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Abstract: In this work we study the dynamics of magnetic rods in viscous media under rotating
magnetic fields. We analyze the rotation dynamics of a paramagnetic and a ferromagnetic rods
under rotating fields with circular and elliptical polarization in the bulk of a viscous liquid using the
slim-body approximation. We also simulate the same setup using molecular dynamics simulations
and validate the results for the paramagnetic rod in the bulk. Since we recover the theoretical
behaviour we simulate the dynamics of the paramagnetic rod in presence of a wall. We then confirm
that under elliptically polarized rotating fields the paramagnetic microrod can act as a toggleable
microswimmer.

I. INTRODUCTION

The study of the dynamics of micro and nanometrical
devices in viscous media is important from a fundamental
level and for the potential applications that it can have in
a range of fields. For example, they can be used to trans-
port medicine in the human body, manufacture magnetic
devices [1], biosensors [2] among other applications.

Due to the typical sizes and velocities involved, the dy-
namics of these objects in viscous liquids occurs at very
low Reynolds numbers. In this regime, the inertial terms
in the Navier-Stokes equation for hydrodynamics are ir-
relevant and the equation becomes time reversible. As a
consequence, any swimming strategy based on backward
and forward displacements, will not induce net propul-
sion [3]. To overcome this difficulty it is known that in
low Reynolds regime, the rotation of a body in proximity
of a surface can translate into net translation due to the
hydrodynamic interaction with the boundary.[4]

Magnetic microparticles are good candidates to be
transported on surfaces, since they can be externally con-
trolled using magnetic fields. The dynamics of magnetic
particles strongly depend on their magnetic response. A
ferromagnetic rod rotates at any frequency in a rotat-
ing magnetic field [4] whereas a paramagnetic rod will
stop rotating after a certain magnetic frequency when
submerged in bulk [1].

The aim of this work is to study through numerical cal-
culations the propulsion of a paramagnetic microrod on
top of a bounding surface under the actuation of rotating
magnetic fields. First, I analyze the rotation dynamics
of a paramagnetic and a ferromagnetic rods under rotat-
ing fields with circular and elliptical polarization in the
bulk of a viscous liquid. I reproduced the results of Ref.
[1] for the dynamics of a paramagnetic rod under rotat-
ing fields. I confirmed that for a certain frequency the
microrod stops rotating and begins oscillating around a
given axis. Next, I used the same treatment to study
the dynamics of the ferromagnetic case. Although this
theoretical treatment is simple, its extension to account

for a bounding plane is not possible. To perform such
analysis we employ numerical simulations of a model of
a rod in a viscous fluid. I modified an existing simula-
tion code to describe the interaction of the paramagnetic
rod with an external field. I tested the code against the
numerical treatment based on [1], with good agreement.
Finally, we included a bounding plane in the simulation
code and performed simulations under different magnetic
actuations. We demonstrate that under elliptically po-
larized actuations net movement is achieved while below
a certain critical frequency.

II. THEORETICAL MODEL

Let us consider a magnetic rod composed of N spherical
particles under a rotating magnetic field. The dynamics
under low Reynolds number conditions can be obtained
as to a torque balance equation.

To describe the dynamics of the rod we first reproduce
the theoretical description of Helgesen and co-workers[1].
The dynamics is governed by the balance of two main
torques which act on the rod. First, the external mag-
netic field exerts a torque on the rod. Its form depends
on the magnetic response of the rod, either paramagnetic
or ferromagnetic. Being at very low Reynolds number,
this torque is compensated by the hydrodynamic torque
exerted by the viscous fluid, which opposes the rotations
of the bar.

A. Hydrodynamic drag

To describe the hydrodynamic drag of the fluid with
the elongated bar, we use the slim object approximation.
The slim object approximation imagines the N-colloid
rod as a continuous rod with a characteristic length L,
much larger that its width d.

