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Abstract

Context The current LCDM cosmological paradigm has seen remarkable success
in recent decades (whether it is the discovery of the CMB, the formation of large-scale
structures, the expansion of the universe etc.). Like any paradigm, there comes a point
when the theory reaches its limits and the question arises as to whether it is simply
due to the incompleteness of the theory or whether it should be questioned. In this
thesis, I focused particularly on two aspects of the LCDM theory: how to effectively
include massive neutrinos in the formation of structures and find a methodology to
bring a new perspective in the tension surrounding the expansion of the universe.

Aims Our objective for this thesis is to show how cosmology can help and benefit
from other areas of physics because there is a mutual interest in tackling problems at
the interface between cosmology and other areas of physics.

Methods In the first part of the thesis, I devoted myself to the development of an
emulator in order to be able to quickly and easily implement the effect of massive
neutrinos on the clustering of dark matter halos. For that I used the HADES numerical
simulations to calibrate the bias (a very useful quantity in cosmology which describes
the relation between the clustering of dark matter and the different observables). By
combining the result of these calibrations with a software which makes it possible
to calculate the perturbative terms of the power spectrum, I was able to develop a
competitive emulator up to non-linear scales.

Secondly, I devoted myself to the study of globular clusters in a cosmological
context. I used a catalog of clusters provided by the HST telescope in the F606W
and F814 filters. After removing the clusters with poor photometry, I performed a
Bayesian analysis which allowed me to constrain the various parameters common to
stars in the same cluster. Models that describe stellar evolution, like the ones I used
for the analysis, are often defined for a given set of parameters that vary from model
to model. Therefore to reduce the systematic errors due to the use of a specific stellar
model, I studied the influence of the parameters governing the different evolutionary
phases of stars with the MESA software.

Results The work carried out within the framework of the realization of an emulator,
allowed us to highlight important results such as: even if the shape of the bias must
be calibrated using numerical simulations, its amplitude can be simply rescaled by a
factor proportional to the mass of the neutrinos or the combination of pre-computed
coefficients with a software calculating the perturbative terms can be fast enough to
be implemented in Monte Carlo sampling softwares.

On the other hand, the estimate of the age of the globular clusters that we obtained,
coupled with some hypotheses on the time of galaxy formation makes it possible to
put a lower limit on the age of the universe. After the reduction of the systematic
errors, the age of the universe is thus compared to those obtained from the inference
of cosmological parameters of various surveys. With our current precision it is not yet
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possible to discard any of the measurements at odds (namely Planck or SHOES) in the
H0 tension but the results are very promising.

Conclusion Through this thesis I wanted to show that physics and more particularly
cosmology could benefit from its interplay with other fields. With a better modeling
of the effect of massive neutrinos it will be possible to both improve the inference
of cosmological parameters and precisely constrain the mass of neutrinos (for the
moment inaccessible to particle physics). A rigorous analysis of globular clusters also
offers an estimate of the age of the universe almost independent of a cosmological
model which is very valuable in this period of tension when the cosmological paradigm
is questioned and challenged.
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Resumen

El paradigma cosmológico actual LCDM ha tenido un éxito notable en las últimas
décadas. Como cualquier paradigma, llega un momento en que la teoría alcanza sus
límites y surge la pregunta de si se debe simplemente a que la teoría está incompleta
o si debe ser cuestionada. En esta tesis, me enfoqué particularmente en dos aspectos
de la teoría LCDM: cómo incluir efectivamente neutrinos masivos en la formación
de estructuras y encontrar una metodología para traer una nueva perspectiva en la
tensión que rodea la expansión del universo.

Nuestro objetivo para esta tesis es mostrar cómo la cosmología puede ayudar y
beneficiarse de otras áreas de la física porque existe un interés mutuo en abordar
problemas en la interfaz entre la cosmología y otras áreas de la física.

En la primera parte de la tesis me dediqué al desarrollo de un emulador para poder
implementar rápida y fácilmente el efecto de neutrinos masivos sobre la agrupación
de halos de materia oscura. Para eso utilicé simulaciones numéricas para calibrar el
“bias”. Combinando el resultado de estas calibraciones con un software que permite
calcular los términos perturbativos del espectro de potencia, pude desarrollar un emulador
competitivo hasta escalas no lineales. En segundo lugar, me dediqué al estudio de los
cúmulos globulares en un contexto cosmológico. Usé un catálogo de grupos proporcionado
por el telescopio HST. Después de eliminar los cúmulos con mala fotometría, realicé
un análisis bayesiano que me permitió restringir los diversos parámetros comunes a
las estrellas en el mismo cúmulo. Los modelos que describen la evolución estelar,
como los que utilicé para el análisis, a menudo se definen para un conjunto dado
de parámetros que varían de un modelo a otro. Por tanto, para reducir los errores
sistemáticos debidos al uso de un modelo estelar específico, estudié la influencia de
los parámetros que gobiernan las diferentes fases evolutivas de las estrellas.

El trabajo realizado en el marco de la realización de un emulador, permitió resaltar
resultados importantes como: aunque la forma del bias deba calibrarse mediante
simulaciones numéricas, su amplitud puede ser simplemente reescalada por un factor
proporcional a la masa. de los neutrinos o la combinación de coeficientes precalculados
con un software que calcula los términos perturbativos puede ser lo suficientemente
rápido como para ser implementado en el software de “sampling” Monte Carlo.

Por otro lado, la estimación de la edad de los cúmulos globulares que obtuvimos,
junto con algunas hipótesis sobre el tiempo de formación de las galaxias, permite
poner un límite inferior a la edad del universo. Después de la reducción de los errores
sistemáticos, se compara la edad del universo con las obtenidas a partir de la inferencia
de parámetros cosmológicos de varios estudios. Con nuestra precisión actual, todavía
no es posible descartar ninguna de las mediciones en desacuerdo en la tensión H0,
pero los resultados son muy prometedores.

Un análisis riguroso de los cúmulos globulares también ofrece una estimación
de la edad del universo casi independiente de un modelo cosmológico que es muy
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valioso en este período de tensión cuando el paradigma cosmológico es cuestionado
y desafiado.
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Chapter 1

Introduction

Compared to other areas of physics, modern cosmology is a relatively new science.
Even though knowing the origin and the properties of the universe has always been
a subject of interest and fascination. It was more a matter reserved to philosophers
or theologians. Throughout the centuries notable contributions were made towards
a mathematical theory of the universe. We can cite as examples Aristotle, Ptolemy,
Copernicus, Galileo or Newton but cosmology, in the modern sense, was born at the
beginning of the 20th century from two converging fronts.

On a more theoretical front General Relativity (GR), developed by Albert Einstein
established new laws governing the movement of celestial bodies in the universe
(Einstein, 1916). It provided a new framework to study distant and massive objects.
The theory was quickly popularized by astronomers of the time (e.g. Schwarzschild)
and shortly after confirmed by Arthur Eddington (cf. the solar eclipse expedition of
29 May 1919). "Cosmologists" soon realised that non only GR was good at describing
astronomical phenomena but also that it was possible to make predictions about the
universe. Ideas of a non static universe started to emerge and in 1922 Alexander
Friedmann (Friedmann, 1922) introduced equations governing the dynamical evolution
of the universe known today as the Friedmann equations. Before introducing formally
the equations let’s take a step back in our journey and go back in time. In the 17th

century Isaac Newton in his Philosophiæ Naturalis Principia Mathematica was the first to
introduce the cosmological principle, along with his famous gravitation laws, which
states that the universe is homogeneous and isotropic. Applied in General Relativity
to a line element ds in a four dimensional space-time, given by the expression :

ds2 = a(t)2dx2 � c2dt2, (1.1)

where c is the speed of light, dt the time component and a(t) and dx respectively
represent the scale factor and the three dimensional metric. The cosmological principle
only allows the metric to define three types of universe: closed (spherical with a
positive curvature k = 1), flat (k = 0) and open (hyperbolic with negative curvature
k = �1). Assuming the behavior of the universe’s components as perfect fluids and
using these metrics inside the Einstein’s equations, Friedmann was able to derive two
new equations describing the relative expansion of the universe as a function of the
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scale parameter a(t):

H2(a) =
✓

ȧ
a

◆2
=

8pG
3

r � k
a2 +

L
3

ä
a
= �4pG

3
(r + 3p) +

L
3

,

(1.2)

where p is the pressure, r is the energy density, H is the Hubble parameter (named
so later), G is Newton’s gravitational constant and L is the cosmological constant. It
is funny here to point out that the cosmological constant was introduced by Einstein,
fervent opponent of the expanded universe, so that the universe remains static.

Parallel to the mathematical development of cosmology, observations of our nearby
environment lead astronomers to question the nature of the universe, culminating
with the organisation of the Great Debate in 1920. One group maintaining that spiral
nebulae were stellar systems inside our own galaxy while the others argued that these
nebulae were in fact very big systems outside the galaxy, an idea similar to the island
universes championed by the like of Immanuel Kant. The latter group was proven to
be right by further observations of the night sky, in particular the detection of Cepheid
variables inside the spiral nebulae by Edwin Hubble at Mount Wilson Observatory.
Cepheid variables are stars whose properties (brightness, diameter, temperature) vary
periodically. Using the relationship between their period and luminosity discovered
by Henrietta Swan Leavitt (Leavitt, 1908; Leavitt and Pickering, 1912) it is possible to
infer their distance to the observer. Cepheids studied by Hubble had distances too big
to belong to our galaxy (Hubble, 1929a) and proved the existence of stellar systems
outside of the Milky way. Hubble went further and studied the relationship between
distances and redshifts for his sample of Cepheids (Hubble, 1929b) and discovered
what later became known as Hubble’s law:

v = H0D, (1.3)

where v is the recession velocity, D is the proper distance and H0 is the Hubble constant.
This law can be interpreted as the farther a galaxy is from the observer, the faster it
moves away, which corresponds to an expanding universe.

As mentioned above the framework for this kind of universe was already laid out
by Friedmann. Despite the fact that he began his observations after Friedmann’s work,
Hubble didn’t make the connection with an expanding universe. Georges Lemaître
(Lemaître, 1927) was the first to introduce an observational relationship between the
distance and the recessional velocity based on Einstein’s General relativity, which was
confirmed later by Hubble’s observations of the Cepheids. He also went further saying
that if the universe was indeed expanding then there must have been a finite origin
at the beginning of time and called it a "primeval atom" (Lemaître, 1931). Despite
the quality and the accuracy of Lemaitre’s pioneering work, it took several decades to
others astronomers and cosmologist to accept this innovative idea. All these discoveries
opened the door to a new universe. Modern cosmology was born.
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1.1 Cosmological paradigm

More than 100 years after Einstein introduced to the world his theory of general relativity,
the most complete, explanatory and accepted theory of the universe is the so-called
LCDM model. Among its successes it is worth mentioning the detection (Penzias
and Wilson, 1965), observation (Boggess et al., 1992; Hinshaw et al., 2007; Planck
Collaboration et al., 2016) and measure of the polarization (Kovac et al., 2002) of the
cosmic microwave background (CMB), successful tests of isotropy and homogeneity
(Jimenez et al., 2019), the detection of gravitational waves (Abbott et al., 2016) etc.
The LCDM model is based on several pillars, the most important being perhaps the
cosmological principle. In its standard form, it only requires six independent parameters.
In this section we are not going to make an exhaustive presentation of the model but
rather introduce the aspect of the theory that will be useful for the rest of this thesis.
We will focus in particular on two special points: the large scale structures and the
expansion of the universe.

The large scale structures

The cosmic microwave background is a relic radiation coming from the "last scattering
surface" around 380,000 years after the Big Bang. At this time the temperature of the
universe dropped enough to allow the recombination of electrons and protons to form
hydrogen atoms. The universe became transparent to the primordial photons that is
they were free to travel with few interactions. As the universe expanded, their energy
and so their temperature decreased. The Big Bang theory predicts that we should
be surrounded by a bath of photons from this epoch. The detection of this cosmic
radiation (Penzias and Wilson, 1965) was an extraordinary discovery for cosmology.
It confirmed the prediction made by the Big Bang theory of a very hot and dense origin
of the universe.

The cosmological principle states that the universe must be homogeneous and
isotropic. A statement seemingly confirmed by the remarkable isotropy of the cosmic
microwave background. However when we look at the night sky it is obvious that
the matter is distributed in structures such as planets, stars, galaxies etc. How can
we explain the origin of these structures ? The NASA Cosmic Background Explorer
satellite COBE (Boggess et al., 1992) was the first to detect fluctuations in the temperature
background of the order of one part in 100,000 (Smoot et al., 1992). At the time of the
large scattering surface the CMB is "frozen" which implies that these anisotropies have
to be either a result of an earlier mechanism or consequences of interactions at later
times. The hypothesis of late time fluctuations is unlikely. First if these fluctuations
are meant to be the seeds to all the structures we observe today they need time to grow
and secondly because the density of radiation decreases rapidly after decoupling with
interactions occurring at smaller scales. Several mechanisms have been postulated for
the creation of these primordial density perturbations and we can classify them in two
categories:

• Isocurvature or entropy perturbations. They don’t require potential fluctuations
and are created from stresses that move matter around inside the causal horizon.
The perturbations affect the relative number densities of the different components.
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FIGURE 1.1: Angular power spectra of temperature anisotropies with
different type of primordial perturbations. Figure made with CLASS

(Lesgourgues, 2011).

• Adiabatic perturbations. They are present initially and arise from quantum
fluctuations in the potential stretched by a period of inflation. The perturbations
affect the relative energy densities of the different components.

Among the many interactions altering the angular distribution of the CMB, the
baryonic acoustic oscillations (BAO) are of prime importance. BAO are the end product
of two competing phenomena. In the early universe matter and radiation are mixed
in a primordial plasma. Inside this plasma baryons around perturbations will undergo
gravitational attraction to form over-densities while sound waves emitted by the radiation
pressure will drag matter away from the over-densities creating spherical shells around
every anisotropy. The cumulative effect of this pattern is visible as a series of peaks
in the angular distribution of the cosmic microwave background. As the nature of the
density perturbations greatly influences the signature of the peaks (the phase of the
isocurvature perturbations is delayed compared to adiabatic models see Figure 1.1),
it is important to measure them with accuracy. This was done by experiments like
WMAP (Hinshaw et al., 2007), Planck (Planck Collaboration et al., 2016) etc. Their
observations were consistent with the density perturbations being adiabatic.

The theory of cosmic inflation is one of the theories predicting an adiabatic origin
of primordial density perturbations. It says that quantum fluctuations created during
the very early universe will be stretched by a phase of exponential growth of the scale
factor a(t) (quantity introduced earlier see Equations 1.1 and 1.2). Many inflationary
models make predictions about the modes of fluctuations (here we will only talk about
the scalar modes as they are the only ones being observed so far) connecting their
spatial scale to their distribution. Starting from the definition of fluctuations in energy
density:

d(x) =
r(x)� r̄

r̄
, (1.4)
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where r(x) represents the energy density at a given point and r̄ the average energy
density. The power spectrum P(k) can be defined as the variation of power as a
function of the spatial scale in Fourier space (here k is the wavenumber of the fluctuations):

D
dkd0k

E
µ d(k � k0)P(k) (1.5)

Taking as an example a simple model of inflation, the power spectrum of primordial
scalar perturbations can be expressed as a power law:

P0(k) = As
k
k0

ns�1
, (1.6)

where As is the amplitude of the power spectrum of the perturbations at a pivot
scale k0, ns is the scalar spectral index which describes how the fluctuations vary with
scale. A value of ns = 1 would mean scale invariant fluctuations. The latest estimation
provided by the Planck survey (Planck Collaboration et al., 2020) gives a value of
ns = 0.965 ± 0.004.

P0(k) describes the distribution of scalar perturbations in the very early universe
but to compare the theory to current observations, perturbations need to be evolved
through the history of the universe. The Einstein-Boltzmann equations are a set of
differential equations designed to derive the evolution of these perturbations from
initial conditions within the framework of general relativity. Each component of the
early universe is treated as a fluid and density fluctuations inside these fluids are
described by transfer functions T(k, z) where k is the spatial scale and z is the redshift.
Using these transfer functions, it is possible to relate the power spectrum of primordial
fluctuations to the distribution of components at any time and scale and define the
total matter power spectrum:

Pm(k, z) =

 

Â
i

Ti(k, z)

!2

P0(k, z), (1.7)

where the subscript i refers to any of the components considered in the computation
of the power spectrum whether it is matter or radiation.

However an universe only composed of baryonic matter and radiation is not sufficient
and several observations have pointed out the inconsistencies of the Big Bang model:
the rotation curves of galaxies, the velocity dispersion of bound systems and later
gravitational lensing. All indicating missing mass in the matter budget of the universe.
Measurement of the CMB properties also highlighted some gaps in the theory of
structure formation. Due to constant scattering and streaming of the photons, the
matter over-densities are washed up or frozen in the early universe. After decoupling,
since the density of radiation decreases faster than that of matter during the expansion
of the universe ( rg µ a�4 while rm µ a�3), matter will be subject to fewer interactions
with photons and will be free to collapse and form the structures that we observe
today. The problem is that the temperature of the CMB was measured to be TCMB '
2.7K placing the last scattering surface at some 380,000 years after the Big Bang which
does not leave enough time for the matter over-densities to form sufficiently large
structures. These observations led to the postulate of a new kind of non-luminous
matter which only interacts in a gravitational manner. Thus immune to the constant
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scattering of photons, this dark matter is able to form gravitational wells before decoupling
acting as catalysts in the formation of structures. Numerical simulations in the 1980s
showed that for a hierarchical formation model to accurately reproduce observations
at z = 0, the velocity of this extra component must be much smaller than the speed of
light at matter-radiation equality. All these properties are included under the name of
Cold Dark Matter (CDM). Today’s estimates say that it represents 27% of the energy
budget of the universe while baryonic matter and radiation only accounts for 5%
(Planck Collaboration et al., 2020).

The (accelerating) expansion of the universe

Large-scale structures bear witness to the interactions between the different components
of the universe while the expansion is sensitive to the collective effect of all the components
in the cosmos. As the constituents are embedded in an expanding universe, there
is some interplay between the two. Measuring with precision the properties of the
expansion provides a wealth of information about the history of the universe. In the
first part of the introduction we mentioned that the expansion was postulated a long
time ago by Friedmann and Lemaitre and observed experimentally by Hubble. Using
the distance and redshift of Cepheid variable stars he obtained a linear relation, latter
known as the Hubble law, with a slope of H0 = 500 km/s/Mpc (Hubble, 1929b). This
constant represents the value of the expansion flow today.

Even though it is possible to access the velocity of celestial objects by measuring
their redshift, a direct measurement of the distance in the universe is only possible
for objects close to the Earth. Unfortunately in the nearby sky the Hubble flow is
dominated by peculiar motions induced by gravitational forces. Therefore we need
"anchor" points to calibrate and measure the distances of celestial objects at high redshifts.
Any desirable "anchor" points must possess three essential qualities. First they must
be distinguishable from the foreground and background thanks to their special features,
then they must be calibrated with well-known properties and finally they must be
common enough or occur frequently enough to be used in most of the universe. In this
regard some astrophysical objects are extremely valuable. An ensemble of techniques
using these "anchor" points have been developed and regrouped under the denomination
Cosmic ladder .

We can cite some of these methods here:

• Standard candles: a class of objects with known intrinsic luminosity or brightness
L. Using their observed flux F we can compute their luminosity distance

dL(z) =
r

L
4pF

= (1 + z) dM(z) , (1.8)

where z is the redshift and dM is the comoving transverse distance. Cepheid
variable stars and type Ia supernovae are members of this class. They are very
bright and luminous objects in the night sky which makes them easier to identify.

• Standard ruler: a class of objects with known physical size x. Using their observed
angular size dq we can compute their angular diameter distance

dA(z) =
x
dq

=
dM(z)
(1 + z)

, (1.9)
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where z is the redshift and dM is the comoving transverse distance. Baryonic
acoustic oscillations are a good example of standard ruler. Indeed matter expelled
by the acoustic waves created by the opposite effects of gravity and radiation
pressure was allowed to travel up to some distance without scattering and defined
a fixed scale predicted by theory.

• With the blossoming of gravitational waves cosmology, standard sirens are also
worth mentioning. In this case the important quantity is the power (rate of
energy emission) which is related to the orbital evolution of a binary system.
It can be determined from the chirp mass:

M =
(m1m2)

3/5

(m1 + m2)
1/5 , (1.10)

where m1 and m2 refer to the masses of the binary system.
While some of the probes are located at high redshifts, these determinations of

the Hubble constant remain "local" on the timescale of the universe. The cosmic
microwave background offers an alternative to measure H0 using a relic from the
primordial universe. Assuming a cosmological model, we can infer the value of the
Hubble parameter today from the size of the largest fluctuations in the CMB. A higher
expansion rate would correspond to less time for the anisotropies to grow and inversely
a smaller expansion rate would provide more time for the anisotropies to grow.

