendix C.2.3 for simulation details.
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Figure 3.4: Late-time state and temporal evolution of the miccSIR model.
Results for a random degree-regular network with k = 4 and N = 104. Uncer-
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infected nodes for (e) ⇣ = 0 and (f) ⇣ ! 1, averaged over 100 independent
simulations (spreading ratio in legend, shape parameters as in c).



3.2. Memory-induced complex contagion SIR model 39

With ⇣ = 0, nodes instantly erase their viral load when they become dor-
mant. If the outbreak reenters their neighborhood, they become susceptible
starting afresh (with  = 0). Hence the only memory e↵ect that is present
is during the infection period (when the agent is actively exposed to doses of
pathogen), which we interpret as a short-term memory mode. In Fig. 3.4(a)
we verify that ↵ = 1 recovers the standard SIR model. Figure 3.4(c) reveals
that the epidemic threshold grows monotonically with ↵, the shape parameter
of the infection probability. Additionally, the growth of r1 is less abrupt for
larger values of ↵. In all cases, the transition from the healthy to the epidemic
phase is continuous. Finally, Fig. 3.4(e) shows the temporal evolution of the
prevalence for outbreaks that reach a final state of r1 ⇡ 0.6. Although these
epidemic curves are not directly comparable, with ↵ < 1 (respectively, ↵ > 1)
the outbreak is generally broader (narrower) and exhibits a smaller (larger)
peak.

Next we consider the case ⇣ ! 1, where a dormant node’s viral load
remains frozen until the outbreak revisits its neighborhood. Besides the short-
term memory that is present during the infection period, agents now possess
an additional long-term memory mode that is capable of connecting very dis-
tant temporal points, causing the system to evolve in a highly nonlinear man-
ner. Once again, in Fig. 3.4(b) we verify that ↵ = 1 recovers the standard
SIR model. Figure 3.4(d) shows that the transition is continuous and that
the epidemic threshold grows with ↵. In Fig. 3.4(f) we observe that, roughly
speaking, the epidemic curves are broader (respectively, narrower) and shorter
(taller) for ↵ < 1 (↵ > 1).

Finally, Figs. 3.5(a)–(c) reveal that, if agents are equipped with a long-term
memory mode, the late-time fraction of recovered nodes is slightly smaller
(respectively, larger) for ↵ < 1 (↵ > 1). However, the epidemic threshold does
not change and the average outbreaks are very similar (see Figs. 3.5(d)–(f)).

3.2.4 Discussion

Concluding, the short-term mode (⇣ = 0) of the memory-induced complex
contagion infection mechanism causes a displacement of the epidemic thresh-
old in the SIR model. In particular, smaller values of the infection probability’s
shape parameter ↵ enable weaker pathogens (i.e., lower values of the e↵ective
spreading ratio �) to cause sustained outbreaks. Notwithstanding, the tran-
sition between the healthy and epidemic phases remains continuous. More-
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Figure 3.5: Comparison between short- and long-term memory modes in
the miccSIR model. Results for a random degree-regular network with k = 4
and N = 104. Uncertainty intervals at 95% confidence level. (a–c) Late-time
fraction of recovered nodes in the miccSIR model for shape parameter (a)
↵ = 0.8, (b) ↵ = 2, and (c) ↵ = 4, averaged over 1000 independent runs (relax-
ation time in legend). (d–f) Temporal evolution of the prevalence (solid curve,
shaded area) and fraction of recovered nodes (dashed curve, dotted area) for
(d) ↵ = 0.8, (e) ↵ = 2, and (f) ↵ = 4, averaged over 100 independent runs
(spreading ratio in legend, relaxation times as in a).
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over, long-tailed infection probabilities (↵ < 1) yield outbreaks that initially
evolve more rapidly but last longer then bell-shaped infection probabilities
(↵ > 1). Notice that this observation is consistent with our findings for the
miccSI model (see Section 2.2.6).

The overall picture is very similar if individuals possess an additional long-
term memory (⇣ ! 1). Compared to the short-term memory mode, for ↵ > 1
(respectively, ↵ < 1) the outbreaks are slightly more (less) virulent, a↵ecting
a larger (smaller) fraction of the population. This observation is explained
by the monotonically increasing (decreasing) infection rate. When the out-
break revisits a dormant node’s neighborhood, its previously accumulated vi-
ral load facilitates (hinders) its infection, enabling (preventing) the expansion
of the outbreak. Nevertheless, the e↵ect of this phenomenon is undermined
by the existence of recovered nodes, which act as (very e�cient) blockers of
the transmission chains and impede the outbreak to circulate freely around
network.

Admittedly, the addition of recoveries to the memory-induced complex
contagion infection mechanism has a mild e↵ect in terms of macroscopic phe-
nomenology. However, this novel infection mechanism shows its full potential
in Chapter 4, where we include reinfections.





Chapter 4

The SIS model

4.1 Standard SIS model

The model discussed in the previous chapter ignores the possibility that re-
covered individuals can sometimes become reinfected. This is the case, for in-
stance, with dengue fever, the common cold, and sexually transmitted diseases
such as gonorrhea and chlamydia [98]. On the other hand, waning immunity
(against measles or pertussis, for example) can also lead to reinfection [107].
Finally, a similar idea can be applied to the spread of rumors, which can spark
renewed attention after a period of low interest [50, 94].

The susceptible-infected-susceptible (SIS) model incorporates the reinfec-
tion of recovered agents. Infected agents i) transmit the pathogen to their sus-
ceptible nearest-neighbors and ii) recover spontaneously, transitioning back to
the susceptible state. As before, the population is embedded on an undirected,
unweighted, static contact network. In the standard SIS model, the transmis-
sion of the pathogen from infected node i to susceptible node j is characterized
by a constant transmission rate �i! j. Additionally, the recovery of infected
node j is described by a constant recovery rate ⌘ j. Once again, we limit our
analysis to homogeneous nodes: the pathogen transmits along all the links at
the same rate � and all nodes have the same recovery rate ⌘. Finally, the defini-
tion of the e↵ective spreading ratio remains unaltered, � = h⌧irec/h⌧itra = �/⌘.

Overall, the macroscopic state of the system is measured by ⇢1, the late-
time value of the prevalence. The bifurcation diagram typically shows a con-
tinuous, absorbing phase transition at the epidemic threshold �c. When � < �c,
the outbreak dies out exponentially fast and all agents are disease-free
(⇢1 = 0), representing an absorbing, healthy phase. For � > �c, on the other
hand, there is a nonvanishing fraction of infected agents (⇢1 > 0), defining an
active, endemic phase. Notice, however, that the latter constitutes a nonequi-
librium steady state since individuals continuously recover and reinfect.
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4.1.1 Analytic approximation
At time t, node i is described by its state ni(t), a discrete variable that takes
two values: ni = 0 if it is susceptible or ni = 1 if it is infected. The state of
node i changes with the transitions i) infected to healthy and ii) susceptible
to infected. Recall the nonindependent variable zi(t) =

P
j ai jn j(t), with ai j the

elements of the adjacency matrix, which encodes the number of i’s neighbors
that are infected at time t. The evolution of these variables is governed by two
microscopic, dichotomous, stochastic processes:

i) Infected node i recovers (⇠i = 1) or remains infected (⇠i = 0), given by
node i’s recovery rate ⌘. The corresponding probabilities at O (dt) are

⇠i =

(
1 ⌘dt
0 1 � ⌘dt . (4.1)

ii) Susceptible node i becomes infected (⇡i = 1) or remains susceptible
(⇡i = 0), given by node i’s instantaneous infection rate !i(t) = �zi(t).
The corresponding probabilities at O (dt) are

⇡i =

(
1 !i(t)dt
0 1 � !i(t)dt . (4.2)

The state of node i at time t + dt is

ni(t + dt) = ni(t)(1 � ⇠i) + (1 � ni(t))⇡i , (4.3)

where the first term corresponds to node i being infected (ni(t)) and not re-
covering (1 � ⇠i), and the second term corresponds to node i being susceptible
(1 � ni(t)) and becoming infected (⇡i). In order to obtain the dynamic equa-
tion, we first compute the expectation value conditioned on time t, which only
a↵ects the stochastic variables

E[ni(t + dt) | t] = ni(t)E[1 � ⇠i | t] + (1 � ni(t))E[⇡i | t] (4.4)
= ni(t)(1 � ⌘dt) + (1 � ni(t))!i(t)dt (4.5)
= ni(t) � ni(t)⌘dt + (1 � ni(t))�zi(t)dt . (4.6)

Taking the ensemble average yields

hni(t + dt)i = hE[ni(t + dt) | t]i (4.7)
= hni(t)i � ⌘hni(t)idt + �h(1 � ni(t))zi(t)idt , (4.8)
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from where we find

dhni(t)i
dt

=
hni(t + dt)i � hni(t)i

dt
= �⌘hni(t)i + �h(1 � ni(t))zi(t)i . (4.9)

4.1.2 Late-time limit and mean-field approximation
Taking the late-time limit in Eq. (4.9) and dropping the explicit dependence
with t we find

0 = �⌘hnii + �h(1 � ni)zii . (4.10)

And for uncorrelated networks we can apply a mean-field approximation

h(1 � ni)zii ⇡
X

j

kik j

Nhki (hnji � hniihnji) , (4.11)

with ki and k j the degrees of nodes i and j, respectively, and hki the average
degree (see Section 2.1.2). Particularly, in random degree-regular networks
we have ki = k j = hki = k, and due to homogeneity, hnii = hnji = ⇢. Then
Eq. (4.10) becomes

0 = �⇢ + �k⇢(1 � ⇢) , (4.12)

where ⇢ = limt!1 ⇢(t) is the late-time prevalence.1
Thus the dynamics of the standard SIS model is encapsulated by the func-

tion

f (⇢) = �⇢ + �k⇢(1 � ⇢) (4.13)

and its first and second derivatives

f 0(⇢) = �1 + �k(1 � 2⇢) (4.14)
f 00(⇢) = �2�k . (4.15)

The fixed points are given by f (⇢⇤) = 0. Linear stability analysis reveals that
these are stable when f 0(⇢⇤) < 0 and unstable when f 0(⇢⇤) > 0. Moreover, the
transition is continuous if f 00(⇢⇤) < 0 and discontinuous if f 00(⇢⇤) > 0.

1For clarity, in this section we drop the subindex 1.
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From Eq. (4.12) we find that the healthy phase ⇢0 = 0 is always a fixed
point. It is stable for � < 1/k and unstable for � > 1/k, yielding the epidemic
threshold �c = 1/k. Since f 00 = �2�k < 0,8�, the transition is always contin-
uous. The endemic phase is found by solving

0 = �1 + �k(1 � ⇢+) , (4.16)

which gives

⇢+ = 1 � 1
�k
=
� � �c

�
. (4.17)

Thus, near the critical point, the prevalence scales as ⇢+ / (� � �c)�c , with
�c = 1 the customary mean-field exponent [133].

4.1.3 Simulation results
In order to verify our analytic findings we perform extensive stochastic simu-
lations.2 We begin by using an adiabatic expansion–like approach to explore
the position of the critical point, �c, which separates an absorbing (healthy)
phase (� < �c) from an active (endemic) one (� > �c). Our simulations start
well into the active phase (� � �c), with a fully infected population, and qua-
sistatically decrease the control parameter (�) until finite-size fluctuations trap
the system in the absorbing state (⇢ = 0). Recall that we use random degree-
regular networks with degree k = 4 and units of time such that ⌘ = 1. Here
we use networks with N = 103 and N = 104 nodes. We compute the preva-
lence as ⇢(t) = NI(t)/N, with NI(t) the number of infected nodes at time t.3
Figure 4.1(a) shows the late-time prevalence, ⇢1 = limt!1 ⇢(t), sampled from
104 states and time-averaged over various trajectories. We clearly identify a
continuous phase transition at �c ⇡ 0.35 (notice that the apparent discontinuity
decreases with the system size). The value of the epidemic threshold deviates
from our mean-field prediction (�c = 1/k = 0.25), but agrees nicely with the
result of a pairwise approach (�c = 1/(k � 1) = 0.3̂) [102, 106].

We complement these results with the analysis of the arrival of an infected
agent in a previously una↵ected population. This patient zero scenario models
realistic situations such as the importation of an exotic disease, the introduc-
tion of an invasive species, or the emergence of a new idea, opinion, or trend.

2See Appendix C.3.1 for an outline of the core algorithm.
3See Appendix C.3.3 for simulation details.
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Figure 4.1: Late-time prevalence and patient zero scenario in the stan-
dard SIS model. Results for a random degree-regular network with k = 4.
(a) Late-time prevalence of the active steady state for networks with N = 103

and N = 104 nodes, time-averaged over 104 samples. Uncertainty intervals
not appreciable at this scale. (b) Late-time prevalence (orange curve), average
coverage fraction (purple circles), and endemic probability (blue diamonds)
for a network of size N = 104, averaged over 104 independent realizations.
Uncertainty intervals comparable to symbol size. (c) Temporal evolution of
endemic patient zero outbreaks (purple) and relaxation from a fully infected
population (orange) in a network of N = 104 nodes, averaged over 100 inde-
pendent runs. Uncertainty intervals comparable to line width. (d) Late-time
prevalence of adiabatic expansion (orange) and endemic single-seed outbreaks
(purple) for a network of size N = 104, averaged over 104 independent real-
izations. Uncertainty intervals not appreciable at this scale.
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We employ the lifespan method (introduced in [15] and developed in [115]),
which simulates outbreaks that start from a single infected node. These out-
breaks either return to the absorbing state (finite outbreaks) or evolve toward
an active steady state (endemic outbreaks). Each single-seed realization is
characterized by its lifetime and coverage, K, defined as the number of dis-
tinct nodes that have become infected at least once.

In the thermodynamic limit, endemic realizations have an infinite lifetime,
a coverage equal to the system size, and are only possible in the active phase.
On the other hand, finite realizations have a finite lifetime and coverage and
can be found in both phases; nonetheless, their abundance decreases above the
critical point. Thus the probability that an outbreak is endemic, P1, vanishes
in the absorbing phase and is nonzero in the active phase, playing the role of
an order parameter. In finite systems, however, any realization is bound to
reach the absorbing state, even though this might occur over astronomically
long times. Therefore, the distinction between finite and endemic outbreaks
is not clear. To overcome this hinderance we introduce a coverage threshold,
Kth = cthN, with 0 < cth < 1. A realization is declared endemic whenever its
coverage reaches the threshold, and those that terminate without surpassing it
are considered finite. Hereafter we use cth = 0.75. As reported in [115], the
value of cth does not modify the qualitative results.

For a fixed value of the control parameter �we run 104 independent realiza-
tions, each starting with a single randomly chosen infected node. We measure
the average coverage fraction, c̄ = hKi/N, and the probability that a realiza-
tion surpasses the coverage threshold, P1, which serves as a proxy for the true
endemic probability, P1.4 As we can see in Fig. 4.1(b), the average cover-
age fraction and endemic probability show a continuous phase transition at
roughly the same critical point as the late-time prevalence. Inasmuch as these
three order parameters characterize the same two phases, their critical points
are expected to coincide. However, the equivalence between P1 and ⇢1 is both
surprising and puzzling. The relation between c̄ and P1, on the other hand,
is explained by decomposing the former as c̄ = cendP1 + cfin(1 � P1), where
cend (respectively, cfin) is the average coverage of endemic (finite) realizations.
Since cend = cth and cfin ⇡ 0, we find c̄ ⇡ cthP1 (see grey curve in Fig. 4.1(b)).
Finally, Fig 4.1(c) shows the temporal evolution of endemic outbreaks, which
rapidly evolve toward their active steady state, ⇢⇤1. Notice that, when we start
our simulation with a fully infected population, the system relaxes to the same

4See Appendix C.3.4 for simulation details.
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dynamic equilibrium. In Fig 4.1(d) we verify that the equivalence between ⇢1
and ⇢⇤1 holds for all values of �.

4.2 Memory-induced complex contagion
SIS model

Here we equip the SIS model with the memory-induced complex contagion in-
fection mechanism. Recall that infected nodes have a constant infectivity rate,
�, and continuously spread doses of contagion toward their entire neighbor-
hood. They target all of their neighbors equally, transmitting pathogen along
each edge at constant rate �. Susceptible nodes collect these toxins from all
their neighbors, amassing a total viral load , and transition to the infected
state with probability  ⇤inf()d, where  ⇤inf() is the infection probability den-
sity. Additionally, infected nodes are una↵ected by the toxins (their viral load
does not increase) and recover spontaneously after a random time ⌧, with in-
terevent time distribution  rec(⌧). At recovery, their viral load is completely
erased. Recoverd nodes may be reinfected.

We di↵erentiate susceptible nodes, healthy nodes with one or more in-
fected neighbors, from dormant nodes, healthy nodes whose nearest neigh-
borhood is completely healthy; the latter cannot become infected and play a
crucial role in the long-term dynamics of the miccSIS model. A dormant node
transitions to susceptible as soon as one of its neighbors becomes infected.
Conversely, when the last infected neighbor of a susceptible node recovers,
the latter transitions to the dormant state. At this point, the viral load it had
previously amassed starts to deteriorate with relaxation time ⇣, modeling its
long-term memory. When an infected node recovers, it becomes either sus-
ceptible or dormant, depending on the configuration of its neighborhood.

In summary, infected (I) agents spread pathogen to all their neighbors and
recover spontaneously. While susceptible (S) agents have at least one infected
neighbor and continuously accumulate viral load, dormant (D) agents have a
fully healthy neighborhood and cannot become infected. There are two types
of active processes which entail one or possibly more transitions (see Fig. 4.2):

• Infection of susceptible agent j. Agent j transitions from susceptible to
infected. Additionally, all of j’s neighbors that were dormant transition
to susceptible (and resume their accumulation of viral load).
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Figure 4.2: Schematic overview of transitions in the miccSIS model. Nodes
transition between dormant and susceptible because of changes in their near-
est neighborhood. The infection of a susceptible node requires contact from
an infected neighbor. Depending on the configuration of their neighborhood,
infected nodes transition spontaneously to susceptible or dormant.

• Recovery of infected agent j. If all of j’s neighbors are healthy, j tran-
sitions from infected to dormant; if at least one of j’s neighbors is in-
fected, j transitions from infected to susceptible. Additionally, all of j’s
neighbors that were susceptible and had only one infected neighbor (i.e.,
agent j) transition to dormant (and their viral load starts to decay).

Finally, infected agents are una↵ected by the viral load, and ignore any new
doses received from their infected neighbors. When an infected agent recovers
it erases all the previously amassed viral load.

In order to eliminate the e↵ects of node heterogeneities, we use the same
infectivity rate, �, relaxation time, ⇣, infection probability density,  ⇤inf(), and
recovery interevent time distribution,  rec(⌧), for all nodes. Recall that infec-
tions are governed by the versatile Weibull distribution, with shape parameter
↵ and scale parameter µ, and that recoveries are exponential. The correspond-
ing instantaneous hazard rates are

!inf(t) = �↵µ↵z(t) [(t)]↵�1 (4.18)
!rec(t) = ⌘ , (4.19)

with z(t) the number of infected neighbors at time t. As before, the e↵ective
spreading ratio is defined as � = �h⌧irec/hiinf, from where we find an expres-
sion for the scale parameter µ = ⌘�(�↵)�1�(↵�1), with �(x) the gamma func-
tion. Yet again, note that ↵ = 1 recovers the standard SIS model for all values
of the relaxation time ⇣.

For illustrative purposes, consider the system depicted in Fig. 4.3(a), where
all nodes are initially healthy except for C. Node B becomes infected at time t0,
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Figure 4.3: Viral load accumulation in the miccSIS model. (a) Small system
considered in example. (b) Evolution of node A’s viral load. Node A becomes
dormant at t1 and its viral load decays instantly (orange), at a finite nonvanish-
ing rate (purple), or accumulates perpetually (blue). When A recovers at t5, its
viral load is instantly erased.

recovers at t1, and reinfects at time t2. During the interval t 2 [t0, t1], node A’s
viral load, A, grows with rate �. At t1 it starts to decay with relaxation time ⇣
and resumes its growth at time t2. Node A becomes infected at t3 and its viral
load remains frozen; additionally, node B recovers at time t4. When A recovers
at t5, its viral load is erased instantly. Finally, B becomes infected again at t6

and A starts amassing additional viral load. Figure 4.3(b) show the evolution
of A for various ⇣.

4.2.1 Short-term memory

We start our analysis considering the limit case ⇣ = 0, for which nodes in-
stantly erase their viral load when they become dormant. If the outbreak reen-
ters their neighborhood, they become susceptible starting afresh (with  = 0).
Hence the only memory e↵ect that is present is during the infection period
(when the agent is actively exposed to doses of pathogen), which we interpret
as a short-term memory mode.

To describe node i at time t we need two variables: its state ni(t) and its
viral load i(t). The former is a discrete variable that can take two values,
ni(t) = 1 if it is infected or ni(t) = 0 if it is healthy (susceptible or dormant).
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The viral load, on the other hand, is a continuous variable with i(t) � 0. The
state of a node only changes with the transitions i) infected to healthy and ii)
susceptible to infected; when a node transitions between susceptible and dor-
mant, its state remains unaltered. On the other hand, the viral load i) remains
unaltered while a node is infected, ii) is erased instantly when a node recovers,
iii) increases proportionally to the number of infected neighbors while a node
is susceptible, and iv) is erased instantly when a susceptible node becomes
dormant.

Recall that the number of infected neighbors is zi(t) =
P

j ai jn j(t), with ai j

the elements of the adjacency matrix. In particular, this variable aids in distin-
guishing healthy susceptible nodes, (1� ni(t))(1� �0

zi(t)), from healthy dormant
nodes, (1 � ni(t))�0

zi(t), with �`m the Krönecker function

�`m =

(
1 m = `
0 m , ` . (4.20)

The evolution of these variables is governed by three microscopic, dichoto-
mous, stochastic processes:

i) Infected node i recovers (⇠i = 1) or remains infected (⇠i = 0), given by
node i’s recovery rate ⌘. The corresponding probabilities at O (dt) are

⇠i =

(
1 ⌘dt
0 1 � ⌘dt . (4.21)

ii) Susceptible node i becomes infected (⇡i = 1) or remains susceptible
(⇡i = 0), given by node i’s instantaneous infection rate !i(t). The corre-
sponding probabilities at O (dt) are

⇡i =

(
1 !i(t)dt
0 1 � !i(t)dt , (4.22)

with !i(t) = �↵µ↵zi(t) [i(t)]↵�1.

iii) Susceptible node i becomes dormant (�i = 1) or remains susceptible
(�i = 0). This transition occurs if all of node i’s neighbors recover. At
O (dt) this reduces to node i having a single infected neighbor that re-
covers, thus

�i =

(
1 �1

zi(t)⌘dt
0 1 � �1

zi(t)⌘dt . (4.23)
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The state of node i at time t + dt is

ni(t + dt) = ni(t)(1 � ⇠i) + (1 � ni(t))(1 � �0
zi(t))⇡i , (4.24)

where the first term corresponds to node i being infected (ni(t)) and not re-
covering (1 � ⇠i), and the second term corresponds to node i being susceptible
((1 � ni(t))(1 � �0

zi(t))) and becoming infected (⇡i). Furthermore, the equation
for the viral load of node i at time t + dt is

i(t + dt) = i(t) � i(t)ni(t)⇠i � i(t)(1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)�i

+ (1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)(1 � �i)�zi(t)dt . (4.25)

The first term corresponds to the previously amassed viral load (i(t)), and the
second term describes the event where infected node i (ni(t)) recovers (⇠i) and
erases its viral load (�i(t)). The third term corresponds to the event where
susceptible node i ((1 � ni(t))(1 � �0

zi(t))) becomes dormant (�i) and instantly
erases its viral load (�i(t)). Finally, the fourth term corresponds to susceptible
node i ((1 � ni(t))(1 � �0

zi(t))) remaining susceptible (neither becoming infected
(1 � ⇡i) nor dormant (1 � �i)) and accumulating additional viral load from its
zi(t) infected neighbors (�zi(t)dt).