The fluid torque for the slim object approximation [5]
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is given by:

ML =
−4πηL3

12γ

dφr
dt

(1)

where η is the liquid’s viscosity, φr is the rod’s angle in
respect of its initial position, γ is a slimness ratio. When
we take into account that the length of the bar is L = Nd,
as the rod will be formed by N balls of diameter d, and
that γ = ln(Ld )

ML =
−4πηL3

12 ln(Ld )

dφr
dt

=
−4πη(Nd)3

12 ln(N)

dφr
dt

(2)

B. Paramagnetic Rod

The magnetic dipole-dipole interaction energy is given
by:

H = − µ0

4π|r|3
(3(m1 · r̂)(m2 · r̂)−m1 ·m2) (3)

where m1 and m2 are the dipoles’ magnetic momen-
tum. The external magnetic field isB = Bx cos(ωHt)ex+
Bz sin(ωHt)ez. The magnetic moment of the paramag-
netic particles is then given by m =

4π( d
2 )

3

3µ0
χeff ∗B where

χeff is the effective volume susceptibility of the param-
agnetic particles. Considering that the the N-spheres’
momenta are all parallel to each other and form an angle
the magnetic dipolar energy is:

H =

N∑
i=1

N∑
i<j

− µ0m
2

4π|rij|3
(3cos(θ)− 1) (4)

where rij = d|j − i| and θ is the angle between the mi-
crorod and the external field. Arriving to the expression:

H = − µ0m
2

4π|d|3
(3 cos(θ)− 1)

N∑
i=1

N∑
i<j

1

|j − i|3
(5)

We approximate the sum over j in Eq.(5) by its value
for N → ∞, which is given by

∑∞
i=1

∑∞
i<j

1
|j−i|3 =

Nζ(s = 3), where ζ(s = 3) is Riemann’s zeta func-
tion for s=3. The value of this function for s=3 is∑∞
i=1

1
i3 = ζ(s = 3) = 1, 20205.., which is Apéry’s con-

stant.
Finally, the total magnetic energy is then approxi-

mated to:

H = −1.202Nµ0m
2

4π|d|3
(3 cos(θ)− 1) (6)

Consequently the magnetic torque acting on the bar
due to the magnetic interaction is MH = −dHdθ :

MH = CA(t)sin(2θ) (7)

where C =
1.202Nπχ2

effd
3B2

x

48µ0
, A(t) = [cos2(ωHt) +

r2 sin2(ωHt)], which comes from the external magnetic
field.θ = tan−1(rtan(ωHt)− φr) and r = Hz

Hx
determines

the degree of ellipticity of the external actuation.
Balancing the torques given by Eq.(2) and Eq.(7) re-

sults in the following differential equation:

dφr
dt

= −
1.202χ2

eff ln(N)B2
x

16N2ηµ0
A(t)sin(2θ) (8)

Defining ωc = − 1.202χ2
eff ln(N)B2

x

16N2ηµ0
reduces Eq.(8) to the

problem solved in [1]. ωc is a characteristic frequency
which defines the timescale of the problem.

FIG. 1: Polar representation of the rod’s angle in four
different regimes. a)Synchronous rotation for r=1 when

ωh = ωc b) Asynchronous oscillations for ωh > ωc

c)Asynchronous oscillations for ωc2 > ωh > ωc1 for r=0.7
d)Oscillations around a set axis for r=0.7 and ωh > ωc2

FIG. 2: Dependence of the mean angular frequency of the
paramagnetic rod on the magnetic field frequency in units of
the critical frequency for r=1. The numerical solutions are
in units of ωcth and the simulation results in units of ωcsim.
Three different behaviours are represented for three different

values of r.

I solved Eq.(8) numerically using a Runge-Kutta 4 al-
gorithm for different values of ωH and r. The results are
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represented in Fig. 1. We can see different behaviours.
For r=1 and ωH <ωc , the rod rotates at the same rate
as the field as shown in Fig. 1a. For ωH>ωc the rod has
periods of forward and backward motion, see Fig. 1b.
The average angular velocity of the rod ωr will tend to 0
when ωH →∞.

For r<1, there are three regimes. There is a first tran-
sition frequency ωc1from which the rod will stop rotating
at the same rate as the field and start presenting for-
ward and backward rotations (see Fig. 1c). There is also
a second transition after a second critical frequency ωc2
in which the rod oscillates about a fixed axis, and the
average angular velocity of the rod ωr = 0 see Fig.1d.