The term "Hubble constant" is a bit misleading because H0 is not a constant per
se but rather the actual value of the Hubble parameter (see Equation 1.2). Since the
universe is evolving, its value must have been different in the past. Inside an homogeneous,
isotropic and expanding universe (also known as FLRW universe) the deceleration
parameter can be defined as:

q = � äa
ȧ2 , (1.11)

where a is the scale factor and dotted quantities indicate time derivative. Since the
Hubble parameter can also be defined as a function of the scale factor H(t) = ȧ(t)/a(t),
it is possible to express the derivative of the Hubble parameter as a function of the
deceleration parameter:

dH
dt

= �H2(1 + q) (1.12)

For a long time cosmologists thought that the expansion should slow down (hence
the name of the deceleration parameter) since gravity, the dominant force on large
scales, should compensate its effect by bringing matter closer together. It came as a
surprise when two teams simultaneously discovered that it was in fact the opposite
(Riess et al., 1998; Perlmutter et al., 1999). They gathered a sample of supernovae at
redshift high enough to measure the deviation from the linear Hubble law (indication
of a different value of the Hubble parameter at earlier time). The latest estimate of q0
(the value of q today) suggests a value ' �0.55 which means that:

1. the Hubble parameter will decrease with time (see Equation 1.12)

q > �1 �! dH
dt

< 0 (1.13)
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2. the expansion is accelerating (see Equation 1.11)

q < 0 �! ä > 0 since a, ȧ2
> 0 (1.14)

The discovery of an accelerating expansion is another milestone of the cosmological
paradigm. Rewriting the acceleration equation of Alexander Friedmann (see second
line of Equation 1.2) in terms of the different component of the universe:

ä
a
= �4pG

3 Â
i
(ri + 3pi) = �4pG

3 Â
i

ri(1 + 3wi) , (1.15)

where r is the mass-energy density, p is the pressure, w is the equation of state w =
p/r and the subscript i refers to each component. From equation 1.15 it can be inferred
that for the expansion to accelerate (ä > 0), the part of the right hand side between
parenthesis (1+ 3wi) must be negative, which corresponds to an equation of state w <

�1/3. This was problematic because of all the components of the universe postulated
by the CDM model none satisfied this condition. For baryonic and cold dark matter
w = 0 and for radiation w = 1/3. Just like large scale structures, there was a missing
piece to the puzzle. Model universes entirely filled with cold dark matter, baryons
and radiation are very good at reproducing the formation of galaxies and clusters but
they require a lower value of the Hubble constant in tension with observations. Two
of the most prominent models designed to fix this issue were 1) a mixture of cold and
hot dark matter and 2) cold dark matter plus a cosmological constant known today as
LCDM. Following the discovery of the accelerating expansion the latter was adopted
by community as the correct one.

The cosmological constant L was created by Einstein to ensure that the universe
predicted by the field equations of general relativity remained static but this solution
is unstable and Friedmann showed that whatever the value of L, Einstein’s equation
can still be applied to a non static universe (see Equation 1.2). In fact in a dynamical
universe the cosmological constant will increase the rate of expansion (or inversely the
rate of contraction). Before the evidence of an expanding universe Einstein developed
a new model of the cosmos based on Friedmann’s equation with a null cosmological
constant known today as the Einstein–de Sitter universe. Until the end of the 20th

century and the realisation that the expansion was accelerating, the cosmological constant
was thought to be equal to zero but the discovery of the two supernovae teams (Riess
et al., 1998; Perlmutter et al., 1999) implied a value of L > 0.

The origin and form of the energy driving the accelerating expansion is still unknown
so it was called Dark Energy as a analogy to dark matter. While all dark energy
models have different equation of state they must all respect the same constraint of
w < �1/3 to ensure an accelerating expansion. They usually come in two forms
either from scalar fields (Ratra and Peebles, 1988; Caldwell, Dave, and Steinhardt,
1998) or constant energy like L introduced above. The cosmological constant is one of
the simplest explanation for dark energy. As mass and energy are intrinsically linked
in general relativity, energy fluctuations created from the vacuum are expected to
contribute to the dynamical evolution of the universe. The latest measurement from
Planck CMB experiment (assuming a LCDM model) gives a value of WL ' 0.6847
(Planck Collaboration et al., 2020) which corresponds to ' 68% of the mass-energy
budget of the universe. Contrary to the predictions of quantum theories (a difference
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FIGURE 1.2: Evolution of the densities of the different elements of the
universe by Muhammad under the CC BY-SA 3.0 licence.

of 120 orders of magnitude !), the density of dark energy is very low and the only
reason why it is able to counterbalance the gravitational effect of matter is because it
is uniformly spread across the universe. The energy densities of matter and radiation
being inversely proportional to the scale factor a(t), they decrease with time while L
remains constant. We are now in the era of a universe dominated by dark energy (see
Figure 1.2).

1.2 Tension and going beyond the model

Despite the many successes of the LCDM model, there are plenty of unknown within
the cosmological paradigm whether it is about the nature of dark matter or dark
energy or tensions in the measurement of some parameters. I will continue in the
footsteps of the previous section and address some of the shortcomings of the two
pillars of the LCDM model that I introduced i.e: large scales structures and the expansion
of the universe.

Non linear scales

According to the accepted scenario, large scales structures are born from quantum
fluctuations in the primordial plasma that underwent a phase of exponential inflation.
The resulting over-densities induced the formation of potential wells of dark matter
immune to interactions with radiation. After decoupling, baryonic matter was free
to collapse inside the potential wells tracing the distribution of dark matter. This
model is remarkable at predicting the large scale structure we observe today. The
total matter power spectrum (see Equations 1.7), describing the distribution of matter
as a function of scale, is derived from perturbation theory which predicts the effects
of gravity upon perturbations in the framework of general relativity. As usual for
this type of mathematical methods, perturbation theories tend to break when the
perturbations become to big to be expanded. That is why the cosmological theory of
perturbation is only considered to be valid when the universe is mostly homogeneous
e.g. during the phase of cosmic inflation. As the wavelengths or Fourier modes of the



Chapter 1. Introduction 10

density perturbations are expected to evolve independently and the density field to
be Gaussian on large scales, the total matter power spectrum is a good approximation
on these scales. It is often referred to as the linear power spectrum.

On smaller scales where over-densities are much bigger than the average density
of the universe, linear theory is not valid anymore. We must resort to N-body simulations
or semi-analytic models to make predictions of the matter distribution. When observations
were compared to predictions it was evident that the development of the LCDM
model was incomplete at small scales. Among the issues:

• "The cusp/core (CC) problem, designating the discrepancy between the flat density profiles
of dwarf galaxies [...], Irregulars, and Low Surface Brightness galaxies [...], and the
cuspy profile predicted by dissipationless N-body simulations, despite the fact that the
observed galaxies are all of DM dominated types" from Del Popolo and Le Delliou
2017;

• "The “missing satellite problem” (MSP), coining the discrepancy between the number of
predicted subhalos in N-body simulations and those actually observed, further complicated
by the “Too Big To Fail” (TBTF) problem, arising from the LCDM prediction of satellites
that are too massive and too dense, compared to those observed, to hope for their destruction
in the history of mass assembly up to today" from Del Popolo and Le Delliou 2017;

In order to solve theses issues cosmologists were tempted to go beyond the standard
model of cosmology. E.g. a new type of dark matter called warm dark matter was
theorized. It has the same properties as cold dark matter above the free-streaming
scale leading to a bottom-up structure formation and similar to hot dark matter below
the free streaming scale with a top-down formation. It is also thought that baryonic
physics might alter the formation process of galaxies. However it is not obvious
that these issues are coming from an incompleteness of the model. Indeed N-body
simulations are very complex to implement because they require the modelization of
interactions between millions or billions of particles. They are also limited by their
resolution. As fluids are split into massive particles to speed up the computation a
trade-off must be made between the smallest mass available and the resulting number
of particles.

There is another reason to improve the treatment of the theory on non linear scales.
This part of the power spectrum is sensitive to both the nature of the different components
of the universe (peculiar velocity, streaming scale, mass etc.) and the interactions
between themselves (self interacting particles, baryonic physics etc.). If they want
to be seen as credible alternatives to LCDM, cosmological models must be able to
perform as least as well on large scales while being free to make different predictions
on small scales. Therefore an accurate modelling and description of the non linear
scales will provides a wealth of information and will allow to disfavor and discriminate
between cosmological models. Usually higher-order statistics are necessary to describe
the distribution at small scales.

H0 tension

For a long time after Lemaitre and Hubble first estimates of the rate of expansion it
was thought that the value of H0 was either close to 50 or 100 km/s/Mpc. As more
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surveys became available it became possible to put tighter constraints on the constant,
especially using cosmic microwave background experiments like WMAP or Planck
(Hinshaw et al., 2007; Planck Collaboration et al., 2016). However CMB experiments
provide an indirect determination of the Hubble constant because a cosmological
model need to be assumed first. That is why CMB estimates must be compared against
direct measurements, independent of a cosmological model. Direct measurements
are based on Hubble’s law which relates the distance of an object to its recessional
velocity in an expanding universe. Of all the methods used to determine the distances
of objects in the far universe (see cosmic ladder in the previous section 1.1) the most
prominent one is the use of standard candles (Type Ia supernovae in combination
with Cepheids (Riess et al., 2016)). This method is responsible for the discovery of the
accelerating expansion of the universe. If the cosmological model assumed is correct
then the direct and indirect measurements should agree but the CMB and supernovae
measurements were at odd with a ' 3s tension (see Figure 1.3).

FIGURE 1.3: Estimated values of the Hubble constant, between
2001–2020, with cosmic ladder (black), CMB (red) and other techniques

(blue). Created by Renerpho under the CC BY-SA 4.0 license.

The objects used for the cosmic ladder must be far from us (D > 100 Mpc) so that
the Hubble flow dominates over the peculiar velocities, which makes it very difficult
to measure the distances accurately. As the determination of the Hubble constant is
heavily dependent of the assumptions made for the determination of the distances,
the uncertainties of the different methods was a reasonable explanation for the spread
of the estimates. With the increasing number of surveys and the improving precision
of the measurements a convergence was expected, however not only was the tension
not reduced but it increased reaching 4-5s between direct and indirect measurements
(Planck Collaboration et al., 2020; Riess et al., 2021).

If we assume that the measurements of the different experiments are valid (systematics
under control, theoretical models are correct, universality of the tracers used in the
cosmic ladder etc.) this result seems to point out that LCDM is incomplete and we
need new physics beyond the standard model. Since the measurements at odds are
sensitive to different epochs of the universe, several leads are worth considering and
a lot of solutions have been proposed to alleviate the tension. They can be sorted in 4
categories according to (Efstathiou, 2021):
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1. radical departures from conventional cosmology, including departures from General
Relativity;

2. changes to the physics of the early universe (for example adding additional
relativistic species or neutrino interactions);

3. new physics at matter-radiation equality, or recombination, that alters the value
of the sound horizon;

4. changes to the physics at late times.

Solutions of types 3 and 4 seem to be favored nowadays, even if a modification of
the physics at late time has to overcome more obstacles such as the fact that the origin
of dark energy is still unknown or that some of the late time experiments agree well
with the low value of H0 inferred from Planck (Planck Collaboration et al., 2020).

1.3 Interplay between cosmology and other fields

Cosmology is a one of a kind in the realm of natural sciences. Indeed natural sciences
are based on empirical observations of the environment and they try to establish
general laws using scientific methods. Two very important notions for any scientific
method are: repeatability (the ability to repeat an experiment by a same team of researchers)
and reproducibility (the ability to reproduce the experiment by another team of researchers).
Disregarding here the different theories of multiverse, let’s assume that there is only
one universe. The fact that it is only possible to observe a tiny fraction of it makes it
difficult to achieve these standards. Beyond all the technical challenges that cosmologists
had to overcome, this may explain why the status of cosmology as a real science was
a subject of debate. Since the era of modern cosmology and despite some areas that
still remain speculative (such as the origin of the universe), cosmology is a science
in its own right. Even more it is a multidisciplinary science where mathematics are
used to create a framework and make predictions, astronomy provide observations to
invalidate and disfavour models and physics and chemistry theories help us explain
the different phenomena. It is probably one of the most complete field of physics since
it tries to conciliate the infinitely large with the infinitely small.

Nowadays the quantity of material to learn, necessary to contribute to the discipline
as well as the variety of sub-fields studied, makes it possible to draw a delimitation
between cosmology, astrophysics or other areas of physics. Even if the wall between
astrophysics and cosmology remains quite porous (it is mainly a question of scale),
it is rare that objects or phenomena are studied for the same reasons. Most of the
time, astrophysics focuses on the nature of celestial objects while cosmology is more
interested in their large-scale attributes (distribution of galaxies, distances of supernovae
etc.). However in the history of cosmology there are various examples of astronomical
discoveries which have revolutionized our knowledge of the universe. The importance
of Cepheids and Type Ia supernovae was already mentioned for their role in the
discovery that the universe was in a state of accelerating expansion, but it is also
important to talk about the study of the Coma cluster of galaxies and the rotation
curves of galaxies that have highlighted the existence of dark matter or the discovery
by Walter Baade of several types of Cepheids (Baade, 1956) leading to an estimate
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of the size of the universe twice as large as the previous one. For these reasons it is
interesting to study celestial objects from a cosmological perspective.

In addition to astrophysics there is also a strong interplay between cosmology and
particle physics. After its creation the universe was composed of a very hot and
dense plasma of elementary particles and parallel to gravity and cosmic inflation,
the interactions between particles (scattering, decay etc.) greatly contributed to its
development. Through the theories of the cosmic microwave background and primordial
nucleosynthesis of atoms (explaining the abundance of primordial elements observed
today, cf. Alpher, Bethe, and Gamow 1948), particle physics was instrumental in
establishing the Big Bang theory as a correct explanation for the singular origin of the
universe, confirming the predictions of Lemaitre. It was later realized that the theory
of Big Bang nucleosynthesis had two shortcomings: the heaviest elements couldn’t
be produced due to a bottleneck in the production mechanisms and the quantity of
baryonic matter predicted by the model was not sufficient to match the observations
of the rotation curves or the clusters of galaxies. The former can be solved by invoking
astrophysical mechanisms such as the explosion of supernovae but the latter requires
the introduction of a new kind of particles not predicted by the standard model, dark
matter. The elusive nature of dark matter makes it difficult to study its properties in
the laboratory. As particle physics studies the interaction between particles at high
energies, creation and annihilation of more massive particles requires greater energy
which in turn requires to build larger accelerators. In this sense the universe is an ideal
laboratory because it allows both to observe phenomena occurring at gigantic energies
and to study the overall effect of relic elementary particles and their signature in the
current universe.

1.4 Computational methods

I would like to conclude this introduction by putting into perspective the work carried
out in this thesis. Computational methods are omnipresent in natural sciences and
cosmology is no exception to the rule. Nowadays cosmologists must, to some extent,
possess some programming skills because it may be required at every step of the
scientific process. Like all empirical sciences, it all starts with observations. Then the
collected data need to be processed and reduced e.g. to infer cosmological parameters
with software such as Monte Carlo samplers. It is probably during this phase that the
majority of scientists are confronted with computational tools. Once the analysis is
done theorists will explain the results obtained by creating new models or adjusting
the existing ones. These models thus created will make it possible to make predictions
whose robustness will be tested against new observations. This scientific cycle is
shown schematically in Figure 1.4.

Research fields encompassed by the denominations computational cosmology or
computational astrophysics mainly focus on the "theories" and "predictions" parts of
the cycle. In some cases models and predictions can be established analytically but
they are limited by the complexity of the phenomena studied. When the system is too
complicated, it is usually necessary to resort to semi-analytical models or numerical
simulations. This is the case, for example, for the formation of structures at small
scales where the evolution of over-densities of matter is governed by non-linear physics.
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FIGURE 1.4: Scientific cycle

The predictive power of numerical simulation is a real asset in cosmology where only
a single realization of the universe is accessible. More recently, machine learning has
also made it possible to study areas where the underlying physics is not yet very well
understood.

But there is also another aspect of computational cosmology, a little more "meta"
in the sense that one uses computational methods to develop new computational
methods. This is particularly the case for data analysis. As said previously, numerical
simulations are excellent for making predictions but they can also be used to simulate
future observations to create new analysis tools able to extract as much information as
possible from the data that will be collected. The production of results makes science
what it is, but it is important to continue to improve tools and methodologies in order
to perpetuate the advancement of knowledge. It is a dimension that I wanted to bring
to my work.

1.5 Objective and structure of the thesis

This thesis consists of a collection of my research published during my doctorate at
the University of Barcelona. The objective of my work was to navigate at the interface
between cosmology and other fields of physics in order to shed light on some of the
properties of the components of the universe in the context of the LCDM cosmological
paradigm. With this in mind my collaborators and I tried to bring new perspectives
by developing new tools or by introducing new methodologies.

This thesis is organized as follows. In Chapter 2 we explain how the discovery
of massive neutrinos alters not only the standard model of particle physics but also
the theory of structure formation. In order to determine the mass of neutrinos with
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precision, their effect on the clustering of matter should be adequately addressed.
This chapter includes the publication (Valcin et al., 2019). In chapter 3 a sample
of globular clusters, observed by the NASA HST telescope, is studied. In order to
determine the attributes of these clusters, a Bayesian analysis is performed. I explain
how the systematic errors can be reduced in order to make the results obtained more
competitive. Finally, the age of the clusters is put in the context of the H0 tension,
where they can be used as standard clocks. This chapter includes the publications
(Valcin et al., 2020; Bernal et al., 2021) and a manuscript under review (Valcin et al.,
2021). Chapter 4 summarizes the conclusions and implications of the work presented
as well as future prospects.



16

Chapter 2

Towards a determination of the
absolute mass of neutrinos

2.1 Background

Neutrinos are fascinating objects, because of their nature, their impact on the universe
and the mysteries they seem to conceal. Before explaining how cosmology can contribute
to the study of neutrinos, I will start by giving a brief summary of their history. They
were first postulated in 1930 by Wolfgang Pauli to explain the conservation of energy,
momentum and angular momentum during the beta decay, i.e the decay of a neutron
into a proton or vice versa.

FIGURE 2.1: b decay inside an atomic nucleus by Inductiveload. Image
from Public domain

The particle was first observed during the Cowan – Reines neutrino experiment
(Cowan et al., 1956), where antineutrinos produced in a nuclear reactor interacted
with protons to make neutrons and positrons. In the 1960s, the Homestake experiment
(Davis, Harmer, and Hoffman, 1968) made the first measurement of the flux of electron
neutrinos arriving from the core of the Sun and found a value that was between one
third and one half of the number predicted by the Standard Solar Model (Bahcall and
Davis, 1976). Even though scientists knew the existence of different neutrino flavors
since the 1960s and 1970s, it was still several decades before a satisfactory explanation
was found for this "Solar neutrino problem". In the 1950s Bruno Pontecorvo postulated
the phenomenon of oscillation of neutrinos (Pontecorvo, 1957; Pontecorvo, 1967), analogous
to muon oscillation, to answer the question but being limited by the technology of
the time, it was not until the end of the 1990s that the first evidences for neutrino
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oscillation (atmospheric from the Super-Kamiokande collaboration in Japan (Fukuda
et al., 1998) and solar from the Sudbury Neutrino Observatory (SNO) in Canada) were
obtained.

2.2 Neutrino Oscillation and consequences

The oscillation of neutrinos results from the mixing between the flavor and mass
eigenstates. Neutrino states are the superposition of three quantum states of definite
masses. When neutrinos travel through space, these different states of mass will
travel at different rates, changing the superposition of the states. This modification
of the superposition of the masses will lead to a change in flavor. Thus the neutrino
flavor will be able to oscillate periodically, returning to its original flavor after a certain
distance. Neutrino oscillation remains possible as long as the quantum states remain
coherent along the path.

The fact that this phenomenon was observed had important consequences on particle
physics. Indeed the standard model predicted that neutrinos were massless particles
but neutrino oscillation is only possible if the three species have nonzero and slightly
different masses. Subsequently a number of experiments were carried out to confirm
this result and to learn more about the properties of neutrinos. A current limitation
in the study of oscillations in laboratory is that experiments are only sensitive to the
difference in the squares of the masses Dm2. Recently new experiments have been
designed to determine the absolute mass of neutrinos in the laboratory by analyzing
the nuclear beta decay with spectrometers (KATRIN Weinheimer 2002) or calorimeters
(MARE Monfardini et al. 2006).

2.3 Clustering of dark matter and neutrino sensitivity

This is where cosmology comes into play. As small as the mass of neutrinos is, their
collective effect will modify the mass-energy budget of the universe. As relativistic
particles in the early universe, they will also alter the formation history of structures.
Assuming a LCDM cosmological model, the best explanation for all the large scales
structures we observe today is a hierarchical bottom-up formation model where small
structures grow due to gravitational pull and a succession of mergers (see Figure 2.2).