Applying the same procedure as in Section 4.1.1 (expectation value condi-
tioned on time t followed by ensemble average), we find the dynamic equations

dhni(t)i
dt

= �⌘hni(t)i + �↵µ↵h(1 � ni(t))zi(t) [i(t)]↵�1i (4.26)

dhi(t)i
dt

= �⌘hi(t)ni(t)i � ⌘hi(t)(1 � ni(t))�1
zi(t)i + �h(1 � ni(t))zi(t)i .

(4.27)

In addition, we compute the dynamic equation of �i (t),

dh�i (t)i
dt

= �⌘h�i (t)ni(t)i � ⌘h�i (t)(1 � ni(t))�1
zi(t)i

+ ��h(1 � ni(t))zi(t) [i(t)]��1i , (4.28)

for an arbitrary value � > 0.5

5See Appendix A.3 for a detailed derivation of Eqs. (4.26), (4.27) and (4.28).
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4.2.1.1 Late-time limit and mean-field approximation

Taking the late-time limit in Eqs. (4.26), (4.27), and (4.28) and dropping the
explicit dependence with t, we find

0 = �⌘hnii + �↵µ↵h(1 � ni)zi
↵�1
i i (4.29)

0 = �⌘hinii � ⌘hi(1 � ni)�1
zi
i + �h(1 � ni)zii (4.30)

0 = �⌘h�i nii � ⌘h�i (1 � ni)�1
zi
i + ��h(1 � ni)zi

��1
i i . (4.31)

Setting � = ↵ in Eq. (4.31) and combining with Eq. (4.29) yields a pair of
equations

0 = �h↵i nii � h↵i (1 � ni)�1
zi
i + µ�↵hnii (4.32)

0 = �hinii � hi(1 � ni)�1
zi
i + �⌘�1h(1 � ni)zii . (4.33)

The generic term h�i nii can be expanded as

h�i nii = h�i ni | ni = 1i ⇥ Pr(ni = 1) + h�i ni | ni = 0i ⇥ Pr(ni = 0) (4.34)
= h�i | ni = 1ihnii + 0 ⇥ (1 � hnii) . (4.35)

Similarly, we find

h�i (1 � ni)�1
zi
i = h�i | Xi = 1i ⇥ Pr(Xi = 1) , (4.36)

with Xi = (ni = 0 \ �1
zi
= 1), i.e., node i being susceptible and having a single

infected neighbor. Substituting for � = 1 and � = ↵ in Eqs. (4.32) and (4.33)
and combining both equations yields

�µ�↵hnii + A�⌘�1h(1 � ni)zii � B Pr(Xi = 1) = 0 , (4.37)

with

A =
h↵i | ni = 1i
hi | ni = 1i (4.38)

and

B = Ahi | Xi = 1i � h↵i | Xi = 1i . (4.39)

Notice that A > 0.
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Assuming that the state of the nodes are uncorrelated we can write

Pr(Xi = 1) = Pr(ni = 0 \ �1
zi
= 1) ⇡ Pr(ni = 0) ⇥ Pr(�1

zi
= 1) , (4.40)

with Pr(ni = 0) = 1 � hnii and

Pr(�1
zi
= 1) ⇡

 
ki

1

!
⇥ Pr(ni = 1) ⇥ [Pr(ni = 0)]ki�1 (4.41)

= kihnii (1 � hnii)ki�1 . (4.42)

Additionally, in Section 2.1.2 we applied a mean-field approximation for un-
correlated networks and derived

h(1 � ni)zii ⇡
X

j

kik j

Nhki (hnji � hniihnji) . (4.43)

In random degree-regular networks we have ki = k j = hki = k, and due to ho-
mogeneity, hnii = hnji = ⇢; then Eq. (4.37) becomes

�µ�↵⇢ + A�⌘�1k⇢(1 � ⇢) � Bk⇢(1 � ⇢)k = 0 , (4.44)

with ⇢ = limt!1 ⇢(t) the late-time prevalence.
For ⇢ ⇡ 0 it is reasonable to assume that the coe�cients A and B are

constant, hence we use the reduced coe�cients a = µ↵�⌘�1A and b = µ↵B.
The dynamics of the system is then encapsulated by the function

f (⇢) = �⇢ + ak⇢(1 � ⇢) � bk⇢(1 � ⇢)k (4.45)

and its first and second derivatives

f 0(⇢) = �1 + ak(1 � 2⇢) � bk(1 � ⇢)k + bk2⇢(1 � ⇢)k�1 (4.46)
f 00(⇢) = �2ak + 2bk2(1 � ⇢)k�1 � bk2(k � 1)⇢(1 � ⇢)k�2 . (4.47)

The fixed points are given by f (⇢⇤) = 0. Linear stability analysis reveals that
these are stable when f 0(⇢⇤) < 0 and unstable when f 0(⇢⇤) > 0. Moreover, the
transition is continuous if f 00(⇢⇤) < 0 and discontinuous if f 00(⇢⇤) > 0.

From Eq. (4.45) we find that the healthy phase ⇢0 = 0 is always a fixed
point. It is stable for b > a � 1/k and unstable for b < a � 1/k. The nature of
the transition changes at b = a/k, and the intersection with b = a � 1/k yields
a tricritical point located at atc = 1/(k � 1), btc = 1/k(k � 1). Thus the phase
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Figure 4.4: Phase diagram of the miccSIS model with short-term memory.
The healthy phase becomes unstable when crossing from left to right. The
solid curve indicates a continuous phase transion, the dashed lines delimit the
region of coexistence (associated to a discontinuous phase transition), and the
dot marks the tricritical point (↵tc ⇡ 2.348, �tc ⇡ 0.513).

transition is continuous for b < btc and discontinuous for b > btc. The endemic
phase is found by solving

�1 + ak(1 � ⇢+) � bk(1 � ⇢+)k = 0 . (4.48)

Near the critical point b = ac � 1/k, ⇢+ ⇡ 0 and we can expand

(1 � ⇢+)k = 1 � k⇢+ + k(k � 1)⇢2
+ + O (⇢+)3 . (4.49)

For b < btc, Eq. (4.48) becomes

(a � ac)k � ak⇢+ + (ack � 1)⇢+ + O (⇢+)2 = 0 (4.50)

and the prevalence scales as ⇢+ / (a � ac)�c , with �c = 1 the customary mean-
field exponent [133]. For b = btc, Eq. (4.48) is of the form

(a � ac)k � ak(k � 1)⇢2
+ + O (⇢+)3 = 0 (4.51)

and the prevalence scales as ⇢+ / (a � ac)�tc , with �tc = 1/2.
Figure 4.4 shows the phase diagram in terms of the original parameters

↵ and �.6 We observe that the critical point initially increases monotonically
6See Appendix A.4 for details on recasting a and b in terms of the original parameters

and Appendix C.4 for details on obtaining the numerical values of the phase diagram.
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Figure 4.5: Late-time prevalence in the miccSIS model with short-term
memory. Results for a random degree-regular network with k = 4 and size
N = 103 (solid) and N = 104 (dashed), time-averaged over 104 samples (shape
parameter in legend). Uncertainty intervals not appreciable at this scale.

with ↵ but afterward saturates for ↵! 1. This result is consistent with the
possibly largest epidemic threshold reported in [110]. On the other hand, the
transition to endemicity is discontinuous for ↵ > ↵tc ⇡ 2.348. Recall that the
infection probability density presents a peak for ↵ > 1 and, in fact, tends to-
wards a delta function in the limit ↵! 1. Thus a node requires a quasi de-
terministic amount of viral load to become infected, mimicking a threshold
model, which commonly exhibits a discontinuous phase transition [117].

4.2.1.2 Simulation results

We perform extensive stochastic simulations to verify our analytic findings.7
Given our previous experience with the standard SI and SIS models, the nu-
merical results will most likely deviate from the mean-field approximation;
nevertheless, we do expect a qualitative agreement. Once again, we begin
with an adiabatic expansion–like approach to explore the position of the crit-
ical point. Our simulations start well into the active phase with a fully in-
fected population and quasistatically decrease the control parameter, �, until
finite-size fluctuations trap the system in the absorbing state. We use random
degree-regular networks with k = 4 and sizes N = 103 and N = 104, and

7See Appendix C.3.2 for an outline of the core algorithm.
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units such that ⌘ = 1 and � = 1. We compute the late-time prevalence as
⇢1 = limt!1 NI(t)/N, with NI(t) the number of infected nodes at time t, sam-
pled from 104 states and time-averaged over various trajectories.8

As shown in Fig. 4.5, the epidemic threshold indeed increases with ↵, and
saturates for large values of ↵. Moreover, for ↵ < 1 the approach to the critical
point is very similar to the standard SIS (↵ = 1),9 consistent with a continuous
phase transition with exponent � = 1. On the other hand, for ↵ = 4 the curves
terminate at a remarkably high prevalence, consistent with a discontinuous
phase transition. Finally, the curves for ↵ = 2 also terminate at a rather high
prevalence, which deviates from the analytic prediction. Nonetheless, since
the apparent discontinuity decreases with the system size, this observation is
most likely related to finite-size e↵ects.

We complement these results with the analysis of patient zero scenarios,
the arrival of an infected agent in a previously una↵ected population (see Sec-
tion 4.1.3). For a fixed value of � we run 104 realizations, each starting with
a single randomly chosen infected node and a system cleared of all viral load.
We compute the average coverage fraction, c̄, and the endemic probability, P1.
If an outbreak becomes endemic, we extend the simulation until it reaches the
steady state and then measure the late-time prevalence, ⇢⇤1. Recall that we use
a coverage threshold of cth = 0.75.10

The results are shown in Figs. 4.6(a)–(d), which include the previously
computed ⇢1. With ↵ < 1 (Fig. 4.6(a)) we observe that the three order param-
eters (⇢1, c̄, and P1) show a continuous phase transition at roughly the same
critical point. Notice, however, that the endemic probability grows faster than
in the standard SIS model (↵ = 1, Fig. 4.6(b)). While ⇢⇤1 shows a discon-
tinuous jump for ↵ = 4 (Fig. 4.6(d)), with ↵ = 2 (Fig. 4.6(c)) it grows con-
tinuously and coincides with ⇢1, supporting our analytic findings. Moreover,
since ↵ = 2 is close to tricritical point, a cross-over e↵ect toward the exponent
�tc is expected, explaining the small gap and rather steep approach to the crit-
ical point. Note that the equivalence c̄ ⇡ cthP1 holds for all values of ↵ (see
grey curves in Figs. 4.6(a)–(d)).

Overall, our analytic and simulated results indicate that the system’s macro-
scopic properties are drastically a↵ected by the microscopic details of the in-

8See Appendix C.3.3 for simulation details.
9See Fig. D.1 in Appendix D for a verification of the equivalence between the standard

SIS model and the miccSIS model with ↵ = 1.
10See Appendix C.3.4 for simulation details.
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Figure 4.6: Patient zero scenario in the miccSIS model with short-term
memory. Late-time prevalence of adiabatic expansion (orange curve) and en-
demic single-seed outbreaks (purple circles), average coverage fraction (blue
squares), and endemic probability (red diamonds) for shape parameter (a)
↵ = 0.8, (b) ↵ = 1, (c) ↵ = 2, and (d) ↵ = 4, averaged over 104 independent
realizations, in a random degree-regular network with k = 4 and N = 104. Un-
certainty intervals comparable to symbol size and line width.

fection mechanism. In particular, the critical point that separates the healthy
from the endemic phase grows with ↵, and the nature of the phase transition
changes from continuous to discontinuous at the tricrital point ↵tc.

4.2.2 Long-term memory

Next we consider the case ⇣ ! 1, where a dormant node’s viral load remains
frozen until the outbreak revisits its neighborhood. Besides the short-term
memory that is present during the infection period, agents now possess an
additional long-term memory mode that is capable of connecting very distant
temporal points, causing the system to evolve in a highly nonlinear manner.
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At time t, node i is described by its state (ni(t) = 0 if it is healthy, ni(t) = 1
if it is infected) and viral load (i(t) � 0). The evolution of these vari-
ables is governed by three stochastic processes: i) the recovery of an infected
node, ii) the infection of a susceptible node, and iii) the transition from sus-
ceptible to dormant. The corresponding probabilities at O (dt) are given by
Eqs. (4.21), (4.22), and (4.23), respectively. Recall that zi(t) measures the
number of infected neighbors at time t.

The viral load of a node i) is instantly erased when an infected node recov-
ers, ii) increases proportionally to the number of infected neighbors while a
node is susceptible, and iii) remains constant while the node is dormant. Then
the equation for the viral load of node i at time t + dt reads

i(t + dt) = i(t) � i(t)ni(t)⇠i

+ (1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)(1 � �i)�zi(t)dt , (4.52)

where the first term corresponds to the previously amassed viral load (i(t)),
the second term describes the event where infected node i (ni(t)) recovers (⇠i)
and erases its viral load (�i(t)), and the third term corresponds to suscepti-
ble node i ((1 � ni(t))(1 � �0

zi(t))) remaining susceptible (neither becoming in-
fected (1 � ⇡i) nor dormant (1 � �i)) and accumulating additional viral load
from its zi(t) infected neighbors (�zi(t)dt). Applying the same procedure as in
Section 4.1.1 (expectation value conditioned on time t followed by ensemble
average), we find the dynamic equation11

dhi(t)i
dt

= �⌘hi(t)ni(t)i + �h(1 � ni(t))zi(t)i (4.53)

and taking the late-time limit yields

0 = �⌘hinii + �h(1 � ni)zii . (4.54)

Applying the same reasoning as in Eq. (4.34), we can write

hinii = hi | ni = 1ihnii . (4.55)

The conditioned average hi | ni = 1i measures the viral load of an infected
node; since the viral load does not change while infected, this is equivalent

11In short, Eq. (4.53) is obtained by dropping the second term in the RHS of Eq. (4.27).
See Appendix A.5 for a detailed derivation.
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Figure 4.7: Late-time prevalence in the miccSIS model with long-term
memory. Results for a random degree-regular network with k = 4 and size
N = 103 (solid) and N = 104 (dashed), time-averaged over 104 samples (shape
parameter in legend). Uncertainty area not appreciable at this scale.

to measuring the viral load at infection. With ⇣ ! 1, nothing hinders the
accumulation of viral load, i.e., nodes may freely amass any value of . Thus
the probability of having  at the moment of infection is simply the probability
of becoming infected with  (i.e.,  ⇤()). Using this probability density we find

hi|ni = 1i = hiinf , (4.56)

which coincides with the value used in the definition of the e↵ective spreading
ratio, � = �h⌧irec/hiinf. Substituting in Eq. (4.54) gives

hnii = �h(1 � ni)zii . (4.57)

Notice that this result is derived without implementing any mean-field approx-
imation. Surprisingly, Eq. (4.57) is identical to Eq. (4.10), the first-order equa-
tion of the standard SIS model. This equivalence demonstrates that the micc-
SIS model with long-term memory and the standard SIS model have the same
stationary properties. In particular, the late-time prevalence is independent of
↵ and identical to the Markovian model.12

12We provide a (lengthy) additional verification of this unexpected result in Appendix A.5.
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In order to verify this remarkable analytic result, we perform extensive
stochastic simulations.13 Once again, we start our simulations well into the
active phase with a fully infected population and quasistatically decrease the
control parameter, �, until finite-size fluctuations trap the system in the ab-
sorbing state. We use random degree-regular networks with k = 4 and sizes
N = 103 and N = 104, and units such that ⌘ = 1 and � = 1. We compute
the late-time prevalence as ⇢1 = limt!1 NI(t)/N, with NI(t) the number of in-
fected nodes at time t, sampled from 104 states and time-averaged over various
trajectories.14

Figure 4.7 shows that the late-time prevalence curves indeed coincide for
all values of ↵. A small deviation occurs near the critical region (see inset of
Fig. 4.7), which is caused by the residual clustering of the networks (due to
their finite size). Compared to the short-term memory mode (recall Fig. 4.5),
for ↵ > 1 (respectively, ↵ < 1) the endemic phase is enlarged (shrunken) by the
long-term mode. This phenomenon is explained by the monotonically increas-
ing (decreasing) infection rate: when the outbreak revisits a dormant node’s
neighborhood, its previously accumulated viral load facilitates (hinders) rein-
fection, enabling (preventing) the outbreak to remain active in a wider range
of �. These results reveal that the additional long-term memory completely
suppresses the e↵ects of the short-term mode. Specifically, it causes individ-
uals with virtually infinite memory to behave, on the aggregate, as if they had
no memory at all. This collective memory loss consequently renders the sys-
tem’s macroscopic state unable to distinguish between agents’ microscopic
properties.

In order to elucidate these findings, we proceed with the analysis of pa-
tient zero scenarios, where an infected agent arrives in a previously una↵ected
population. For a fixed value of � we run 104 realizations, each starting with
a single randomly chosen infected node and a system cleared of all viral load.
We measure the average coverage fraction, c̄ = hKi/N, and the probability that
a realization surpasses the coverage threshold, P1, which serves as a proxy for
the true endemic probability, P1, the probability that an outbreak becomes
endemic in the thermodynamic limit.15

13See Appendix C.3.2 for an outline of the core algorithm.
14See Appendix C.3.3 for simulation details.
15See Appendix C.3.4 for simulation details.
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Figure 4.8: Bistability in the miccSIS model with long-term memory. Late-
time prevalence of adiabatic expansion (orange curve) and endemic single-
seed outbreaks (purple circles), average coverage fraction (blue squares), and
endemic probability (red diamonds) for shape parameter (a) ↵ = 2 and (b)
↵ = 4, averaged over 104 independent realizations, in a random degree-regular
network with k = 4 and N = 104 nodes. Dagger indicates epidemic threshold
for ⇣ = 0. Uncertainty intervals comparable to symbol size and line width.

4.2.2.1 Bistability

We first analyze ↵ > 1, for which the infection probability presents a peak
and the instantaneous infection rate increases monotonically with the accumu-
lated viral load. The patient zero results are shown in Figs. 4.8(a),(b), which
include the previously computed ⇢1 and the late-time prevalence of single-
seed outbreaks that are able to become endemic, ⇢⇤1. We find that the average
coverage, c̄, and the endemic probability, P1, present a continuous phase tran-
sition at �c(c̄);16 however, this point is notably larger than the critical point
of the late-time prevalence, �c(⇢1). Whereas ⇢1 presents a continuous phase
transition, ⇢⇤1 exhibits a discontinuous phase transition at �c(⇢⇤1) = �c(c̄). As
expected, the two prevalence curves overlap after the abrupt jump.

This evidences the existence of an intermediate region � 2 [�c(⇢1), �c(c̄)]
where all single-seed outbreaks return to the absorbing state, but fully infected
populations evolve toward an active steady state. The key ingredient to un-
derstand this phenomenon is the environment of frozen viral load. During the
simulations that measure the late-time prevalence, the viral loads are well ther-
malized, enabling the outbreak to remain in an active state. Conversely, this

16For clarity, the equivalence c̄ ⇡ cthP1 is not shown.
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environment is deficient in single-seed outbreaks, as the system has not yet
reached its steady state. Hence outbreaks are unable to produce su�cient new
infections and rapidly become trapped in the absorbing state.

Furthermore, the environment of frozen viral load also explains the di↵er-
ences between single-seed outbreaks with ⇣ = 0 and ⇣ ! 1. In particular, the
critical point �c(c̄) is lower in the latter case (see dagger in Figs. 4.8(a),(b)).
When agents only possess a short-term memory mode, this environment is in-
existent and outbreaks must produce su�cient direct infections in order to be-
come endemic. Contrarily, if agents are equipped with an additional long-term
memory mode, the environment of frozen viral load facilitates infection when
the outbreak revisits a previously a↵ected neighborhood. Thus less infective
outbreaks are able to become endemic by repeatedly exploring the same areas
of the network.

These results indicate that the system displays two attractors in this in-
termediate region. Then for ⇣ ! 1 and ↵ > 1 the system’s phase diagram
exhibits an additional bistable phase that separates the usual healthy and en-
demic phases. The associated hysteresis loop, however, has a rather exotic
nature: although its lower branch presents the expected discontinuity, the up-
per branch connects the two attractors in a continuous manner. This contrasts
with previous findings of bistability, were the hysteresis loop is bounded by
two discontinuities [59, 80, 32]. Moreover, the transition to full endemicity
is hybrid [24]: the endemic probability grows continuously at �c(⇢⇤1), but the
late-time prevalence jumps discontinuously.

4.2.2.2 Excitability

Finally, we study ↵ < 1, for which the infection probability presents power
law–like fat tails an the instantaneous infection rate decreases monotonically
with the accumulated viral load. In Figs. 4.9(a),(b) we show the patient zero
analysis for the standard SIS (↵ = 1)17 and broad-tailed infection distribu-
tions (↵ < 1). Here we additionally compute P3, the probability that a single-
seed outbreak reaches the coverage threshold three times.18 With ↵ = 1 (see
Fig. 4.9(b)), P1 and P3 are identical (except for a very narrow region near the

17See Fig. D.1 in Appendix D for a verification of the equivalence between the standard
SIS model and the miccSIS model with ↵ = 1.

18The coverage is reset to zero every time it hits the threshold. See Appendix C.3.4 for
simulation details.
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Figure 4.9: Excitability in the miccSIS model with long-term memory.
Results for a random degree-regular network with k = 4 and N = 104 nodes.
(a, b) Late-time prevalence of adiabatic expansion (orange curve) and endemic
single-seed outbreaks (grey hexagons), average coverage fraction (purple cir-
cles), and endemic probabilities (blue squares and red diamonds) for shape pa-
rameter (a) ↵ = 0.8 and (b) ↵ = 1, averaged over 104 independent realizations.
Dagger indicates epidemic threshold for ⇣ = 0. Uncertainty intervals compa-
rable to symbol size and line width. (c, d) Temporal evolution of endemic
outbreaks (single-seed realizations that surpass the coverage threshold at least
once) for ↵ = 0.8, averaged over 100 independent runs (e↵ective spreading
ratio in legend). Uncertainty intervals at 95% confidence level.
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critical point), indicating that an outbreak that surpasses the coverage thresh-
old once remains active long enough to surpass the threshold two more times.
Thus P1 is an adequate proxy for the true endemic probability, P1, which
additionally coincides with ⇢1.

For ↵ < 1 (Fig. 4.9(a)) the situation is quite di↵erent. Firstly, the average
coverage starts growing continuously at �c(c̄), when all other order parameters
are still identically zero. Note that �c(c̄) almost coincides with the epidemic
threshold of the miccSIS model with ⇣ = 0 (see dagger in Fig. 4.9(a)). In ad-
dition, the late-time prevalence of adiabatic expansion (⇢1) coincides with the
late-time prevalence of endemic outbreaks (⇢⇤1), so that the transition to full
endemicity is continuous. Finally, the transition point of P1 is significantly
lower than that of P3. Thus there is a wide interval where all outbreaks that sur-
pass the threshold once eventually terminate in the absorbing state, evidencing
the inadequateness of P1 as a measure of the true endemic probability. The in-
flection point of P3 is much closer to the transition point of ⇢1, which suggests
that the critical point of the endemic probability (P1, the probability to surpass
the threshold an infinite amount of times) coincides with �c(⇢1). Beyond this
point, c̄ is expected to coincide with cthP1, indicating that the endemic prob-
ability presents a discontinuous phase transition. Then the transition to full
endemicity is again hybrid; nonetheless, here the late-time prevalence grows
continuously, while the endemic probability jumps discontinuously.

In this case, we find an intermediate region � 2 [�c(c̄), �c(⇢1)] where out-
breaks are unable to become endemic (P1 = 0) but a↵ect a macroscopic frac-
tion of the population (c̄ > 0). In Figs. 4.9(c),(d) we show the prevalence,
⇢(t), of realizations that surpass the coverage threshold once. For values of the
spreading ratio that are located in the intermediate region (orange, purple, and
blue curves in Fig. 4.9(c)), we observe that outbreaks grow up to a maximum,
after which their prevalence gradually diminished until they reach the absorb-
ing state. This behavior is reminiscent of excitable media and is typically
observed in SIR-like dynamics (see Chapter 3). In the endemic phase (red
curve in Fig. 4.9(c)), the outbreaks continue presenting a peak but afterward
relax toward an active steady state; the initial peak disappears as � increases
(see Fig. 4.9(d)).