C. Ferromagnetic Rod

For a rigid rod composed of N ferromagnetic particles
with identical magnetic moment m directed along the
axis of the rod, the magnetic torque with the external
field is given by

τ =

N∑
i=1

m×B = N |m||B|sin(θ) (9)

Applying the torque balance between hydrodynamic
drag torque Eq.(2) and the magnetic torque Eq.(9) , a
similar differential equation is obtained:

dφr
dt

= −MBx
2ηN2

√
A(t)sin(θ) (10)

with the same A(t) and θ of the paramagnetic case and
where we used m = 4π

3 (d2 )3M, beingM, the magnetiza-
tion of the ferromagnet. We can also define a character-
istic frequency ωfc = MBx

2ηN2

The numerical solution of Eq.(10) is represented in Fig.
3 for different values of the critical frequency ωfc . As
shown in the figure, the critical behaviour in the ferro-
magnetic case shows that no matter the value of r, the
mean angular velocity of the rod will only approach zero
asymptotically, which is in accordance to the experimen-
tal results. [2]

D. Comparison

A few observations can be made. Neither for the para-
magnetic nor the ferromagnetic rods does the critical fre-
quency ωc or ωfc depend on the size of the rod, only on
the number of spheres it is made of. That is under the
condition that all the spheres are in contact with the
contiguous spheres, this is due to both the magnetic and
fluid torques scaling with the volume of the spheres.

The value of ωc scales with the squared of the mag-
netic field for the paramagnetic rod, while the critical
frequency for the ferromagnetic scales with the product
ofM and the magnetic field.

FIG. 3: Mean angular frequency of the ferromagnetic rod
as a function of the magnetic field frequency in units of the

numerical critical frequency for r=1

The differential equations governing the dynamics of
the ferromagnetic and paramagnetic rods, Eqs. (10) and
(8), present two main differences. While for the param-
agnetic rod the differential equation depends on A(t) and
sin(2θ), for the ferromagnetic case it depends on

√
A(t)

and sin(θ)

III. SIMULATION MODEL

We also solved the dynamics of the paramagnetic
rod using dynamic simulations of a point-particle based
model. Instead of considering the rod a continuous ob-
ject we’ll consider 10 equally spaced paramagnetic point
particles which interact magnetically among each other
and with the fluid they inhabit.

The rod keeps a fixed distance using a constraint
SHAKE algorithm [6]. The hydrodynamics are imple-
mented using Oseen’s tensor which is Green’s solution to
the Stokes equation to simulate fluid flow with no bound-
ary conditions. Oseen’s tensor connects the force exer-
cised on a point ri to the resulting fluid flow at r [10].
The flow generated by a point particle is given by:

u(r) =
1

8πη
(
1

r
Î +

(r− ri)(r− ri)
|r− ri|3

) ∗ f(ri) (11)

where Î is the identity matrix.
The equations of motion for the particles that form the

paramagnetic rod are

m
dvi

dt
= Fi − γ(vi − u(ri)) (12)

where m is the mass of the particle, vi its velocity, Fi

is the external force on particle i, and γ0 = 3πηd is the
drag coefficient. These equations are numerically solved
using a modified Verlet algorithm, which solves Newton’s
equation in discrete time steps. This algorithm computes
the position and velocity of the next step using:
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ri(t+ ∆t) = ri(t) + vi∆t+
fi(t)

2mi
∆t2 (13)

vi(t+ ∆t) =
2m− γ0∆t

2m+ γ0∆t
vi(t) +

fi(t) + fi(t+ ∆t)

2mi + γ0∆t
∆t

(14)

A. Dynamics of the paramagnetic rod

We simulated the behaviour for various values of r, and
with a magnetic field of 250mT. The dynamics of the rod
obtained from our simulations are represented in Fig. 2.
As shown in the figure, the behavior observed follows
the same trends obtained from the numerical solution of
Eq.(8) for different values of r. The theoretical estimate
for the critical frequency provides a value of wc = 2984Hz.
We can also determine the critical frequency from simu-
lations of the model at different frequencies, resulting in
ωsimc ≈ 700Hz. This discrepancy might appear because
we supposed N to be very large when applying the slim
object approximation. We can check that for ωc = 700Hz
the Reynold’s number Re = uLρ