But what is the role of neutrinos in this picture ? According to the Big Bang theory
neutrinos are expected to decouple early in the history of the universe (in the first few
seconds) and as they rarely interact with matter (mainly via the weak interaction),
they persisted as a cosmic neutrino background. Even after decoupling neutrinos
remained in thermal equilibrium with the photons until the temperature dropped
below the mass of the electron. Thus shaping the expansion of the early universe. The
Big Bang nucleosynthesis predicts that the abundance of light elements will depend
of the number of neutrino species Nn. A prediction confirmed by the standard model
of particle physics. Being a relativistic species, neutrinos will also contribute to the
radiation budget of the universe and shift the epoch of matter-radiation equality which
can impact the determination of the expansion rate at later times. E.g one solution
considered to alleviate the H0 tension is to modify the number of neutrino species (see
section 1.2).
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FIGURE 2.2: Hierarchical model of galaxy formation, by ESO/L.
Calçada under the licence CC BY 4.0

Massive neutrinos are also of great interest in the study of the clustering of matter.
Due to the fact that the are not luminous, that their existence has been proven and
that they interact very little with their environment, massive neutrinos were ideal
dark matter candidates. However the very small mass predicted by the oscillation
mechanism suggests that neutrinos can travel at speeds comparable to that of light.
This classifies neutrinos as hot dark matter, incompatible with a bottom-up formation
model. In addition if dark matter was composed solely of neutrinos, the particles
would have sufficient speed to escape galaxies, which does not agree with observations.
The speed of neutrinos will also alter the clustering of matter at small scales. Indeed
their thermal velocity will allow them to break and free stream outside of small over-
densities. This effect will result in a suppression of the matter power spectra at small
scales.

As can be seen in Figure 2.3 the matter power spectra are not only sensitive to
massive neutrinos but also directly to the absolute mass of the neutrinos Smn . This is
both a blessing and a curse because it means that if we succeed to accurately model
the power spectra we can put some constraints on the total neutrino mass and even
disfavour one of the neutrino hierarchy models. It also means that if we want to extract
the wealth of information encapsulated in the power spectra (especially at small scales
where the modes are more abundant) we must be able to recreate accurately the
impact of massive neutrinos on the clustering of matter.

2.4 Bias and redshift space distortion

One of the main obstacle in cosmology is that we are trying to learn more about the
universe while we are able to only access a small part of it. Whether it is because
of distance, insufficient luminosity, foreground, detector sensitivity etc. The usual
workarounds are to search for interactions between the objects studied and their environment.
For the clustering of matter, since we can not directly observe dark matter, we study
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FIGURE 2.3: Ratio of the total matter power spectra for different
neutrino masses. Figure made with CLASS (Lesgourgues, 2011).

the distribution of tracers in the universe (these could be galaxies, clusters of galaxies,
dark matter halos etc.). The problem is that these tracers do not perfectly reproduce
the distribution of dark matter and we need to correct this effect by introducing a
new quantity called bias and usually denoted by the letter b. The bias will link the
distribution of dark matter predicted by theory to the distribution of the observed
tracers.

dtracers = b ⇥ dtheory

Ptracers = b2 ⇥ Ptheory
(2.1)

where d represents over-densities and P =< d|d > the power spectra. The bias is
a complex quantity and will depend on several parameters according to the nature of
the tracers and the surrounding environment. In a ideal universe, rescaling the dark
matter power spectra by a constant value would be enough to match the observed
distribution of tracers and it is usually the assumption made on linear scales where
the phenomena happening in the universe are governed and best described by linear
physics. However in this era of precision cosmology it is crucial to extract the information
contained in smaller scales. At these scales the approximation of a constant bias is not
valid because the clustering properties will depend on the portion of the sky selected.
This can be translated as a scale dependent bias b �! b(k).

Beyond the bias, other effects will prevent the measurement of the tracers distribution
with accuracy. Among the most dominant are the Redshift Space Distortions (RSD).
As it is very difficult to directly access the distance to sources, in almost all the analyses
in cosmology the redshift is used as a proxy. The problem is that experimentally the
shift measured is the combination of two movements: the expansion of the universe
and the peculiar velocity of tracers with respect to the expansion. This deviation of
the Hubble law will lead to inaccurate determination of distances if not corrected. The
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Redshit space distortions will modify the power spectra in two particular ways that
can be distinguished by the scales impacted:

• The Kaiser effect (Kaiser, 1987) at large scales: caused by the coherent motions
of galaxies as they fall towards the center of clusters leading to a flattening of the
structure (see left panel of Figure 2.4).

• The Fingers of God (Jackson, 1972) at small scales: virial motion associated with
the random peculiar velocities of galaxies bound in clusters (see right panel of
Figure 2.4).

Both the bias and the redshift space distortions have been extensively studied. It
can be difficult to model them accurately, especially in the non linear scales because it
requires mathematical artefacts such as perturbations theory, effective field theory etc.
which are computationally expensive.



Chapter 2. Towards a determination of the absolute mass of neutrinos 21

FIGURE 2.4: (Left) Kaiser effect, (Right) Fingers of God, credit: Eiichiro
Komatsu, UTAP Seminar, University of Tokyo, Tokyo, Japan. December

18, 2007

2.5 BE-HaPPY: bias emulator for halo power spectrum including
massive neutrinos

The impact of massive neutrinos on the linear clustering is pretty well understood but
the non linear scales effect remains a subject of investigation. On one side analytical
formulas tend to be unaccurate or break on non linear scales. On the other side, semi-
analytic models or N-body simulations, best suited to follow the structure formation,
did not give the same detailed treatment to neutrinos as to baryons, stars, cold dark
matter etc. This was not a first order problem given the precision of the past surveys
but it needs to be addressed to extract the most of the data for this new era of "precision"
cosmology.

As we have seen in the previous section the power spectra will be dominated by
effects such as the bias and redshift space distortions. That is why the idea behind our
project was to study the impact of massive neutrinos on these effects. The first part
was to model them accurately using N-body simulations and then create an emulator
able to quickly implement our calibration for clustering analyses.
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neutrinos cosmologies. Finally we present a halo bias emulator, BE-HaPPY, calibrated
on the N-body simulations, which is fast enough to be used in the standard Markov Chain
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BE-HaPPY reproduces the simulation inputs with percent or sub-percent accuracy for the
halo mass cuts it is calibrated on (M > {5⇥ 1011, 1012, 3⇥ 1012, 1013}h�1

M�) on the scales
of interest (linear and well into the mildly non-linear regime). The approach presented here
represents a well defined route to meeting the halo-bias accuracy requirements for the analysis
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emulator mode and in calibration mode, on user-supplied simulations outputs, and is made
publicly available.

Keywords: cosmological parameters from LSS, cosmological simulations, neutrino masses
from cosmology, power spectrum
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1 Introduction

To fully take advantage of next generation surveys such as Euclid,1 DESI,2 WFIRST,3 SKA4

EMU,5 PSF,6 and LSST7 we must improve our modelling of clustering of the tracers of
the dark matter density field. The amplitude and scale dependence of the matter power
spectrum carry important cosmological informations about e.g., the primordial Universe or
the absolute neutrino mass scale, highly complementary to that provided by cosmic microwave
background observations. Galaxy or halo bias, which is the relation between these tracers
and the underlying matter field, is one of the main source of uncertainty preventing us
from achieving this goal. Since galaxies are hosted in dark matter halos, the first step is
to model correctly the bias of the halo field or halo bias. Hereafter when we refer to bias
we mean the halo bias. Accurate modelling of the halo bias is a necessary (although not
su�cient) step to achieve accurate modelling of the observable dark matter tracers. The
(halo) bias is usually approximated by a constant on linear scales and then marginalized
over. However the approximation of scale independence may be insu�cient, even on linear
scales. This is all the more true in a cosmological model with massive neutrinos. Indeed,
because of their thermal velocities, neutrinos act as relativistic species during the growth
of cosmological perturbations and therefore can escape region of higher density fluctuations.
This phenomenon, known as the “neutrino streaming” e↵ect, results in suppression of power
at small scales. Massive neutrinos also have an additional e↵ect on the growth of structures.
As tiny as their mass could be, neutrinos modify the shape of the power spectrum and thus
the halo bias. Neutrinos are one of the most mysterious fundamental particles of nature. The
value of their masses remains a mystery today. Constraining their masses is among the goals
of upcoming surveys. In order to achieve this, accurate theoretical predictions are needed.
The purpose of this work is to investigate in detail the shape and amplitude of the halo bias,
as a proxy and a preliminary step for galaxy bias, in cosmologies with massive neutrinos into
the mildly non-linear8 and non-linear regime, and o↵er a fast way to model it.

While not an issue for present-day surveys, Raccanelli et al. [1] (see also Vagnozzi et
al. [2]), showed that an inaccurate model for the bias in cosmologies with massive neutri-
nos will induce a systematic and statistically significant shift in the inferred cosmological
parameters for forthcoming surveys.

A solution proposed by e.g., [1, 3–6] to account for this massive neutrinos e↵ect is to
use the power spectrum of the cold dark matter plus baryons, Pcc, instead of that of the
total matter, Pmm, as the relevant theoretical input. It is therefore Pcc the quantity to be
modelled and thus the one to be used in the definition the tracers bias. On large-scales, in
cosmologies with massive neutrinos, the halo bias defined in this way become e↵ectively scale-
independent and on smaller scales, its scale-dependence, has been found to be neutrino-mass
independent [4–6] (at least to current precision); a small scale dependence even on linear
scales is expected [7], but it does not a↵ect the results presented here.

1European Space Agency — Euclid, http://sci.esa.int/euclid.
2The Dark Energy Spectroscopic Instrument, https://www.desi.lbl.gov.
3Wide Field Infrared Survey Telescope, https://wfirst.gsfc.nasa.gov.
4Square Kilometre Array, https://www.skatelescope.org.
5Australia Telescope National Facility, https://www.atnf.csiro.au/people/Ray.Norris/emu/index.html.
6Prime Focus Spectrograph, https://pfs.ipmu.jp.
7Large Synoptic Survey Telescope, https://www.lsst.org.
8Here mildly non-linear scales refers to scales where non linear e↵ects arise but low order perturbation-

theory approximations are still valid.
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In this work, we use a large set of state-of-the-art N-body simulations with massive
and massless neutrinos to study and model the e↵ects induced by massive neutrinos on halo
bias. We establish a simple link between the halo bias in models with massive and massless
neutrinos. The results of this investigation are summarised in a software package which
computes halo bias including its scale dependence, also in the presence of massive neutrinos,
BE-HaPPy: Bias Emulator for Halo Power spectrum in Python. BE-HaPPy provides a
bias emulator, fast enough to be used as a plug-in for standard Markov Chain Monte Carlo
(MCMC) cosmological analyses, which is accurate, easy to implement and signifies only a
small additional computational cost. With BE-HaPPy a standard Boltzmann-MCMC can
quickly compute also the halo power spectrum into the mildly non-linear regime. While
strictly we have calibrated the bias emulator for a fixed set of cosmological parameters, those
of a standard concordance LCDM model, we will argue that current data already constrain
cosmological parameters enough that the BE-HaPPy approach can be used beyond the
specific cosmology used here. Nevertheless BE-HaPPy can also be run in calibration mode
with a user-supplied set of power spectra for arbitrary cosmologies.

Calibration on simulations is not the only approach that has been proposed in the
literature. Recently, Muñoz and Dvorkin [3] also studied the impact of massive neutrinos
in the galaxy bias and, as [1], reached the conclusion that their e↵ect should be included in
any future survey analysis. They developed a code RelicFast, [3] which computes the large,
linear scales Lagrangian and Eulerian biases in the presence of relics that are non-relativistic
today (see [6, 7] for some background on this topic). RelicFast and BE-HaPPy o↵er
two complementary codes to compute the halo bias in the presence of massive neutrinos.
RelicFast o↵ers quasi-analytical approach to compute the large-scales scale-dependence of
the linear bias through spherical collapse and peak-background split, where BE-HaPPy uses
fitting and interpolating functions calibrated on N-body simulations on linear-to-mildly non-
linear scales. Simulations are less versatile (only a finite set of cosmologies can be explored)
but remain one of the best method to obtain the bias especially in the (mildly)non-linear
regime. The analytical approach o↵ers valuable physics insights but is valid only on fully
linear scales; hence the two approaches are highly complementary. This paper is structured
as follows. After an introduction to notation, definitions and set up in section 2, we briefly
present the tools we used to study and model the halo bias. In section 3 we introduce
the methodology and the choices made towards the development of the emulator, which is
designed for both cosmologies with massive and massless neutrinos. Our emulator works both
in real- and redshift-space. We discuss in detail the extension of our emulator in redshift-space
in section 4. In section 5 we summarize the main properties and features of our emulator
and conclude in section 6.

2 Definitions, set up and methodology

The key idea we build upon is that, in presence of massive neutrinos, halo bias should not
be defined with respect to total matter Pmm(k), but with respect to the cold dark matter
(CDM)+baryons field, Pcc(k):

bmm(k) =

s
Phh(k)

Pmm(k)
) bcc(k) =

s
Phh(k)

Pcc(k)
. (2.1)

The reason behind this idea is that neutrinos barely cluster on small scales [8], so both the
abundance and clustering of haloes and galaxies will be characterized by the CDM+baryon
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density field instead of the total matter field [1, 4, 5]. We note however that it is expected
that the scale-dependent growth rate produced by neutrinos will induce a small linear scale-
dependent bias [6, 7]. We have neglected this small e↵ect because here we are interested
in studying the theoretical templates needed to describe halo clustering on mildly to fully
non-linear scales. This e↵ect can be included a posteriori and on larger scales, since it a↵ects
k . 10�2 h/Mpc (see [7, 9] for details).

At linear order, the two halo bias definitions can simply be related through the linear
transfer functions

bmm(k) =
Tcc(k)

Tmm(k)
bcc(k) (2.2)

where

Tcc(k) =
⌦cTcc(k) + ⌦bbTb(k)

⌦c + ⌦b
, (2.3)

and the subscripts c, b and m stand for CDM, baryons and total matter (i.e. CDM plus
baryons plus neutrinos) respectively. ⌦i represents the energy fraction of each component i at
z = 0. We note that the total matter power spectrum and the di↵erent transfer functions can
be easily obtained from Boltzmann solvers such as CLASS and CAMB [10, 11]. Raccanelli et
al. [1] showed that the validity of the above equation extends well into the (mildly) non-linear
regime.

In this paper we will be working under one important assumption: neutrinos only a↵ect
the overall amplitude of the bias (bcc), not its scale-dependence

bcc(k,M⌫) ' ↵ bcc(k,M⌫ = 0) =
b
LS
cc (M⌫)

bLScc (M⌫ = 0)
bcc(k,M⌫ = 0) , (2.4)

where we have followed the notation of ref. [1] and b
LS
cc denotes the large-scale bias for

CDM+baryons; bLScc is computed on linear scales where bcc becomes scale-independent (bLScc
can be interpreted as the limit9 of bcc(k) for k �! 0).

The above equation relates the halo bias between two models that have the same values
for the parameters h, ns, ⌦m, ⌦b and As, but di↵erent values of ⌦c and neutrino mass, where
⌦c = ⌦m�⌦b�⌦⌫ . Conveniently, the scale dependence of bcc can be computed for massless
neutrino cosmology. This has two immediately obvious advantages: it can be calibrated on
massless neutrino simulations, which are easier to run, and it can be modelled, for example,
by resorting to a perturbation theory description of the power spectrum, which validity has
been studied extensively for massless neutrinos cosmologies and which can be computed given
a set of cosmological parameters.

Equation (2.4) is an approximation that is expected to break down if the neutrino masses
are large and/or if the halo bias is high, see ref. [1]. Below we will test the performance and
exploit the potential of the above equation.

While we will be focusing our attention on modelling bcc(k) in cosmologies with massive
and massless neutrinos, if, in models with massive neutrinos, the desired quantity is the halo
bias with respect to the total matter density field, it can easily be obtained from eqs. (2.2)
and (2.4) as

bmm(k,M⌫) =
Tcc(k)

Tmm(k)

b
LS
cc (M⌫)

bLScc (M⌫ = 0)
bcc(k,M⌫ = 0) . (2.5)

9If the small e↵ect –evident on scales larger than k ' 10�2h/Mpc– of a scale dependence of the linear bias
of ref. [6] is to be included in the modelling, then bLS

cc should be computed on large linear scales where the
bias “plateau” is [6, 7, 9].
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Below we will present two approaches to model bcc: one phenomenological polynomial
model (as in [1]) and one perturbation theory-based; each will be calibrated on simulations.

2.1 N-body simulations

The N-body simulations analyzed in this paper belong to the HADES suite (initially presented
in [12] but extended since). They were run using the TreePM+SPH code Gadget-III,
(see [13] for a description of Gadget-II). The simulations follow the evolution of 16003

CDM and 16003 neutrino particles in a box of size 1000 comoving h
�1Mpc. The gravitational

softening of both CDM and neutrinos is set to 15 h
�1kpc. All simulations share the value

of the following cosmological parameters, that are in excellent agreement with the latest
constraints from Planck [14]: ⌦m = ⌦c + ⌦b + ⌦⌫ = 0.3175, ⌦b = 0.049, ⌦⇤ = 0.6825,
⌦k = 0, h = 0.6711, ns = 0.9624 and As = 2.13⇥10�9. In models with massive neutrinos we
set ⌦⌫h

2 = M⌫/93.14 eV, where M⌫ =
P

im⌫i . We assume three degenerate neutrino masses
in our simulations, as neutrino mass hierarchy is not relevant to our approach.

We use the classical particle-based method [8, 15] to simulate the evolution of massive
neutrinos in the fully non-linear regime. The initial conditions were generated at z = 99
through the method illustrated in [16], i.e., by rescaling the z = 0 power spectrum and
transfer functions while accounting for the scale-dependent growth factor and growth rate
present in cosmologies with massive neutrinos. We have run simulations for two di↵erent
models. A model with massless neutrinos and a model with M⌫ = 0.15 eV. For each model,
we have run 10 paired fixed simulations10 [17, 18]. As shown in [18], this set up improves
the statistics of all clustering measurements considered in this work. While we do not expect
improvements for the halo bias, a significant reduction on the sample variance of quantities
such as the matter or halo power spectrum can be achieved through this setup (see discussion
in ref. [17]).

For each simulation we have saved snapshots at redshifts 0, 0.5, 1 and 2. Dark matter
haloes are identified through the Friends-of-Friends algorithm [19] with a value of the linking
length parameter equal to bl = 0.2. Our halo catalogues consists of all haloes with masses
above 5⇥1011 h�1

M�. Smaller halos would not have a su�cient number of particle to provide
a su�ciently converged halo power spectrum. In reality to study the halo-halo correlation
properties at mildly non-linear scales it is customary to consider a minimum number of
particles per halo around few tens because at this level the halo correlation function at large
scales is expected to be su�ciently converged. We are consistent with this convention.

2.2 Halo mass bins and kmax

Since the halo bias depends on halo mass, we consider four di↵erent halo mass bins. Instead
of focusing on narrow mass bins, where our statistics will be limited, we consider all haloes
above a certain mass. We work with haloes with masses above 5 ⇥ 1011 h

�1
M� (M1),

1⇥ 1012 h
�1

M� (M2), 3⇥ 1012 h
�1

M� (M3) and 1⇥ 1013 h
�1

M� (M4). The di↵erent mass
bins are also shown in table 1. We do not consider mass bins with a higher mass cut given
their very low number density in both simulations and data.

Another important parameter in our analysis is the minimum scale — maximum
wavenumber — used, kmax. The amount of information that can be extracted from galaxy
surveys depends critically on kmax, however modelling becomes increasingly complicated and
less accurate with increasing k. We explore the performance of our approach as a function
of kmax.

10Note that each pair of fixed simulations consists of two simulations.
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bin name M1 M2 M3 M4

mass range (h�1
M�) >5⇥ 1011 >1⇥ 1012 >3⇥ 1012 >1⇥ 1013

Table 1. This table shows the di↵erent mass bins we have considered in our analysis.

case I II III

kmax 42(kmax, z) = 42(0.16hMpc�1
, z)

42(kmax, z) = 42(0.12 h Mpc�1
, z) 0.15 h/Mpc

& kmax < 0.2 h/Mpc at all z

Table 2. This table shows di↵erent criteria used to set kmax.

In particular, following [1], we also consider the three di↵erent cases (I, II and III)
for kmax. For case I the maximum k increases in redshift so that the r.m.s of the density
fluctuations is constant in redshift and has the same value as the one for kmax = 0.16 h/Mpc
at z = 0. Case II is more conservative, having kmax = 0.12 h/Mpc at z = 0; kmax initially
grows in redshift to keep �2 (kmax) constant but then it saturates at kmax = 0.2 h/Mpc.
Case III is simpler and conservative, as it keeps kmax = 0.15 h/Mpc, constant in redshift.
Table 2 summarizes the di↵erent cases.

2.3 Shot-noise correction

The discreteness of haloes a↵ects their measured clustering. To model the cosmological
clustering of these tracers, we need to separate halo discreteness e↵ects from the cosmic
signal in our measurements.

A simple way to do this is by subtracting a Poisson shot-noise 1/n, where n is the
tracer mean number density, from the measured halo auto-power spectrum. In the left panel
of figure 1 we show the halo power spectrum for the model with massless neutrinos at z = 0 for
di↵erent mass bins. In the same panel we display with dashed lines the expected amplitude
of the shot-noise. As can be seen, on small scales, the halo power spectrum is dominated by
shot-noise, whose amplitude matches well with the expected 1/n value.

In the right panel of figure 1 we plot the halo bias; the amplitude of the halo auto-power
spectrum is corrected for shot-noise as explained above. The shot-noise contribution to the
halo power spectrum can become sub-Poissonian for the most massive haloes [20–22]. This
e↵ect can be explained by the fact that the more massive haloes occupy a larger volume,
implying a halo exclusion mechanism that leads to a sub-Poissonian shot-noise. Under these
circumstances, the simple Poissonian shot-noise removal will result in unphysical, negative
values for the halo power spectrum.