In conclusion, for ⇣ ! 1 and ↵ < 1 the usual healthy and endemic phases
are separated by an additional excitable phase. This excitable behavior is again
a consequence of the environment of frozen viral load. Independently of ⇣, an
outbreak starts from a single infected node in a population cleared of viral
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load. Then it initially evolves as if the agents only had the short-term memory
mode, rapidly achieving a large coverage. When the outbreak revisits a pre-
viously a↵ected area, the long-term memory mode is activated and the frozen
viral load impedes new infections. Thus dormant nodes are e↵ectively re-
moved from the dynamic, impede the outbreak to grow, and eventually cause
its extinction. To the extend of our knowledge, this excitable behavior has not
been previously reported in comparable SIS-like models.

4.2.3 Medium-term memory

Finally, we consider a generic value of the relaxation time ⇣. In particular,
we use an exponential function with time scale ⇣ � 0 to describe the decay
of the viral load of dormant nodes. Imagine a dormant node that has amassed
(t) units of viral load at time t. If the system remains unaltered in an inter-
val dt, its viral load will decay by d = �(t)⇣�1dt units. The limit cases ⇣ = 0
and ⇣ ! 1 correspond, respectively, to instantaneous decay and perpetual
accumulation. Therefore we interpret a nonvanishing finite value of ⇣ as a
medium-term memory mode.

To describe node i at time t we need two variables: its state ni(t) and its
viral load i(t). The former is a discrete variable that can take two values,
ni(t) = 1 if it is infected or ni(t) = 0 if it is healthy (susceptible or dormant).
The viral load, on the other hand, is a continuous variable with i(t) � 0. The
state of a node only changes with the transitions i) infected to healthy and ii)
susceptible to infected; when a node transitions between susceptible and dor-
mant, its state remains unaltered. On the other hand, the viral load i) remains
unaltered while a node is infected, ii) is erased instantly when a node recovers,
iii) increases proportionally to the number of infected neighbors while a node
is susceptible, and iv) decays exponentially while a node is dormant.

Recall that the number of infected neighbors is zi(t) =
P

j ai jn j(t), with ai j

the elements of the adjacency matrix. In particular, this variable aids in distin-
guishing healthy susceptible nodes, (1� ni(t))(1� �0

zi(t)), from healthy dormant
nodes, (1�ni(t))�0

zi(t), with �`m the Krönecker function.19 The evolution of these
variables is governed by four microscopic, dichotomous, stochastic processes:

i) Infected node i recovers (⇠i = 1) or remains infected (⇠i = 0), given by

19�`m = 1 if m = `, and �`m = 0 if m , `.
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node i’s recovery rate ⌘. The corresponding probabilities at O (dt) are

⇠i =

(
1 ⌘dt
0 1 � ⌘dt . (4.58)

ii) Susceptible node i becomes infected (⇡i = 1) or remains susceptible
(⇡i = 0), given by node i’s instantaneous infection rate !i(t). The corre-
sponding probabilities at O (dt) are

⇡i =

(
1 !i(t)dt
0 1 � !i(t)dt , (4.59)

with !i(t) = �↵µ↵zi(t) [i(t)]↵�1.

iii) Susceptible node i becomes dormant (�i = 1) or remains susceptible
(�i = 0). This transition occurs if all of node i’s neighbors recover. At
O (dt) this reduces to node i having a single infected neighbor that re-
covers, thus

�i =

(
1 �1

zi(t)⌘dt
0 1 � �1

zi(t)⌘dt . (4.60)

iv) Dormant node i becomes susceptible (&i = 1) or remains dormant
(&i = 0). This transition occurs whenever one of node i’s neighbors be-
comes infected. Writing an explicit form for the hazard rate of this event
is rather involved, even at O (dt). Nevertheless, the exact expression is
irrelevant for our derivations, so

&i =

(
1 "i(t)dt
0 1 � "i(t)dt , (4.61)

with "i(t) a generic function of time.

The equation for the state of node i at time t + dt reads

ni(t + dt) = ni(t)(1 � ⇠i) + (1 � ni(t))(1 � �0
zi(t))⇡i , (4.62)

where the first term corresponds to node i being infected (ni(t)) and not re-
covering (1 � ⇠i), and the second term corresponds to node i being susceptible
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((1 � ni(t))(1 � �0
zi(t))) and becoming infected (⇡i). Furthermore, the equation

for the viral load of node i at time t + dt is

i(t + dt) = i(t) � i(t)ni(t)⇠i � i(t)(1 � ni(t))�0
zi(t)(1 � &i)⇣�1dt

+ (1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)(1 � �i)�zi(t)dt . (4.63)

The first term corresponds to the previously amassed viral load (i(t)), and the
second term describes the event where infected node i (ni(t)) recovers (⇠i) and
erases its viral load (�i(t)). The third term corresponds to the event where
dormant node i ((1 � ni(t))�0

zi(t)) does not become susceptible (1 � &i) and its
viral load decays (�i(t)⇣�1dt). Finally, the fourth term corresponds to sus-
ceptible node i ((1 � ni(t))(1 � �0

zi(t))) remaining susceptible (neither becoming
infected (1 � ⇡i) nor dormant (1 � �i)) and accumulating additional viral load
from its zi(t) infected neighbors (�zi(t)dt).

Applying the familiar procedure of computing the expectation value con-
ditioned on time t followed by the ensemble average (see Section 4.1.1), we
find the dynamic equations

dhni(t)i
dt

= �⌘hni(t)i + �↵µ↵h(1 � ni(t))zi(t) [i(t)]↵�1i (4.64)

dhi(t)i
dt

= �⌘hi(t)ni(t)i � ⇣�1hi(t)(1 � ni(t))�0
zi(t)i + �h(1 � ni(t))zi(t)i .

(4.65)

In addition, we compute the dynamic equation of �i (t),

dh�i (t)i
dt

= �⌘h�i (t)ni(t)i � �⇣�1h�i (t)(1 � ni(t))�0
zi(t)i

+ ��h(1 � ni(t))zi(t) [i(t)]��1i , (4.66)

for an arbitrary value � > 0.20

20See Appendix A.6 for a detailed derivation of Eqs. (4.64), (4.65), and (4.66).
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4.2.3.1 Late-time limit and mean-field approximation

Taking the late-time limit in Eqs. (4.64), (4.65), and (4.66) and dropping the
explicit dependence with t, we find

0 = �⌘hnii + �↵µ↵h(1 � ni)zi
↵�1
i i (4.67)

0 = �⌘hinii � ⇣�1hi(1 � ni)�0
zi
i + �h(1 � ni)zii (4.68)

0 = �⌘h�i nii � �⇣�1h�i (1 � ni)�0
zi
i + ��h(1 � ni)zi

��1
i i . (4.69)

Setting � = ↵ in Eq. (4.69) and combining with Eq. (4.67) yields a pair of
equations

0 = �⌘h↵i nii � ↵⇣�1h↵i (1 � ni)�0
zi
i + ⌘µ�↵hnii (4.70)

0 = �⌘hinii � ⇣�1hi(1 � ni)�0
zi
i + �h(1 � ni)zii . (4.71)

The generic term h�i nii can be expanded as

h�i nii = h�i ni | ni = 1i ⇥ Pr(ni = 1) + h�i ni | ni = 0i ⇥ Pr(ni = 0) (4.72)
= h�i | ni = 1ihnii + 0 ⇥ (1 � hnii) . (4.73)

Similarly, we find

h�i (1 � ni)�0
zi
i = h�i | Yi = 1i ⇥ Pr(Yi = 1) , (4.74)

with Yi = (ni = 0 \ �0
zi
= 1), i.e., node i being healthy and not having any in-

fected neighbor (i.e., dormant). Substituting for � = 1 and � = ↵ in Eqs. (4.32)
and (4.33) and combining both equations yields

�⌘µ�↵hnii + A�h(1 � ni)zii � B⇣�1 Pr(Yi = 1) = 0 , (4.75)

with

A =
h↵i | ni = 1i
hi | ni = 1i (4.76)

and

B = Ahi | Yi = 1i � ↵h↵i | Yi = 1i . (4.77)

Notice that A > 0.
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Assuming that the state of the nodes are uncorrelated, we can write

Pr(Yi = 1) = Pr(ni = 0 \ �0
zi
= 1) ⇡ Pr(ni = 0) ⇥ Pr(�0

zi
= 1) , (4.78)

with Pr(ni = 0) = 1 � hnii and

Pr(�0
zi
= 1) ⇡

 
ki

0

!
⇥ [Pr(ni = 0)]ki = (1 � hnii)ki . (4.79)

Additionally, in Section 2.1.2 we applied a mean-field approximation for un-
correlated networks and derived

h(1 � ni)zii ⇡
X

j

kik j

Nhki (hnji � hniihnji) . (4.80)

In random degree-regular networks we have ki = k j = hki = k, and due to ho-
mogeneity, hnii = hnji = ⇢; then Eq. (4.75) becomes

�⌘µ�↵⇢ + A�k⇢(1 � ⇢) � B⇣�1(1 � ⇢)k+1 = 0 , (4.81)

with ⇢ = limt!1 ⇢(t) the late-time prevalence.
Appendix A.7 provides the full (and rather lengthy) computation of the

parameters A and B.21 The dynamics of the system is encapsulated by the
function

f (⇢) = �⇢ + ak⇢(1 � ⇢) �
"

b1⇣̂�1

⇢ + (k⇣̂)�1
� b2↵⇣̂�1

⇢ + ↵(k⇣̂)�1

#
⇢(1 � ⇢)k+1 , (4.82)

with the nondimensional parameter ⇣̂ = ⌘⇣, and where the reduced parameters
a, b1, and b2 are constant (a reasonable assumption for ⇢ ⇡ 0). The fixed points
( f (⇢⇤) = 0) are stable (respectively, unstable) when f 0(⇢⇤) < 0 ( f 0(⇢⇤) > 0),
and the transition is continuous (discontinuous) if f 00(⇢⇤) < 0 ( f 00(⇢⇤) > 0).
The healthy phase loses stability at

�1 + ak � k(b1 � b2) = 0 , (4.83)

the nature of the transition changes from continuous to discontinuous at

�2ak + 2k(k + 1)(b1 � b2) + 2k2⇣̂

"
b1 � b2

↵

#
= 0 , (4.84)

21In particular, we expect B ⇠ ⇢ because the healthy phase (⇢0 = 0) should always be a
fixed point of Eq. (4.81).
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and the endemic phase is found by solving

�1 + ak(1 � ⇢+) �
"

b1⇣̂�1

⇢+ + (k⇣̂)�1
� b2↵⇣̂�1

⇢+ + ↵(k⇣̂)�1

#
(1 � ⇢+)k+1 = 0 . (4.85)

Note that in the limit ⇣ ! 0, Eqs. (4.83) and (4.84) are functionally identical
to the results obtained for the miccSIS model with short-term memory (see
Section 4.2.1.1). Although the qualitative description of the phase diagram
should coincide, we do not expect an exact numerical agreement.

Figure 4.10(c) shows the phase diagram in terms of the original parameters
↵ and �.22 First of all, notice that Eq. (4.83) does not depend on ⇣, implying
that the epidemic threshold �c (i.e., the point at which the healthy phase be-
comes unstable) does not change with the relaxation time (grey curve). In
particular, the right boundary of the discontinuous transitions is always lo-
cated at the same value of �. On the other hand, the left boundary and the
tricritical point ↵tc consistently move toward lower values as ⇣ increases. This
means that, if the viral load decays more slowly, the coexistence region be-
comes wider and a first order phase transitions appears for smaller values of ↵
(note that lim⇣!1 ↵tc = 1). As expected, the curves for ⇣ = 0 (orange) are qual-
itatively identical to the results that we obtained for the miccSIS model with
short-term memory (see Fig. 4.4). Nevertheless, the exact numeric values are
di↵erent (e.g., the lower tricritical point).

Additionally, our analytic results are able to explain the exotic hysteresis
loop that we uncovered in the miccSIS model with long-term memory (see
Section 4.2.2.1). Figure 4.10(b) shows the typical bifurcation diagram of a
discontinuous phase transition. The healthy phase (⇢ = 0) is stable in the re-
gion � < �c, the endemic phase (⇢ > 0) is stable if � > ��, and both solutions
coexist for � 2 [��, �c] (dashed curves in Fig. 4.10(c)). The prevalence jumps
from 0 to ⇢� (respectively, ⇢c) at the left (right) boundary of this bistable re-
gion. The orange curves in Fig. 4.10(a) show the values of ⇢c (solid) and ⇢�
(dashed) when ⇣ = 0, for all the values of the shape parameter ↵ that exhibit
a first order transition. We see that both curves appear continuously at the tri-
critical point and grow rather quickly with increasing alpha. For larger values
of the relaxation time we observe that the curves move toward the left (↵tr de-
creases). Moreover, the prevalence gap at the left boundary of the coexistence
region (⇢�) becomes smaller as ⇣ increases . In the limit ⇣ ! 1 it practically

22See Appendix C.4 for details on obtaining the numerical values of the phase diagram.
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Figure 4.10: Phase diagram of the miccSIS model with medium-term
memory. (a) Prevalence of a hysteresis loop’s upper branch at the right (solid)
and left (dashed) boundaries of the coexistence region (relaxation time as in c).
(b) Bifurcation diagram of a first order phase transition. (c) Dashed lines de-
limit region of coexistence (relaxation time in legend), grey dashed curve indi-
cates common right boundary, dot marks the tricritical point, solid grey curve
indicates continuous phase transition, and dotted-dashed grey curve indicates
continuous or discontinuous transition (depending on ⇣).
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vanishes and the upper branch of the hysteresis loop is indistinguishable from
a continuous phase transition.23

Inasmuch as our analytical approach is based on the system’s late-time
properties, it is unable to explain the excitable behavior that we found for
⇣ ! 1 and ↵ < 1. We do know that the lower limit of the excitable region
(i.e., the point where the healthy phase becomes unstable) would be given by
Eq. (4.83), which is independent of ⇣. In this case, the instability would lead
to a transient, SIR-like epidemic curve.24 Our results for the miccSIS model
with long-term memory revealed that the late-time prevalence is independent
of ↵ (see Section 4.2.2). Hence in the limit ⇣ ! 1, the right boundary of the
excitable region would extend until �c, the epidemic threshold of the standard
SIS model, for all values of ↵.. The question that remains unsolved is the
location of the transition to full endemicity for finite nonvanishing relaxation
times (i.e., 0 < ⇣ < 1). Given the results for ↵ > 1, a plausible hypothesis is
the existence of a secondary tricritical point (located somewhere at ↵ < 1) that
moves toward ↵ = 1 as ⇣ increases. Nonetheless, testing this hypothesis re-
quires a whole di↵erent approach, capable of describing the system’s transient
state.

4.2.3.2 Simulation results

We perform extensive simulations to verify our analytic findings and explore
some of our hypothesis.25 On the one hand we apply an adiabatic expansion–
like approach to explore the position of the critical point. Our simulations start
well into the active phase with a fully infected population and quasistatically
decrease the control parameter, �, until finite-size fluctuations trap the system
in the absorbing state. We use random degree-regular networks with k = 4
and sizes N = 103 and N = 104 nodes, and units such that ⌘ = 1 and � = 1.
We compute the late-time prevalence as ⇢1 = limt!1 NI(t)/N, with NI(t) the

23From a dynamical system’s point of view, it would appear that the unstable solution that
separates both attractors vanishes for ⇣ ! 1. To the extend of our knowledge, this would
violate multiple mathematical principles. Bear in mind, however, that we have projected a
two-dimensional system (ni(t) and i(t)) into a single variable problem (⇢). Working with the
full system could complete the description, although the mathematical complexity would be
extremely large.

24A thorough dynamical system–like description could reveal, perhaps, the appearance of
a global bifurcation.

25See Appendix C.3.2 for an outline of the core algorithm.
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number of infected nodes at time t, sampled from 104 states and time-averaged
over various trajectories.26,27

Additionally, we complement these simulations with the analysis of pa-
tient zero scenarios, the arrival of an infected agent in a previously una↵ected
population. For a fixed value of � we run 104 realizations, each starting with
a single randomly chosen infected node and a system cleared of all viral load.
We compute the average coverage fraction, c̄, and the probability that an out-
breaks becomes endemic, P1. If an outbreak becomes endemic, we extend
the simulation until it reaches the steady state, and then measure the late-time
prevalence, ⇢⇤1. Finally, we also compute the probability that an outbreaks
reaches the coverage threshold three times, P3. Remember that we use a cov-
erage threshold of cth = 0.75.28

Figure 4.12(a) shows the late-time prevalence with ↵ = 2, for various
relaxation times. Recall that this value of the shape parameter shows a con-
tinuous phase transition in the miccSIS model with short-term memory (see
Section 4.2.1). In that case, the curve terminates at a high prevalence due to
finite-size e↵ects (Fig. 4.12(b)). With increasing ⇣, however, this final gap
first increases even more and afterward gradually decreases to almost zero
(for ⇣ ! 1); furthermore, the epidemic threshold moves consistently toward
lower values as ⇣ grows. In Figs. 4.12(c),(d) we show the late-time prevalence
for ⇣ = 0.1 and ⇣ = 0.5. In the former case we clearly see that the transition is
continuous, while the latter exhibits a first-order phase transition.

These simulations (partially) corroborate our analytic results. In particular,
the tricritical point moves toward lower values of ↵ as ⇣ increases, so that the
transition to endemicity becomes discontinuous. Notwithstanding, the numer-
ical estimates are rather inadequate. For instance, our analytic approximation
predicts that the right boundary of the coexistence region is not altered by ⇣.
However, comparing the discontinuity in Figs. 4.12(d) and 4.12(e) we clearly
observe a displacement toward lower values of � as ⇣ increases. Moreover, in
the limit ⇣ ! 1, the upper branch of the hysteresis loop is independent of ↵
(Fig. 4.7). Therefore, the left boundary of the bistable region in Fig. 4.10(c)
should tend to a vertical line that contains the limiting value ↵th = 1.

26See Appendix C.3.3 for simulation details.
27See Fig. D.2 in Appendix D for a verification of the equivalence between the limit cases

of the miccSIS model with medium-term memory and the miccSIS model with short-term and
long-term memory.

28See Appendix C.3.4 for simulation details.
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Figure 4.11: Excitability in the miccSIS model with medium-term mem-
ory. Results for a random degree-regular network with k = 4 and N = 103.
(a, b) Late-time prevalence for shape parameter (a) ↵ = 0.6 and (b) ↵ = 0.8,
time-averaged over 104 samples (relaxation time in legend). Uncertainty inter-
vals not appreciable at this scale. (c, d) Probability that a single-seed outbreak
reaches the coverage once (solid) and three times (dashed) for ⇣ = 1 (orange)
and ⇣ = 100 (purple), with (c) ↵ = 0.6 and (d) ↵ = 0.8, averaged over 104

independent realizations. Uncertainty intervals comparable to line width.

Finally, Figs. 4.11(a),(b) show the late-time prevalence curves for ↵ < 1.
Unsurprisingly, the epidemic threshold shifts consistently toward higher val-
ues with increasing ⇣, more or less maintaining the same linear approach to-
ward the critical point. Contrary to the analytic prediction, the left boundary of
the excitable region (taken as the inflection point of P1) moves toward higher
values of � as ⇣ increases; additionally, the right boundary (taken as the inflec-
tion point of P3) also moves to the right. With ⇣ = 1 the excitable region is
practically nonexistent for both values of ↵. On the other hand, with ⇣ = 100
both ↵ = 0.6 and ↵ = 0.8 exhibit an excitable region, although the latter is
much narrower. As a final observation, notice that the endemic probabilities
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Figure 4.12: Bistability in the miccSIS model with medium-term memory.
Results for random degree-regular networks with k = 4 and shape parameter
↵ = 2. (a) Late-time prevalence for network size N = 103 (solid) and N = 104

(dashed), time-averaged over 104 samples (relaxation time in legend). Un-
certainty intervals not appreciable at this scale. (b–e) Late-time prevalence of
adiabatic expansion (orange curve) and endemic single-seed outbreaks (purple
circles) for N = 104 with relaxation time (b) ⇣ = 0, (c) ⇣ = 0.1, (d) ⇣ = 0.5,
and (e) ⇣ ! 1, averaged over 104 independent realizations. Uncertainty inter-
vals comparable to symbol size and line width.
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seem to evolve toward a common value.29 Concluding, these preliminary re-
sults support our hypothesis regarding the existence of a secondary tricritical
point that marks the onset of the excitable regions and moves toward ↵ = 1 as
the relaxation time increases. A complementary approach in terms of the sys-
tem’s transient properties would provide valuable knowledge into this peculiar
behavior.

4.2.4 Discussion

In summary, the possibility of node reinfection in the SIS model uncovers the
full potential of the memory-induced complex contagion infection mechanism.
The temporal profiles of the outbreaks (analyzed for the SI model) present a
highly nonlinear interaction with the intricacies of node recovery and viral
load accumulation (introduced in the SIR model). In particular, our analytic
approximations and simulation results reveal a sophisticated interplay between
a short-term and a long-term memory mode, displayed by a large variety of
phenomena.

Compared to the standard SIS model, the macroscopic state of the system
is greatly modified if agents possess a short-term memory mode (⇣ = 0). For
specific shapes of the infection probability (↵ > ↵tc), the customary second-
order transition from the healthy to endemic phase may change its nature to
discontinuous. Additionally, the system exhibits a cross-over region (↵ ⇡ ↵tc)
where the continuous phase transition deviates from the expected mean-field
predictions.

When agents possess an additional long-term memory mode (⇣ ! 1), the
macroscopic properties of the system are indistinguishable from the standard,
Markovian model. As a consequence, agents with a virtually infinite memory
coalesce into an aggregate population that is e↵ectively memoryless. To clar-
ify, the particularities induced by the short-term memory mode are completely
suppressed and cancelled out by the long-term memory mode. Note that this
rather counter-intuitive memory loss resembles the situation where interacting
pathogens are indistinguishable from complex contagion [90].

Nonetheless, widely distinct and clearly distinctive behaviors appear with
the analysis of patient zero scenarios. A common e↵ect of agents’ memory
is the breaking of the symmetry between the order parameters c̄, P, and ⇢1.

29See Fig. D.3 in Appendix D, which shows results for additional values of ⇣.
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If agents are memoryless, all three order parameters are completely identi-
cal. This symmetry is broken by the long-term memory mode, and the crit-
ical points become dissociated. The system first transitions from the healthy
phase to an either bistable or excitable intermediate regime, followed by a
hybrid transition to the endemic phase. This di↵ers from a double phase tran-
sition, where the same order parameter undergoes two consecutive phase tran-
sitions, a phenomenon usually associated to node and/or topological hetero-
geneities [59, 45, 3, 32].

Finally, our analytic results for finite nonvanishing relaxation times
(0 < ⇣ < 1) allow us to correctly interpolate between the limit cases of instan-
taneous decay (⇣ = 0) and perpetual accumulation (⇣ ! 1). By developing
a suitable mean-field approximation we are able to (qualitatively) predict the
change of nature from a continuous to a discontinuous phase transition (as well
as the corresponding tricritical point), and also to describe an exotic variant of
the typical hysteresis loop (where the upper branch connects the two attrac-
tors in a continuous manner). However, this approach is unable to explain the
transient instability associated to fat-tailed infection probabilities (↵ < 1).





Chapter 5

Nonhomogeneous networks

5.1 Network topology

Until now we have limited our analysis to random degree-regular networks,
where all nodes are equivalent. Besides the fact that all agents have the same
degree, the topology is locally tree-like. Nevertheless, it is widely known
that node heterogeneity and nontrivial network structures can have a large ef-
fect on spreading properties. Examples include vanishing epidemic thresh-
olds [134, 15], the appearance of localized states [119] and smeared phase
transitions [85], and anomalous mesoscale di↵usion [127, 174]. Here we ex-
plore the interplay between the memory-induced complex contagion infection
mechanism and nonhomogeneous network topologies. In particular, we ana-
lyze two of the most relevant structural properties of real networks: clustering
and node heterogeneity [123].