η ≈ 10−3 and thus we are
still in a low Reynolds regime at this range of frequen-
cies. We have identified the critical frequency for different
values of the magnetic field performing different sets of
simulations. As shown in Fig. 4, we obtain a clear linear
dependence of the critical frequency on the magnitude of
the field, as expected for paramagnetic particles. With a
lineal regression we can see ωcsim = 10485B2

x + 6.8717

FIG. 4: Dependency of the critical frequency on B2
x

B. Simulations in presence of a wall

Having checked that simulations reproduce well the
behavior expected in bulk, we have finally included in
our simulations the presence of a wall. We expect that

FIG. 5: Mean angular frequency of a rod as a function of
the field’s frequency in units of the critical frequency for

r=1. The numerical solution is in absence of a wall while the
simulations results are in presence of a wall and in the bulk’s

critical frequency units

its presence can rectify the rotation of the rod into net
propulsion

The particles forming the rod interact with the wall at
z = 0 through a repulsive short range interaction given
by

U(z) = 4

[(
d

z

)12

−
(
d

z

)6
]
, z < 21/6d (15)

and U(z) = 0 for z > 21/6d. In addition, the hydro-
dynamic flow is modified by the presence of the wall.
Assuming no-slip boundary conditions at the wall, the
hydrodynamic flow due to a point particle is given by
the Blake tensor instead of the Oseen tensor.[7]

We have performed simulations including the presence
of the wall. The results for the frequency of rotation
of the rod are represented in Fig.5 as a function of the
field’s frequency. As shown in the figure, we observe a
similar behavior as the one obtained in bulk, although
some minor differences in the average angular velocity
appear. This might be due to hydrodynamic effects of
the walls and because the microrod may momentarily
come to a halt when colliding with the wall.

C. Movement below critical frequency and
elliptical field

In Fig. 6 we represent the position of the geometric
center of the paramagnetic microrod in under an ellip-
tically polarized rotating field for different frequencies.
For ωH<ωc1, we find that the mean value of x displaces
0.175µm after three rotations of the magnetic field, as
represented in Fig. 6. As shown in Fig. 5, at this fre-
quency the rod rotates with the magnetic field, induc-
ing its propulsion due to the presence of the wall. For
ωH > ωc2 however, when the rod is oscillating around a
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FIG. 6: Mean position of the rod throughout three full
rotations of the magnetic field. Comparison between the

movement of the rod when ωH<ωc1 and ωH > ωc2

set axis, there is no net displacement (see Fig. 6).We con-
clude that a paramagnetic rod is a toggleable microswim-
mer in a low Reynolds regime when applying a elliptically
rotating magnetic field: while ωH<ωc2 the rod moves but
when ωH<ωc2 it does not.

IV. CONCLUSIONS

We solved the dynamics of magnetic microrods im-
mersed in a viscous fluid under the actuation of rotating
magnetic fields.

First, we obtain the differential equations for the an-

gular dynamics of paramagnetic and ferromagnetic rods
using the slim body approximation. We find that the
paramagnetic rod rotates with the external field under a
critical frequency, from which the rod has periods of for-
ward and backward motion. When elliptically polarized,
it will stop rotating after a second critical frequency. In
contrast, the ferromagnetic rod always rotates with the
field.

Next, we solve the dynamics of a paramagnetic rod us-
ing molecular dynamics simulations of a model consisting
of 10 equally spaced particles rigidly bonded. The results
agree with the theoretical model.

Once the simulation model is tested, we include the
presence of a wall to study its effects on the rotation
and propulsion of the paramagnetic rod. We find that
the rotational dynamics are very similar to that in the
bulk. Under elliptically polarized rotating fields, the rod
propels for field frequencies below a critical value ωc2,
but does not move for field frequencies ωH >ωc2.
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