In what follows we still subtract a Poisson contribution to correct for the shot-noise,11

but to make sure that sub-Poisson e↵ects do not severely impact our results, we restrict our
analysis to scales where the amplitude of the shot-noise is less than 80% of the total halo
power spectrum. In terms of the widely used nP quantity, where n is the average tracers
number density and P the shot-noise subtracted power spectrum, we impose nP > 0.25. The
vertical dotted lines in figure 1 indicate the corresponding scale.

This criteria sets a limit on the smallest scale (largest wavenumber klim) we can consider,
which is well into the non-linear regime in all cases: e.g., klim ⇠ 0.55 h/Mpc for the most

11As it will be clearer later when performing parameters fit the shot noise amplitude will be corrected by a
nuisance parameter to be marginalised over, see appendix A.
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Figure 1. Left : halo power spectrum for the massless neutrino model for di↵erent mass ranges
at z = 0. We show the mean and the standard deviation of the 10 pairs of di↵erent realizations.
The expected Poissonian shot-noise contribution, 1/n is shown with horizontal dashed lines for the
di↵erent mass bins. Right : halo bias after subtracting the haloes shot-noise from their auto-power
spectrum. On small scales the shot-noise becomes sub-Poissonian for the most massive halos. In this
work we restrict our analysis to scales where the amplitude of the shot-noise is smaller than 80% of
the total halo power spectrum (i.e., nP > 0.25, vertical dotted lines).

stringent case of mass bin M4 at z = 0. As it will be clear below, the scales of interest for
our emulator satisfy k < klim.

2.4 Perturbation theory

For a given cosmological model our emulator also computes and provides the perturbation-
theory prediction of the halo power spectrum. For this we use FAST-PT [23, 24].

FAST-PT o↵ers a computationally e�cient way to compute the power spectrum (both
of dark matter in real and redshift-space and of biased tracers) through perturbation theory
and includes bias up to second order. In our analysis we will also consider third order bias,
so we modified FAST-PT to achieve this. The use of a perturbation theory approach such as
FAST-PT ensures that BE-HaPPy can be used beyond the specific cosmology adopted here.

We note that care must be taken when comparing predictions from FAST-PT versus
simulation outputs. The FAST-PT input power spectrum must be precisely sampled; uneven
sampling due to a finite number of significant digits will appear as numerical noise [23]. We
apply the same k-binning to both the output of FAST-PT and the simulations. This provides
a fair comparison among the two results and avoid artificial di↵erences due to binning, that
can be important on large-scales.

2.5 Fitting procedure

We calibrate out theoretical model by fitting the model parameters to the outputs of the
N-body simulations. For each halo mass range and redshift the simulations provide the halo
and the CDM+baryons power spectra; we compute the halo bias as

bcc(k) =


(Phh(k)� PSN)

Pcc(k)

�1/2
(2.6)

and estimate its errors from the dispersion of the 10 realizations of each cosmology. We then
fit our results using any of the two bias models we consider: a phenomenological polynomial
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model and perturbation theory. The best-fit (i.e., the multi-dimensional maximum of the
posterior) and error bars (actually full posterior distribution) of the theoretical model pa-
rameters are found by using a Markov Chain Monte Carlo (MCMC) method. The procedure
is detailed in appendix A.

While to reduce the impact of shot noise it is customary to define the bias as the ratio
between the halo-matter cross power spectrum and the matter auto power spectrum, here we
stick to eq. (2.6). This is motivated by the fact that beyond a simple linear bias model the
two bias definitions may not coincide. We argue here that the bias obtained from eq. (2.6)
is closer to the quantity that will be useful to interpret clustering observations. In doing so
we pay the price of a higher shot noise.

Due to the limited number of simulations we have access to, our fits do not account for
the correlation between di↵erent k-bins, i.e., our likelihood only accounts for the diagonal
part of covariance matrix. Therefore, the absolute values of the �2 should be taken as a mere
guide of the quality of the model.

3 Halo clustering in configuration space

We begin by studying in detail the clustering of haloes in real space. We compare and cali-
brate with massless neutrino simulations the two bias models adopted and then we quantify
the accuracy of our rescaling eq. (2.4) to obtain bcc(k,M⌫) for the massive neutrinos case
from bcc(k,M⌫ = 0).

3.1 Halo bias model I: polynomial

It is well known that the linear, scale independent bias approximation is accurate only on
very large-scales [25–28]. On smaller scales, the bias becomes scale-dependent. Following [1],
we use a simple phenomenological model and parameterize the halo bias as:

bcc(k, z) = b1(z) + b2(z)k
2 + b3(z)k

3 + b4(z)k
4
, (3.1)

where the coe�cients b1, b2, b3 and b4 are free-parameters whose values depend on redshift,
halo mass, M⌫ and cosmology. Eq. (3.1) is however unphysical, as isotropy constraints require
the bias to have even powers of k [29]. Nevertheless, we expect that the inclusion of the k

3

term improves the quality of the fit. We also use a more physically motivated model with
only even powers of k:

bcc(k, z) = b1(z) + b2(z)k
2 + b4(z)k

4
. (3.2)

In both models, the value of the linear (large scale) bias is simply given by b
LS
cc (z) = b1(z).

We fit the halo bias from the massless neutrinos simulations with the above two models
at di↵erent redshifts and for the di↵erent mass bins. Because of klim considerations (see
section 2.3) we set kmax = {0.55, 0.54, 0.53, 0.42} h/Mpc at z = {0, 0.5, 1, 2}, respectively.
We show our results in figure 2.

Both approaches yield a very good fit (under ⇠ 1% until kmax); the presence of the extra
parameter, b3, slightly improves the quality of the fit on large scales. The best-fit values of the
coe�cients for all mass bins and redshifts are reported in appendix D. Because of its slightly
better fit at the largest scales, and for direct comparison with ref. [1], unless otherwise stated
in what follows our reference “polynomial” bias model is that of eq. (3.1). The values of
the coe�cients for the odd-powers polynomial model are provided by Be-HaPPy. This
polynomial bias model as calibrated here might not perform as well for di↵erent cosmologies.
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Figure 2. The top four panels show the halo bias for the four di↵erent mass bins (color lines)
at four di↵erent redshifts (di↵erent panels) for the model with massless neutrinos. The fits for the
phenomenological models of eqs. (3.1) (black solid lines) and (3.2) (black dashed lines) only include
k < klim (excluded scales shown as a grey region). The bottom four panels show the ratio between
the halo bias obtained from the simulations and the fit. For clarity we only show the average ratio
of the four di↵erent mass ranges. (Individual mass bins are shown in appendix B, figure 12, in the
fitting range were is not much di↵erence hence justifying showing the mean behaviour). Both models
reproduce the halo bias within ' 1% in the relevant k range at all redshifts for all mass bins.

– 9 –



J
C

A
P

1
2

(
2

0
1

9
)

0
5

7

For this reason we introduce below a more flexible bias model that can easily account for
varying cosmological parameters.

3.2 Halo bias model II: perturbation theory

A more physically motivated model is the perturbation theory-based, non-linear bias expan-
sion [30–33]. This approach has the advantage that the dependence on cosmology is naturally
included. Saito et al. [33] showed that a good model to describe the (shot-noise subtracted)
halo power spectrum in N-body simulations in the mildly non-linear regime can be obtained
by including up to third-order nonlocal bias terms:

Phh(k) = b
2
1Pcc(k) + 2b2b1Pb2,cc(k)

+ 2bs2b1Pbs2,cc(k) + 2b3nlb1�
2
3P

lin
cc (k)

+ b
2
2Pb22(k) + 2b2bs2Pb2s2(k) + b

2
s2Pbs22(k)

(3.3)

where Pcc(k) is the non-linear CDM+baryons power spectrum, P lin
cc is the linear CDM+baryons

power spectrum, b1 is the linear bias, b2 2nd-order local bias, bs2 2nd-order non-local bias
and b3nl 3rd-order non-local bias.12 All other terms represent n-loop power spectra (always
for CDM+baryons) whose exact expressions can be found in the appendix C or in [31]. The
second-order bias expansion consists of all the terms involving the first and second order
coe�cients b1, b2 and bs2, while the third order expansion also includes the b3nl term whose
explicit expression is reported in appendix E. Since FAST-PT does not incorporate this term,
we have modified it to account for it.

If the bias is assumed to be local in Lagrangian space, then the Eulerian bias is non-local
but the values of bs2 and b3nl are related to b1: bs2 = �4/7(b1 � 1) and b3nl = 32/315(b1 �
1) [30–34]. Without this constraint, with both bs2 and b3nl as free parameters, one accounts
for a more general case of a non-local Eulerian bias model. In this work we keep b1 and b2 as
free parameters, and consider two possibilities for bs2 and b3nl: 1) set them to �4/7(b1 � 1)
and 32

315(b1 � 1) (local bias in Lagrangian space), respectively, and 2) leave them as free
parameters.

Eq. (3.3), either at second or third order, represents thus our model for the halo power
spectrum in configuration space. Note that thanks to eq. (2.4), this perturbation theory-
based model is only used for the massless neutrinos cases, which is where its validity and
performance has been extensively tested. The halo bias bcc is then obtained from the ratio
between Phh(k) and Pcc(k), which we fit to the N-body simulations with massless neutrinos
for the di↵erent mass ranges and redshifts. We show the results in figure 3 where we have
set kmax = 0.15 h/Mpc at all redshifts (case III).

The di↵erent perturbation theory models reproduce, within ' 1%, the results of the
simulations in all cases. As predicted by Saito et al. [33], we also find that (although not
easily apparent from the figures) the model where bs2 and b3nl are left as a free parameters
performs slightly better than the model where they are fixed, in particular on large-scales.

For comparison we also show the polynomial bias model fitted to the same kmax. The
models based on perturbation theory work as well as the polynomial model (within 1% for
the fitted k-range) but perform better on extrapolation beyond kmax.

The best-fit values of the bias coe�cients for the di↵erent perturbation theory models
of this section, for all the mass bins and redshift snapshots are reported in appendix F.

12This term encompasses various non-local third-order terms. Since it results in a k-dependent factor that
multiplies the linear power spectrum, its contribution become relevant at “large” scales [34] and is therefore
considered here. See also appendix E.
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Figure 3. The top panels show the halo bias from the simulations with massless neutrinos for
di↵erent mass ranges (colored lines) at di↵erent redshifts (di↵erent panels). We fit these results with
the perturbation theory-base model for halo bias (see eq. (3.3)) up to kmax = 0.15 h/Mpc. We show
the best-fits for the models with second-order bias (dashed), third order bias with bs2 and b3nl as
free parameters (dotted) and third order bias with bs2 and b3nl fixed (dot-dashed). The black solid
lines correspond to the polynomial model fit up to the same kmax. The bottom four panels show
the ratio between the best-fit models and the results of the simulations. For clarity, we only show
the average ratio of the four mass ranges. The models based on perturbation theory work as well as
the polynomial model eq. 3.1 (within 1% for the fitted k-range) but perform better on extrapolation
beyond kmax.
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Figure 4. Reduced chi square, �
2
/dof, as a function of kmax for the halo bias fit for the mass

range M4 (similar results hold for the other mass ranges) from the massless neutrino simulations:
polynomial model (blue line) and the di↵erent perturbation theory models (orange, green and red;
see legend) at di↵erent redshifts. While the absolute �2 amplitude is not meaningful, a sharp increase
in �

2 with kmax denotes breakdown of the model. In general, the perturbation theory model that
performs better is the third order bias with free bs2 and b3nl.

3.3 Performance as a function of kmax and discussion

Above we adopted kmax = 0.15 h/Mpc when fitting the perturbation theory models to the
results of the simulations, finding excellent agreement. This is not surprising since these are
mildly-non linear scales. Given the extra information present on smaller scales we explore
performance of the model as a function of kmax.

In figure 4 we show the value of the reduced chi square, �2
/dof, as a function of kmax

at di↵erent redshifts for the massless neutrino case and for mass bin M4. Since in the fit
we do not account for the correlations between k-bins, the absolute value of the �

2 is not
meaningful, but relative values can be used to compare models. As expected, perturbation
theory works very well on large scales, but it fails on small scales: perturbation theory-based
halo bias models breaks down at k ⇠ {0.15, 0.2, 0.25, 0.3} h/Mpc at redshifts z = {0, 0.5, 1, 2}.
Of the perturbation theory based models, the one with more free parameters, 3rd order bias
with free bs2 and b3nl, always performs better. For comparison we also show the performance
of the polynomial model. Very similar results hold for the other mass ranges.

BE-HaPPy implements both the polynomial and the perturbation theory models.
The polynomial model is very accurate on small scales and very fast to evaluate, but its
cosmology-dependent part is very approximate and the model itself is not physically well
motivated. The perturbation theory models are on the other hand well motivated theoreti-
cally, correctly incorporate the dependence on cosmology but its range of validity is smaller
than the polynomial model and is more computationally expensive to evaluate. Depending
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on the requirement of the problem, the user has the freedom to choose between the two
approaches.

Inspection of the reported errors on the best fit bias parameters in appendix D and F,
indicates that the perturbative expansion coe�cients are much better constrained than the
polynomial fit coe�cients. Not surprisingly, the bias coe�cient that more closely determines
the large-scale bias is the best constrained parameter, with similar errors across the di↵erent
models.

This is in large part because we report marginalised errors, and in the polynomial model
the parameters are much more correlated than in the perturbation theory-based approach.
The parameters of the perturbation theory-based approach are reasonably well constrained,
even the third order bias. Our interpretation is that the parameters in the perturbative
expansion are “physical” parameters and as such have well defined and roughly independent
e↵ects on the observables. While the coe�cients in the polynomial expansion are e↵ective
parameters, which, taken individually, do not correspond to a specific physical e↵ect. As a
result they are more correlated. We thus conclude that the perturbation theory approach
represent a better “basis” to retrieve information on bias and cosmology.

We envision that these considerations may be useful even for application beyond the
scope of this paper.

3.4 Massive neutrinos

We now discuss how to connect the real-space halo-bias for the massless neutrino case to
that in the massive neutrino case; in other words we estimate the performance of eq. (2.4).
In analyses where the overall bias amplitude is a nuisance parameter, the correct calibration
of bLScc becomes unimportant.

The approach of eq. (2.4) requires the value of the linear bias in the massive neutrinos
case. We will assume that analytical bias models, while not accurate enough to reproduce
the linear bias from simulations at percent-level, can reproduce the ratio of the linear bias
to the required accuracy:

b
LS
cc (M⌫ 6= 0)

bLScc (M⌫ = 0)
=

b
LS
cc,model,M⌫ 6= 0)

b
LS
cc,model(M⌫ = 0)

, (3.4)

where bcc refers to the value of the simulations’ bias (i.e., the square root of the ratio between
Phh and Pcc) while bcc,model stands for the analytic value of the large-scale bias, which can
be calculated as:

b
LS
cc,model(z,Mbin) =

RMmax

Mmin
n(M, z) b(M, z)dM

RMmax

Mmin
n(M, z)dM

, (3.5)

where n(M, z) and b(M, z) are the analytic halo mass function and linear (scale-independent)
halo bias at redshift z for haloes of mass M . The right-hand side of eq. (3.4) can then be
computed numerically without running expensive simulations. In our calculations we have
made use of the Crocce et al. halo mass function [35] while we use the fitting formula of Tinker
et al. [36] to estimate the halo bias.13 We emphasize that in order to compute b

LS
cc,model(M⌫)

13The use of the Crocce mass function is motivated by the fact that we find halos in our simulations
with the friends-of-friends algorithm. The Tinker mass function is accurate for halos found via the spherical
overdensities method. Note that we use the Tinker halo bias fitting formula, not the peak background-
split halo bias derived from the Tinker mass function. While in principle one could have derived the peak
background-split halo bias from the Crocce mass function, this has not been presented in the literature and
it goes beyond the scope of this paper.
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we have used the CDM+baryons power spectrum and not the total matter power spectrum.
We show below that the above formula works very well.

We can finally express the halo bias in models with massive neutrinos as a simple
function of the halo bias in the model with massless neutrinos (see eq. (2.4)):

bcc(k,M⌫) = bcc(k,M⌫ = 0)↵model = bcc(k,M⌫ = 0)
b
LS
cc,model(M⌫)

b
LS
cc,model(M⌫ = 0)

. (3.6)

As discussed around eq. (2.4), supported by refs. [1, 2, 4–6] here we assume that the
definition of the bias with respect to cold dark matter + baryons removes all scale dependence
due to neutrino mass on linear and mildly non-linear scales. As a consequence the only e↵ect
of massive neutrino is a change of overall amplitude. Values of the ↵ coe�cients as a function
of mass bin and redshift are shown in appendix J. In practice this means that all the bias
coe�cients (b1, b2, bs2 and b3nl) must be rescaled by ↵model to achieve eq. (3.6) for bcc. The
above equation is expected to hold when the models with massive and massless neutrinos
share the value of ⌦m, ⌦b, h, ns and As. In the top panels of figure 5 we show with solid lines
the halo bias of the massive neutrino model at di↵erent redshifts for di↵erent halo masses.
The dashed lines in the top panels display our prediction using eq. (3.6). As can be seen, the
agreement is excellent in all cases; under 1% for the scales of interest and below 5% all the
way to k = 1 h/Mpc at z = 2.

On small scales, for very massive haloes and at high-redshift some di↵erences appear
between the simulations and our rescaling procedure. This is somewhat expected (see dis-
cussion after eq. (2.4)) since massive haloes are highly biased (see appendix B for a figure
with mass-bin dependence of the fit residuals.) Note that most deviations happen beyond
the interesting k-range used for the fit, making this issue not too crucial. However it is
expected that �8 will a↵ect the bias coe�cients. The massive and massless neutrinos simula-
tions despite having the same As have di↵erent �8. Interestingly, appendix I shows that large
part of the e↵ect is due to the di↵erent �8 between the massless and massive simulations,
indicating that eq. (2.4) holds when �8 is kept constant and not the primordial amplitude
As. A detailed discussion on this point has been presented in refs. [37–39], therefore a more
thorough discussion goes beyond the scope of this paper.

To highlight the accuracy of the fitting and rescaling procedure, we compare the massive
neutrinos simulations’ bias with our bias models in the bottom panels of figure 5 (see caption
for details). We find that these models are able to describe very accurately, ' 1% level, the
massive neutrinos simulations’ outputs. Similarly to what is shown in figure 4, in figure 6 we
show the value of the reduced chi square, �2, as a function of kmax for the massive neutrinos
case. The sharp increase in �

2 with kmax denoting breakdown of the model happens at very
similar scales as in figure 4 for the massless neutrinos case.

4 Halo clustering in redshift-space

Peculiar velocities induce clustering anisotropies along the line of sight called redshift-space
distortions (RSD). RSD if accurately modelled, can be used to retrieve cosmological infor-
mation, such as the growth rate of matter perturbations. Here we build on [12, 40] to model
the e↵ects of massive neutrinos on halo bias in redshift-space.

Below we present the four di↵erent models we consider to describe redshift-space dis-
tortions before quantifying the accuracy of our models against the simulations’ results.
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Figure 5. The top panels show the halo bias of the massive neutrino model for di↵erent mass ranges
at di↵erent redshifts. The solid lines represent the results of the N-body simulations, while the dashed
lines correspond to our prediction through eq. (3.6). For clarity we do not show the scatter of the
simulations results (they are very similar to those of the massless neutrino model). The bottom
panels show the ratio between simulations outputs and the model fit. In all cases, we only fit up
to kmax = 0.15 h/Mpc. The lines show the mean among the four di↵erent mass ranges. Individual
mass bins are shown in appendix B, figure 13. We find that our model to relate the bias of massive
neutrino models to massless neutrinos models works very well down to the smallest scale we consider.
Our perturbation theory model is also able to accurately describe the results of the simulations up
to kmax.
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Figure 6. Reduced chi square, �2
/dof, as a function of kmax for the halo bias fit for the mass range

M4 (similar results hold for the other mass ranges) from the massive neutrino simulations: polynomial
model (blue line) and the di↵erent perturbation theory models (orange, green and red; see legend)
at di↵erent redshifts. While the absolute �

2 normalisation is not meaningful, a sharp increase in �
2

with kmax denotes breakdown of the model. In general, the perturbation theory model that performs
better is the third order bias with free bs2 and b3nl.

4.1 RSD model I: linear theory, Kaiser

Villaescusa-Navarro et al. 2018 [12] showed that, at linear level — Kaiser RSD [41] —, the
(shot-noise subtracted) halo power spectrum in redshift-space (indicated by the s superscript)
in models with massive and massless neutrinos is given by

P
s
hh(k, µ) = (bcc + fcc µ

2)2Pcc(k) , (4.1)

where Pcc(k) is the CDM+baryons power spectrum, µ the cosine of the angle with respect
to the line of sight and fcc is the linear CDM+baryons growth rate (d ln

p
Pcc(k, a)/d ln a,

with a the scale factor) of the CDM+baryons component. While in the original Kaiser [41]
formulation the configuration space power spectrum should be the linear one, in what follows
we will use a non-linear Pcc(k) in eq. (4.1) as well as the full scale-dependent bcc(k). In the
figures below we will use P�� computed with FAST-PT (see appendix G) from a CDM +
baryons linear power spectrum for Pcc(k) and our model (see captions) for bcc(k).