In terms of network topology, the most fundamental ingredient is the de-
gree distribution. If a network has a total of N nodes, of which Nk have de-
gree k, the degree distribution reads p(k) = Nk/N. For random degree-regular
networks, where all the nodes have the same degree k̄, we have p(k) = �k̄

k,
with �`m the Krönecker function.1 In real-life networks, however, nodes are
very heterogeneous: many nodes have a small number of neighbors, but some
are extremely well-connected. This characteristic is reflected by the power
law–like fat tails of the degree distribution, p(k) ⇠ k��.

Clustering, on the other hand, measures the tendency of having common
neighbors. Consider node i (which has degree ki) and its nearest neighbors.
The clustering coe�cient of node i is ci = 2ti/ki(ki � 1), with ti the number of
edges between its nearest neighbors. The network’s overall clustering coe�-
cient is obtained by averaging over all nodes, C = N�1 P

i ci. Networks that are
locally tree-like (i.a., random degree-regular networks) have a vanishing clus-

1�`m = 1 if m = `, and �`m = 0 if m , `.
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Figure 5.1: Late-time prevalence in the miccSIS model with short-term
memory on clustered networks. Results for random degree-regular networks
with k = 4. (a–d) Late-time prevalence for network size N = 103 (solid) and
N = 104 (dashed) with shape parameter (a) ↵ = 0.8, (b) ↵ = 1, (c) ↵ = 2, and
(d) ↵ = 4, time-averaged over 104 samples (clustering coe�cient in legend).
Uncertainty intervals not appreciable at this scale. (e–h) Late-time prevalence
of adiabatic expansion (orange curve) and endemic single-seed outbreaks (pur-
ple circles) for ↵ = 4 in a network with N = 104 nodes and clustering coe�-
cient (e) C = 0, (f) C = 0.1, (g) C = 0.25, and (h) C = 0.41, averaged over 104

independent realizations. Uncertainty intervals comparable to symbol size and
line width.

tering coe�cient, C ⇡ 0. Most real-life networks show high levels of cluster-
ing, although not as extreme as fully connected networks, which have C = 1.

Other network properties, such as degree-correlations or community struc-
tures, can have a strong impact on spreading dynamics; nonetheless, their
analysis is beyond the scope of this work. Following the systematic approach
of previous sections, we independently analyze the interaction of clustering
and node heterogeneity with the memory-induced complex contagion infec-
tion mechanism. In addition, we only consider the miccSIS model since it
exhibits a more diverse array of phenomenology and features. Although an-
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alytic approximations are common for the study of spreading phenomena in
networks, we expect highly involved mathematical derivations for the micc-
SIS model. Given that this exceeds the scope of the present work, we resort
directly to simulations.2

Once again, we start with an adiabatic expansion–like approach toward the
critical point �c. Recall that we compute the late-time prevalence as
⇢1 = limt!1 NI(t)/N, with NI(t) the number of infected nodes at time t, sam-
pled from 104 states and time-averaged over various trajectories.3 Addition-
ally, we simulate patient zero scenarios, where an infected agent arrives in a
previously una↵ected population. For a fixed value of � we run 104 realiza-
tions, each starting with a single randomly chosen infected node and a system
cleared of all viral load. We compute the average coverage fraction, c̄, and the
probability that an outbreaks becomes endemic, P1. If an outbreak becomes
endemic, we extend the simulation until it reaches the steady state and then
measure the late-time prevalence, ⇢⇤1. Finally, we also compute the probabil-
ity that an outbreaks reaches the coverage threshold three times, P3. Recall
that we use a coverage threshold of cth = 0.75 and units such that ⌘ = 1 and
� = 1. We only consider the limit cases of instantaneous decay (⇣ = 0) and
perpetual accumulation (⇣ ! 1).4

5.2 Clustering

First we consider random degree-regular networks with k = 4 and clustering
coe�cient C = {0, 0.1, 0.25, 0.41}, constructed by randomly rewiring the links
until the clustering coe�cient reaches its target.5 The largest value, C = 0.41,
corresponds to the maximum achieved for network size N = 104, selected from
10 independent generations. Note that we use a single network realization
for each size and clustering coe�cient; hence the result are not completely
general. However, averaging over various networks can produce an artificial
smoothing e↵ect (specially for discontinuous phenomena), which could lead
to false interpretations.

Figures 5.1(a)–(d) show the late-time prevalence with short-term mem-

2See Appendix C.3.2 for an outline of the core algorithm.
3See Appendix C.3.3 for simulation details.
4See Appendix C.3.4 for simulation details.
5See Appendix B.1 for details on generating these synthetic networks.
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Figure 5.2: Late-time prevalence and excitability in the miccSIS model
with long-term memory on clustered networks. Results for random degree-
regular networks with k = 4. (a–d) Late-time prevalence for network size
N = 103 (solid) and N = 104 (dashed) with clustering coe�cient (a) C = 0,
(b) C = 0.1, (c) C = 0.25, and (d) C = 0.41, time-averaged over 104 sam-
ples (shape parameter in legend). Uncertainty intervals not appreciable at
this scale. (e–h) Endemic probabilities (orange and purple), average cover-
age fraction (blue), and late-time prevalence of adiabatic expansion (grey) for
↵ = 0.8 in a network with N = 104 nodes and clustering coe�cient (e) C = 0,
(f) C = 0.1, (g) C = 0.25, and (h) C = 0.41, averaged over 104 independent
realizations. Uncertainty intervals comparable to line width.

ory. For all values of the shape parameter ↵, we observe that the endemic
phase shrinks consistently as C increases (the epidemic threshold moves to
the right). Qualitatively, ↵ = 0.8 and ↵ = 1 remain unaltered, but for ↵ = 2
the approach toward the critical point becomes less abrupt with a larger clus-
tering coe�cient. On the contrary, we see a very clear change with ↵ = 4.
As clustering increases the curves appear to become continuous and the final
gap decreases significantly with the system size, an indication of a second or-
der phase transition. The corresponding results for patient zero scenarios are
shown in Figs. 5.1(e)–(h), which clearly reveal that the discontinuous jump for
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Figure 5.3: Bistability in the miccSIS model with long-term memory on
clustered networks. Late-time prevalence of adiabatic expansion (orange
curve) and endemic single-seed outbreaks (purple circles) for (a–d) ↵ = 2
and (e–h) ↵ = 4 in a random degree-regular network with k = 4, N = 104 and
clustering coe�cient (a, e) C = 0, (b, f) C = 0.1, (c, g) C = 0.25, and (d, h)
C = 0.41, averaged over 104 independent realizations. Uncertainty intervals
comparable to symbol size and line width.

low clustering (C = {0, 0.1}) is substituted by a continuous transition when the
clustering coe�cient is high (C = {0.25, 0.41}).

Figures 5.2(a)–(d) show the late-time prevalence with long-term memory.
All values of C exhibit collective memory loss (the collapse of prevalence
curves with di↵erent ↵), but the di↵erences around the critical region become
more noticeable as clustering increases. Figures 5.2(e)–(h) show the patient
zero results for ↵ = 0.8 and paint the same qualitative picture for clustered
and unclustered networks. However, we do observe a slight narrowing of the
excitable region with larger values of C. Finally, 5.3(a)–(d) show the patient
zero results for ↵ = 2, and those for ↵ = 4 are shown in Figs. 5.3(e)–(h). Once
again, the qualitative description remains unchanged for clustered networks,
which also display an (exotic) hysteresis loop; nevertheless, the bistable region
shrinks as the clustering coe�cient increases.
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5.3 Node heterogeneity
Next we use the configuration model to generate unclustered networks with
a heterogeneous degree distribution. Specifically, we construct scale-free net-
works with a power law distribution, p(k) ⇠ k��, for exponents � = 3.5 and
� = 2.5.6 The former yields a finite variance and we expect results that are
similar to the mean-field approximation [133]. On the other hand, the un-
bounded variance for � = 2.5 is known to push the epidemic threshold toward
very low values [15]. Once again, we use a single network realization for each
size and exponent. Due to the node heterogeneity (specially with � = 2.5),
averaging over di↵erent network realizations would surely lead to an artificial
smoothing of the curves. Although results might not be completely general,
we prefer to isolate these e↵ects and avoid false interpretations.

With short-term memory, � = 3.5 yields clearly separated epidemic thresh-
old for di↵erent values of ↵ (Fig. 5.4(a)). The location of �c is comparable to
random degree-regular networks, but the approach toward the critical point is
continuous and very smooth, including for ↵ > 1. Figs. 5.4(b) and 5.4(c) show
the patient zero results for ↵ = 2 and ↵ = 4, respectively. We observe that the
transition is indeed continuous and also that the endemic probability is very
low. On the other hand, in Fig. 5.4(d) we see that the curves for � = 2.5 gradu-
ally approach the limit �c ! 0 as the system size increases, a known result for
scale-free networks. Nonetheless, ↵ > 1 shows a much smoother approach to-
wards the critical point. This is evident from the patient zero results for ↵ = 2
and ↵ = 4 (Figs. 5.4(e) and 5.4(f), respectively), which show an extremely
slow increase of the endemic probability (specially for ↵ = 4) and could be
indicative of an infinite order transition.

When agents are equipped with a long-term memory mode, both values of
the power law exponent � exhibit the phenomena of collective memory loss
(Figs. 5.5(a),(e)) and excitability (Figs. 5.5(b),(f)). Notice, however, the very
narrow excitable region with � = 2.5. Figures 5.5(c),(d) reveal that the bistable
region vanishes with � = 3.5 and that the growth of the endemic probability
is extremely slow. With � = 2.5, on the other hand, ↵ = 2 shows a continu-
ous transition (Fig. 5.5(g)), while ↵ = 4 exhibits the familiar hysteresis loop
(Fig. 5.5(h)). Notwithstanding, the endemic probability is again extremely
small, indicating that the discontinuous jump could disappear if the number of
realizations is increased.

6See Appendix B.2 for details on generating these synthetic networks.
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Figure 5.4: Late-time prevalence in the miccSIS model with short-term
memory on scale-free networks. Results for scale-free networks with ex-
ponent (a–c) � = 3.5 and (d–f) � = 2.5. (a, d) Late-time prevalence for net-
work size N = 103 (solid) and N = 104 (dashed), time-averaged over 104 sam-
ples (shape parameter in legend). Uncertainty intervals not appreciable at this
scale. (b, c, e, f) Late-time prevalence of adiabatic expansion (grey curve)
and endemic single-seed outbreaks (purple circles), and endemic probability
(blue curve) for (b, e) ↵ = 2 and (c, f) ↵ = 4 in a network with N = 104, av-
eraged over 104 independent realizations. Uncertainty intervals comparable to
symbol size and line width.

5.4 Discussion

In conclusion, large values of the clustering coe�cient causes the transition
with ↵ = 4 and ⇣ = 0 to become continuous, but the system continues display-
ing the excitable and bistable regions when ⇣ ! 1. With medium-term mem-
ory we expect the same behavior as for unclustered random degree-regular
networks, where the intermediate phases gradually appear as the agent’s mem-
ory increases (see Section 4.2.3). Hence we hypothesize that the tricriti-
cal point grows with the clustering coe�cient, but maintains the limit value
lim⇣!1 ↵tr = 1. Figure 5.6 shows a schematic representation of the hypotheti-
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Figure 5.5: Collective memory loss, excitability and bistability in the micc-
SIS model with long-term memory on scale-free networks. Results for
scale-free networks with exponent (a–d) � = 2.5 and (e–h) � = 3.5. (a, e)
Late-time prevalence for network size N = 103 (solid) and N = 104 (dashed),
time-averaged over 104 samples (shape parameter in legend). Uncertainty
intervals not appreciable at this scale. (b, f) Endemic probabilities (orange
and red), average coverage fraction (blue) and late-time prevalence of adia-
batic expansion (grey) for ↵ = 0.8 in a network with N = 104, averaged over
104 independent realizations. Uncertainty intervals comparable to line width.
(c, d, g, h) Late-time prevalence of adiabatic expansion (grey curve) and en-
demic single-seed outbreaks (purple circles), and endemic probability (orange
curve) for (c, g) ↵ = 2 and (d, h) ↵ = 4 in a network with N = 104, averaged
over 104 independent realizations. Uncertainty intervals comparable to symbol
size and line width.
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Figure 5.6: Phase diagram of the miccSIS model on clustered and scale-
free networks. Schematic representation of the hypothetical phase diagram in
terms of the tricritical shape factor of the infection probability density, ↵tr, and
the relaxation time of viral loads, ⇣. The numerical values on the vertical axis
are orientative.

cal phase diagram in terms of the shape parameter ↵ and relaxation time ⇣.
Node heterogeneity, on the other hand, also causes the transition with

↵ = 4 and ⇣ = 0 to become continuous, considerably shrinks the excitable
phase, and destroys the bistable region when ↵ = 2 and ⇣ ! 1. Except for
the displacement of the epidemic threshold and the discontinuous jump with
↵ = 4 and ⇣ ! 1, the two values of the power law exponent � yield quali-
tatively similar results. Thus the tricritical point seemingly grows with node
heterogeneity and tends toward a limit value lim⇣!1 ↵tr > 1 (see Fig. 5.6).

Recall that we have used a single network realization for each system size
and clustering coe�cient or power law exponent. Although the quantitative
details would vary (specially for large clustering coe�cients and small power-
law exponents), we expect the same qualitative picture for di↵erent network
realizations.7

7See Figs. D.4, D.5, and D.6 in Appendix D for additional plots that partially verify this
hypothesis.





Chapter 6

The voter model

6.1 Standard voter model
The voter model describes a population where each individual holds one of
two opinions (for instance, buy or sell in a financial market or Democratic
vs. Republican in American politics). The system’s evolution lies at the in-
terface between agents with opposing states, and is based on the fundamental
assumption of imitation (individuals adopt the opinion of their peers). First
introduced in 1973 to study competing species [40, 88], it was quickly rein-
terpreted as a model for opinions. Due to its simplicity and versatility, the
voter model has become one of the most paradigmatic model of opinion dy-
namics. Applications and extensions range from herding behavior [118, 147]
and electoral patterns [70], to the analysis of catalytic reactions [65, 66] and
the evolution of bilingualism [27].

The classical formulation of the voter model is in discrete time: at each
time step we randomly choose one of the agents, and the selected individual
(node i) randomly picks one of its neighbors (node j) and adopts their opinion.
Notice that the state of node i does not change if nodes i and j already shared
the same opinion. Hence the system remains unaltered when it reaches consen-
sus (all nodes have the same opinion). Nevertheless, this constitutes an active
absorbing phase since agents keep imitating their peers. Note that a usual vari-
ant consists in describing the activation process of node i as a continuous-time
stochastic process but maintaining the imitation step as a separate element.

Here we recast the voter model as a transmission phenomenon. The event
where node i imitates node j can be interpreted as node j transmitting their
opinion to node i. Then for any pair of neighbors i and j we consider two
transmission channels, i! j and j! i. Albeit the similarities with the epi-
demic models of previous sections, the most fundamental di↵erence lies in
the transitions between states. On one hand, the SIS model is described by
two distinct processes: infection requires contact but recovery is spontaneous.
Conversely, the voter model possesses a unique symmetry: the mechanism to
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change from opinion A to opinion B is identical to the mechanism that allows
to change from B to A.

6.1.1 Continuous-time opinion transmissions

This “gauge invariance” of the voter model may be broken by a suitable mod-
ification. For example, one could consider that agents with opinion A are
more successful in convincing their peers. However, we prefer to maintain the
symmetry between opinions and, instead, distinguish two transmission pro-
cesses: persuasion and rea�rmation. The former describes the transmission
of an opinion to a node that holds the opposing view; on the contrary, the lat-
ter corresponds to the interaction between nodes that already have the same
opinion.

Our formulation of the voter model as a spreading phenomenon describes
a population of individuals that hold either opinion A or B and is embedded on
an undirected and unweighted contact network. In its Markovian incarnation,
nodes are persuades by their peers at a constant rate �p (corresponding to the
links A! B and B! A). Moreover, nodes rea�rm their opinion at a constant
rate �r (corresponding to the links A! A and B! B). Then at any time the
system counts 2E =

P
i ki active transmission processes, where E is the total

number of (undirected) links and ki the degree of node i.
Borrowing the notation used for magnetic systems, we map the opinions

A and B to the states ✓ = �1 and ✓ = +1, respectively. Then we can write the
magnetization at time t as m(t) =

P
i ✓i(t), with ✓i(t) the opinion state of node i

at time t. As it turns out, the (weighted) ensemble average of the magnetiza-
tion is conserved by the dynamics [118] and is therefore only a function of the
initial conditions. Although this property is useful to evaluate certain late-time
characteristic, it also reveals that the magnetization is useless as order param-
eter. A suitable alternative is to use the interface density, ⇢, which measures
the fraction of links that connect nodes with opposing opinions.

In uncorrelated networks, finite systems evolve exponentially toward one
of the consensus states [166]. However, if the average degree is hki > 2,
the system falls in a quasi-stationary state in which the interface density is
constant. The life-time of this quasi-stationary state grows with the system
size; consequently, infinite systems remain forever trapped in this active state.
Finally, the average interface density decays exponentially, log ⇢(t) / t/⌧, and
the characteristic time ⌧ increases with the system size.
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Figure 6.1: Temporal evolution of the standard voter model. Results for a
random degree-regular network with k = 4 and N = 103 and initial condition
m0 = 0. Uncertainty intervals at 95% confidence level. (a) Magnetization for
10 independent simulations with persuasion rate �p = 1. (b) Average interface
density of 100 independent simulations (persuasion rate in legend). Note the
log-scale in the vertical axis. (c) Averaged curves with scaled time t0 = �pt
(colors as in b).
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6.1.2 Simulation results
We perform extensive stochastic simulations to verify these analytic predic-
tions.1 We start each run with an initial magnetization of m0 = 0 and terminate
the simulation when the system reaches consensus.2 We use a random degree-
regular network with k = 4 and N = 103 nodes, and compute the magnetiza-
tion as m(t) = (N+(t) � N�(t))/N, with N+(t) (respectively, N�(t)) the number
of nodes with opinion ✓ = +1 (✓ = �1) at time t, and the interface density as
⇢(t) = Ep(t)/E, with Ep(t) the number of persuasion links, i.e., (undirected)
links that connect nodes with opposing opinions at time t. Without loss of
generality we use units of time such that �r = 1.

Figure 6.1(a) shows the magnetization for 10 independent runs, of which
approximately half reach the final consensus m = +1. Notice the large vari-
ation in terms of consensus times. In Fig. 6.1(b) we verify that the interface
density decays exponentially. Additionally, we observe that the time scale is
smaller as the persuasion rate grows. However, these di↵erences are elimi-
nated by scaling time as t0 = �pt, as we can see in Fig. 6.1(c).

6.2 Memory-induced complex contagion
voter model

Next we equip the voter model with the memory-induced complex contagion
infection mechanism. Nodes have a constant infectivity rate, �, and continu-
ously spread bits of opinion toward their entire neighborhood. They target all
of their neighbors equally, transmitting “pathogen” along each edge at constant
rate �. At the same time, nodes collect these “toxins” from all their neighbors,
and accumulate two opinion loads: r from neighbors with whom they share
the same opinion, and p from neighbors that hold the opposing view. Nodes
rea�rm their opinion with probability  ⇤r (r)dr and are persuaded to switch
state with probability  ⇤p(p)dp, with  ⇤r (r) and  ⇤p(p) the corresponding in-
fection probability densities.

Regarding the decay of the opinion loads we consider a very simple pro-
gram. Besides controlling the rea�rmation (respectively, persuasion) process,
r (p) stores the cumulative evidence in favor of maintaining (switching) its

1See Appendix C.5.1 for an outline of the core algorithm.
2See Appendix C.5.3 for simulation details.
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opinion state. Thus, when a rea�rmation process is triggered, the node erases
its persuasion load p but the rea�rmation load r remains unaltered. On the
other hand, if a node is persuaded to switch opinions, it transfers p to r (after
changing state, the evidence in favor of the opposing opinion becomes evi-
dence in favor of its current opinion) and erases p.

In summary, agents spread pathogen to all their neighbors and continu-
ously accumulate rea�rmation (same opinion) and persuasion (opposing opin-
ion) load from all their neighbors. For each node there are two active pro-
cesses, which entail a single or no transition:

• Rea�rmation of agent j. Agent j resets its persuasion load, p, j  0.

• Persuasion of agent j. Agent j converts its persuasion load into rea�r-
mation load, r, j  p, j, resets its persuasion load, p, j  0, and changes
its opinion state, ✓ j  �✓ j.

In general, the infectivity rate, �, may vary from node to node and can be
di↵erent between persuasion and rea�rmation processes. For example, one
could model individuals that are very persuasive to new followers (large �p)
but less successful in strengthening the bond with loyal adherents (small �r).
Similarly, the infection probability densities  ⇤p and  ⇤r could vary between
nodes. Notwithstanding, in order to eliminate the e↵ects of node heterogene-
ity, in the present work we use the same �,  ⇤p, and  ⇤r for all nodes, and the
same � for both persuasion and rea�rmation processes.

The two infection processes are governed by the versatile Weibull distri-
bution, with shape parameter ↵ and scale parameter µ. The corresponding
instantaneous hazard rates are

!r(t) = �↵r[µr]↵rzr(t) [r(t)]↵r�1 (6.1)
!p(t) = �↵p[µp]↵pzp(t)[p(t)]↵p�1 , (6.2)

with zr(t) (respectively, zp(t)) the number of neighbors that hold the same (op-
posing) opinion at time t. Notice that ↵r = ↵p = 1 recovers the Markovian
voter model presented in Section 6.1 (with �µr and �µp as rea�rmation and
persuasion rates). Given that time can be scaled adequately by both rates (re-
call Fig. 6.1(c)), hereon forward we use µr = µp = 1. Hence we only consider
two parameters, ↵r and ↵p, the shape factors for the rea�rmation and persua-
sion infection probability densities. Recall that ↵ < 1 (respectively, ↵ > 1) cor-
responds to a monotonically decreasing (increasing) hazard rate (see Fig. 2.2).



96 Chapter 6. The voter model

t0 t1 t2

b
op

in
io

n
lo

ad

time, t

r(t)
p(t)

D

C

E

a

Figure 6.2: Opinion load accumulation in the micc voter model. (a) Small
system considered in example. (b) Evolution of node C’s opinion loads. Node
C rea�rms its opinion at t1 and its persuasion load decays instantly (purple).
When C is persuaded at t2, it exchanges opinion loads and erases its persuasion
load. Node C holds opinion A in the interval t 2 [t1, t2] and opinion B for t > t2.

Then we can interpret the former as an impulsive reaction (the occurrence
probability is higher with little evidence) while the latter represents a medi-
tative process (the event is more likely as more evidence becomes available).
Finally, ↵ = 1 corresponds to a purely random event.

For illustrative purposes, consider the system depicted in Fig. 6.2(a). At
time t0, nodes C and D hold opinion A, and node E has opinion B. During
the interval t 2 [t0, t1], node C’s rea�rmation load, r, and persuasion load, p,
both grow at rate �. Node C rea�rms its opinion at time t1 and instantly erases
its persuasion load. Afterward, both opinion loads grow at the same rate �.
When C is persuaded at time t2, it swaps opinion loads, resets its persuasion
load, and switches to opinion B. Afterward both opinion loads grow again at
rate �. Figure 6.2(b) shows the evolution of node C’s opinion loads.

6.2.1 Simulation results
In order to explore the e↵ects of the memory-induced complex contagion in-
fection mechanism in the voter model we perform extensive stochastic sim-
ulations.3 We start each run with an initial magnetization of m0 = 0 and ter-

3See Appendix C.5.2 for an outline of the core algorithm.