4.2 RSD model II: Scoccimarro

Scoccimarro [42] was among the firsts to propose a non-linear extension of the large-scale,
linear Kaiser model for RSD:

P
s(k, µ) = P��(k) + 2fµ2

P�✓(k) + f
2
µ
4
P✓✓(k) (4.2)
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where P
s(k, µ) is the matter power spectrum in redshift-space,14 P��(k), P�✓(k) and P✓✓(k)

are the density, density-velocity and velocity power spectrum, respectively.
For our purposes, in models with massive neutrinos, the density and velocities and

therefore the power spectra are the ones of the CDM+baryons field, not of the total matter
field. P�✓ and P✓✓ have the same shape as P��, and thus can be computed with FAST-PT in
the same fashion. As an example we take eq. 64 of [42]:

P✓✓(k) = P (k)| {z }
linear part

+2

Z
[G2(p, q)]

2
P (p)P (q)d3q

| {z }
P22(k)

+6P (k)

Z
G3(k, q)P (q)d3q

| {z }
P33(k)

(4.3)

where G2(p, q) and G3(k, q) are perturbation theory kernels. The P22 convolution integrals
are computed using spherical harmonics after the kernel is expanded in Legendre polynomials
(cf. section 2.2 of [23]). The P13 integrals are more di�cult because the wavenumber structure
is di↵erent and the kernels are more complicated. It also requires regularization to correct
for IR divergence (see section 2.3 and 2.4 of [23]). As a cross check of our implementation, we
compare the results of Scoccimarro et al. [42] with our calculations, obtained using similar
cosmological parameters to theirs, finding a good agreement (see figure 15 in appendix G).
To generalise eq. (4.2) to haloes we use

P
s
hh(k, µ) = b

2
cc(k)P��(k) + 2bcc(k)fµ

2
P�✓(k) + f

2
µ
4
P✓✓(k) . (4.4)

4.3 RSD model III: TNS

The above model is the basis for one of the most popular models of redshift-space distortions:
the Taruya, Nishimichi and Saito (TNS) model [43] where several coe�cients were added to
the Scoccimarro model to account for the mode coupling between the density and velocity
fields. In summary TNS adds two “coe�cients”, A and B, that depend on k, µ and f

to eq. (4.2).
FAST-PT incorporates routines to compute these coe�cients for the matter power spec-

trum. If we apply a linear bias to the matter fluctuation �g �! b1�(x), it is easy to show
that expressions for the A and B coe�cients for the halo power spectrum become:15

A(k, µ, f) ) b
3
1A(k, µ,�) (4.5)

B(k, µ, f) ) b
4
1B(k, µ,�) (4.6)

where b1 is the linear bias, � = f/b1. While a linear bias approximation is not su�cient for
this model, as indicated in [31, 33, 43] the bias coe�cient in front of the A and B functions,
which are higher-order corrections, is the linear one i.e., b1.

4.4 RSD model IV: eTNS

To go beyond linear bias, we consider the so-called eTNS bias model [31, 33].

P
s
hh(k, µ) = Phh(k) + 2fµ2

Ph,�✓(k) + f
2
µ
4
P✓✓(k) + b

3
1A(k, µ,�) + b

4
1B(k, µ,�) (4.7)

14In what follows in order not to carry too many subscripts when in redshift space and when not ambiguous
we will drop the mm subscript from the matter power spectrum symbol.

15A and B are in fact proportional to b2, the other powers of b come from the kµf factor in the integrals of
A(k, µ, f) and B(k, µ, f).
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where b1 is the linear bias, � = f/b1 and it is assumed that there is no velocity bias. Phh(k)
is given by eq. 3.3 and the expression of Ph,�✓(k) is given by [31]

Ph,�✓(k) = b1P�✓(k) + b2Pb2,�(k) + bs2Pbs2,�(k) + b3nl �
2
3 P

lin(k) . (4.8)

We limit ourselves to the linear bias term when computing the A and B correction terms
in eq. 4.7. Of course, for models with massive neutrinos, the above quantities need to be
computed by using the CDM+baryons power spectrum, not the total matter power spectrum.

4.5 Fingers of God

The motions of particles/galaxies inside haloes induce a characteristic feature in redshift-
space: the so-called Fingers-of-God (FoG). When modeling redshift-space distortions, it is
important to account for this e↵ect, as it dominates the amplitude and shape of the power
spectrum on small scales but can also propagate to large scales.

Here we characterize the FoG as:

F (k, µ) = exp
⇥
�k

2
f(z)�v(z)

2
µ
2
⇤

(4.9)

where �v(z) = D(z)�0, D(z) is the linear growth rate of perturbations normalised to unite
at z = 0 and �0 is a free parameter representing the e↵ective velocity dispersion of parti-
cles/galaxies inside halos. This approach goes under the “streaming” models category i.e.,
the FoG term is treated independently of the linear and mildly non-linear e↵ects. The e↵ect
of FoG on the clustering of haloes should be small if not negligible, but BE-HaPPy allows
the user to optionally include it.16

4.6 Comparison to massless neutrinos simulations

From the massless neutrino simulations, we computed the monopole of the halo redshift-space
power spectrum for di↵erent mass ranges at di↵erent redshifts. To improve the statistics, we
have taken the average of RSD along the three cartesian axes. The simulation outputs are
used to study the accuracy of our theoretical models: the Kaiser (section 4.1, with non-linear
rather than linear power spectrum — hereafter non-linear Kaiser), Scoccimarro (section 4.2),
TNS (section 4.3) and eTNS (section 4.7).

For each of the above models, we fit the massless neutrinos simulations’ redshift-space
power spectrum monopole at di↵erent redshifts and for di↵erent mass ranges and kmax =
0.15 h/Mpc. In this case we do not fit for the value of the bias parameters, but use the
values we obtained from the real space fit. Thus, the only free parameter is �0. We show the
results in figure 7. The best fit �0 is in the range 6–8 Mpc/h which is consistent with the
findings of e.g., [44].

All models are able to describe the clustering of haloes in redshift-space as observed
in the HADES simulations up to kmax, with percent accuracy. As expected, the model that
performs better is eTNS, with sub-percent accuracy on a wide k-range. The deviations of
the model at the largest scales (top left panel of the bottom half of figure 7) are probably
due to sample variance. In fact, to reproduce more closely a realistic analysis, we have used
the FAST-PT non-linear Pcc(k), instead of the simulations outputs. We have checked that
using the simulations outputs for Pcc(k) instead, the deviation e↵ectively disappears.

16A small but possibly non-negligible value for �0 for halos has been found in the literature before [44]. It
can be argued that this extra degree of freedom absorbs high k residuals in the fit arising from limitations of
the modelling.
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Figure 7. The top panels show the massless neutrinos N-body simulations’ redshift-space power
spectrum monopole for di↵erent mass ranges at di↵erent redshifts. We then fit these results using
our four di↵erent theoretical models: non-linear Kaiser (4.1) with polynomial bias (solid black),
Scoccimarro (4.2) with polynomial bias (dashed black), TNS (4.3) with polynomial bias (dotted
black) and eTNS (4.7) (dot-dashed black). In all cases we set kmax = 0.15 h/Mpc for the fit (case
III). The bottom panels display the ratio between the fits and the simulations outputs. For clarity,
we show the average results of the four di↵erent mass ranges. The models reproduce accurately the
results of the simulations, with the eTNS performing better in all cases.
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Figure 8. Reduced chi square, �2
/dof, as a function of kmax for the halo power spectrum fit for the

mass range M1 (similar results hold for the other mass ranges) from the massless neutrino simulations
in redshift-space: eTNS model at di↵erent redshifts. While the absolute �

2 normalisation is not
meaningful, a sharp increase in �

2 with kmax denotes breakdown of the model.

To qualitatively assess the (small scales) breakdown of the modelling in redshift-space,
in figure 8 we show the reduced chi square, �

2
/dof, as a function of kmax for the eTNS

model. The behaviour (the �
2 dependence on the redshift and di↵erent bias models but

weak dependence on the mass bins is expected from perturbation theory.).

4.7 Comparison to massive neutrinos simulations

We finally quantify the performance of our approach for the redshift-space massive neutrinos
case. The massless to massive neutrinos models re-scaling eqs. (2.4) and (3.4) for the Kaiser
eq. (4.1) and Scoccimaro eq. (4.2) models is straightforward, since the full expression of the
bias bcc(k) appear explicitly in the equations. For the other models, all the perturbation
theory bias coe�cients b1, b2, bs2 etc. (calibrated in real space and for massless neutrinos)
must be rescaled according to eq. (3.6) and related discussion.

We use the halo bias bcc model (or alternatively the ↵model for the bias parameters in
TNS and eTNS) calibrated in real space for massless neutrinos, leave �0 as a free parameter
(in the spirit that in any analysis it will be a nuisance parameter to be marginalised over)
re-scale the bias coe�cients in the presence of massive neutrinos (eq. (3.6)) and apply the
redshift-space mapping of section 4.1, 4.2, 4.3, 4.4 with the FoG modelling of section 4.5.
To quantify the performance of this approach (calibration on massless neutrino simulations
and rescaling) we compare this (benchmark) to a fit to bcc (or the perturbation theory bias
parameters) done directly on the massive neutrino simulations outputs (in real space). A
summary is reported in table 3. The comparison is shown in figure 9.

– 20 –



J
C

A
P

1
2

(
2

0
1

9
)

0
5

7

fit of M⌫ 6= 0 sims BE-HaPPy

bias coe�cients fitted on bcc(k,M⌫ = 0.15) fitted on bcc(k,M⌫ = 0.0)

linear bias b1 input for

A (4.5) and B (4.6) coe�cients
fitted on bcc(k,M⌫ = 0.15) fitted on bcc(k,M⌫ = 0.0)

velocity dispersion free parameter free parameter

rescaling no yes

Table 3. Benchmark of Be-HaPPY performance in figure 9. BE-HaPPy (third column) uses only
massless neutrino simulations to calibrate the fit and obtains bcc via rescaling. The performance of
this is quantified by comparing it to a bcc fit done on massive neutrino simulations (second column).

Figure 9. Residuals between bcc(k) in redshift-space from BE-HaPPy and bcc(k) calibration done
for (configuration space) massive neutrinos simulations. See table 3 for details. The > 1% deviations
at high k and high z arise from the �8 mis match, see appendix I.

The performance is qualitatively similar to that of the massless neutrinos case except
for the highest redshift panel. The > 1% mis match at high k and high z arises from the �8

mis match (See discussion below eq. (3.6) and appendix I).

5 BE-HaPPy

BE-HaPPY, that stands for Bias Emulator for Halo Power spectrum Python is a plug-in
designed to be implemented in MCMC softwares.17 The primary goal of BE-HaPPY is
to accurately predict the halo power spectrum in real- and redshift-space in a very compu-

17Our current implement supports only MontePython [45].
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tationally e�cient manner. Explanations on the installation of the code, its usage and its
various components are available on the author github account.18

BE-HaPPY as a plug-in for MontePython [45] can be ran in two modes: calibration
mode and emulator mode.

In the calibration mode the code goes through all the calibration steps described in this
paper. It provides our modified FAST-PT and the calibration procedure. The user must
supply the necessary simulations outputs. In this way cosmologies di↵erent from the fiducial
one used here (and di↵erent mass ranges, redshifts snapshots etc.) can be explored. While
we expect that for cosmologies consistent with current data, and for the expected precision of
forthcoming surveys the provided calibration is good enough , it may be of interest to explore
detailed dependence of calibration for other cosmological models to adjust to the required
precision of next generation surveys.

The good performance of the rescaling eq. (3.6) implies that only calibration on massless
neutrinos simulations is really necessary, provided that the corresponding massive neutrinos
case of interest has the same values for the other cosmological parameters and in particular
the same value for the �8 parameter. Of course, if the user envisions marginalising over the
overall bias amplitude, calibration is also only necessary on massless neutrinos simulations.
However, as long as the other cosmological parameters do not vary much, we expect our
modelling to still perform well.

In the emulator mode, BE-HaPPY uses the templates, bias coe�cients and RSD
modelling calibrated for our fiducial cosmology (or user supplied as a result of a previous
calibration mode run) to provide an emulator for the halo bias. This is then used in the
standard MCMC run. The implicit approximation done here is that in the MCMC exploration
of parameter space, the cosmology does not deviates too drastically from the fiducial one as
to invalidate the calibration. This is more of a concern for the polynomial bias modelling
than for the perturbation theory-based one. Note that marginalisation over bias parameters
(with user-supplied priors) is also an option of the code, thus making this mode (emulator+
bias parameters marginalisation) very robust to the choice of cosmology. Although beyond
the scope of this paper, one could envision sampling the (cosmological) parameter space also
for other parameters than neutrino mass and use techniques such as Gaussian processes to
extend our modelling beyond the fiducial cosmology adopted here. BE-HaPPY would still
provide the workhorse for such an e↵ort. It could provide calibration in several regions in
parameter space around specific sets of cosmological parameters. The the Gaussian processes
approach (or similar) would smoothly interpolate across these regions.

Below we summarise the features of BE-HaPPY, more info can be found in the code
repository.

1. Four cumulative mass bins are available (see table 1).

2. Results for four di↵erent kmax values; cases I, II and III (see table 2).

3. Outputs between z = 0 and z = 2; calibrations at redshifts 0, 0.5, 1 and 2 and
interpolations in between.

4. Three models of bias are available: 1) linear, 2) polynomial (section 3.1), and 3) per-
turbation theory expansion up to third order (section 3.3).

18The code in emulator mode and calibration mode will be made available on the same repository. In this
modality the code relies on our extension of the FAST-PT software, so any public release must be coordinated
across di↵erent collaborations.
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5. Four RSD models are available: (non-linear) Kaiser (section 4.1), Scoccimarro (sec-
tion 4.2), TNS (section 4.3) and eTNS (section 4.4).

6. The user has the option to include the Fingers of God term (section 4.9) with �0 as a
free parameter.

7. Text files of bias coe�cients and PT terms. User has the option to substitute these
with those for a di↵erent model/calibration.

BE-HaPPy is designed to work with both models with massless and massive neutrinos.
Importantly, the output for the massive neutrinos models is obtained through our proposed
rescaling of the bias for massless neutrinos. This reduces the dimensionality of the parameter
space, enabling a faster calculation. BE-HaPPy allows the user to output halo bias results
with respect to CDM+baryons or total matter (eq. (2.5)).

We calibrated the emulator so BE-HaPPy achieves percent or sub-percent precision
on the scales of interest (see figures 3, 5 (bottom panel), 7 and 9 (bottom panel)). This is
the precision level achieved in fitting the relevant quantities from the HADES simulations.
This is not necessarily the accuracy level achieved in fitting the relevant quantities in the
real Universe. Moreover this calibration may not work as well for cosmologies that di↵er
significantly from our fiducial one and used in the simulations.

We designed the code to be as modular as possible, providing text files for the required
quantities (bias and perturbation theory coe�cients). While we use FAST-PT to compute
the non linear density spectrum Pcc(k) this can be substituted by another cosmic emulator
(e.g., [46]) or Halofit [47]. It is also possible to use softwares like RelicFast to include
large-scales linear e↵ects not included here. BE-HaPPy may also be used with a di↵erent
cosmological model as a test. To keep track of the impact of any deviations from our settings,
we added an “error” feature in the code where the user can access the relative error (value
and percentage) at each k of the selected arrays between the power spectra computed by
BE-HaPPy and those obtained from the original suite of N-body simulations we used for
the calibration. This feature is only available for the cosmology and neutrino masses (M⌫ = 0
and M⌫ = 0.15 eV) models of the simulations considered here.

6 Conclusions

We have presented fast and accurate modelling of the halo bias in Fourier space which includes
the e↵ect of massive neutrinos and applies to both real and redshift-space. The modelling has
been calibrated on a suite of state-of-the-art N-body simulations (the HADES simulations).

Our approach relies on the fact that, unlike that defined with respect to the total
matter, the halo bias with respect to the CDM+baryons, bcc, does not show extra scale
dependence induced by –and dependent on– neutrino masses. Hence we have provided a
detailed calibration and analytic expression of bcc(k) which holds into the mildly non-linear
and even non-linear regime. We have used two approaches: one phenomenological, where the
halo bias takes a polynomial form in k, and a perturbation-theory based.

The bcc(k) model so calibrated on massless neutrinos simulations can then be converted
to that for massive neutrinos models by a simple (analytic) amplitude rescaling. While we
have carefully quantified how this rescaling works, and tested its performance with mas-
sive neutrinos N-body simulations, it is important to keep in mind that in most cosmologi-
cal analyses the (scale-independent) bias amplitude is treated as a nuisance parameter and
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marginalised over. The scale dependence of the halo bias however is important and must be
accurately modelled as it has been shown that if neglected can induce statistically significant
systematic shifts in the recovered cosmological parameters from forthcoming surveys.

The polynomial bias model reaches percent to sub-percent accuracy into the non-
linear regime, the perturbation theory based model achieves the same accuracy only in the
mildly non-linear regime. The modelling of redshift-space distortions, being also perturba-
tion theory-based, reaches percent to sub-percent accuracy in the mildly non-linear regime.
This is the accuracy level at which the relevant quantities of the input simulations are being
recovered by BE-HaPPy. This reported accuracy level does not take into account that the
input simulations may not be a sub-percent description of the Universe. For example only
specific halo mass bins were considered, the mass resolution of the simulations is set as well
as the fiducial cosmology. With the advent of more accurate simulations BE-HaPPy should
be re-calibrated.

Observable tracers such galaxies are likely to reside in dark matter halos, so while the
model we provide here for the halo bias might not be su�cient to interpret future galaxy
surveys, it is a necessary preliminary ingredient.

We provide a fast emulator for the halo bias (BE-HaPPy). BE-HaPPy returns the
halo bias as function of scale, redshift and halo mass, in real or redshift-space for both
massless and massive neutrino cosmologies, as well as the perturbation theory-based non-
linear redshift-space halo power spectrum. The user can select which modelling to use,
the scales of interest and other option about e.g., redshift-space distortions implementation.
BE-HaPPy is fast enough to be included in standard Markov chain Monte Carlo runs
at only small additional computational cost. Since we have calibrated BE-HaPPy on a
concordance ⇤CDM set of cosmological parameters, the polynomial bias model might be
less robust to change of cosmology than the perturbation theory approach. For cosmological
models significantly di↵erent from the concordance ⇤CDM we recommend the users to check
the BE-HaPPy performance and if needed to re-calibrate it.

The next-generation large-scale structure surveys will provide unprecedented wealth of
information about the clustering properties of the Universe provided that the modelling tools
used reach the required accuracy. BE-HaPPy aspires to be one of them. It provides an easy
solution to compute the halo power spectrum in massive and massless neutrinos cosmologies
taking into account crucial e↵ects such as scale-dependent bias, neutrino bias or redshift-space
distortions. It can be easily re-calibrated on user-supplied simulation outputs which accuracy
should match the required accuracy of the model, set, in turn, by the expected precision
achievable from the data set of interest. The design of the code makes it possible to use as a
complement to other cosmological codes or even to add other cosmological phenomena like
Alcock-Paczynski, wide-angle or GR corrections. We envision it will be useful for the analysis
of next-generation surveys such as Euclid, DESI, WFIRST, SKA, PFS, EMU and LSST.
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Figure 10. Posteriors for the bias coe�cients for the polynomial model, mass bin M1, z =0, kmax =
0.12 h/Mpc, case II
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A MCMC fitting

We used the MCMC ensemble sampler emcee [48] to fit the bias coe�cients and quantify
their error using least squares results as initial guesses. This is shown in figures 16 and 17.

The errors on the bias as a function of wavenumber k is given by the standard deviation
of the 10 pairs of realizations. Covariance between di↵erent k-bins is ignored, given the limited
number of available simulations. This is justified by simplicity and by the fact that we work
in the linear and mildly-non-linear regime. The likelihood is taken to be Gaussian. This is a
standard assumption widely used in the literature. In reality, even if the over-density field is
Gaussian (which is not because of bias and gravitational instability), its power spectrum does
not follow a Gaussian probability distribution. However for band powers, especially those
populated by many modes and therefore with better signal to noise, the central limit theorem
ensures that the Gaussian approximation holds well. The parameters to fit are the set of the
bias parameters of the model, for each of the four redshift snapshots (nz) and each of the four
mass bins (nM ) . Hence the total number of parameters nparams is nz ⇥ nM ⇥ nmodel where
nmodel is 4 for the polynomial model, 3 for the polynomial model with only even powers of
k, and 4 or 5 in the perturbation theory-based fits. We use uniform improper priors for all
the parameters.
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Figure 11. Posteriors for the bias coe�cients for the perturbation theory-based 2nd order expansion
model. Mass bin M1, z =0, kmax = 0.12 h/Mpc, case II.

Emcee used 300 walkers and 1000 steps for each walker. Illustrative cases for the
posteriors for the bias parameters of the models considered are shown in figures 10–11 (see
figure caption for details).

The best fits of each bias parameter, and errors marginalised over all other parameters,
as function of the mass bins and redshift snapshots are reported in tables appendix D and F.
We introduced a shot noise correction parameter, to account for non-Poisson behaviour of
shot noise, which is marginalised over. The value of this parameter is not reported here
because it is kept as a nuisance parameter in BE-HaPPy.

B Fit to the halo bias, dependence on mass bin

For completeness we report the ratio between the halo bias obtained from the simulations
and the fit (figure 2) for each mass bin. We also report the mass deendenve of the residuals
to the bias fit for (figure 5), only for z = 1 which is where the e↵ect we discuss becomes
evident.

C PT terms

For completeness we report here the expression for the perturbation theory terms used the
main text.

Pb2,�(k) =

Z
d
3
q

(2⇡)3
P

lin(q)P lin(|k � q|)F (2)
s (q, k � q) (C.1)

Pb2,✓(k) =

Z
d
3
q

(2⇡)3
P

lin(q)P lin(|k � q|)G(2)
s (q, k � q) (C.2)
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Figure 12. Ratio between the halo bias obtained from the simulations and the fit split by mass bin,
see figure 2.

Figure 13. Figure 5, bottom panel at z = 1 but now also showing the dependence on the mass bin.

Pbs2,�(k) =

Z
d
3
q

(2⇡)3
P

lin(q)P lin(|k � q|)F (2)
s (q, k � q)S(2)

s (q, k � q) (C.3)

Pbs2,✓(k) =

Z
d
3
q

(2⇡)3
P

lin(q)P lin(|k � q|)G(2)
s (q, k � q)S(2)

s (q, k � q) (C.4)

Pb22(k) =
1

2

Z
d
3
q

(2⇡)3
P

lin(q)
h
P

lin(|k � q|)� P
lin(q)

i
(C.5)

Pb2s2(k) = �1

2

Z
d
3
q

(2⇡)3
P

lin(q)


2

3
P

lin(q)� P
lin(|k � q|)S(2)

s (q, k � q)

�
(C.6)

Pbs22(k) = �1

2

Z
d
3
q

(2⇡)3
P

lin(q)


4

9
P

lin(q)� P
lin(|k � q|)S(2)

s (q, k � q)2
�

(C.7)

where F
(2)
s , G(2)

s and S
(2)
s are 2nd order perturbation theory kernels.
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Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 b3 �err b3 +err b3 b4 �err b4 +err b4

M1 0.845 0.005 0.005 -0.898 3.833 3.81 -6.75 53.83 54.688 12.125 205.818 203.14

M2 0.888 0.006 0.006 0.893 4.916 4.924 -21.222 69.02 68.804 42.956 254.91 256.332

M3 1.023 0.008 0.008 5.545 6.222 6.225 -79.71 86.735 87.672 245.958 326.821 322.981

M4 1.29 0.012 0.012 1.655 10.178 10.163 -38.373 145.538 144.508 102.042 545.552 555.432

Table 4. Polynomial model coe�cients of bcc; kmax = 0.15 h/Mpc, z = 0.0.

Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 b3 �err b3 +err b3 b4 �err b4 +err b4

M1 1.04 0.006 0.006 2.919 4.711 4.682 -38.52 65.679 67.014 108.898 253.156 245.006

M2 1.127 0.008 0.008 6.157 6.454 6.554 -77.288 91.978 91.83 242.857 347.767 346.377

M3 1.366 0.009 0.009 6.914 7.61 7.686 -86.903 108.453 109.369 279.133 415.68 410.437

M4 1.792 0.013 0.013 1.792 10.659 10.54 -32.749 155.715 156.452 106.696 612.877 616.677

Table 5. Polynomial model coe�cients of bcc; kmax = 0.15 h/Mpc, z = 0.5.

Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 b3 �err b3 +err b3 b4 �err b4 +err b4

M1 1.332 0.007 0.007 2.15 5.736 5.676 -15.717 78.401 79.434 24.882 293.963 287.496

M1 1.487 0.008 0.008 3.348 6.889 6.695 -34.19 93.048 97.687 107.953 367.823 346.865

M1 1.868 0.012 0.012 1.282 9.469 9.532 -1.931 136.007 134.97 -13.002 512.986 517.966

M1 2.503 0.019 0.019 8.383 17.182 17.466 -61.065 260.602 254.053 131.255 990.305 1022.662

Table 6. Polynomial model coe�cients of bcc; kmax = 0.15 h/Mpc, z = 1.0.

Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 b3 �err b3 +err b3 b4 �err b4 +err b4

M1 2.199 0.009 0.009 3.825 7.197 7.158 -21.639 101.805 102.2 77.61 388.068 387.347

M2 2.531 0.013 0.012 2.094 9.894 9.993 25.194 141.411 141.223 -113.229 539.035 535.428

M3 3.297 0.029 0.029 7.211 22.679 22.397 67.113 317.97 324.107 -398.872 1244.717 1206.446

M4 4.664 0.086 0.085 45.85 70.202 70.9 -147.646 1025.801 1017.184 96.813 3901.527 3973.001

Table 7. Polynomial model coe�cients of bcc; kmax = 0.15 h/Mpc, z = 2.0.

D Bias coe�cients: polynomial fit

In table 4, 5, 6 and 7 we report the best fit bias coe�cients and their marginal errors for the
polynomial model of section 3.1.

E Third-order bias

We compute the coe�cient of the 3rd-order non local bias term using eq. 53 of [31]. As
introduced and explained in McDonald & Roy [34], in the expansion of the power spec-
trum, the three integrals involving the third-order nonlocal terms are exactly proportional to
each other after renormalization, and can be encompassed in a single third order bias term
b3nl, simplifying significantly the resulting expressions. Thus we just need to compute the
quantity �

2
3:

�
2
3 =

105

16

Z
d
3
q

(2⇡)3
P

lin(q)


D

(2)(�q, k)S(2)(q, k � q) +
8

63

�
(E.1)
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Figure 14. Comparison of terms in the 3rd order expansion. This figure can be compared directly
with figure 1 of ref. [32], bearing in mind that here the power spectra are in units of Mpc/h.

Through a change of variable we can rewrite the expression �
2
3 ⇥ P

lin(k) as

�
2
3P

lin(k) =
105

16
P

lin(k)

Z
d
3
q

(2⇡)3
P

lin(q)


D

(2)(�q, k)S(2)(q, k � q) +
8

63

�

=
105 k3

16 (2⇡)2
P

lin(k)

Z
dr r

2
P

lin(kr)IR(r)

(E.2)

where

IR =

Z 1

�1


D

(2)(�q, k)S(2)(q, k � q) +
8

63

�
dµ

and r = q/k; µ = ~k . ~q/(kq).
The second line of eq. (E.2) is very similar to a P13 convolution integral (see section 2.3

of [23]) simplifying the implementation in FAST-PT.
The relevant terms appearing in eq. (3.3) –�2

3P
lin(k), the non linear matter power spec-

trum from simulation P��, the second-order local bias term Pb2,� and the second-order non-
local bias term Pbs2,�– are shown in figure 14. Like ref. [33] we see that the third-order
nonlocal term dominate over the second-order local and nonlocal terms, as long as the b2

term is su�ciently small.

F Bias coe�cients: perturbation theory-based fit

In tables 8, 9, 10, 11, 12, 13, 14, 15 we report the best fit bias coe�cients and their marginal
errors for the perturbation theory-based model of section 3.2.

G redshift-space checks

We have performed a cross check of our implementation of redshift-space distortions in FAST-
PT with the original results by Scoccimarro et al. [42].

Figure 15 shows excellent agreement with only a little residual discrepancy at small
scales, which is probably due to the fact that we do not know exactly (and therefore may not
have matched perfectly) all the cosmological parameters used in [42] to initialize the input
linear power spectrum.
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Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 bs2 �err bs2 +err bs2

M1 0.838 0.006 0.008 -0.328 0.086 0.095 0.038 0.143 0.08

M2 0.849 0.019 0.018 -0.227 0.084 0.158 1.696 0.481 0.436

M3 0.98 0.024 0.024 -0.198 0.082 0.141 1.907 0.531 0.493

M4 1.277 0.017 0.02 -0.474 0.196 0.253 -0.175 0.295 0.171

Table 8. Coe�cients of bcc, 2nd order expansion model, kmax = 0.15 h/Mpc, z= 0.

Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 bs2 �err bs2 +err bs2

M1 1.032 0.01 0.012 -0.362 0.152 0.19 -0.374 0.221 0.124

M2 1.118 0.015 0.016 -0.37 0.22 0.279 -0.577 0.297 0.153

M3 1.344 0.024 0.03 -0.044 0.083 0.171 1.948 0.992 1.058

M4 1.79 0.01 0.022 -0.302 0.235 0.439 -0.286 0.884 0.44

Table 9. Coe�cients of bcc, second order expansion model, kmax = 0.15 h/Mpc, z= 0.5

Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 bs2 �err bs2 +err bs2

M1 1.321 0.012 0.019 0.093 0.058 0.096 1.455 0.966 1.012

M2 1.488 0.005 0.012 0.001 0.158 0.27 -0.753 0.837 0.483

M3 1.869 0.007 0.014 0.094 0.164 0.317 -0.696 1.39 0.808

M4 2.481 0.03 0.041 -0.231 0.653 0.968 -2.719 1.334 0.61

Table 10. Coe�cients of bcc, second order expansion model, kmax = 0.15 h/Mpc, z= 1.0.

Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 bs2 �err bs2 +err bs2

M1 2.201 0.005 0.011 0.983 0.137 0.283 -1.45 2.049 1.674

M2 2.532 0.007 0.013 1.4 0.204 0.424 -2.437 2.557 1.91

M3 3.264 0.029 0.067 1.995 0.794 1.364 -9.241 3.797 1.872

M4 4.611 0.093 0.236 7.502 0.759 1.452 -1.539 12.318 10.691

Table 11. Coe�cients of bcc, second order expansion model, kmax = 0.15 h/Mpc, z= 2.0.

Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 bs2 �err bs2 +err bs2 b3nl �err b3nl +err b3nl

M1 0.826 0.009 0.013 -0.315 0.158 0.183 1.368 0.352 0.353 0.026 0.02 0.03

M2 0.855 0.015 0.016 -0.444 0.222 0.206 1.879 0.462 0.403 0.041 0.026 0.033

M3 0.989 0.017 0.022 -0.552 0.26 0.273 2.211 0.541 0.535 0.068 0.028 0.037

M4 1.266 0.015 0.025 -0.698 0.368 0.361 2.211 0.759 0.78 0.093 0.027 0.047

Table 12. Coe�cients of bcc, third expansion model with b3nl kept as free parameter, kmax =
0.15 h/Mpc, z = 0.
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Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 bs2 �err bs2 +err bs2 b3nl �err b3nl +err b3nl

M1 1.029 0.007 0.011 -0.562 0.284 0.293 1.848 0.556 0.585 0.097 0.023 0.041

M2 1.118 0.007 0.014 -0.925 0.407 0.396 2.339 0.851 0.773 0.136 0.03 0.051

M3 1.358 0.008 0.014 -0.634 0.388 0.439 1.907 1.011 1.011 0.155 0.035 0.067

M4 1.788 0.012 0.012 -0.466 0.544 0.59 1.061 1.337 1.345 0.094 0.074 0.138

Table 13. Coe�cients of bcc, third order expansion model with b3nl kept as free parameter, kmax =
0.15 h/Mpc, z = 0.5.

Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 bs2 �err bs2 +err bs2 b3nl �err b3nl +err b3nl

M1 1.329 0.006 0.006 -0.354 0.382 0.417 0.799 1.008 0.927 0.136 0.06 0.11

M2 1.488 0.008 0.008 -0.116 0.397 0.442 0.218 1.105 1.141 0.087 0.116 0.152

M3 1.866 0.011 0.011 -0.091 0.56 0.591 0.367 1.588 1.591 0.105 0.169 0.21

M4 2.5 0.017 0.017 -0.551 1.146 1.286 1.261 2.919 2.685 0.358 0.167 0.323

Table 14. Coe�cients of bcc, third order expansion model with b3nl kept as free parameter, kmax =
0.15 h/Mpc, z = 1.0.

Mass bins b1 �err b1 +err b1 b2 �err b2 +err b2 bs2 �err bs2 +err bs2 b3nl �err b3nl +err b3nl

M1 2.202 0.009 0.009 1.085 0.738 0.728 -1.57 1.898 1.818 -0.054 0.338 0.419

M2 2.533 0.013 0.013 1.516 0.863 0.984 -2.665 2.566 2.254 -0.074 0.513 0.556

M3 3.273 0.036 0.05 3.175 1.781 2.094 0.042 4.611 4.333 -0.006 1.158 1.347

M4 4.624 0.085 0.123 6.026 4.376 5.034 -1.637 11.736 9.845 1.528 2.591 3.921

Table 15. Coe�cient of bcc, third order expansion model with b3nl kept as free parameter, kmax =
0.15 h/Mpc, z = 2.0.

Figure 15. Comparison of FAST-PT modifications (red) vs Scoccimarro [42] (blue) at z = 0. For
this figure we use a flat ⇤CDM model with ⌦m = 0.26, �8 = 0.9, ⌦b = 0.04 and h = 0.7 as in [42].

H Multipole expansion

Redshift-space power spectra are often plotted in terms of their so-called multipoles. Both
eqs. (4.2) and (4.7) depend on k and µ. Instead of working with these 2-dimensional functions,
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we expand them into Legendre polynomials, L`, following the traditional approach:

P
s
l (k) =

2l + 1

2

Z 1

�1
dµ P

s(k, µ)Ll(µ) (H.1)

In order to isolate the µ dependence of the A and B coe�cients of the TNS and eTNS models,
we write

A(k, µ, f) = Ā(k, µ, f)⇥ kµf

B(k, µ, f) = B̄(k, µ, f)⇥ (kµf)2

The Ā and B̄ integrals can be decomposed as a summation of convolution integrals (see
appendix C of [23]) which in turn can be written as Legendre expansions.

Ā(k, µ, f) =
X

i=0

Ai(k, f)µ
i

B̄(k, µ, f) =
X

i=0

Bi(k, f)µ
i

We can this finally express A and B as

A(k, µ, f) = kf ⇥
X

i=0

Ai(k, f)µ
i+1

B(k, µ, f) = (kf)2 ⇥
X

i=0

Bi(k, f)µ
i+2

.

For biased tracers in the above equations f �! �. In BE-HaPPy the integration of µ
is split in the same way as Cole et al. [49]:

P
s
l (k) =

2l + 1

2

Z 1

�1
dµ P

s
g (k, µ)Ll(µ)

=
2l + 1

2

Z 1

�1
dµ K(k, µ)F (k, µ2)Ll(µ) ,

(H.2)

where Ll(µ) are the first even Legendre polynomials, and K(k, µ) can be the Kaiser, Scocci-
marro or TNS models, and F (k, µ2) is the FoG term. BE-HaPPy allows the user to choose
among all these di↵erent models.

I �8 scale-dependence

In figure 5 we rescaled the amplitude of the bias calibrated with a massless neutrinos simula-
tion and compare with the bias of a massive neutrinos simulation (M⌫ =0.15 eV). If the bias
is calibrated with respect to CDM + baryons bcc, we expect that all the scale dependence
is encompassed in the massless case and that the only e↵ect of massive neutrinos would be
on the amplitude of the bias. However in figure 5, we observe an extra scale dependence.
This scale dependence becomes more pronounced with increasing linear bias. Because of the
degeneracy between M⌫ and �8, we argue that this scale dependence is not due neutrinos but
to a di↵erence of �8 between the massless and massive simulation. To test this we compared
our rescaling procedure with another simulation (with massless neutrinos) where �8 is closer
to that of the massive neutrinos simulation. All other parameters (⌦m, ⌦b, ⌦⇤, ns, h) are
identical. This is shown in figure 17. One can appreciate that the extra scale dependence
decreases for a better matched �8 (blue line). The blue line is only plotted to larger scale
(smaller k) because of the di↵erent (lower) resolution of the simulation. Unfortunately we are
limited by the simulations available at this time and this could not be investigated further.
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Figure 16. Influence of �8 in the performance of the rescaling of equation (3.4). To enhance the
e↵ect, the figure corresponds to haloes with masses > 5⇥ 1013M�. We applied the rescaling method
of eq. 3.4 to simulations with the same cosmological parameters ⌦m = ⌦c + ⌦b + ⌦⌫ = 0.3175,
⌦b = 0.049, ⌦⇤ = 0.6825, ⌦k = 0, h = 0.6711, ns = 0.9624 and M⌫ = 0.0 eV but with di↵erent �8

(0.819 for the blue curve and 0.834 for the red one). The improvement at small scales for the lower
�8 confirms our hypothesis about the scale dependence seen in figure 5.

Figure 17. Value of the rescaling coe�cients ↵ as a function of mass bins and redshift. We can see
here that the relation between the rescaling and the mass of the neutrinos is quasi linear.

J Rescaling coe�cient ↵

For completeness here we show the dependence of ↵ values (eq. (3.6)) on neutrino mass and
redshift.
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[3] J.B. Muñoz and C. Dvorkin, E�cient computation of galaxy bias with neutrinos and other
relics, Phys. Rev. D 98 (2018) 043503 [arXiv:1805.11623] [INSPIRE].

[4] F. Villaescusa-Navarro et al., Cosmology with massive neutrinos I: towards a realistic modeling
of the relation between matter, haloes and galaxies, JCAP 03 (2014) 011 [arXiv:1311.0866]
[INSPIRE].

[5] E. Castorina, E. Sefusatti, R.K. Sheth, F. Villaescusa-Navarro and M. Viel, Cosmology with
massive neutrinos II: on the universality of the halo mass function and bias, JCAP 02 (2014)
049 [arXiv:1311.1212] [INSPIRE].

[6] M. LoVerde, Halo bias in mixed dark matter cosmologies, Phys. Rev. D 90 (2014) 083530
[arXiv:1405.4855] [INSPIRE].

[7] C.-T. Chiang, W. Hu, Y. Li and M. Loverde, Scale-dependent bias and bispectrum in neutrino
separate universe simulations, Phys. Rev. D 97 (2018) 123526 [arXiv:1710.01310] [INSPIRE].

[8] F. Villaescusa-Navarro, S. Bird, C. Pena-Garay and M. Viel, Non-linear evolution of the cosmic
neutrino background, JCAP 03 (2013) 019 [arXiv:1212.4855] [INSPIRE].

[9] C.-T. Chiang, M. LoVerde and F. Villaescusa-Navarro, First detection of scale-dependent linear
halo bias in N -body simulations with massive neutrinos, Phys. Rev. Lett. 122 (2019) 041302
[arXiv:1811.12412] [INSPIRE].

[10] D. Blas, J. Lesgourgues and T. Tram, The cosmic linear anisotropy solving system (CLASS) II:
approximation schemes, JCAP 07 (2011) 034 [arXiv:1104.2933] [INSPIRE].

[11] A. Lewis, E�cient sampling of fast and slow cosmological parameters, Phys. Rev. D 87 (2013)
103529 [arXiv:1304.4473] [INSPIRE].

[12] F. Villaescusa-Navarro et al., The imprint of neutrinos on clustering in redshift-space,
Astrophys. J. 861 (2018) 53 [arXiv:1708.01154] [INSPIRE].

[13] V. Springel, The Cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc. 364
(2005) 1105 [astro-ph/0505010] [INSPIRE].

[14] Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.
594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

[15] M. Viel, M.G. Haehnelt and V. Springel, The e↵ect of neutrinos on the matter distribution as
probed by the Intergalactic Medium, JCAP 06 (2010) 015 [arXiv:1003.2422] [INSPIRE].

[16] M. Zennaro, J. Bel, F. Villaescusa-Navarro, C. Carbone, E. Sefusatti and L. Guzzo, Initial
conditions for accurate n-body simulations of massive neutrino cosmologies, Mon. Not. Roy.
Astron. Soc. 466 (2017) 3244 [arXiv:1605.05283] [INSPIRE].

[17] R.E. Angulo and A. Pontzen, Cosmological N -body simulations with suppressed variance, Mon.
Not. Roy. Astron. Soc. 462 (2016) L1 [arXiv:1603.05253] [INSPIRE].

[18] F. Villaescusa-Navarro et al., Statistical properties of paired fixed fields, Astrophys. J. 867
(2018) 137 [arXiv:1806.01871] [INSPIRE].

[19] M. Davis, G. Efstathiou, C.S. Frenk and S.D.M. White, The evolution of large scale structure
in a universe dominated by cold dark matter, Astrophys. J. 292 (1985) 371 [INSPIRE].

– 34 –



J
C

A
P

1
2

(
2

0
1

9
)

0
5

7

[20] T. Baldauf, U. Seljak, R.E. Smith, N. Hamaus and V. Desjacques, Halo stochasticity from
exclusion and nonlinear clustering, Phys. Rev. D 88 (2013) 083507 [arXiv:1305.2917]
[INSPIRE].

[21] N. Hamaus, U. Seljak, V. Desjacques, R.E. Smith and T. Baldauf, Minimizing the stochasticity
of halos in large-scale structure surveys, Phys. Rev. D 82 (2010) 043515 [arXiv:1004.5377]
[INSPIRE].

[22] R.E. Smith, R. Scoccimarro and R.K. Sheth, The scale dependence of halo and galaxy bias:
e↵ects in real space, Phys. Rev. D 75 (2007) 063512 [astro-ph/0609547] [INSPIRE].

[23] J.E. McEwen, X. Fang, C.M. Hirata and J.A. Blazek, FAST-PT: a novel algorithm to calculate
convolution integrals in cosmological perturbation theory, JCAP 09 (2016) 015
[arXiv:1603.04826] [INSPIRE].