6.2. Memory-induced complex contagion voter model 97

10�2

10�1

0 10 20 30 40 50

a ↵p = 1, N = 102

0 100 200 300 400 500

b N = 103

0.0

0.1

0.2

0.3

0.4

0.5

0 3 6 9 12 15

c ↵p = 2, N = 102

0 3 6 9 12 15

d N = 103

in
te

rf
ac

e
de

ns
ity

,⇢
(t)

↵r = 0.6
↵r = 0.8
↵r = 1
↵r = 2

time, t

Figure 6.3: Consensus in the micc voter model. Average interface density
of 100 independent simulations with initial condition m0 = 0 and persuasion
parameter (a, b) ↵p = 1 and (c, d) ↵p = 2, in a random degree-regular network
with k = 4 and (a, c) N = 102 and (b, d) N = 103 nodes (rea�rmation
parameter in legend). Uncertainty intervals at 95% confidence level. Note the
log-scale in the vertical axis in (a, b).

minate the simulation when the system reaches consensus.4 We use random
degree-regular networks with k = 4 and N = 102 and N = 103 nodes, and com-
pute the magnetization as m(t) = (N+(t) � N�(t))/N, with N+(t) (respectively,
N�(t)) the number of nodes with opinion ✓ = +1 (✓ = �1) at time t, and the
interface density as ⇢(t) = Ep(t)/E, with Ep(t) the number of persuasion links,
i.e., (undirected) links that connect nodes with opposing opinions at time t. We
use units of the opinion load such that � = 1 and, without loss of generality,
set µr = µp = 1.

Figures 6.3(a),(b) show the results for persuasion parameter ↵p = 1. In-
dependently of the rea�rmation parameter, ↵r, we recover the results for the

4See Appendix C.5.3 for simulation details.
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Figure 6.4: Dynamic equilibrium in the micc voter model. Average inter-
face density of 100 independent simulations with initial condition m0 = 0 and
persuasion parameter (a, b) ↵p = 0.6 and (c, d) ↵p = 0.8, in a random degree-
regular network with k = 4 and (a, c) N = 102 and (b, d) N = 103 nodes
(rea�rmation parameter in legend). Uncertainty intervals at 95% confidence
level.

Markovian model (recall Fig. 6.1(c)). We also verify that the characteristic
decay time scales linearly with N.

The results for persuasion parameter ↵p = 2 are shown in Figs. 6.3(c),(d).
With rea�rmation parameter ↵r < 1 the population reaches consensus in a
very short time. After a small plateau, the interface density decays almost
linearly with t, although it exhibits a slower final relaxation. Note that the
duration of the initial plateau increases with system size. On the other hand,
with rea�rmation parameter ↵r = 2 the decay toward consensus is extremely
slow, and reduces even more for larger N. Additionally, notice the very narrow
uncertainty intervals in both panels.

Finally, Figs. 6.4(a)–(d) show the results for persuasion parameter ↵p < 1.
Independently of the rea�rmation parameter, with ↵p = 0.6 the system stabi-
lizes in an active state where limt!1 ⇢(t) > 0 (Figs. 6.4(a),(b)). Conversely,
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↵p = 0.8 yields a more diverse phenomenology. The small population (see
Fig. 6.4(c)) evolves linearly toward consensus with ↵r < 1, although the trend
is more gradual as the rea�rmation parameter grows. With ↵r � 1, on the other
hand, the system presents an active steady state with ⇢ > 0. Nevertheless, this
variety of phenomena disappears in the larger population (Fig. 6.4(d)), which
exhibits a dynamic equilibrium for all values of the rea�rmation parameter.

6.2.2 Discussion

With ↵p < 1 we observe that the dynamic equilibrium already appears for fi-
nite systems, hinting toward the possibility that it is a true attractor (instead
of a quasi-stationary state due to infinite size, as is the case for the Markovian
voter model). Nonetheless, for ↵p = 0.8 we do see the system evolving in
the direction of consensus (for some values of ↵r), which could be indicative
of a cross-over e↵ect toward the quasi-stationary state. On the other hand,
the results with ↵p > 1 show a richer phenomenology. For ↵r  1 the sys-
tem orders in a very short time. However, the initial plateau grows with the
population size, which could become a metastable state for infinite systems.
Furthermore, the very narrow uncertainty intervals indicate that di↵erent runs
follow the same regular pattern. Finally, for ↵r > 1 (and large networks) the
system becomes trapped in a frozen quasi-stationary state, where none of the
nodes update their opinion.

In broad terms, we can classify the micro- and macroscopic behavior in
three groups (see Fig. 6.5). With a small persuasion parameter, ↵p < 1, the
rea�rmation parameter is irrelevant and the population continuously fluctu-
ates (dynamic equilibrium). These individuals are prone to rapidly change
their opinion, which can be interpreted as a progressive mindset. If the per-
suasion parameter is large, ↵p > 1, individuals are meditative in terms of
changing their opinion. If this is combined with a large rea�rmation param-
eter (↵r > 1), this yields a group of people that are insecure (they don’t take
any decision) and the system freezes. Conversely, when ↵r < 1 individuals are
prone to rapidly rea�rm their views, somewhat bigoted. In combination with
a resistance to change (↵p > 1), this can be interpreted as a conservative mind-
set. Surprisingly, these populations achieve consensus in a very short period
of time.

Evidently, a more thorough analysis is needed to verify the generality of
this heuristic description. In particular, these preliminary results clearly reveal
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Figure 6.5: Phase diagram of the micc voter model. Schematic representa-
tion of the hypothetical phase diagram in terms of the rea�rmation parameter,
↵r, and the persuasion parameter, ↵p.

that small-size e↵ects play an important role. This could have important im-
plications for the study of mixed populations, where individuals are described
by di↵erent parameters, and hints toward a nontrivial interplay with structured
contact substrates.



Chapter 7

Airport delays

7.1 Dataset description and exploratory analysis

In this chapter we abandon the comfortable “bubble of theory” and confront
the messiness of real life. Our goal is to study the joint e↵ects of memory and
multiple infectors in an empiric spreading phenomenon. In particular, we ana-
lyze the interplay between airport congestion and the propagation of delays in
the air transportation network. Roughly speaking, the cumulative e↵ect of de-
layed arrivals (“incoming pathogen”) causes the airport to become congested
(“infected”) and leads to delayed departures (“outgoing pathogen”). Obvi-
ously, this schematic interpretation does not capture the detailed intricacies
of air tra�c management. Bear in mind that our intent is far from providing
a complete and actionable description of airport delays, nor do we expect to
apply the micc model to reproduce the data. We simply wish to explore the
particularities and imperfections of a real-life scenario and gauge the merits
and limitations of epidemic modeling.

We use the airline on-time performance data provided by the Bureau of
Transportation Statistics of the United States Department of Transporta-
tion [23]. National carriers are required to report on-time data for domestic
flights, including schedules and actual departure and arrival times, and can-
celed and diverted flights. Since international carriers are not included, we
limit our analysis to New York City’s LaGuardia airport (IATA code LGA)
and Ronald Reagan National airport (DCA, serving Washington D.C.), two of
the busiest domestic airports in the US (respectively, 30 and 24 million passen-
gers in 2018 [132, 120]). Both airports count 3 routes operated by Canadian
Airlines, which is not required to report data on its on-time performance. How-
ever, given this low number we are confident that the impact on our analysis
will be minor to nonexistent.

Figures 7.1(a),(b) show the number of scheduled arrivals and departures
during the years 2018 and 2019. We observe that the number of daily arrivals
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Figure 7.1: Schedules operations. Daily number of scheduled arrivals (or-
ange) and departures (purple) for (a) Ronald Reagan National and (b) La-
Guardia airports in 2018 and 2019.

and departures is almost identical, and that both airports present a clear re-
duction of operations during the weekend. This last observation is consistent
with the fact that the majority of domestic travels are business-related [156].
Notice also the drop in activity during the 4th of July, 9/11 (more marked in
New York), Halloween (end of October), Thanksgiving (end of November),
and Christmas (end of December).

The fraction of canceled flights is shown in Figs. 7.2(a),(b). We see that
the patterns are similar for arrivals and delays, and present some di↵erence
between the two airports; although relatively close in terms of geography, they
are su�ciently distant so that the weather has a varying impact. On the other
hand, the fraction of diverted operations is clearly larger for arrivals than for
departures (Figs. 7.2(c),(d)). Nevertheless, the baseline fraction of diverted
operations is very low (less than 1%), except for some specific days. In order
to remove possible confounding factors, we exclude days with an irregular
amount of scheduled, canceled, and diverted operations.1

Finally, Figs. 7.3(a)–(d) show the daily distributions of scheduled oper-

1See Appendix C.6 for a detailed description on the detection of outliers.
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ations (considering only valid days). During weekdays, LaGuardia has an
almost constant number of operations per hour; in contrast, Reagan National
exhibits more variability during the day (although the profiles are practically
identical for all weekdays). Saturdays and Sundays, on the other hand, present
their own particular pattern (for both airports). Notwithstanding, the di↵er-
ences with weekdays are not extreme, hence we decide to treat all days equally.

7.2 Delays, infective periods, and infectors
Next we move to the analysis and propagation of delays, defined simply as
the di↵erence between the actual and scheduled arrival or departure time.2

2Previously we compute the corrected timestamp, since the data set reports the date and
time separately. See Appendix C.7 for details on this procedure.



7.2. Delays, infective periods, and infectors 105

3:00

9:00

15:00

21:00

a DCA, arrivals b departures

3:00

9:00

15:00

21:00

0 240 480 720 960 1200

c LGA, arrivals

0 240 480 720 960 1200

d departures

sc
he

du
le

d
tim

e
(h

ou
ro

fd
ay

)

delay (minutes)
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Figures 7.4(a)–(d) show the relation between the duration of the delay and
the scheduled time of the corresponding operation. In general, the longest
delays occur earlier in the day (as reported in [184]). For afternoon departures
we observe a peculiar pattern, where a group of flights appears completely
separated from the rest. This phenomenon occurs for both LaGuardia and
Reagan National airports, and is related to the fact that airports reduce or cease
operations during the night. Notice that the two clusters are separated by a
stripe that corresponds roughly to 4 hours, the typical duration of overnight
closures.3 We manually remove the flights that satisfy

scheduled departure time > 30 � departure delay
48

, (7.1)

3Most airports do not operate between 1:00 and 5:00, approximately.
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with the delay measured in minutes (dashed curves in Figs. 7.4(b),(d)). As
a consequence, the arrivals that displayed an anomalous pattern are also re-
moved (orange dots in Figs. 7.4(a),(c)).

Both the US Federal Aviation Administration and the European Organisa-
tion for the Safety of Air Navigation (EUROCONTROL) allow a grace period
of 15 minutes for delayed operations [64]. Hereon forward we use the same
definition and use the corresponding “excess delay"

excess delay = delay � 15 , (7.2)

measured in minutes. Note also that the temporal resolution is 1 minute.
Next we analyze the number of simultaneously delayed departures, which

gives an idea of the congestion of an airport. Figure 7.5(a) shows the case
of LaGuardia airport on January 10th, 2018. We see that there was at least
1 delayed departure during practically the whole day, and up to a maximum
of 7 simultaneously delayed departures. In order to compare di↵erent days
we compute the average daily stress, which is simply the area under the curve
divided by the period of scheduled activity. This is also the average number
of simultaneously delayed departures. As we can see from the distributions in
Figs. 7.5(b),(d), this value varies greatly between di↵erent days. The averages
of these distributions, 2.94 for DCA and 3.96 for LGA, give a reference value
that allows us to determine when an airport is “infected”. For example, we
consider that LaGuardia airport is infected when it counts 4 or more simulta-
neously delayed departures. Thus the dashed curve in Fig. 7.5(a) defines 14
infective periods, ranging from very short (around 22:00) to 2-hour long pe-
riods (approximately from 16:00 to 18:00). For Reagan National airport we
lower the threshold to 3.

Finally, with these definitions we measure the distribution of infective pe-
riods. In our mapping of the problem as an epidemic model, these would
correspond to the inter-event time distribution of recoveries. Figures 7.5(c),(e)
show that they are approximately exponential, with a very fast initial decay
and a final cut-o↵. Note that this is compatible with a Markovian assumption,
which is usual in technical systems.

At last, we correlate the “infection” of an airport with delayed arrivals.
First we compute the number of simultaneously delayed arrivals, which maps
to the number of infectors in an epidemic model. If the contagion were sim-
ple, the probability to become infected would grow linearly with the number
of simultaneously delayed arrivals. Since we work with discrete timesteps, we
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Figure 7.5: Daily stress and infective periods. (a) Number of simultaneously
delayed departures on January 10th, 2018, at LaGuardia airport. Dashed line
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Figure 7.6: Infection probabilities. Probability to become infected condi-
tioned on (a, c) the number of simultaneously delayed arrivals and (b, d) the
excess delay of a single delayed arrival, for (a, b) Ronald Reagan National and
(c, d) LaGuardia airports in 2018 and 2019.

compute the probability to become infected at time t+1 conditioned on having
k infectors at time t. As we see in Figs. 7.6(a),(c), the probability initially in-
creases with the number of infectors but afterward fluctuates around a constant
value.

In order to study the e↵ects of memory, we only consider timesteps with
a single delayed arrival. Here we map the excess delay to the accumulated
exposition time of our epidemic model; if the dynamics were Markovian, the
probability would be constant. We compute the probability to become infected
at time t+ 1 conditioned on having accumulated x “units of pathogen” (excess
delay) from a single infector at time t. Reagan National airport (Fig. 7.6(b))
exhibits an initial increase followed by a relaxation toward a constant value.
On the other hand, LaGuardia airport (Fig. 7.6(d)) shows a pattern that is com-
patible with a constant value.

Our exploratory analysis reveals that airport congestion can play an im-
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portant role in the propagation of air-transportation delays. In particular, the
aggregate e↵ect of multiple delayed arrivals can cause a disruption of ground
operations, which ripples through the airport’s schedule and leads to delayed
departures. These preliminary results confirm that the contagion mechanism
is not purely simple. Nonetheless, more evidence is required in order to rule
out the Markovian aspect.





Chapter 8

Conclusions

8.1 Background
Epidemic modeling has proven to be a powerful tool for the study of conta-
gion processes in biological, social, and technological systems. Variations of
the benchmark susceptible-infected-recovered (SIR) and susceptible-infected-
susceptible (SIS) models have been applied to study the spreadof diseases,
opinions, information, rumors, and innovation. Various adaptations and exten-
sions—some very simple and clean but others rather elaborate and compli-
cated—have provided valuable insights into the nature of spreading mecha-
nisms, the dynamics of outbreaks, and the viability of containment protocols.
More recently, the inclusion of real-life contact networks and mobility pat-
terns has led to astonishingly accurate results, prompting the use of epidemic
models as real-time predictive tools.

For years, the go-to modeling scheme for contact-based contagion as-
sumed Markov processes and isolated transmissions. The Markov property
translates into exponentially distributed interevent times and renders the sys-
tem memoryless—its evolution is independent of its history. Although this
approximation is most often justified because of the reduced mathematical
(and computational) tractability of nonexponential distribution, its inappro-
priateness is widely supported by empirical evidence. Prototypical examples
include the peaked distributions of infection periods of numerous diseases and
the bursty human activity patterns in social networks, well described by heavy-
tailed distributions.

On the other hand, assuming isolated transmissions leads to infection chan-
nels that are not influenced by their local environment; consequently, the in-
fection likelihood can be written as the sum of statistically independent ex-
posures. Nevertheless, experimental observations support the existence of
more complex, nondyadic mechanisms in a variety of scenarios. The most
cited example is social contagion, but evidence has also been found in fungal
and bacterial pathogen colonization and—paradoxically—the proliferation of
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noncommunicable diseases. Clearly, the time has come to overcome these
outdated modeling limitations.

In recent years, an important amount of research has ventured into the
scarcely explored area of memoryful and complex epidemics. Regarding mem-
ory, a wide array of modifications has been analyzed, such as two-step in-
fection models, nonexponential distributions, and time-varying transmission
probabilities. Similarly, a plethora of complex contagion schemes has been
proposed to mediate the assumption of independent transmissions; examples
include correlated, nonlinear transmission channels, extended neighborhood
e↵ects, and deterministic threshold models. So far, not many endeavors have
focused on tackling both modeling assumptions simultaneously, and little is
known about how these two features interact. Such a combined approach is of
particular interest for contagion phenomena that include a social component,
such as awareness and vaccination campaigns or the spread of noncommuni-
cable diseases (e.g., obesity, anxiety, and substance abuse).

My thesis contributes to the analysis of the synergies between memory and
nondyadic interactions in spreading processes. I develop a model that bypasses
the usual framework of edge-based transmissions and recasts the infection pro-
cess as a node-centric mechanism. Specifically, the memory-induced complex
contagion (micc) model describes diseased nodes as infectious sources that
spread doses of pathogen to their entire neighborhood. Healthy nodes, on the
other hand, gather the toxins from all their neighbors—present and past—and
become infected given the total viral load they have amassed. As a conse-
quence of this infection mechanism, a notion of social reinforcement/inhibition
arises organically, and the concepts of non-Markovian dynamics and complex
contagion become intrinsically coupled.

The micc model provides a generic description of memoryful and complex
spreading phenomena. However, in order to actually investigate its properties,
one must particularize two ingredients: the infection probability density and
the accumulation and decay of the viral load. I have chosen to describe the for-
mer by the versatile Weibull function, characterized by its shape parameter ↵.
For starters, ↵ = 1 recovers the exponential distribution of the standard Marko-
vian formulation, which enables the comparison to a well-known benchmark.
Other values of the shape parameter interpolate between power law–like fat-
tailed distributions (↵ < 1) and bell curve–like peaked distributions (↵ > 1).
Regarding the viral load, I have chosen a simple linear accumulation and an
exponential decay, with characteristic time ⇣. This choice allows me to inter-
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polate between a short-term memory mode (⇣ = 0) and a long-term memory
mode (⇣ ! 1). Furthermore, I have limited the analysis to the basic epidemic
models (SI, SIR, and SIS) and a short exploration of the voter model. Finally,
when the prescription of recoveries is required (SIR and SIS models), I main-
tain the exponential distribution of the standard Markovian formulation; this
choice allows me to focus unequivocally on the e↵ects of the memory-induced
complex contagion infection mechanism.

8.2 Results

The SI model only allows the transition between the susceptible and infected
states, thus any healthy population will eventually become completely dis-
eased. The temporal dynamics of this evolution varies greatly in the miccSI
model, where agents are equipped with the memory-induced complex con-
tagion infection mechanism. Fat-tailed distributions describe nodes that are
“impulsive”—reactionary, even—and require very little viral load to become
infected. The outbreaks initially grow very rapidly but then decelerate and
converge slowly toward the fully infected state. With peaked infection distri-
butions, on the other hand, nodes are more “meditative” and become infected
with a higher value of the viral load. In this case, outbreaks present a gradual
initial growth and afterward saturate very quickly; additionally, they are more
uniform and show a notably regular pattern. Although somewhat expected,
these results lay the foundations for upcoming—more spectacular—features.

In the SIR model, infected nodes may overcome their ailment, transition-
ing to a final recovered compartment. On a whole, the system evolves to-
wards a terminal state that is characterized by the absence of infected agents.
Depending on the parameters of the pathogen, encapsulated via the e↵ective
spreading ratio, the outbreaks can be either very short-lived or develop into
havoc-wreaking disruptions. These two phases are separated by a continuous
phase transition at the epidemic threshold.

The short-term memory mode of the miccSIR model causes a displace-
ment of the epidemic threshold toward higher values as the shape parameter
of the infection probability grows. Thus more reactive agents (smaller val-
ues of the shape parameter) enable the existence of sustained outbreaks that
are caused by weaker pathogens (lower values of the spreading ratio). In ac-
cordance with our findings for the miccSI model, meditative individuals re-
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quire a longer build-up but cause a more concentrated explosive e↵ect. On the
contrary, the outbreaks for fat-tailed infection distributions are slightly less
virulent and a↵ect a smaller fraction of the population if agents possess an ad-
ditional long-term memory. This phenomenon reveals the crucial role played
by dormant nodes, which hinder the infection chains when the outbreak revis-
its previously a✏icted areas of the network. In contrast, with peaked infection
distributions their previously accumulated viral load facilitates the expansion
of the outbreak, which becomes more violent.

Things get more interesting with the introduction of reinfections. In the
SIS model, infected nodes that recover become once again susceptible and
may reinfect at a later stage. This feature results in a nontrivial active steady
state, where nodes repeatedly infect and recover, but overall the fraction of
infected nodes remains more or less constant; nonetheless, less virulent out-
breaks are still eradicated very quickly. With the conventional assumptions of
Markovianity and simple contagion, the phase transition between the healthy
and endemic phases is typically continuous.

The miccSIS model with peaked infection distributions can be studied with
the use of an adequate analytical framework—and by applying (many) suitable
approximations. When agents are endowed solely with a short-term memory,
the system displays a tricritical point where the customary second-order phase
transition gives way to a discontinuous transition. Then the customary healthy
and endemic phases are separated by a bistable region where two stable attrac-
tors coexist. Additionally, as agents increase their memory span, this interme-
diate region already emerges for lower values of the shape parameter ↵. Notice
that bistability in SIS-like models is usually obtained by explicitly prescrib-
ing some sort of coordination—either cooperative or competitive—between
neighboring nodes. However, here it arises organically from the memory-
induced complex contagion infection mechanism.

Even though this analytical framework paints an exquisite qualitative pic-
ture, stochastic simulations are required to fill in the details. In particular, they
reveal that the width of the previously discussed bistable region shrinks as the
memory span of individuals increases. They are also necessary to analyze the
miccSIS model with fat-tailed infection distributions. In this case, if agents
only have short-term memory, the system behaves very similar to the standard
Markovian model; conversely, the healthy and endemic phases are separated
by an excitable region when agents possess a long-term memory mode. In this
intermediate phase, outbreaks initially expand rapidly through the system but
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afterward slow down and are eventually eradicated, surprisingly resembling a
SIR-like curve.

Concluding, if nodes are equipped with a long-term memory mode, the
system experiences a global memory loss. Specifically, agents that have an
infinite memory span behave on aggregate as if they had no memory at all.
Nevertheless, important di↵erences with respect to the Markovian model are
revealed when looking at the dynamical properties of the outbreaks. The
three order parameters—average coverage, endemic probability, and late-time
prevalence—are identical if agents are memoryless; when the long-term mem-
ory mode is activated, this delicate balance is broken and a second critical point
emerges. In particular, the system first transitions from the healthy phase to an
either bistable or excitable intermediate region, followed by a hybrid transition
to the endemic phase.

In terms of phenomenology, the standard SIS model in unstructured net-
works yields rather unexciting results, but more interesting properties arise
when a nontrivial contact structure is added. The miccSIS model, on the other
hand, shows a plethora of features in degree-regular networks, revealing that
network structure is not an essential ingredient in order to obtain a richer phe-
nomenology. Unexpectedly, this variety is reduced with the introduction of
nonhomogeneous networks. Particularly, clustering mitigates the impact of
the short-term memory mode while node heterogeneity partially suppresses
the e↵ects of the long-term memory mode—the excitable region for fat-tailed
infection distributions survives, but with peaked distributions the intermediate
bistable phase vanishes.

Finally, the voter model—a paradigmatic description of opinion dyna-
mics—can be recast as a spreading phenomenon with symmetric transitions
between the two opinion states. In its Markovian formulation, the population
becomes trapped in a transient quasi-stationary state but eventually evolves to-
ward one of the two consensus states. When introducing the memory-induced
complex contagion “infection” mechanism, it is important to distinguish be-
tween the processes of persuasion and rea�rmation. In the former, a node is
“convinced” to change its opinion, while the latter corresponds to a node in-
creasing their confidence in their belief. It turns out that the specific numerical
values of the rea�rmation process are irrelevant—the dynamics is aptly de-
scribed in terms of the persuasion process. Depending on the response of an
individual to new stimuli (either meditative or impulsive), the system reaches
consensus in a very short time or becomes trapped in a dynamic equilibrium.
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8.3 Outlook

All in all, my analysis of the stylized yet feature-rich micc mechanism evi-
dences a crucial role of non-Markovianity in the spread of epidemic outbreaks.
In particular, agents’ memory span dramatically alters the e↵ect and impact of
newly introduced pathogens. Currently, this topic is a very active field of epi-
demic modeling, with applications that range from the appearance of exotic
diseases to the dissemination of fake news on social media.