[24] X. Fang, J.A. Blazek, J.E. McEwen and C.M. Hirata, FAST-PT II: an algorithm to calculate
convolution integrals of general tensor quantities in cosmological perturbation theory, JCAP 02

(2017) 030 [arXiv:1609.05978] [INSPIRE].

[25] 2dFGRS collaboration, The 2dF galaxy redshift survey: power-spectrum analysis of the final
dataset and cosmological implications, Mon. Not. Roy. Astron. Soc. 362 (2005) 505
[astro-ph/0501174] [INSPIRE].

[26] H.-J. Seo and D.J. Eisenstein, Baryonic acoustic oscillations in simulated galaxy redshift
surveys, Astrophys. J. 633 (2005) 575 [astro-ph/0507338] [INSPIRE].

[27] U. Seljak, Redshift space bias and beta from the halo model, Mon. Not. Roy. Astron. Soc. 325
(2001) 1359 [astro-ph/0009016] [INSPIRE].

[28] E. Hu↵, A.E. Schulz, M.J. White, D.J. Schlegel and M.S. Warren, Simulations of baryon
oscillations, Astropart. Phys. 26 (2007) 351 [astro-ph/0607061] [INSPIRE].

[29] T. Matsubara, Nonlinear perturbation theory integrated with nonlocal bias, redshift-space
distortions and primordial non-gaussianity, Phys. Rev. D 83 (2011) 083518 [arXiv:1102.4619]
[INSPIRE].

[30] T. Baldauf, U. Seljak, V. Desjacques and P. McDonald, Evidence for quadratic tidal tensor bias
from the halo bispectrum, Phys. Rev. D 86 (2012) 083540 [arXiv:1201.4827] [INSPIRE].

[31] BOSS collaboration, The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic
survey: testing gravity with redshift-space distortions using the power spectrum multipoles, Mon.
Not. Roy. Astron. Soc. 443 (2014) 1065 [arXiv:1312.4611] [INSPIRE].

[32] M. Biagetti, V. Desjacques, A. Kehagias and A. Riotto, Nonlocal halo bias with and without
massive neutrinos, Phys. Rev. D 90 (2014) 045022 [arXiv:1405.1435] [INSPIRE].

[33] S. Saito, T. Baldauf, Z. Vlah, U. Seljak, T. Okumura and P. McDonald, Understanding
higher-order nonlocal halo bias at large scales by combining the power spectrum with the
bispectrum, Phys. Rev. D 90 (2014) 123522 [arXiv:1405.1447] [INSPIRE].

[34] P. McDonald and A. Roy, Clustering of dark matter tracers: generalizing bias for the coming
era of precision LSS, JCAP 08 (2009) 020 [arXiv:0902.0991] [INSPIRE].

[35] M. Crocce, P. Fosalba, F.J. Castander and E. Gaztanaga, Simulating the Universe with MICE:
the abundance of massive clusters, Mon. Not. Roy. Astron. Soc. 403 (2010) 1353
[arXiv:0907.0019] [INSPIRE].

[36] J.L. Tinker et al., The large scale bias of dark matter halos: numerical calibration and model
tests, Astrophys. J. 724 (2010) 878 [arXiv:1001.3162] [INSPIRE].

[37] E. Castorina, E. Sefusatti, R.K. Sheth, F. Villaescusa-Navarro and M. Viel, Cosmology with
massive neutrinos II: on the universality of the halo mass function and bias, JCAP 02 (2014)
049 [arXiv:1311.1212] [INSPIRE].

– 35 –



J
C

A
P

1
2

(
2

0
1

9
)

0
5

7

[38] F. Villaescusa-Navarro et al., Cosmology with massive neutrinos I: towards a realistic modeling
of the relation between matter, haloes and galaxies, JCAP 03 (2014) 011 [arXiv:1311.0866]
[INSPIRE].

[39] F. Villaescusa-Navarro, A. Banerjee, N. Dalal, E. Castorina, R. Scoccimarro, R. Angulo et al.,
The imprint of neutrinos on clustering in redshift-space, Astrophys. J. 861 (2018) 53
[arXiv:1708.01154] [INSPIRE].

[40] E. Castorina, C. Carbone, J. Bel, E. Sefusatti and K. Dolag, DEMNUni: the clustering of
large-scale structures in the presence of massive neutrinos, JCAP 07 (2015) 043
[arXiv:1505.07148] [INSPIRE].

[41] N. Kaiser, Clustering in real space and in redshift space, Mon. Not. Roy. Astron. Soc. 227
(1987) 1 [INSPIRE].

[42] R. Scoccimarro, Redshift-space distortions, pairwise velocities and nonlinearities, Phys. Rev. D
70 (2004) 083007 [astro-ph/0407214] [INSPIRE].

[43] A. Taruya, T. Nishimichi and S. Saito, Baryon acoustic oscillations in 2D: modeling
redshift-space power spectrum from perturbation theory, Phys. Rev. D 82 (2010) 063522
[arXiv:1006.0699] [INSPIRE].

[44] H. Gil-Marin, C. Wagner, L. Verde, C. Porciani and R. Jimenez, Perturbation theory approach
for the power spectrum: from dark matter in real space to haloes in redshift space, JCAP 11

(2012) 029 [arXiv:1209.3771] [INSPIRE].

[45] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative constraints on early
cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP
02 (2013) 001 [arXiv:1210.7183] [INSPIRE].

[46] J. Kwan et al., Cosmic emulation: fast predictions for the galaxy power spectrum, Astrophys. J.
810 (2015) 35 [arXiv:1311.6444] [INSPIRE].

[47] J.A. Peacock and R.E. Smith, HALOFIT: nonlinear distribution of cosmological mass and
galaxies, Astrophysics source code library (2014).

[48] D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: The MCMC Hammer,
Publ. Astron. Soc. Pac. 125 (2013) 306 [arXiv:1202.3665] [INSPIRE].

[49] S. Cole, K.B. Fisher and D.H. Weinberg, Constraints on Omega from the IRAS redshift
surveys, Mon. Not. Roy. Astron. Soc. 275 (1995) 515 [astro-ph/9412062] [INSPIRE].

– 36 –



59

Chapter 3

Globular clusters as standard clocks

In the introduction and in section 1.3 in particular, I talked about the tight relation
between cosmology and astronomy and how learning more about the nature of celestial
objects can provide valuable information about the universe. In a bottom-up hierarchical
formation of structures, the small pieces of the puzzle provide complementary information
to large-scale structures. In the first place because they are often easier to observe than
the effects at large scales and also because they are the witnesses of earlier times in the
universe.

3.1 Globular clusters

According to Walter Baade’s stellar classification (Baade, 1956), type III stars are believed
to be the oldest in the universe. The theory predicts that these extremely massive
stars use up all their fuel and eventually explode. This is why population II stars are
often considered to be the oldest stars that can be observed. Population II consists
of stars very poor in metal, formed during the early days of the universe. They
are usually found near the central galactic bulge, in the galactic halo or in globular
clusters. Population II stars are relics of a younger universe and in sense are good
estimators of the age of the universe, however it would be very difficult to use a
random collection of these stars in order to estimate the parameters of the universe
given all the factors that can influence their evolution.

Globular clusters (GC) are made up of tens or even hundreds of thousands of old,
low-metal population II stars very tightly bound which gives them their globular
shapes (see Figure 3.1). Their formation mechanism is not yet fully understood but
the theory predicts that all stars within a globular cluster were formed from the same
molecular cloud which provides a sample of stars in a "controlled" environment with
approximately the same age and metallicity. However, recent observations have shown
that most globular clusters have multiple populations. It is therefore important to
treat adequately this multiplicity to infer the properties of GCs. Another advantage of
globular clusters is the fact that they are very common. Every sufficiently large galaxy
is expected to host at least hundreds of them, which makes them ideal candidates for
studies. For these reasons they have often played a major role in cosmology.
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3.2 Color-magnitude diagram and stellar codes

The Color-magnitude diagram (or the Hertzsprung-Russell diagram) is an important
tool in astronomy because it allows to visualize the different evolutionary phases of a
star’s life as a function of some of its properties: magnitude vs color (or luminosity vs
temperature). When plotted on a color-magnitude diagram (CMD) all the stars within
a globular clusters seem to follow a well-defined curve (see figure 3.2), which seems
to be an indication that all stars were formed at the same period with similar physical
properties. As the position of the curve is dependent on the initial mass of the stars or
equivalently of the age of the stars, the shape of the CMD of globular clusters can be a
good estimator of the age of the stellar population.

In reality it is not that simple because the shape of the CMD does not depend only
on the age but also on several parameters such as the distance, the metallicity, the
extinction etc. With the help of observational surveys and theoretical background,
the astronomical community was able to design stellar evolutionary codes (e.g MESA
Paxton et al. 2011) that can be used to make predictions. These codes are able to evolve
stars across all the evolutionary phases of the CMD for a whole range of astrophysical
parameters. Stellar evolutionary codes output evolutionary tracks which are a set
of stellar parameters at different timesteps. However these tracks are best suited to
study the evolution of a single star. If we want to study stellar populations, as it
is the case for globular clusters, instead it is better to use isochrones 1 where input
masses have been replaced by input ages assuming a common time of formation.
Several isochrones software are already publicly available (DSED Dotter et al. 2008,
MIST Dotter 2016, BASTI Pietrinferni et al. 2004, PARSEC Bressan et al. 2012 etc.) each
with different sets of independent parameters. They provide the positions of stars in
the CMD given a chosen set of parameters, among others the age. These isochrone
software are therefore ideal to constrain the properties of globular clusters.

1Isochrones are derived from a set of tracks with a given range of initial masses but with the same
initial chemical composition



Chapter 3. Globular clusters as standard clocks 61

3.3 Inferring the Age of the Universe with Globular Clusters

Determining the age of globular clusters makes it possible to put a lower limit on the
age of the universe since obviously the universe must be older than its components.
However, this determination depends heavily on the quality of the stellar model and
the methodology used. For a long time, estimates of the age of the universe obtained
from H0 and the oldest stars in the universe left astronomers perplexed because the
stars appeared to be older than the universe. With the improvement of measurements
on both sides (Planck Collaboration et al., 2020; O’Malley, Gilligan, and Chaboyer,
2017), this crisis seems to be resolved. The errors of the previous estimates of the age
of the clusters were too large to be able to make any precise statement on the age
of the universe and a fortiori on the cosmological model. That is why obtaining a
measurement with sufficiently small errors would make it possible to directly relate
the age of the clusters to that of the universe by making some assumptions about the
time of galaxies formation.
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Abstract.We present an estimate of the absolute age of 68 galactic globular clusters obtained
by exploiting the distribution of stars in the full color-magnitude diagram. In particular, we
jointly estimate the absolute age, distance, reddening, metallicity ([Fe/H]) and [↵/Fe] of each
cluster, imposing priors motivated by independent observations; we also estimate possible
systematics from stellar modeling. Our derived distances for the globular cluster sample
are in agreement with those obtained from GAIA using main-sequence dwarf stars (where
available), and the inferred ages are in good agreement with those previously published. The
novelty of our approach is that, with the adopted priors, we are able to estimate robustly these
parameters from the globular cluster color-magnitude diagram. We find that the average age
of the oldest globular clusters is tGC = 13.32± 0.1(stat.)± 0.5(sys.), at 68% confidence level,
including systematic uncertainties from stellar modeling. These measurements can be used to
infer the age of the Universe, largely independently of the cosmological parameters: we find
an age of the Universe tU = 13.5+0.16

�0.14(stat.) ± 0.5(sys.) at 68% confidence level, accounting
for the formation time of globular clusters and its uncertainty. This value is compatible
with 13.8±0.02Gyr, the cosmological model-dependent value inferred by the Planck mission
assuming the ⇤CDM model.

Keywords: cosmological parameters from CMBR, stars

ArXiv ePrint: 2007.06594
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1 Introduction

The color magnitude diagram of co-eval stellar populations in the Milky Way can be used
to infer the age of its oldest stars. The age can also be estimated for individual stars if their
metallicity and the distance to them are known. For resolved stellar populations, however,
an independent measurement of the distance is not strictly necessary as the full morphology
of the color-magnitude diagram can, in principle, provide a determination of the absolute
age. There is extensive literature on this subject; reviews can be found in e.g., refs. [1–3].

Historically, the age of the oldest stellar populations in the Milky Way has been mea-
sured using the luminosity of the main-sequence turn o↵ point (MSTOP) in the color-
magnitude diagram of globular clusters (GCs). Globular clusters are (almost — more on
this below) single stellar populations of stars (see e.g., ref. [3]). It has long been recognized
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that they are among the most metal poor (⇠ 1% of the solar metallicity) stellar systems in
the Milky Way, and exhibit color-magnitude diagrams characteristic of old (> 10Gyr) stellar
populations [1, 3, 4].

In fact, the first quantitative attempt to compute the age of the globular cluster M3 was
made by Haselgrove and Hoyle more than 60 years ago [5]. In this work, stellar models were
computed on the early Cambridge mainframe computer and its results compared “by eye” to
the observed color-magnitude diagram. A few stellar phases were computed by solving the
equations of stellar structure; this output was compared to observations. Their estimated age
for M3 is only 50% o↵ from its current value.1 This was the first true attempt to use computer
models to fit resolved stellar populations and thus obtain cosmological parameters: the age
of the Universe in this case. Previous estimates of the ages of GCs involved just analytic
calculations, which significantly impacted the accuracy of the results, given the complexity
of the stellar structure equations (see e.g., ref. [6]).

The absolute age of a GC inferred using only the MSTOP luminosity is degenerate
with other properties of the GC. As already shown in the pioneering work of ref. [5], the
distance uncertainty to the GC entails the largest contribution to the error budget: a given
% level of relative uncertainty in the distance determination involves roughly the same level
of uncertainty in the inference of the age. Other sources of uncertainty are: the metallicity
content, the Helium fraction, the dust absorption [3] and theoretical systematics regarding
the physics and modeling of stellar evolution.

However, there is more information enclosed in the full-color magnitude diagram of a
GC than that enclosed in its MSTOP. As first pointed out in refs. [7, 8], the full color-
magnitude diagram has features that allow for a joint fit of the distance scale and the age
(see appendix A for a visual rendering of this). On the one hand, figure 2 in ref. [9] shows how
the di↵erent portions of the color-magnitude diagram constrain the corresponding physical
quantities. On the other, figure 1 in ref. [8] and figure 3 in ref. [9] show how the luminosity
function is not a pure power law but has features that contain information about the di↵erent
physical parameters of the GC. This technique enabled the estimation of the ages of the GCs
M68 [7], M5 and M55 [9]. Moreover, in principle, exploiting the morphology of the horizontal
branch makes it possible to determine the ages of GCs independently of the distance [10].

Further, on the observational front, the gathering of Hubble Space Telescope (HST)
photometry for a significant sample of galactic GCs has been a game changer. HST has
provided very accurate photometry with a very compact point spread function, thus easing
the problems of crowding when attempting to extract the color-magnitude diagram for a
GC and making it much easier to control contamination from foreground and background
field stars.

For these reasons, a precise and robust determination of the age of a GC requires a
global fit of all these quantities from the full color-magnitude diagram of the cluster. In
order to exploit this information, and due to degeneracies among GC parameters, we need a
suitable statistical approach. Bayesian techniques, which have recently become the workhorse
of cosmological parameter inference, are of particular interest. In the perspective of possibly
using the estimated age of the oldest stellar populations in a cosmological context as a route
to constrain the age of the Universe, it is of value to adopt Bayesian techniques in this
context too.

1Their low age estimate is due to the use of an incorrect distance to M3, since the stellar model used
deviated just ⇠ 10% from current models’ prediction of the e↵ective temperature and gravity of stars, with
their same, correct assumptions [3].
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There are only a few recent attempts at using Bayesian techniques to fit GCs’ color-
magnitude diagrams, albeit only using some of their features (see e.g., ref. [11]). Other
attempts to use Bayesian techniques to age-date individual stars from the GAIA catalog can
be found in ref. [12]. A limitation with the methodology presented in ref. [11] is the large
number of parameters needed in their likelihood. Actually, for a GC of Nstars there are, in
principle, 4 ⇥Nstars + 5 model’s parameters (e↵ectively 3 ⇥Nstars + 5), where the variables
for each star are: initial stellar mass, photometry, ratio of secondary to primary initial stellar
masses (fixed to 0 in ref. [11]) and cluster membership indicator. In addition, there are
5 (4) additional GC variables, namely: age, metallicity (fixed in the analysis of ref. [11]),
distance modulus, absorption and Helium fraction. For a cluster of 10,000 or more stars, the
computational cost of this approach is very high. To overcome this issue ref. [11] randomly
selected a subsample of 3000 stars, half above and half below the MSTOP of the cluster,
“to ensure a reasonable sample of stars on the sub-giant and red-giant branches”. Another
di�culty arises from the fact that the cluster membership indicator variable can take only
the value of 0 or 1 (i.e., whether a star belongs to the cluster or not). This creates a sample
of two populations referred to as a finite mixture distributions [11].

Capitalizing on the wide availability and potential of current observations, the aim of this
paper is to present a Bayesian approach to exploit features in the color-magnitude diagram
beyond the MSTOP and determine robustly the absolute age, jointly with all other rele-
vant quantities such as metallicity, distance, dust absorption and abundance of ↵-enhanced
elements, of each GC. In addition to statistical errors, we estimate systematic theoretical
uncertainties regarding the stellar model. We bypass the computational challenge of the
approach explored in ref. [11] by introducing some simplifications and by coarse-graining the
information in the GC color-magnitude diagram, which greatly reduces the dimensionality
of the problem without significant loss of information.

Our paper is organized as follows. In § 2 we describe the HST GC data; the stellar
model used to fit the data and the calibration of the GC data is shown in § 3. The approach
developed to obtain the parameters of GCs is introduced in § 4 where we describe the likeli-
hood adopted and how we explore the posterior with Monte Carlo Markov chains. Results,
the age of the oldest GCs and the corresponding inferred age of the Universe are presented
in § 5. We expose our conclusions in § 6. A series of appendices cover the technical details
of our method.

2 Data and stellar model

2.1 Globular cluster catalogs: defining our sample

We use the HST-ACS catalog of 65 globular clusters [13] plus 6 additional ones from ref. [14].
Out of 71 clusters, two were removed because of high di↵erential reddening and a lack of
red giant branch stars [11], one more was removed because of a lack of reasonable extinction
prior from the literature, leaving 68 clusters in total. The data are available in two di↵erent
Vega filters: F606W and F814W.

In order to clean the data of stars with poorly determined photometry, we use the same
prescriptions as in ref. [11]. First, we remove stars for which photometric errors,2 in both
filters, fall into the outer 5% tail of the distribution. Then, we also remove stars in the outer

2Each photometric error has been rescaled depending on the number of observations according to the
catalog instructions in the readme file.
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2.5% tails of the distributions of X and Y pixel location errors. Indeed, large pixel location
errors indicate a non-reliable measurement of the properties of the star.

Similarly, we also expect measurements to be less robust at very low magnitudes. More-
over, the photometric error corresponding to these stars becomes very large, reducing dras-
tically the information content of this part of the color-magnitude diagram.

Hence, for each cluster we define a “functional” magnitude interval between the low-
est apparent magnitude of the brightest stars and a magnitude cut arbitrarily defined at
mF606W = 26, to include most of the main sequence stars for every cluster.

Only stars that satisfy all the conditions listed above and belong to the defined func-
tional magnitude interval are considered further.3 For readers interested in the number and
percentage of stars retained, details are reported in table 2 of appendix B.

2.2 Software and stellar models

For the theoretical modeling of the data, we choose to work with a modified version of the
software package isochrones4 [15]. This software reads synthetic photometry files provided
by stellar models and then interpolates magnitudes along isochrones (points in the stellar
evolutionary track at same age) correcting for absorption, given the input parameters. Even
though a new version is currently under development (isochrones2.0), and that in the main
text of this paper we only use one model, we decided to use a modified version of the previous
release as it enables us to consider di↵erent stellar models. The two stellar models already
implemented are MIST [16, 17] and DSED [18]. Each stellar model comprises a set of photome-
try files that correspond to (discretized) isochrones in a color magnitude diagram. However,
it is important to note that only in the photometry files of DSED several di↵erent abundances
(parameterised by [↵/Fe]) of ↵-enhanced elements, other than the solar abundance, are pro-
vided. These are elements like O, Ne, Mg, Si, S, Ca and Ti that are created via ↵-particle
(helium nucleus) capture; [↵/Fe] is fixed to 0 in the photometry files corresponding to the
MIST model. This is important as GCs do have non-solar-scaled abundances. As we will show
below (see appendix A) the abundance [↵/Fe] is partially (but only partially) degenerate with
variations of the GC’s age and metallicity, so that it must be considered as a free parameter
in the analysis to avoid biasing the results and to infer the correct statistical uncertainties.
Therefore, we consider [↵/Fe] as an independent parameter and limit our analysis to the
DSED model; the ranges in parameter space covered by the DSED model photometry files in
isochrones are specified in table 1.

The modifications we made to the code include:

• change of the cubic interpolation process, going from (Mass, Age, Metallicity) to (EEP,
Age, Metallicity) where EEPs are equivalent isochrone evolutionary points.5 EEPs
are provided by isochrones, we only modify the interpolation interface, following the
implementation of isochrones2.0,

• implementation of a standard magnitude correction to account for extinction in the
selected filters according to the Fitzpatrick extinction curve (see e.g., ref. [22]) in the
selected (here HST F606W and F814W ) and V band filter,

• interpolation on the [↵/Fe] parameter.