However, I believe it is important to stress that the inclusion of memory
is in no way imperative. Most on the interesting phenomenology has already
been found in Markovian models, albeit via elaborate schemes or intricate
network topologies. This conformity evidences the robustness of previous re-
sults and supports the appropriateness of their employment in many scenarios.
Notwithstanding, memoryful epidemics add a nuanced layer of complexity
that can lead to novel behaviors. Even so, to the extend of my knowledge,
the only feature that has not been widely reported in previous studies is the
appearance of excitable outbreaks in SIS-like models.

Inasmuch as time and space are limited, I had to exclude some topics from
this work. Personally, I am intrigued by the perfect overlap of the endemic
probability and the late-time prevalence in the Markovian SIS model, and I
think that elucidating this apparent coincidence is definitely worth the while.
Moreover, the development of a adequate analytical framework to study the
temporal properties of outbreaks in the miccSIS model could shed (a lot of)
light on the peculiar excitable intermediate region that appears with fat-tailed
infection distributions. In addition, the fact that the results for the voter model
are (practically) independent of the rea�rmation parameters enables the pos-
sibility of studying the problem with an analytical approach. Finally, an ex-
haustive exploration is required to find suitable data sets and provide supple-
mentary empirical analyses, without excluding the possibility of designing and
executing a controlled experiment.

I finish with the usual list of potential extensions and ways forward. The
analysis of additional network characteristics—such as degree correlations or
meso-scale structures—would supply renewed insights on the relevance of mi-
croscopic mechanisms and topological aspects in contagion processes. An-
other interesting variation consists in using mixed population groups, which
would allow us to gauge the e↵ect of demographic features on the dynamical
and late-time properties of the system. Last but not least, we could explore
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other infection probability distributions or include realistic nonexponential re-
coveries. All in the hope of increasing our understanding of epidemic spread-
ing and improving our ability to shield the world from catastrophe.





Appendix A

Mathematical derivations

A.1 Closed-form solution for the standard
SI model

Here we show the step-by-step solution for the prevalence in the standard SI
model, presented in Section 2.1.2. We start from the separable di↵erential
equation

d⇢(t)
dt
= �k⇢(t)(1 � ⇢(t)) (A.1)

and integrate both sides
Z

d⇢(t)
⇢(t)(1 � ⇢(t))

=

Z
�kdt (A.2)

Z
d⇢(t)
⇢(t)

+

Z
d⇢(t)

1 � ⇢(t)
=

Z
�kdt (A.3)

log ⇢(t) � log(1 � ⇢(t)) = �kt + log C , (A.4)

where C is an arbitrary constant. Solving for the prevalence gives

⇢(t)
1 � ⇢(t)

= Ce�kt (A.5)

⇢(t) =
Ce�kt

1 +Ce�kt . (A.6)

Substituting the initial condition, ⇢(0) = ⇢0, in Eq. (A.5) we find a value for
the integration constant C = ⇢0/(1 � ⇢0), and substitution in Eq. (A.6) yields
the final result

⇢(t) =
⇢0e�kt

1 � ⇢0 + ⇢0e�kt . (A.7)
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A.2 Dynamic equations of the miccSI model

To obtain Eqs. (2.34) and (2.35) we start from

ni(t + dt) = ni(t) + (1 � ni(t))⇡i (A.8)
i(t + dt) = i(t) + (1 � ni(t))(1 � ⇡i)�zi(t)dt , (A.9)

with

⇡i =

(
1 !i(t)dt
0 1 � !i(t)dt , (A.10)

and !i(t) = �↵µ↵zi(t) [i(t)]↵�1. First we compute the expectation value condi-
tioned on time t, which only a↵ects the stochastic variable ⇡i

E[ni(t + dt) | t] = ni(t) + (1 � ni(t))E[⇡i | t] (A.11)
= ni(t) + (1 � ni(t))!i(t)dt (A.12)
= ni(t) + (1 � ni(t))�↵µ↵zi(t) [i(t)]↵�1 dt (A.13)

E[i(t + dt) | t] = i(t) + (1 � ni(t))E[1 � ⇡i | t]�zi(t)dt (A.14)
= i(t) + (1 � ni(t))(1 � !i(t)dt)�zi(t)dt (A.15)
= i(t) + (1 � ni(t))�zi(t)dt + O (dt)2 . (A.16)

Next we take the ensemble average up to O (dt)

hni(t + dt)i = hE[ni(t + dt) | t]i (A.17)
= hni(t)i + �↵µ↵h(1 � ni(t))zi(t) [i(t)]↵�1idt (A.18)

hi(t + dt)i = hE[i(t + dt) | t]i (A.19)
= hi(t)i + �h(1 � ni(t))zi(t)idt , (A.20)

from where we find

dhni(t)i
dt

=
hni(t + dt)i � hni(t)i

dt
= �↵µ↵h(1 � ni(t))zi(t) [i(t)]↵�1i (A.21)

dhi(t)i
dt

=
hi(t + dt)i � hi(t)i

dt
= �h(1 � ni(t))zi(t)i . (A.22)
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A.3 Dynamic equations of the miccSIS model
with short-term memory

To obtain Eq. (4.26), the dynamic equation for the state of node i, we start
from

ni(t + dt) = ni(t)(1 � ⇠i) + (1 � ni(t))(1 � �0
zi(t))⇡i , (A.23)

with

⇠i =

(
1 ⌘dt
0 1 � ⌘dt (A.24)

⇡i =

(
1 !i(t)dt
0 1 � !i(t)dt (A.25)

and !i(t) = �↵µ↵zi(t) [i(t)]↵�1. First we compute the expectation value condi-
tioned on time t, which only a↵ects the stochastic variables ⇠i and ⇡i

x1 = E[ni(t + dt) | t] (A.26)
= ni(t)E[1 � ⇠i | t] + (1 � ni(t))(1 � �0

zi(t))E[⇡i | t] (A.27)
= ni(t)(1 � ⌘dt) + (1 � ni(t))(1 � �0

zi(t))!i(t)dt (A.28)
= ni(t) � ni(t)⌘dt + �↵µ↵(1 � ni(t))zi(t) [i(t)]↵�1 dt . (A.29)

Note that the delta term cancels since �0
zi(t)zi(t) = 0. Taking the ensemble

average yields

hni(t + dt)i = hE[ni(t + dt) | t]i (A.30)
= hx1i (A.31)
= hni(t)i � ⌘hni(t)idt
+ �↵µ↵h(1 � ni(t))zi(t) [i(t)]↵�1idt , (A.32)

from where we find

dhni(t)i
dt

=
hni(t + dt)i � hni(t)i

dt
(A.33)

= �⌘hni(t)i + �↵µ↵h(1 � ni(t))zi(t) [i(t)]↵�1i . (A.34)
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To obtain Eq. (4.27), the dynamic equation for the viral load of node i, we
start from

i(t + dt) = i(t) � i(t)ni(t)⇠i � i(t)(1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)�i

+ (1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)(1 � �i)�zi(t)dt . (A.35)

with ⇠i and ⇡i given, respectively, by Eqs. (A.24) and (A.25), and

�i =

(
1 �1

zi(t)⌘dt
0 1 � �1

zi(t)⌘dt . (A.36)

First we compute the expectation value conditioned on time t, which only
a↵ects the stochastic variables

x2 = E[i(t + dt) | t] (A.37)
= i(t) � i(t)ni(t)E[⇠i | t]
� i(t)(1 � ni(t))(1 � �0

zi(t))E[1 � ⇡i | t]E[�i | t]
+ (1 � ni(t))(1 � �0

zi(t))E[1 � ⇡i | t]E[1 � �i | t]�zi(t)dt (A.38)
= i(t) � i(t)ni(t)⌘dt
� i(t)(1 � ni(t))(1 � �0

zi(t))(1 � !i(t)dt)�1
zi(t)⌘dt

+ (1 � ni(t))(1 � �0
zi(t))(1 � !i(t)dt)(1 � �1

zi(t)⌘dt)�zi(t)dt (A.39)
= i(t) � i(t)ni(t)⌘dt + (1 � ni(t))(1 � �0

zi(t))�zi(t)dt

� i(t)(1 � ni(t))(1 � �0
zi(t))�

1
zi(t)⌘dt + O (dt)2 (A.40)

= i(t) � i(t)ni(t)⌘dt + (1 � ni(t))�zi(t)dt
� i(t)(1 � ni(t))�1

zi(t)⌘dt + O (dt)2 . (A.41)

Next we take the ensemble average up to O (dt)

hi(t + dt)i = hE[i(t + dt) | t]i (A.42)
= hx2i (A.43)
= hi(t)i � ⌘hi(t)ni(t)idt + �h(1 � ni(t))zi(t)idt
� ⌘hi(t)(1 � ni(t))�1

zi(t)idt , (A.44)

from where we find
dhi(t)i

dt
=
hi(t + dt)i � hi(t)i

dt
(A.45)

= �⌘hi(t)ni(t)i � ⌘hi(t)(1 � ni(t))�1
zi(t)i + �h(1 � ni(t))zi(t)i .

(A.46)
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Finally, in order to obtain Eq. (4.28), the dynamic equation for �i (t), we
start from

�i (t + dt) =
h
i(t) � i(t)ni(t)⇠i � i(t)(1 � ni(t))(1 � �0

zi(t))(1 � ⇡i)�i

+(1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)(1 � �i)�zi(t)dt

i�
. (A.47)

In this case, the computation of the expectation value conditioned on time t is
a little more involved and is given by the generic expression

x3 = E[�i (t + dt) | t] (A.48)
= Pr(⇠i = 0, ⇡i = 0, �i = 0) ⇥ �i (t + dt; ⇠i = 0, ⇡i = 0, �i = 0)
+ Pr(⇠i = 0, ⇡i = 0, �i = 1) ⇥ �i (t + dt; ⇠i = 0, ⇡i = 0, �i = 1)
+ Pr(⇠i = 0, ⇡i = 1, �i = 0) ⇥ �i (t + dt; ⇠i = 0, ⇡i = 1, �i = 0)
+ Pr(⇠i = 1, ⇡i = 0, �i = 0) ⇥ �i (t + dt; ⇠i = 1, ⇡i = 0, �i = 0)
+ O (dt)2 . (A.49)

Computing the necessary terms

Pr(⇠i = 0, ⇡i = 0, �i = 0) = 1 � (⌘ + !i(t) + �1
zi(t)⌘)dt + O (dt)2 (A.50)

Pr(⇠i = 0, ⇡i = 0, �i = 1) = �1
zi(t)⌘dt + O (dt)2 (A.51)

Pr(⇠i = 0, ⇡i = 1, �i = 0) = !i(t)dt + O (dt)2 (A.52)
Pr(⇠i = 1, ⇡i = 0, �i = 0) = ⌘dt + O (dt)2 (A.53)

x4 = 
�
i (t + dt; ⇠i = 0, ⇡i = 0, �i = 0) (A.54)

=
h
i(t) + (1 � ni(t))(1 � �0

zi(t))�zi(t)dt
i�

(A.55)

= [i(t) + (1 � ni(t))�zi(t)dt]� (A.56)

= �i (t)
"
1 +

(1 � ni(t))�zi(t)dt
i(t)

#�
(A.57)

= �i (t)
"
1 +

�(1 � ni(t))�zi(t)dt
i(t)

#
+ O (dt)2 (A.58)

x5 = 
�
i (t + dt; ⇠i = 0, ⇡i = 0, �i = 1) (A.59)

=
h
i(t) � i(t)(1 � ni(t))(1 � �0

zi(t))
i�

(A.60)

= �i (t)
h
1 � (1 � ni(t))(1 � �0

zi(t))
i�

(A.61)

= �i (t)
h
1 � (1 � ni(t))(1 � �0

zi(t))
i

(A.62)
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x6 = 
�
i (t + dt; ⇠i = 0, ⇡i = 1, �i = 0) (A.63)

= �i (t) (A.64)

x7 = 
�
i (t + dt; ⇠i = 1, ⇡i = 0, �i = 0) (A.65)

=
h
i(t) � i(t)ni(t) + (1 � ni(t))(1 � �0

zi(t))�zi(t)dt
i�

(A.66)

= [i(t)(1 � ni(t)) + (1 � ni(t))�zi(t)dt]� (A.67)
= (1 � ni(t))�[i(t)) + �zi(t)dt]� (A.68)

= (1 � ni(t))
�
i (t)

"
1 +

�zi(t)dt
i(t)

#�
(A.69)

= (1 � ni(t))
�
i (t)

"
1 +

��zi(t)dt
i(t)

#
+ O (dt)2 (A.70)

and substituting in Eq. (A.49) yields

x3 = x4 ⇥ Pr(⇠i = 0, ⇡i = 0, �i = 0) + x5 ⇥ Pr(⇠i = 0, ⇡i = 0, �i = 1)
+ x6 ⇥ Pr(⇠i = 0, ⇡i = 1, �i = 0) + x7 ⇥ Pr(⇠i = 1, ⇡i = 0, �i = 0)
+ O (dt)2 (A.71)

=
h
1 � (⌘ + !i(t) + �1

zi(t)⌘)dt
i
�i (t)

"
1 +

�(1 � ni(t))�zi(t)dt
i(t)

#

+ (�1
zi(t)⌘dt)�i (t)

h
1 � (1 � ni(t))(1 � �0

zi(t))
i
+ (!i(t)dt)�i (t)

+ (⌘dt)(1 � ni(t))
�
i (t)

"
1 +

��zi(t)dt
i(t)

#
+ O (dt)2 (A.72)

= �i (t)
"
1 � (⌘ + !i(t) + �1

zi(t)⌘)dt +
�(1 � ni(t))�zi(t)dt

i(t)

#

+
h
�1

zi(t)⌘(1 � (1 � ni(t))) + !i(t) + ⌘(1 � ni(t))
i
�i (t)dt

+ O (dt)2 (A.73)
= �i (t) � ⌘�i (t)ni(t)dt � ⌘�i (t)(1 � ni(t))�1

zi(t)dt

+ ��(1 � ni(t))zi(t)[i(t)]��1dt + O (dt)2 . (A.74)
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Then we take the ensemble average up to O (dt)

h�i (t + dt)i = hE[�i (t + dt) | t]i (A.75)
= hx3i (A.76)
= h�i (t)i � ⌘h�i (t)ni(t)idt � ⌘h�i (t)(1 � ni(t))�1

zi(t)idt
+ ��h(1 � ni(t))zi(t)[i(t)]��1idt (A.77)

and finally find

dh�i (t)i
dt

=
h�i (t + dt)i � h�i (t)i

dt
(A.78)

= �⌘h�i (t)ni(t)i � ⌘h�i (t)(1 � ni(t))�1
zi(t)i

+ ��h(1 � ni(t))zi(t)[i(t)]��1i . (A.79)

A.4 Mean-field parameters of the miccSIS model
with short-term memory

In order to obtain the coe�cient A in Eq. (4.38) we need to compute the mo-
ments h�i | ni = 1i for � = 1 and � = ↵. These moments are conditioned on
ni = 1, i.e., node i being infected. Since the viral load does not change while
infected, measuring i of infected node i yields the same results as measur-
ing i at the moment i became infected. Within the mean-field approximation,
these quantities are the same for all nodes, hence we drop the i index. We de-
note the required density by �(), i.e., the probability that a node had amassed
 viral load at the moment it became infected.

The di↵erence between �() and the infection probability,  ⇤(), is subtle
but crucial in the case of short-term memory. Recall that with ⇣ = 0 a sus-
ceptible node instantly erases its viral load when it becomes dormant. Thus
reaching a viral load of  is conditioned on being continuously exposed to the
pathogen. Simply put,  ⇤() measures the probability of becoming infected
when the accumulated viral load is , while �() measures the probability that
the viral load is  at infection. The latter is equivalent to the probability of
reaching an accumulated viral load of  and then becoming infected.

When ⇢ ⇡ 0 we can assume that susceptible node i has only one infected
neighbor j; moreover, i transitioned from dormant to susceptible at the same
time that j became infected. Thus node i is exposed to a single source of
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pathogen, and the time since j became infected (t) and the viral load accu-
mulated by i () are proportional ( = �t). Then �() is the probability of i
becoming infected when its viral load is  ( ⇤inf()) times the probability that j
does not recover before t ( rec(t)). Expressed in terms of  this is

�() = N�1 ⇤inf() rec(��1) = N�1↵µ↵↵�1e�(µ)↵e�⌘�
�1 , (A.80)

with

N =
Z 1

0
 ⇤inf() rec(��1)d . (A.81)

Defining the integral

I(x) =
Z 1

0
xe�(µ)↵e�⌘�

�1d , (A.82)

the corresponding moments are

h� | n = 1i =
Z 1

0
��()d (A.83)

=
I(� + ↵ � 1)

I(↵ � 1)
. (A.84)

We proceed in a similar way for the moments h�i | Xi = 1i, required to
obtain coe�cient B in Eq. (4.39). Now we are sampling the state of a node
that is susceptible and has only one infected neighbor. For ⇢ ⇡ 0 we assume the
same scenario as before: since becoming susceptible, node i has been exposed
continuously to a single infected neighbor j. Node i transitions to state Xi = 0
either when j recovers or when i becomes infected itself. This event occurs
when i has accumulated  units of viral load with probability density

'() = N�1
h
��1 rec(��1) ⇤inf() +  

⇤
inf() rec()

i
(A.85)

= N�1
h
⌘��1 + ↵µ↵↵�1

i
e�(µ)↵e�⌘�

�1 , (A.86)

with

N =
Z 1

0

h
��1 rec(��1) ⇤inf() +  

⇤
inf() rec()

i
d . (A.87)
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Note that the first term corresponds to node j recovering (��1 rec(��1)) and
node i not becoming infected ( ⇤inf()), while the second term describes i be-
coming infected ( ⇤inf()) and j not recovering ( rec(��1)). Recall also that
the viral load accumulated by node i is proportional to the time since node j
became infected ( = �t).

Then the probability density to sample node i in state Xi = 1 with a viral
load of  is [48]

�() =
�()
hi' , (A.88)

with

�() =
Z 1



'()d = N�1
Z 1



h
⌘��1 + ↵µ↵s↵�1

i
e�(µs)↵e�⌘�

�1 sds (A.89)

hi' =
Z 1

0
'()d = N�1

Z 1

0

h
⌘��1 + ↵µ↵↵

i
e�(µ)↵e�⌘�

�1d .

(A.90)

Defining the integrals

J1() =
Z 1



h
↵µ↵s↵�1 + ⌘��1

i
e�(µs)↵e�⌘�

�1 sds (A.91)

J2 =

Z 1

0

h
↵µ↵↵ + ⌘��1

i
e�(µ)↵e�⌘�

�1d , (A.92)

the corresponding moments are

h� | X = 1i =
Z 1

0
��()d (A.93)

=
1
J2

Z 1

0
�J1()d . (A.94)

The numerical evaluation of the parameters is detailed in Appendix C.4.
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A.5 Dynamic equations of the miccSIS model
with long-term memory

To obtain Eq. (4.53), the dynamic equation for the viral load of node i, we start
from

i(t + dt) = i(t) � i(t)ni(t)⇠i

+ (1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)(1 � �i)�zi(t)dt . (A.95)

with ⇠i, ⇡i, and �i given, respectively, by Eqs. (A.24), (A.25), and (A.36). This
equation is very similar to the corresponding equation for the miccSIS model
with short-term memory, Eq. (A.35). The only di↵erence is that here we have
dropped the term corresponding to a susceptible node becoming dormant and
instantly erasing its viral load. Following the derivation of the previous section
we find the expectation value conditioned on time t

E[i(t+ dt) | t] = i(t)� i(t)ni(t)⌘dt+ (1� ni(t))�zi(t)dt+O (dt)2 , (A.96)

the ensemble average up to O (dt)

hi(t + dt)i = hE[i(t + dt) | t]i (A.97)
= hi(t)i � ⌘hi(t)ni(t)idt + �h(1 � ni(t))zi(t)idt , (A.98)

and, finally, the dynamic equation

dhi(t)i
dt

=
hi(t + dt)i � hi(t)i

dt
(A.99)

= �⌘hi(t)ni(t)i + �h(1 � ni(t))zi(t)i . (A.100)

The derivation of the dynamic equation for the state of node i is identical
to the procedure in Appendix A.3, which yields

dhni(t)i
dt

= �⌘hni(t)i + �↵µ↵h(1 � ni(t))zi(t) [i(t)]↵�1i . (A.101)

On the other hand, to obtain the dynamic equation for h�i (t)i we start from

�i (t + dt) =
h
i(t) � i(t)ni(t)⇠i

+(1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)(1 � �i)�zi(t)dt

i�
. (A.102)
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We use Eq. (A.49) to compute the expectation value conditioned on time t. All
the terms are identical as in Appendix A.3 except for

x5 = 
�
i (t + dt; ⇠i = 0, ⇡i = 0, �i = 1) (A.103)

= �i (t) , (A.104)

thus

E[�i (t + dt) | t] = �i (t) � ⌘�i (t)ni(t)dt
+ ��(1 � ni(t))zi(t)[i(t)]��1dt + O (dt)2 . (A.105)

Finally, we take the ensemble average up to O (dt)

h�i (t + dt)i = hE[�i (t + dt) | t]i (A.106)
= h�i (t)i � ⌘h�i (t)ni(t)idt
+ ��h(1 � ni(t))zi(t)[i(t)]��1idt , (A.107)

and find the dynamic equation

dh�i (t)i
dt

=
h�i (t + dt)i � h�i (t)i

dt
(A.108)

= �⌘h�i (t)ni(t)i + ��h(1 � ni(t))zi(t)[i(t)]��1i . (A.109)

Taking the late-time limit in Eqs. (A.101) and (A.109), dropping the de-
pendence with t, and setting � = ↵ gives

0 = �⌘hnii + �↵µ↵h(1 � ni)zi
↵�1
i i (A.110)

0 = �⌘h↵i nii + ↵�h(1 � ni)zi
↵�1
i i . (A.111)

Combining both equations and using the expansion

h↵i nii = h↵i ni | ni = 1i ⇥ Pr(ni = 1) + h↵i ni | ni = 0i ⇥ Pr(ni = 0)
(A.112)

= h↵i | ni = 1ihnii + 0 ⇥ (1 � hnii) , (A.113)

yields

h↵i | ni = 1i = µ�↵ . (A.114)
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This recovers the result of

h↵iinf =

Z 1

0
↵ ⇤()d =

Z 1

0
↵µ↵2↵�1e�(µ)↵d = µ�↵ , (A.115)

and validates the computation of hi | ni = 1i using  ⇤() in Section 4.2.2.
Notice that this is an exact result, obtained without implementing any approx-
imation.

A.6 Dynamic equations of the miccSIS model with
medium-term memory

The stochastic processes that govern the dynamics are given by

⇠i =

(
1 ⌘dt
0 1 � ⌘dt (A.116)

⇡i =

(
1 !i(t)dt
0 1 � !i(t)dt (A.117)

�i =

(
1 �1

zi(t)⌘dt
0 1 � �1

zi(t)⌘dt (A.118)

&i =

(
1 "i(t)dt
0 1 � "i(t)dt , (A.119)

with!i(t) = �↵µ↵zi(t) [i(t)]↵�1 and "i(t) a generic function of time. The deriva-
tion of Eq. (4.64), the dynamic equation for the state of node i, is identical to
the procedure in Appendix A.3. To obtain Eq. (4.65), the dynamic equation
for the viral load of node i, we start from

i(t + dt) = i(t) � i(t)ni(t)⇠i � i(t)(1 � ni(t))�0
zi(t)(1 � &i)⇣�1dt

+ (1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)(1 � �i)�zi(t)dt . (A.120)
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First we compute the expectation value conditioned on time t, which only
a↵ects the stochastic variables

x1 = E[i(t + dt) | t] (A.121)
= i(t) � i(t)ni(t)E[⇠i | t]
� i(t)(1 � ni(t))�0

zi(t) E[1 � &i | t]⇣�1dt

+ (1 � ni(t))(1 � �0
zi(t))E[1 � ⇡i | t]E[1 � �i | t]�zi(t)dt (A.122)

= i(t) � i(t)ni(t)⌘dt
� i(t)(1 � ni(t))�0

zi(t)(1 � "i(t)dt)⇣�1dt

+ (1 � ni(t))(1 � �0
zi(t))(1 � !i(t)dt)(1 � �1

zi(t)⌘dt)�zi(t)dt (A.123)
= i(t) � i(t)ni(t)⌘dt + (1 � ni(t))(1 � �0

zi(t))�zi(t)dt

� i(t)(1 � ni(t))�0
zi(t)⇣

�1dt + O (dt)2 (A.124)
= i(t) � i(t)ni(t)⌘dt + (1 � ni(t))�zi(t)dt
� i(t)(1 � ni(t))�0

zi(t)⇣
�1dt + O (dt)2 . (A.125)

Next we take the ensemble average up to O (dt)

hi(t + dt)i = hE[i(t + dt) | t]i (A.126)
= hx1i (A.127)
= hi(t)i � ⌘hi(t)ni(t)idt + �h(1 � ni(t))zi(t)idt
� ⇣�1hi(t)(1 � ni(t))�0

zi(t)idt , (A.128)

from where we find

dhi(t)i
dt

=
hi(t + dt)i � hi(t)i

dt
(A.129)

= �⌘hi(t)ni(t)i � ⇣�1hi(t)(1 � ni(t))�0
zi(t)i + �h(1 � ni(t))zi(t)i .

(A.130)

Finally, in order to obtain Eq. (4.66), the dynamic equation for �i (t), we
start from

�i (t + dt) =
h
i(t) � i(t)ni(t)⇠i � i(t)(1 � ni(t))�0

zi(t)(1 � &i)⇣�1dt

+(1 � ni(t))(1 � �0
zi(t))(1 � ⇡i)(1 � �i)�zi(t)dt

i�
. (A.131)
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In this case, the computation of the expectation value conditioned on time t is
a little more involved and is given by the generic expression

x2 = E[�i (t + dt) | t] (A.132)
= Pr(~ui = (0, 0, 0, 0)) ⇥ �i (t + dt;~ui = (0, 0, 0, 0))
+ Pr(~ui = (0, 0, 0, 1)) ⇥ �i (t + dt;~ui = (0, 0, 0, 1))
+ Pr(~ui = (0, 0, 1, 0)) ⇥ �i (t + dt;~ui = (0, 0, 1, 0))
+ Pr(~ui = (0, 1, 0, 0)) ⇥ �i (t + dt;~ui = (0, 1, 0, 0))
+ Pr(~ui = (1, 0, 0, 0)) ⇥ �i (t + dt;~ui = (1, 0, 0, 0))
+ O (dt)2 , (A.133)

with ~ui = (⇠i, ⇡i, �i, &i). Computing the necessary terms

x3 = Pr(⇠i = 0, ⇡i = 0, �i = 0, &i = 0) (A.134)
= 1 � (⌘ + !i(t) + �1

zi(t)⌘ + "i(t))dt + O (dt)2 (A.135)

x4 = Pr(⇠i = 0, ⇡i = 0, �i = 0, &i = 1) (A.136)
= "i(t)dt + O (dt)2 (A.137)

x5 = Pr(⇠i = 0, ⇡i = 0, �i = 1, &i = 0) (A.138)
= �1

zi(t)⌘dt + O (dt)2 (A.139)

x6 = Pr(⇠i = 0, ⇡i = 1, �i = 0, &i = 0) (A.140)
= !i(t)dt + O (dt)2 (A.141)

x7 = Pr(⇠i = 1, ⇡i = 0, �i = 0, &i = 0) (A.142)
= ⌘dt + O (dt)2 (A.143)
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x8 = 
�
i (t + dt; ⇠i = 0, ⇡i = 0, �i = 0, &i = 0) (A.144)

=
h
i(t) + (1 � ni(t))(1 � �0

zi(t))�zi(t)dt

�i(t)(1 � ni(t))�0
zi(t)⇣

�1dt
i�

(A.145)

=
h
i(t) + (1 � ni(t))�zi(t)dt � i(t)(1 � ni(t))�0

zi(t)⇣
�1dt

i�
(A.146)

= �i (t)
"
1 + (1 � ni(t))

 
�zi(t)
i(t)

� �0
zi(t)⇣

�1
!

dt
#�

(A.147)

= �i (t)
"
1 + �(1 � ni(t))

 
�zi(t)
i(t)

� �0
zi(t)⇣

�1
!

dt
#
+ O (dt)2 (A.148)

x9 = 
�
i (t + dt; ⇠i = 0, ⇡i = 0, �i = 0, &i = 1) (A.149)

=
h
i(t) + (1 � ni(t))(1 � �0

zi(t))�zi(t)dt
i�

(A.150)

= [i(t) + (1 � ni(t))�zi(t)dt]� (A.151)

= �i (t)
"
1 +

(1 � ni(t))�zi(t)dt
i(t)

#�
(A.152)

= �i (t)
"
1 +

�(1 � ni(t))�zi(t)dt
i(t)

#
+ O (dt)2 (A.153)

x10 = 
�
i (t + dt; ⇠i = 0, ⇡i = 0, �i = 1, &i = 0) (A.154)

=
h
i(t) � i(t)(1 � ni(t))�0

zi(t)⇣
�1dt

i�
(A.155)

= �i (t)
h
1 � (1 � ni(t))�0

zi(t)⇣
�1dt

i�
(A.156)

= �i (t)
h
1 � �(1 � ni(t))�0

zi(t)⇣
�1dt

i
+ O (dt)2 (A.157)

x11 = 
�
i (t + dt; ⇠i = 0, ⇡i = 1, �i = 0, &i = 0) (A.158)

=
h
i(t) � i(t)(1 � ni(t))�0

zi(t)⇣
�1dt

i�
(A.159)

= x10 (A.160)
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x12 = 
�
i (t + dt; ⇠i = 1, ⇡i = 0, �i = 0, &i = 0) (A.161)

=
h
i(t) � i(t)ni(t) + (1 � ni(t))(1 � �0

zi(t))�zi(t)dt

�i(t)(1 � ni(t))�0
zi(t)⇣

�1dt
i�

(A.162)

=
h
i(t)(1 � ni(t)) + (1 � ni(t))(�zi(t) � i(t)�0

zi(t)⇣
�1)dt

i�
(A.163)

= (1 � ni(t))�
h
i(t)) + (�zi(t) � i(t)�0

zi(t)⇣
�1)dt

i�
(A.164)

= (1 � ni(t))
�
i (t)

"
1 +

 
�zi(t)
i(t)

� �0
zi(t)⇣

�1
!

dt
#�

(A.165)

= (1 � ni(t))
�
i (t)

"
1 + �

 
�zi(t)
i(t)

� �0
zi(t)⇣

�1
!

dt
#
+ O (dt)2 (A.166)

and substituting in Eq. (A.133) yields

x2 = x3x8 + x4x9 + x5x10 + x6x11 + x7x12 + O (dt)2 (A.167)

=
h
1 � (⌘ + !i(t) + �1

zi(t)⌘ + "i(t))dt
i

⇥ �i (t)
"
1 + �(1 � ni(t))

 
�zi(t)
i(t)

� �0
zi(t)⇣

�1
!

dt
#

+ ("i(t)dt)�i (t)
"
1 +

�(1 � ni(t))�zi(t)dt
i(t)

#

+
h
(�1

zi(t)⌘ + !i(t))dt
i
�i (t)

h
1 � �(1 � ni(t))�0

zi(t)⇣
�1dt

i

+ (⌘dt)(1 � ni(t))
�
i (t)

"
1 + �

 
�zi(t)
i(t)

� �0
zi(t)⇣

�1
!

dt
#
+ O (dt)2

(A.168)

=
h
1 � (⌘ + !i(t) + �1

zi(t)⌘ + "i(t))dt
i
�i (t)

+ �(1 � ni(t))
 
�zi(t)
i(t)

� �0
zi(t)⇣

�1
!
�i (t)dt

+
h
�1

zi(t)⌘ + !i(t) + "i(t) + ⌘(1 � ni(t))
i
�i (t)dt + O (dt)2 (A.169)

= �i (t) � ⌘�i (t)ni(t)dt � ��i (t)(1 � ni(t))�0
zi(t)⇣

�1dt

+ ��(1 � ni(t))zi(t)[i(t)]��1dt + O (dt)2 . (A.170)
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Then we take the ensemble average up to O (dt)

h�i (t + dt)i = hE[�i (t + dt) | t]i (A.171)
= hx2i (A.172)
= h�i (t)i � ⌘h�i (t)ni(t)idt � �⇣�1h�i (t)(1 � ni(t))�0

zi(t)idt

+ ��h(1 � ni(t))zi(t)[i(t)]��1idt (A.173)

and finally find

dh�i (t)i
dt

=
h�i (t + dt)i � h�i (t)i

dt
(A.174)

= �⌘h�i (t)ni(t)i � �⇣�1h�i (t)(1 � ni(t))�0
zi(t)i

+ ��h(1 � ni(t))zi(t)[i(t)]��1i . (A.175)

Notice that, in the limit ⇣ ! 1, the dynamic equations for i(t) and �i (t)
(respectively, Eqs. (A.130) and (A.175)) are identical to the equations obtained
in Appendix A.5 for the miccSIS model with long-term memory (Eqs. (A.100)
and (A.109), respectively).

A.7 Mean-field parameters of the miccSIS model
with medium-term memory

The computation of the moments h�i | ni = 1i, which are required to obtain
the coe�cient A in Eq. (4.76), is identical to the procedure in Appendix A.4,
and yields

h� | n = 1i = I(� + ↵ � 1)
I(↵ � 1)

. (A.176)

with

I(x) =
Z 1

0
xe�(µ)↵e�⌘�

�1d . (A.177)

In order to obtain the coe�cient B in Eq. (4.77) we need to compute the mo-
ments h�i | Yi = 1i for � = 1 and � = ↵. These moments are conditioned on
Yi = 1, i.e., node i being dormant. Within the mean-field approximation, all
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nodes are considered identical, hence we drop the i index. When ⇢ ⇡ 0 we can
assume that susceptible node i has only one infected neighbor j. Moreover,
i transitioned from dormant to susceptible at the same time that j became in-
fected. Thus node i is exposed to a single source of pathogen, and the time
since j became infected (t) and the viral load accumulated by i () are propor-
tional ( = �t).

Let �⇤() measure the probability density that node i has accumulated 
units of viral load when it becomes dormant. This event is conditioned on j
recovering at time t ( rec(t)) and i not becoming infected ( ⇤inf()). Expressed
in terms of  this reads

�⇤() = N�1��1 rec(��1) ⇤inf() = N�1⌘��1e�(µ)↵e�⌘�
�1 , (A.178)

with

N =
Z 1

0
��1 rec(��1) ⇤inf()d . (A.179)

After some time t since node i became dormant, its viral load has decayed such
that

(t) = e�t/⇣ . (A.180)

With �(t) the probability to sample node i in state Yi = 1 (i.e., dormant) at
time t (measured since i became dormant), the necessary moments are

h� | Y = 1i =
Z

�(t)�⇤()�(t)ddt (A.181)

=

Z h
e�t/⇣

i�
�⇤()�(t)ddt . (A.182)

For simplicity, we assume that node i ceases to be dormant (i.e., becomes
susceptible) when node j is reinfected. Let '(t) denote the probability that
node j reinfects at time t (measured since node i became dormant). Then the
probability to sample node i in state Yi = 1 at time t is [48]

�(t) =
�(t)
hti' , (A.183)

with

�(t) =
Z 1

t
'(t0)dt0 (A.184)
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and

hti =
Z 1

0
t'(t)dt . (A.185)

Finding an expression for '(t), however, is highly nontrivial. Here we ap-
ply a reasonable mean-field approximation. Imagine a single link between a
healthy and an infected node. Near equilibrium, the probability of transmis-
sion and recovery are balanced, thus the transmission rate can be approximated
by the recovery rate ⌘. Within a mean-field approximation we can assume that
the transmissions are independent and, moreover, the probability of any node
being infected is ⇢. Then we can consider an e↵ective infection rate

!̄ = k⇢⌘ , (A.186)

with k the average degree, which yields

'(t) = �(t) = !̄e�!̄(t) . (A.187)

Finally we find the moments

h� | Y = 1i =
Z 1

0
!̄e�(!̄+�/⇣)tdt

Z 1

0
��̄()d (A.188)

=
!̄⇣

!̄⇣ + �

I(�)
I(0)
, (A.189)

with the integral I(x) given by Eq. (A.177).
Substituting in the expression for the coe�cient B gives

B = Ahi | Yi = 1i � ↵h↵i | Yi = 1i (A.190)

= A
k⇢⌘⇣

k⇢⌘⇣ + 1
I(1)
I(0)
� ↵ k⇢⌘⇣

k⇢⌘⇣ + ↵
I(↵)
I(0)

(A.191)

= ⇢

"
A

I(1)
I(0)

1
⇢ + (k⇣̂)�1

� ↵ I(↵)
I(0)

1
⇢ + ↵(k⇣̂)�1

#
, (A.192)

with ⇣̂ = ⌘⇣. The equation of state, Eq. (4.81), then becomes

� ⌘µ�↵⇢ + A�k⇢(1 � ⇢)

�
"
A

I(1)
I(0)

⇣�1

⇢ + (k⇣̂)�1
� ↵ I(↵)

I(0)
⇣�1

⇢ + ↵(k⇣̂)�1

#
⇢(1 � ⇢)k+1 = 0 , (A.193)
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and defining the reduced coe�cients a = A⌘�1�µ↵, b1 = Aµ↵ I(1)
I(0) , and

b2 = µ↵
I(↵)
I(0) we find Eq. (4.82)

f (⇢) = �⇢+ ak⇢(1� ⇢)�
"

b1⇣̂�1

⇢ + (k⇣̂)�1
� b2↵⇣̂�1

⇢ + ↵(k⇣̂)�1

#
⇢(1� ⇢)k+1 . (A.194)

Its first and second derivatives are given by

f 0(⇢) = �1 + ak(1 � 2⇢) +

2
666666664

b1⇣̂�1

⇣
⇢ + (k⇣̂)�1

⌘2 �
b2↵⇣̂�1

⇣
⇢ + ↵(k⇣̂)�1

⌘2

3
777777775 ⇢(1 � ⇢)k+1

�
"

b1⇣̂�1

⇢ + (k⇣̂)�1
� b2↵⇣̂�1

⇢ + ↵(k⇣̂)�1

# h
(1 � ⇢)k+1 � ⇢(k + 1)(1 � ⇢)k

i

(A.195)

and

f 00(⇢) = �2ak � 2

2
666666664

b1⇣̂�1

⇣
⇢ + (k⇣̂)�1

⌘3 �
b2↵⇣̂�1
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⇢ + ↵(k⇣̂)�1

⌘2

3
777777775 (1 � ⇢)k ⇥1 � ⇢(k + 2)

⇤

�
"

b1⇣̂�1

⇢ + (k⇣̂)�1
� b2↵⇣̂�1

⇢ + ↵(k⇣̂)�1

#
(k + 1)(1 � ⇢)k�1 ⇥

⇢(k + 1) � 2
⇤
.

(A.196)

The numerical evaluation of the parameters is detailed in Appendix C.4.
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Synthetic networks

B.1 Random degree-regular networks
We use the configuration model to generate undirected random degree-regular
network with degree k. The steps are the following:

1. Generate a list of stubs where each of the N nodes appears k times. Note
that the product N ⇥ k must be an even number.

2. Randomly select two stubs, s1 and s2, from the remaining stub list.

(a) If s1 = s2 or if the links (s1, s2) or (s2, s1) are already present in the
network, place both stubs back in the list and go back to step 2;

(b) else, add the link (s1, s2) to the network and remove both stubs
from the list.

3. Repeat step 2 until the stub list is empty.

This algorithm may not converge, particularly when the degree sequence is
heterogeneous. The solution is to keep track of the acceptance rate (the frac-
tion of times that two randomly selected stubs were successfully added to the
network). When it drops below a given threshold, the iteration is halted and
we start again from step 1. An implementation is available in [87].

Using the configuration model yields a network with residual clustering
C ⇡ 0, which is adequate for our analysis in homogeneous networks. How-
ever, when we study the interplay between the miccSIS model and network
properties we need random degree-regular networks with higher clustering
coe�cients (see Section 5.2). Therefore we use a simulated annealing–like
algorithm developed in [46, 45, 128]. In short, it randomly selects two edges
and switches the endpoints. For example, if we select the edges (A, B) and
(C, D), after the rewiring we have (A, D) and (C, B). This procedure yields
maximally random networks while preserving the degree distribution. The



140 Appendix B. Synthetic networks

“temperature” is gradually lowered until the network reaches the target aver-
age clustering coe�cient C. We use the code available in [47].

Although random degree-regular networks are almost surely connected if
k � 3 [19], we run a breadth-first search [123] in order to verify that all nodes
belong to the same component. An implementation is available in [87].

B.2 Unclustered scale-free networks
The degree distribution of scale-free networks is given by a power law with
exponent � > 2,

p(x) = (� � 1)x��1
min x�� , (B.1)

for x � xmin. In finite systems, the maximum degree is limited by the fact that
a node cannot have more neighbors than available nodes. This natural cut-o↵
is given by

Z 1

xmax

p(x)dx <
1
N
, (B.2)

with N the system size [18]. In short, Eq. (B.2) states that the number of nodes
with degree xmax or higher must be smaller than N. Solving Eq. (B.2) yields

xmax > xminN
1
��1 . (B.3)

In practice, we sample the degree sequence from a discrete probability
function

p(k) = Ak�� , (B.4)

for kmin  k  kmax. In order to guarantee a connected network we choose
kmin = 2, and from Eq. (B.3) we find

kmax =
j
kminN

1
��1

k
. (B.5)

Finally, the normalization constant yields A = ⇣(�, kmin) � ⇣(�, kmax + 1), with
⇣(x, `) the Hurwitz zeta function

⇣(x, `) =
1X

k=0

(k + `)�x =

1X

k=`

k�x . (B.6)

We apply the configuration model outlined in Section B.1. The stub list is gen-
erated from the degree sequence, sampling Eq. B.4 with a rejection method.
An implementation is available in [87].
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Computational implementations

C.1 Simulations of the SI model

C.1.1 Core algorithm standard SI
For a fixed value of �, at a given time t the nodes are separated in two lists:
infected (I) and susceptible (S). We also keep a list of the NA active transmis-
sion, i.e., the (directed) links that connect an infected node with a susceptible
one. The contact network is encoded in an adjacency matrix or list.

1. Compute the total hazard rate ⌦ = �NA.

2. Sample the interval ⌧ = � log(u1)/⌦, with u1 2 U(0, 1), and update the
time, t  t + ⌧.

3. Draw u2 2 U(0, 1) to sample link i! j from the list of active links.

(a) Move node j from the susceptible to the infected list.
(b) For all of j’s neighbors:

• If node ` is infected, deactivate link ` ! j.
• If node ` is susceptible, activate link j! `.

C.1.2 Core algorithm miccSI
For fixed values of ↵, µ, and �, at a given time t the nodes are separated
in two lists: infected (I) and susceptible (S). For susceptibles we store their
accumulated viral load  and also the number of infected neighbors z. The
contact network is encoded in an adjacency matrix or list.

1. Sample the interval ⌧, solving �(⌧) = u, with u 2 U(0, 1) and

�(⌧) =
Y

j2S

e�[µ( j+z j⌧)]↵

e�(µ j)↵
. (C.1)
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2. Update the time, t  t + ⌧, and the viral load of susceptible nodes,
 j   j + z j⌧.

3. Compute the hazard rate for susceptible nodes, ! j = �↵µ↵z j↵�1
j , and

the total hazard rate, ⌦ =
P

j2S ! j.

4. Compute the discrete distribution ⇧k = !k/⌦ and sample node k from
the list of susceptible nodes.

(a) Move node k from the susceptible list to the infected list.

(b) For all of k’s neighbors, increase the number of infected neighbors
by one, z`  z` + 1.

C.1.3 Single-seed outbreaks
Each outbreak starts with a single randomly chosen infected node. All other
nodes are healthy, with zero viral load. An outbreak is terminated when it
reaches the absorbing state (i.e., all nodes are infected). We store the preva-
lence ⇢i(t) of each run i at given times, with time interval �t. For a given
network of size N and a fixed value of � we average Z trajectories, at fixed val-
ues of t: h⇢(t)i = Z�1 PZ

j=1 ⇢ j(t) and h⇢2(t)i = Z�1 PZ
j=1 ⇢

2
j(t). We estimate the

prevalence as ⇢(t) = h⇢(t)i and compute its standard deviation as
�(⇢(t)) =

ph⇢2(t)i � h⇢(t)i2. We use �t = 0.1 and Z = 100.

C.2 Simulations of the SIR model

C.2.1 Core algorithm standard SIR
For fixed values of � and ⌘, at a given time t the nodes are separated in three
lists: infected (I), susceptible (S), and recovered (R). We also keep a list of the
NA active transmission, i.e., the (directed) links that connect an infected node
with a susceptible one. The contact network is encoded in an adjacency matrix
or list.

1. Compute the total hazard rate ⌦ = ⌘NI + �NA.

2. Sample the interval ⌧ = � log(u1)/⌦, with u1 2 U(0, 1), and update the
time, t  t + ⌧.
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3. Compute the probability of a recovery, ⇧rec = ⌘NI/⌦, and sample
u2 2 U(0, 1).

• If u2  ⇧rec, draw u3 2 U(0, 1) to sample node k from the list of
infected nodes.

(a) Move node k from the infected list to the recovered list.
(b) For all of k’s neighbors:

– If node ` is susceptible, deactivate the link k ! `.

• If u2 > ⇧rec, draw u3 2 U(0, 1) to sample link i ! j from the list
of active links.

(a) Move node j from the susceptible to the infected list.
(b) For all of j’s neighbors:

– If node ` is infected, deactivate link ` ! j.
– If node ` is susceptible, activate link j! `.

C.2.2 Core algorithm miccSIR
For fixed values of ↵, µ, �, ⌘, and ⇣, at a given time t the nodes are separated
in four lists: infected (I), dormant (D), susceptible (S), and recovered (R). For
dormants we store their accumulated viral load . For susceptibles we store 
and also the number of infected neighbors z. The contact network is encoded
in an adjacency matrix or list.

1. Sample the interval ⌧, solving �(⌧) = u, with u 2 U(0, 1) and

�(⌧) =
Y

i2I
e�⌘⌧

Y

j2S

e�[µ( j+z j⌧)]↵

e�(µ j)↵
. (C.2)

2. Update the time, t  t + ⌧, and the viral load of susceptible nodes,
 j   j + z j⌧.

3. Compute the hazard rate for infected nodes, !i = ⌘, the hazard rate for
susceptible nodes, ! j = �↵µ↵z j↵�1

j , and the total hazard rate,
⌦ =

P
i2I !i +

P
j2S ! j.

4. Compute the discrete distribution ⇧k = !k/⌦ and sample the next-
occurring event.
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• If infected node k recovers:

(a) Move node k from the infected list to the recovered list.
(b) For all of k’s neighbors, decrease the number of infected neigh-

bors by one, z`  z` � 1.
– If z` = 0, move node ` from the susceptible list to the

dormant list.
⇤ If ⇣ = 0 (short-term memory), set ` = 0.

• If susceptible node k becomes infected:

(a) Move node k from the susceptible list to the infected list.
(b) For all of k’s neighbors, increase the number of infected neigh-

bors by one, z`  z` + 1.
– If z` = 1, move node ` from the dormant list to the sus-

ceptible list and store z`.

C.2.3 Single-seed outbreaks

Each outbreak starts with a single randomly chosen infected node. All other
nodes are healthy, with zero viral load. An outbreak is terminated when
it reaches the absorbing state (i.e., all nodes are infected). To obtain the
temporal profile, we store the prevalence ⇢i(t) of each run i at given times,
with time interval �t. For a given network of size N and a fixed value of
� we average Z trajectories, at fixed values of t: h⇢(t)i = Z�1 PZ

j=1 ⇢ j(t) and
h⇢2(t)i = Z�1 PZ

j=1 ⇢
2
j(t). We estimate the prevalence as ⇢(t) = h⇢(t)i, compute

its standard deviation as �(⇢(t)) =
ph⇢2(t)i � h⇢(t)i2, and estimate the stan-

dard error as s(⇢(t)) = �(⇢(t))/Z. We construct the 95% uncertainty intervals
as ⇢(t) ± 1.96 ⇥ s(⇢(t)), and use �t = 0.1 and Z = 100.

To obtain the late-time fraction of recovered nodes we simulate Z inde-
pendent runs and record the final values R and R2 of each outbreak. After-
wards we compute the averages hRi = Z�1 PZ

j=1 Rj and hR2i = Z�1 PZ
j=1 R2

j . We
estimate the late-time fraction of recovered nodes as r1 = hRi/N, compute
the standard deviation as �(r1) = N�1

phR2i � hRi2, and estimate the stan-
dard error as s(r1) = �(r1)/Z. We construct the 95% uncertainty intervals
as r1 ± 1.96 ⇥ s(r1) and use Z = 104.
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C.3 Simulations of the SIS model

C.3.1 Core algorithm standard SIS
For fixed values of � and ⌘, at a given time t the nodes are separated in two
lists: infected (I) and susceptible (S). We also keep a list of the NA active
transmission, i.e., the (directed) links that connect an infected node with a
susceptible one. The contact network is encoded in an adjacency matrix or
list.

1. Compute the total hazard rate ⌦ = ⌘NI + �NA.

2. Sample the interval ⌧ = � log(u1)/⌦, with u1 2 U(0, 1), and update the
time, t  t + ⌧.

3. Compute the probability of a recovery, ⇧rec = ⌘NI/⌦, and sample
u2 2 U(0, 1).

• If u2  ⇧rec, draw u3 2 U(0, 1) to sample node k from the list of
infected nodes.
(a) Move node k from the infected list to the susceptible list.
(b) For all of k’s neighbors:

– If node ` is infected, activate the link ` ! k.
– If node ` is susceptible, deactivate the link k ! `.

• If u2 > ⇧rec, draw u3 2 U(0, 1) to sample link i ! j from the list
of active links.
(a) Move node j from the susceptible list to the infected list.
(b) For all of j’s neighbors:

– If node ` is infected, deactivate link ` ! j.
– If node ` is susceptible, activate link j! `.

C.3.2 Core algorithm miccSIS
For fixed values of ↵, µ, �, ⌘, and ⇣, at a given time t the nodes are separated
in three lists: infected (I), dormant (D), and susceptible (S). For dormants
we store their accumulated viral load . For susceptibles we store  and also
the number of infected neighbors z. The contact network is encoded in an
adjacency matrix or list.
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1. Sample the interval ⌧, solving �(⌧) = u, with u 2 U(0, 1) and

�(⌧) =
Y

i2I
e�⌘⌧

Y

j2S

e�[µ( j+z j⌧)]↵

e�(µ j)↵
. (C.3)

2. Update the time, t  t + ⌧, and the viral load of susceptible nodes,
 j   j + z j⌧.

• If 0 < ⇣ < 1 (medium-term memory), decrease the viral load of
dormant nodes,  j   je�⌧/⇣ .

3. Compute the hazard rate for infected nodes, !i = ⌘, the hazard rate for
susceptible nodes, ! j = �↵µ↵z j↵�1

j , and the total hazard rate,
⌦ =

P
i2I !i +

P
j2S ! j.

4. Compute the discrete distribution ⇧k = !k/⌦ and sample the next-
occurring event.

• If infected node k recovers:

(a) Compute its number of infected neighors, zk.
– If zk = 0, move node k from the infected list to the dor-

mant list with k = 0.
– If zk > 0, move node k from the infected list to the sus-

ceptible list with k = 0 and store zk.
(b) For all of k’s neighbors, decrease the number of infected neigh-

bors by one, z`  z` � 1.
– If z` = 0, move node ` from the susceptible list to the

dormant list.
⇤ If ⇣ = 0 (short-term memory), set ` = 0.

• If susceptible node k becomes infected:

(a) Move node k from the susceptible list to the infected list.
(b) For all of k’s neighbors, increase the number of infected neigh-

bors by one, z`  z` + 1.
– If z` = 1, move node ` from the dormant list to the sus-

ceptible list and store z`.
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Figure C.1: Adjusting the descend of the adiabatic expansion. Interpolation
construction if �⇢i > �⇢max, yielding �0i , h⇢i0i , and ��i+1.

C.3.3 Adiabatic expansion

Given the stochastic nature of the dynamics we must average over independent
realizations in order to obtain a representative ⇢1(�) curve. Additionally, we
want to control the spacing in the ⇢1 axis and handle the increasing correla-
tion time as we approach the critical point. We employ a two-step simulation
scheme: in the first step we elaborate a preparatory list of � values that will be
used in the second step to extensively sample ⇢1.

For a given network of size N, we start at � = �0 and infect all nodes. We
evolve the system during 25 ⇥ M0 events (with M0 = N), record the final value
of ⇢ = NI/N and store the system’s final state. We repeat this for R indepen-
dent runs, starting each time at �0 with all nodes infected, and storing each
final state separately. We compute the average h⇢i0 (of the R measures) and
write �0 and M0 to the output file. Next we decrease the control parameter,
�i = �i�1 � ��i. For each run we load the corresponding initial state from stor-
age and iterate 25 ⇥ Mi events. Then we record the final value of ⇢ and store
the system’s final state. After repeating this for the R runs, we compute h⇢ii
and �⇢i = h⇢ii�1 � h⇢ii. If �⇢i > �⇢max, we interpolate the results (see Fig. C.1
for a schematic illustration), setting ��i+1 = ��i�⇢max/�⇢i, and reassigning
�i  �i + ��i � ��i+1 and h⇢ii  h⇢ii�1 � �⇢max. In addition, we increase the
event interval, Mi+1 = M✏

i , with ✏ > 1. Finally we write �i and Mi to the output
file (note that �1 = �0 and M1 = M0). A run is deactivated when it reaches the
absorbing state (NI = 0): we stop simulating its dynamics and it is no longer
included in the computation of h⇢i. We keep decreasing the control parameter
� until all runs are deactivated, the point at which the simulation is halted.

Following this preparatory step we proceed with an extensive sampling of
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the order parameter. We infect all nodes and load � and M from the input
file. We thermalize the system during 20 ⇥ M events and afterward measure ⇢
and ⇢2 of X states, each separated by a window of M events. We repeat this
thermalization-sampling procedure for the next entry on the input list, using
the last visited state as initial condition. The simulation is halted when the list
is fully iterated or whenever the system reaches the absorbing state. We repeat
the whole procedure for Y independent runs, using the same input file. The
results are temporally averaged, i.e., each measure j is weighted by its resi-
dency time ⌧ j: h⇢i = w�1 PZ

j=1 ⌧ j⇢ j and h⇢2i = w�1 PZ
j=1 ⌧ j⇢2

j , with w =
PZ

j=1 ⌧ j

and Z the total number of samples (note that, since the input file may not
be fully iterated, Z  X ⇥ Y). We estimate the order parameter as ⇢1 = h⇢i,
compute its standard deviation as �(⇢1) =

ph⇢2i � h⇢i, and estimate the stan-
dard error as s(⇢1) = �(⇢1)/Z. We construct the 95% uncertainty interval
as ⇢1 ± 1.96 ⇥ s(⇢1) and use �0 = 1.2, R = 20, ��0 = 0.05, �⇢max = 0.025,
✏ = 1.01, X = 500, and Y = 20.

C.3.4 Single-seed outbreaks
For a given network of size N and a fixed value of � we simulate Z inde-
pendent runs. Each outbreak starts with a single randomly chosen infected
node. All other nodes are healthy, with zero viral load, and the coverage
K is set to zero. During the evolution of the outbreak we keep track of
all the nodes’ first infection label. Whenever a node is infected for the first
time, we change its label and increase the coverage by one unit, K  K + 1.
An outbreak is terminated when it reaches the absorbing state (finite realiza-
tion) or when the coverage reaches the threshold, Kth = cthN (endemic real-
ization). We record the final values K and K2 of all outbreaks, and count
the number of endemic realizations, z(1)

end. Afterward we compute the averages
hKi = Z�1 PZ

j=1 Kj and hK2i = Z�1 PZ
j=1 K2

j . We estimate the average cover-
age fraction as c̄ = hKi/N and the endemic probability as P1 = z(1)

end/Z, with
standard deviation �(c̄) = N�1

phK2i � hKi2 and �(P1) =
p

P1(1 � P1), and
standard error s(c̄) = �(c̄)/Z and s(P1) = �(P1)/Z. We construct the 95% un-
certainty intervals as c̄ ± 1.96 ⇥ s(c̄) and P1 ± 1.96 ⇥ s(P1).

To compute P3 we proceed from the same initial setting. Now, however,
when an outbreak reaches the coverage threshold we reset the coverage to zero
and erase all first infection labels (regardless of wether the node is healthy or
infected at that moment). Then we continue evolving the same outbreak, keep-
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ing track again of each of the nodes’ “first infection”, changing the labels and
increasing the coverage accordingly. When the coverage threshold is reached
for a second time, this reset is performed once again. We count the num-
ber of realizations that are able to reach the coverage a third time, z(3)

end, and
compute P3 = z(3)

end/Z, �(P3) =
p

P3(1 � P3), and s(P3) = �(P3)/Z. We con-
struct the 95% uncertainty intervals as P3 ± 1.96 ⇥ s(P3) and use cth = 0.75
and Z = 104.

C.3.4.1 Late-time prevalence

To measure the late-time prevalence of endemic outbreaks, ⇢⇤1, we only con-
sider realizations that become endemic. If the outbreak reaches the coverage
threshold at time t = T , we let the system evolve until t = m⇥ T . At this point
the outbreak has had su�cient time to reach its active steady state. Afterward
we measure ⇢ and ⇢2 of X states, each separated by a window of N events. For
a given � we record a maximum of W states, running a maximum of Y out-
breaks. The results are temporally averaged, i.e., each measure j is weighted
by its residency time ⌧ j: h⇢i = w�1 PZ

j=1 ⌧ j⇢ j and h⇢2i = w�1 PZ
j=1 ⌧ j⇢2

j , with
w =

PZ
j=1 ⌧ j and Z the total number of samples (note that Z  W). We esti-

mate the late-time prevalence as ⇢⇤1 = h⇢i, compute its standard deviation as
�(⇢⇤1) =

ph⇢2i � h⇢i, and estimate the standard error as s(⇢⇤1) = �(⇢⇤1)/Z. We
construct the 95% uncertainty intervals as ⇢⇤1 ± 1.96 ⇥ s(⇢⇤1) and use m = 10,
X = 102, W = 104, and Y = 104.

C.3.4.2 Temporal profile

To represent the evolution of single-seed outbreaks that reach the coverage
threshold, ⇢(t), we start run i from the usual initial setting and store the preva-
lence ⇢i(t) at given times, with time interval �t. If the system becomes trapped
in the absorbing state before reaching the threshold, we discard the trajectory
and start again. If the system is able to surpass the coverage threshold, we
continue tracking its evolution while the outbreaks remains active, up to tmax.
For a given network of size N and a fixed value of � we average Z trajecto-
ries, at fixed values of t: h⇢(t)i = Z�1 PZ

j=1 ⇢ j(t) and h⇢2(t)i = Z�1 PZ
j=1 ⇢

2
j(t).

We estimate the prevalence as ⇢(t) = h⇢(t)i, compute its standard deviation as
�(⇢(t)) =

ph⇢2(t)i � h⇢(t)i2, and estimate the corresponding standard error as
s(⇢(t)) = �(⇢(t))/Z. We construct the 95% uncertainty intervals as
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⇢(t) ± 1.96 ⇥ s(⇢(t)), and use �t = 0.1, tmax = 200, and Z = 100.

C.4 Phase diagram of the miccSIS model
Here we explain how we obtain the phase diagrams for the miccSIS model
with short-term (see Section 4.2.1.1 and Fig. 4.4) and medium-term memory
(see Section 4.2.3.1 and Fig. 4.10). Note that the equations of state for short-
term and medium-term memory (Eqs. (4.45) and (4.82), respectively) have the
form

f (⇢) = ⇢g(⇢) . (C.4)

As a general note, for a given � and ↵we compute h� | n = 1i, h� | X = 1i,
and h� | Y = 1i with ⌘ = � = 1. The integrals I, J1, and J2 (Eqs. (A.82),
(A.91), and (A.92), respectively) are evaluated numerically (using the Python
package SciPy). With these results we compute the coe�cients A and B, and
from there the reduced coe�cients a, b, b1, and b2. Recall that µ is computed
from Eq. (3.8).

The first step is to find the epidemic threshold �c, the point where the
healthy phase ⇢0 = 0 looses stability. For a fixed value of ↵ we numerically
solve the equation f 0(0) = 0 for �. The sign of f 00(0) marks the nature of
the transition. We sweep over a range of ↵ with a given precision (we choose
�↵ = 0.05) and evaluate the tricritical point ↵tr as the lowest value that yields
a discontinuous transition.

For ↵ > ↵tr, the epidemic threshold �c correspond to the right boundary of
the region of coexistence (see Fig. C.2(a)). We find the left boundary, ��, by
studying the endemic phase ⇢+ > 0, which is found by solving g(⇢) = 0. As
shown in Fig. C.2(b), a solution for ⇢+ exists in the range � > ��. For a fixed
value of ↵:

1. We start at the critical point �c.

2. We decrease the order parameter with a given precision (we choose
�� = 0.01) and find the solution of g0(⇢) = 0 (which lies in the inter-
val [0, 1]). This yields the values ⇢max and gmax = g(⇢max).

(a) If gmax > 0, we repeat step 2,

(b) else, we have found �� and also ⇢� = ⇢max.
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Figure C.2: Bifurcation diagram for a generic discontinuous phase tran-
sition. (a) Left (��) and right (�c) boundaries of bistable region, and corre-
sponding prevalence values (⇢� and ⇢c, respectively). (b) The endemic phase
(⇢+ > 0) is unstable for � < �� (grey) and becomes stable at �� (orange). For
�� < � < �c (purple), g(⇢) has two roots in the interval ⇢ 2 [0, 1] (the largest
value is stable, the smallest value is unstable). At �c (blue) the healthy phase
⇢0 = 0 becomes unstable. For � > �c (red) both solutions of g(⇢) = 0 are sta-
ble, but only the largest lies in the interval ⇢ 2 [0, 1].

3. With �c we compute the maximum of g(⇢), located at ⇢max 2 [0, 1]. Fi-
nally, we find ⇢c by solving g(⇢) = 0 in the interval [⇢max, 1].

We use a hybrid bisection-secant method for the various root-finding prob-
lems.

C.5 Simulations of the voter model

C.5.1 Core algorithm standard voter
For fixed values of �p and �r, at a given time t the nodes are separated in two
lists depending on their opinion. We also keep a list of the Np persuasion links
(between nodes with di↵erent opinion) and the Nr rea�rmation links (between
nodes with the same opinion). We maintain the directionality of the links, so
that the total number is Np + Nr = 2E, with E the number of undirected links.
The contact network is encoded in an adjacency matrix or list.

1. Compute the total hazard rate ⌦ = �pNp + �rNr.
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2. Sample the interval ⌧ = � log(u1)/⌦, with u1 2 U(0, 1), and update the
time, t  t + ⌧.

3. Compute the probability of a persuasion, ⇧p = �pNp/⌦, and sample
u2 2 U(0, 1).

• If u2  ⇧p, draw u3 2 U(0, 1) to sample node link i ! j from the
list of persuasion links.
(a) For all of node j’s neighbors:

– If ✓` = ✓ j, move the links j ! ` and ` ! j from the list
of rea�rmation links to the list of persuasion links.

– If ✓` , ✓ j, move the links j ! ` and ` ! j from the list
of persuasion links to the list of rea�rmation links.

(b) Move node j from one opinion list to the other.
• If u2 > ⇧p, do nothing.

C.5.2 Core algorithm micc voter
For fixed values of ↵r, ↵p, µr, µp, and �, at a given time t the nodes are sepa-
rated in two lists depending on their opinion. We also store their accumulated
rea�rmation load r and persuasion load p, the number of neighbors with the
same opinion zr, and the number of neighbors with the opposing opinion zp.
The contact network is encoded in an adjacency matrix or list.

1. Sample the interval ⌧, solving �(⌧) = u, with u 2 U(0, 1) and

�(⌧) =
Y

j

e�[µr(r, j+zr, j⌧)]↵r

e�(µrr, j)↵r

e�[µp(p, j+zp, j⌧)]↵p

e�(µpp, j)↵p . (C.5)

2. Update the time, t  t + ⌧, and the opinion loads of all nodes,
r, j  r, j + zr, j⌧ and p, j  p, j + zp, j⌧.

3. Compute the rea�rmation hazard rate for each node,
!r, j = �↵rµ

↵r
r zr, j

↵r�1
r, j , the persuasion hazard rate for each node,

!p, j = �↵pµ
↵p
p zp, j

↵p�1
p, j , and the total hazard rate, ⌦ =

P
j(!r, j + !p, j).

4. Compute the discrete distribution ⇧k = !k/⌦ and sample the next-
occurring event.
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• If node j rea�rms its opinion:
(a) Reset node j’s persuasion load, p, j  0.

• If node j is persuaded:
(a) For all of node j’s neighbors:

– If ✓` = ✓ j:
i. Move the links j! ` and ` ! j from the list of rea�r-

mation links to the list of persuasion links.
ii. Increase their number of “persuasion neighbors” by one

unit, zp, j  zp, j + 1 and zp,`  zp,` + 1.
iii. Decrease their number of “rea�rmation neighbors” by

one unit, zr, j  zr, j � 1 and zr,`  zr,` � 1.
– If ✓` , ✓ j:

i. Move the links j ! ` and ` ! j from the list of per-
suasion links to the list of rea�rmation links.

ii. Increase their number of “rea�rmation” neighbors by
one unit, zr, j  zr, j � 1 and zr,`  zr,` � 1.

iii. Decrease their number of “persuasion” neighbors by
one unit, zp, j  zp, j + 1 and zp,`  zp,` + 1.

(b) Move node j from one opinion list to the other.
(c) Exchange node j’s opinion loads, r, j  p, j.
(d) Reset node j’s persuasion load, p, j  0.

C.5.3 Temporal profiles
At the beginning of each realization we assign the nodes to state ✓ = +1 with
probability (1 + m0)/2. All nodes start with zero persuasion and rea�rma-
tion loads. We store the interface density ⇢i(t) of each run i at given times,
with time interval �t. The realization is halted when it reaches tmax. For a
given network of size N and fixed values of ↵r and ↵p we average Z trajec-
tories, at fixed values of t: h⇢(t)i = Z�1 PZ

j=1 ⇢ j(t) and h⇢2(t)i = Z�1 PZ
j=1 ⇢

2
j(t).

We estimate the interface density as ⇢(t) = h⇢(t)i, compute its standard devi-
ation as �(⇢(t)) =

ph⇢2(t)i � h⇢(t)i2, and estimate the corresponding standard
error as s(⇢(t)) = �(⇢(t))/Z. We construct the 95% uncertainty intervals as
⇢(t) ± 1.96 ⇥ s(⇢(t)) and use m0 = 0, �t = 0.1, and Z = 100. The value of tmax

varies for each combination of ↵p and N.
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C.6 Detecting and excluding outliers
Here we briefly outline how to detect outliers in the airport delays data set. For
the number of scheduled operations we compute the lower and upper bound
as

x� = q25 � 1.5 ⇥ IQR (C.6)
x+ = q75 + 1.5 ⇥ IQR , (C.7)

with q25 and q75, respectively, the first and third quartiles, and IQR = q75 � q25

the inter-quartile range. For the fraction of canceled and diverted operations
we compute the maximum acceptable value as

xmax = q75 + 1.5 ⇥ IQR . (C.8)

We consider as valid days those that have

• a fraction of canceled arrivals, canceled departures, diverted arrivals,
and diverted departures below the corresponding xmax,

• and a number of scheduled arrivals and departures between the corre-
sponding x� and x+.

C.7 Correcting timestamps
Each record in the airline on-time performance data set correspond to a single
flight. The date is given in format YYYY–MM–DD and corresponds to the
date of departure. All of the hours (departures and arrivals, scheduled and
actual) are given in the format HHMM. We compute the delays as

delay = actual time � scheduled time , (C.9)

which may be negative if the flight departed or arrived before the scheduled
time. However, since the date and time are given separately, this gives place
to some inconsistencies:

i) Flights that are scheduled to depart slightly after 0:00 present a huge
delay if they advance their departure to 23:59 or before. We correct the
actual departure timestamp by subtracting 1 calendar day.
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ii) Flights that depart on the day after they were supposed to present a neg-
ative departure delay. However, negative delays also occur if a flight de-
parts before its scheduled time. Thus we introduce a manual threshold.
If a flight presents a departure delay that is smaller than -60 minutes we
correct the actual departure and arrival timestamps by adding 1 calendar
day.

iii) Flights that are scheduled to arrive on the day after present a negative
scheduled flight time (i.e., scheduled arrival time � scheduled departure
time). We correct the scheduled arrival timestamp by adding 1 calendar
day.

iv) Flights that arrive on the day after present a negative flight time (i.e.,
actual arrival time � actual departure time). We correct the actual arrival
timestamp by adding 1 calendar day.
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Figure D.1: Equivalence between the standard SIS model and the miccSIS
model with ↵ = 1. Average late-time prevalence for the standard SIS model
(purple curve) and standard deviation for the miccSIS model (orange shaded
area) with shape parameter ↵ = 1 and relaxation time (a) ⇣ = 0, (b) ⇣ = 0.5, (c)
⇣ = 5, and (d) ⇣ ! 1, time-averaged over 104 samples, in a random degree-
regular network with k = 4 and N = 103.
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Figure D.2: Equivalence between the miccSIS model with short-term,
long-term, and limit cases of medium-term memory. (a–d) Average late-
time prevalence for short-term memory (purple curve) and standard deviation
for medium-term memory with ⇣ = 10�4 (orange shaded area), and (e–f) av-
erage late-time prevalence for long-term memory (purple curve) and standard
deviation for medium-term memory with ⇣ = 104 (orange shaded area), with
shape parameter (a, e) ↵ = 0.8, (b, f) ↵ = 1, (c, g) ↵ = 2, and (d, h) ↵ = 4,
time-averaged over 104 samples, in a random degree-regular network with
k = 4 and N = 103.
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Figure D.3: Endemic probability in the miccSIS model with medium-term
memory and fat-tailed infection probabilities. Probability that a single-
seed outbreak reaches the coverage once (solid) and three times (dashed) with
(a) ↵ = 0.6 and (b) ↵ = 0.8, averaged over 104 independent realizations, in
a random degree-regular network with k = 4 and N = 103 (relaxation time in
legend). Uncertainty intervals comparable to line width.
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Figure D.4: Late-time prevalence in the miccSIS model with short-term
memory on clustered networks. Results for three realizations of random
degree-regular networks with k = 4, N = 1000 (solid) and N = 2000 (dashed),
and shape parameter (a, e, i) ↵ = 0.8, (b, f, j) ↵ = 1, (c, g, k) ↵ = 2, and (d,
h, l) ↵ = 4, time-averaged over 104 samples (clustering coe�cient in legend).
Uncertainty intervals not appreciable at this scale.
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Figure D.5: Late-time prevalence in the miccSIS model with long-term
memory on clustered networks. Results for three realizations of random
degree-regular networks with k = 4, N = 1000 (solid) and N = 2000 (dashed),
and clustering coe�cient (a, e, i) C = 0, (b, f, j) C = 0.1, (c, g, k) C = 0.25,
and (d, h, l) C = 0.5, time-averaged over 104 samples (shape parameter in
legend). Uncertainty intervals not appreciable at this scale.
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Figure D.6: Late-time prevalence in the miccSIS model on scale-free net-
works. Results for three realizations of random degree-regular networks with
k = 4, N = 1000 (solid) and N = 2000 (dashed), and exponent (a, c, e, g, i, k)
� = 3.5 and (b, d, f, h, j, l) � = 2.5, for (a, b, e, f, i, j) short-term and (c, d, g,
h, k, l) long-term memory, time-averaged over 104 samples (shape parameter
in legend). Uncertainty intervals not appreciable at this scale.
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