3A further cut at low magnitudes is introduced in section 3. The cut described here is motivated by the
survey limitations; the cut in section 3 is to speed up the analysis without removing significant signal.

4https://github.com/timothydmorton/isochrones, version 1.1-dev.
5EEPs were introduced in refs. [19–21]. EEPs are a uniform basis which simplifies greatly the interpolation

among evolutionary tracks. Each phase of stellar evolution is represented by a given number of points, each
point in one track has a comparable interpretation in another track.
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Stellar model DSED

initial rotation rate v/vcrit 0.0

Age range 0.250-15Gyr

Age sampling 0.5Gyr

number of EEPs per isochrone ' 270

Metallicity range [Fe/H] -2.5 to 0.5 dex

Helium fraction configuration Yinit = 0.245†, 0.33, 0.40 ‡

[↵/Fe] -0.2 to 0.8+

† The varying Helium fraction configurations, Y , are defined in pho-
tometry files as Y = Yinit +1.5Z where Z is the metal mass fraction
and Yinit is the starting value.

‡ Fixed Helium fraction configurations Y = 0.33 and 0.40 are only
available for [Fe/H]  0.

+ For the fixed Helium fraction configurations, only two options
[↵/Fe]= 0 or +0.4 are available.

Table 1. Properties of the DSED stellar models available in the isochrones package. We refer the
reader to original ref. [18] for more details.

The set of fitted parameters for each GC are age, distance modulus, metallicity, [↵/Fe]
and absorption. Note that there are di↵erent photometry files corresponding to di↵erent
values of metallicity [Fe/H] and Helium fraction, Y .6 These, however, are not two fully
independent quantities: both quantities are a function of the stellar and (proto)-solar metal
mass fraction, denoted by Z and Z�, respectively. Consequently, they are highly correlated.
We are interested in the Age-Metallicity relation, hence for our purposes we can use only
one of them, the [Fe/H] fraction7 in our case, as the independent variable. We vary [↵/Fe]
independently of [Fe/H] and Y .

3 Color-magnitude diagram-based likelihood for globular clusters

As mentioned in section 1, the traditional Bayesian analysis of this kind of data sets attempts
to model each star independently, which implies a significant computational cost due to the
large number of parameters to explore. A common approach is to fit the initial mass of
each of the Nstars stars in the color-magnitude diagram as an independent parameter (along
all other stellar parameters). Then, the posterior is marginalized over all individual star
parameters to infer the parameters describing the GC.

Here we attempt to reduce the high dimensionality of the parameter space using a dif-
ferent approach. While the large number of stars can be a liability in terms of computational
cost for traditional Bayesian approaches, we turn it to our advantage, especially in the most
populated part of the color-magnitude diagram. For each isochrone of the stellar model,
there are a number of equivalent evolutionary points (EEPs) (see line 5 of table 1) associated
with an initial stellar mass. Each EEP has a counterpart in every isochrone, making it pos-
sible to identify specific points in the color-magnitude diagram across di↵erent isochrones,

6The Helium fraction Y of a GC is not necessarily identical to the cosmological one. If Population III
stars have enriched the medium with Helium, it is the resulting Helium fraction that matters here. Hence, in
principle there could be object by object (GC) variations of Y .

7The metallicity Z is related to [Fe/H] fraction in the usual way: [Fe/H] = 1.024 log(Z) + 1.739, see
ref. [21].
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Figure 1. Top Panel: illustration, for a typical GC (IC4499), of the initial split of the “functional”
magnitude interval in two parts (MS below the MSTOP and UB above the MSTOP). The red line
corresponds to mMSTOP, and the black line marks mcut. Points below mcut do not add significant
additional information, but significantly slow down and complicate our analysis. This is why they are
not considered here. Bottom panel: cumulative distribution of stars and adopted magnitude cuts for
the same cluster.

e.g., the MSTOP. In other words, the isochrone profile in the color-magnitude diagram is
sampled by EEPs (which are “universal” across di↵erent isochrones) obtained for di↵erent
adopted values of the parameters of interest. This is the reason why, as it is well known, the
interpolation between evolution tracks is greatly simplified by interpolating instead directly
between EEPs. Since we are not interested in the initial mass of stars, we do not model
each star independently and exploit the benefits of the EEPs working directly with them, as
provided by the relevant photometry files. This reduces the dimensionality of our analysis to
just the five GC parameters described in the previous section.

We divide the “functional” magnitude interval into two parts as illustrated in figure 1:
the part below the MSTOP, which we refer to as MS for main sequence, and the part above,
which we refer to as UB for upper branch. The large spread of colors at low magnitudes
introduces a lot of noise, which slows down significantly the convergence of our algorithm
without adding, in practice, any useful additional signal. For this reason, on top of the
selection cuts described in section 2, we apply a potentially more stringent upper magnitude
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cut. In practice, for the 68 clusters in our catalog we choose an upper cut magnitude value

mcut = min(mMSTOP + 5 , 26), (3.1)

where mMSTOP is the magnitude corresponding to the MSTOP. In fact, for some GCs going
5 magnitudes below the MSTOP would cause to include noisy data. With this choice we
limit the cut for those GCs to mcut = 26. Our findings are not sensitive to the details of this
cut as long as the noisy, dim part of the color-magnitude diagram is removed, and enough
EEPs in the main sequence are retained, which is what we ensure here.

3.1 Main sequence

We proceed to bin in magnitude the sample of stars belonging to the main sequence; these
bins should be thin enough so that the isochrone can be approximated as linear in each bin,
yet with number of stars per bin large enough to satisfy the central limit theorem. Given
the large number of stars in the MS (as illustrated in the bottom panel of figure 1), these
two conditions are fulfilled for all GCs. In practice, we use bins in the F606W magnitude
interval for the MS with constant width of 0.2 mag, which yields a maximum of 25 bins and
a minimum of 20 for the GCs in our catalog. The number of stars per bin is proportional to
the number of stars in the GC and ranges from several hundreds to several thousands. It is
then justified to assume that the scatter in color of stars inside each magnitude bin follows
a Gaussian distribution centered on the true underlying isochrone. This simplification (akin
to a coarse-graining in the color-magnitude diagram, and thus to a data-compression) alone
allows us to decrease the e↵ective size of the data set, and thus, compared to previous
approaches, to reduce the number of model parameters for this part of the analysis: we have
5 parameters, and Nbins number of data points. The main peak of the distribution of star
positions along the color axis in each bin, indexed by i, should be, and is, well approximated
by a Gaussian distribution (see figure 9 in appendix C for an illustration). Bins where the
distribution cannot be fit by a unimodal Gaussian — a possible sign of multiple populations
— are removed from the analysis. This always happens at the faint end of the main sequence
(except for three clusters for which one to two bins are removed), even after the cut from
equation (3.1). For this reason we use instead the median of the distribution. It allows
us to keep the maximum of 25 bins while taking into account the e↵ect of the multiple
population. The median value is almost identical to the Gaussian mean and larger error
bars are a reasonable trade-o↵ for outliers. More details are presented in appendix C. The
color at bin center for each magnitude bin C

data
i is defined by the median. Since the main

sequence in the color-magnitude diagram is not perfectly vertical, we rescale the error by
�
data
i ⇡ 1.253�EEP,i ⇥ cos(�i) where 1.253�EEP,i is the standard error of the median and �i

is the angle between the data orientation and the vertical axis inside bin i as detailed in
appendix C (in particular see figure 10 in the appendix). This correction is very small and
always well below 4%. Figure 2 shows an example of this binning for GC IC4499, along with
the corresponding C

data and �
data.

Assuming that bins are uncorrelated (which given the small observational errors in the
star magnitudes is a fair assumption), the logarithm of the likelihood is defined as

LMS = ln L = �1

2

NbinsX

i=1

✓
C

data
i � C

th
i

�
data
i

◆2

(3.2)
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Figure 2. Binning of the main sequence, illustrated for the GC IC4499. The red dots and black lines
represent the central value and standard deviation of the color distribution in each bin, respectively.

where C
th
i is the theoretical isochrone color interpolated at the center of bin i, and Nbins

is the number of bins considered in the analysis (i.e., after removing the bins with bimodal
color distributions).

3.2 Upper branch

In addition to the main sequence, we consider stars belonging to the Upper Branch (UB)
i.e., stars brighter than the MSTOP. We bin the magnitude interval as we did for the main
sequence. However, in this case, the number of stars is not large enough to support the central
limit theorem for small magnitude bins; in addition we expect that the measurement will be
highly sensitive to outliers. Therefore, we cannot fit the color distribution to a Gaussian
function as done for the MS. Instead, we apply these three prescriptions:

• Since DSED isochrones do not include stages beyond the tip of the red giant branch —
i.e., do not include EEPs belonging to the Horizontal branch and the asymptotic giant
branch — we mask out all the bins which correspond to stars (and EEP) that do not
belong to either the sub-giant branch or the red giants.

• Since the estimation of the mean is easily contaminated by outliers, we use the median
color instead in each bin as an estimate for C

data
i . In fact, we expect that the color

errors follow a Gaussian distribution, and that the outliers are stars that are not part
of the GC main sequence of upper branch (our target sample). If we could select only
stars that belong to our target sample, they would follow a Gaussian distribution. In
practice, using the median down weights the contribution of outliers on the estimate
of the central value of the distribution. Therefore, it provides a good estimate of the
mean value of the distribution of the target sample; here we assume that the resulting
distribution matches the target distribution and can be assumed to be Gaussian.

• We use the error of the median for normal distributions �med,i = 1.253�EEP,i, where
�EEP,i is the regular standard deviation in bin i.
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Figure 3. Binning of the upper branch for a representative GC IC4499. The grey points are the
stars, the horizontal blue lines show the adopted binning. The masked bins are shaded. Each red
point represents the median value at bin center. The error bars correspond to �med,i.

This is illustrated in figure 3. In this figure, for a representative GC, IC4999, the stars
in the color-magnitude diagram are shown as grey points, the excluded bins are shaded, the
red points show the C

data
i , and the error bars show the �med,i.

Finally the likelihood is also taken to be Gaussian as in eq. (3.2), with the only di↵erences
of Cdata

i being the median value at bin center, and �med,i the associated error for bin i. We
are aware that this choice of Gaussian likelihood is not as well motivated as for the MS.
Nevertheless we note here that other systematic uncertainties (see section 4.1) are likely
larger than the one introduced by this approximation.

3.3 Multiple populations and magnitude cut

For the sake of simplicity in the analysis, we assume that parameters such as age, metallicity
and distance are common to all stars belonging to the GC. Nonetheless, GCs can be more
complex and host distinct populations. Multiple populations in GCs is an active research area
(see e.g., [23] for a review). It is important to note that multiple populations do not necessarily
have di↵erent ages, they may have e.g., di↵erent element abundances. Moreover, the e↵ects
of multiple populations are minimized for the filters used to create the catalog (F606W and
F814W ; see ref. [23] and references therein). When we apply our analysis to GCs known to host
multiple populations to quantify the e↵ect that this might have in the inferred constraints, we
find that having multiple populations introduces an additional widening in the marginalized
inferred age, as well as multiple peaks for the metallicities. GCs with multiple populations
have a manifestly multi-modal posterior distribution where additional local maxima may
appear. We find that the magnitude cut mcut (see equation 3.1) we impose helps to reduce
the sensitivity to secondary populations, i.e., it suppresses the secondary local maxima, but
leave the global maximum una↵ected. This is because it is easier to see multiple population in
the faint end of the MS; at brighter magnitudes, the two populations blend. Nevertheless, the
posterior distributions obtained for some GCs are still multi-modal. Masking out bins where
the distribution is markedly multimodal further minimize this e↵ect. Any residual multi-
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modality is blended with the main maximum and thus e↵ectively contributes to growing the
errors. The way we deal in practice with the multi-modality of these secondary local maxima
is developed further in section 4.

4 Parameter inference

We assume that the two parts (MS and UB) of the “functional” magnitude interval considered
are independent. The total log-likelihood, L = lnL, is then L = LMS + LUB.

The parameters that we vary are: age, metallicity [Fe/H], absorption, distance and ↵

enhancement [↵/Fe]. In order to ensure that we remain inside the interpolation domain of the
stellar model, we use uniform priors corresponding to the intersection of the parameter-space
volumes of the stellar model (in our case this corresponds to the prior region of DSED see
table 1). These are: [1,15]Gyr for the age, [�2.5,0.5] dex for metallicity, (0,3] for absorption,
(0,1) for distance and [�0.2,0.8] for [↵/Fe].

In addition, we adopt gaussian priors on the metallicity, distance modulus, absorption
and [↵/Fe] as follows. For the metallicity, ↵ enhancement and distance the priors are centered
around estimates from the literature for each globular cluster (see ref. [14]). For 65 clusters the
extinction estimates are based on the two catalogs of refs. [24, 25]; however, for three globular
clusters (NGC 6121, NGC 6144, NGC 6723) we use instead values from more recent literature
(refs. [26–28] respectively) since the quality of the fit and the posterior were unacceptable
when using the catalogs estimates.

We adopt �[Fe/H] = 0.2 dex for the width of the Gaussian priors for the metallicity, based
on spectroscopic measurements, corresponding to twice the typical errors reported in ref. [3]).8

The width adopted for the distance modulus prior is �dm = 0.5 from Gaia/Hipparcos indirect
distances, 2–3 times the typical errors reported in refs. [3, 4]. We assume a dispersion on the
reddening �E(B�V ) = 0.02, in agreement with ref. [4], which translates into Gaussian priors
on absorption with �abs = 0.06 following the Cardelli et al. [30] relation. For [↵/Fe] we adopt
a prior of �↵ = 0.2 which is equivalent to the sampling step of the DSED stellar grid.

Unlike the priors on metallicity or distance which are conservative compared to recent
literature, the prior on absorption needs to be restrictive to reduce the degeneracy between
age and absorption. Even though it may appear narrow, one should bear in mind that this
parameter is usually kept fixed in other analyses in the literature.9

For some clusters, the posterior distribution is cut by the 15Gyr age limit imposed by
the grid of the stellar models, but even in these cases the peak of the distribution is always
well determined and the cut happens at the ⇠ 2� level, hence the e↵ect on the results can
be kept under control.

Given the nature of the problem (degeneracy between the age, distance and the metal-
licity), the nature of the data (possible presence of multiple populations), and the nature of
the likelihood calibration (we fit, at the same time, the MS and the UB, where, in princi-
ple, each might favor a di↵erent region of the parameter space and be a↵ected by di↵erent
degeneracies), we expect that the posterior distribution might be multi-modal. In this case,
the standard emcee sampler may be ine�cient.

8In principle, this prior could be more stringent, following ref. [29]. However we decide not to do this here,
and explore a wider range in metallicy.

9We have also explored relaxing the metallicity prior by increasing the width of the gaussian by a factor
few. We find that this more conservative choice does not a↵ect the final results of the inferred age (tGC, tU)
as statistical errors remain below the systematic ones.
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Existing methodologies to handle multi-modal distributions include slicing the parame-
ter space and combining the results afterwards, or techniques like parallel-tempering Monte
Carlo Markov chains where the chains are run at di↵erent temperatures, which makes it eas-
ier to the chains to communicate and thus “move” between peaks and low likelihood regions.
The first approach is expensive in terms of computational cost and we found the second
one not e�cient in our case. Parallel tempering MCMC will move the “coldest” chains to a
formal global maximum which is however in a non-physical region of parameter space (ages
& 15Gyr and very low metallicities [Fe/H] < �2.3 dex). We explain this tendency as follows.
At high ages and low metallicities the evolutionary tracks in the color magnitude diagram
become very similar to each other (as shown in figure 8 in appendix A). In other words, there
is a lot of prior volume to explore, and therefore the chains tend to spend a lot of time there.
This is an artifact of the prior probability distribution chosen.

One of the consequences of having multi-modal posterior distributions with several local
maxima of the likelihood and one global maximum, and using the standard a�ne invariant
emcee sampler, is a low acceptance fraction. This is especially significant if the modes are
well separated, i.e., if the separation between modes is much larger than the width of the
distribution around the maxima. Indeed, only a small fraction of MCMC steps, close to the
likelihoods peaks are accepted. One possibility to bypass this technical di�culty may involve
re-parametrization [31] or non-uniform priors, in addition to using stronger Gaussian priors
on the metallicity.

We decided to stick to the standard emcee sampler and increased the number of chains
to improve the number of accepted steps. We run 100 chains (or walkers for emcee) for
5000 steps (several times the autocorrelation length) with a burn-in phase of 500 steps.
This set up returns a suitable and stable acceptance rate. For multimodal distribution, the
initialization of the chains can be a important factor. We tested two configurations (a tiny
Gaussian ball centered on estimates from the literature see ref. [14] and a uniform distribution
with boundaries matching the uniform priors. Both gave consistent results and we kept the
second configurations as it is more objective. We have also made several convergence tests on
a subset of clusters varying the number of walkers and increasing the steps of each of them
(from 100 to 700 walkers for up to 100,000 steps) and found that this does not change the
results.

We report the error on the parameters as the highest posterior density interval (also
sometimes referred to as minimum credible interval) at a given confidence level. Note that
for non-symmetric distributions (such as those we have here) these errors are not necessarily
symmetric.

4.1 Systematic uncertainties

In our approach, all the parameters that describe the GCs (age, distance, metallicity, [↵/Fe]
and extinction) are determined directly from the data. While HST photometry does have
some remaining systematic uncertainty, this is minute compared to the uncertainty associated
with the theoretical stellar model (see below). We estimate the systematic uncertainties in the
ages of GCs induced by the theoretical stellar model using the recipe in table 2 of ref. [4]. To
our knowledge, this is the most rigorous approach among stellar model-building to estimate
the systematic uncertainties using the “known-unknowns”. Inspection of table 2 in ref. [4]
shows that the main systematic uncertainty is due to the use of mixing length theory to
model convection in the 1D stellar models. The other dominant systematic uncertainty is
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related to reaction rates and opacities.10 Everything else is subdominant, thus the combined
e↵ect these two components captures well the extent of systematic errors.

Mixing-length theory11 has two parameters: the mixing-length parameter (i.e., roughly
how much the convection cells travel before they break up), and the overshoot parameter
(how much the convective cell travels beyond the equilibrium condition). Of these two, the
second one is unimportant for low-mass stars such as those in GCs. These two parameters
dominate the uncertainty in stellar model building; the uncertainties in nuclear reactions are
at the % level.

In principle, changes in the mixing length do not alter the lifetime of the star, see
discussion in page 725, of ref. [32]. The e↵ect on the inferred age arises from degeneracies
with metallicity. In this work the metallicity is strongly constrained so that, in principle, the
e↵ect of mixing length uncertainties could be reduced significantly.

In fact, the mixing length parameter is usually calibrated from fits to the Sun, but
astro-seismology from other stars at di↵erent evolutionary stages indicates a spread of values
between 1.0 and 1.7. Thus, the results from observations of the Sun are extrapolated to stars
belonging to GCs, but adopting the full spread of mixing length parameter values to quantify
the systematic uncertainties. However, a better estimation of systematic uncertainties related
with the mixing length parameter is possible. As shown in ref. [10], not only the morphology
of the red giant branch can be used to constrain the value of the mixing length, but also
all the GCs analysed in ref. [10], had the same value for the mixing length and showed no
star-to-star variation of the mixing length parameter. Therefore, the morphology of the red
giant branch is su�cient to constrain the mixing length, once the metallicity is constrained,
without the need to rely on the solar calibration. Thus, potentially, for the present study,
as the metallicity can be constrained from the lower main sequence as well as the sub-giant
branch (see figure 8), the upper giant branch could be used to determine the value of the
mixing length as done in ref. [10]. This approach would require adding the mixing length
parameter as an extra free parameter in our analysis; we leave this for future work.

Here instead we prefer to be conservative and use the full range for the mixing length
considered in ref. [4] (i.e., between 1.0 and 1.7), which is conservative because the study
of ref. [10] showed that fits to the position of the red giant branch with known metallicity
indicate no significant spread in mixing length parameter. These fits recover a value of 1.6,
well in agreement with results from calibration to the Sun. To estimate the error in ages due
to mixing length variations over the full conservative interval, we use the stellar models of
ref. [32], and in particular the fitting formulas therein. This yields a 0.3Gyr age uncertainty.

In addition to this we add an extra 0.2Gyr to account for uncertainties in reaction rates
and opacities, as from table 2 of ref. [4]. In total, we have a 0.5Gyr uncertainty budget due
to systematic e↵ects in stellar modeling.

Note that in the standard MSTOP approach, another systematic uncertainty to account
for would be the value of [↵/Fe], which in general is not known and is assumed to be between
0.2–0.4. However, in our approach, this is not the case as this is a parameter of the model: its
value is directly constrained by the analysis and its uncertainty is therefore already included
in our marginalized errors.

10Rotation is another source of systematic uncertainty, as the rotation speed of stars in GCs is unknown.
However, the main e↵ect of rotation is to alter the depth of the convection zone. Given that we have explored
a wide range of values of the mixing length parameters, the e↵ect of rotation is e↵ectively included in our
systematic budget estimation.

11In appendix D we give a brief description of mixing-length theory.
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Figure 4. 68% confidence level marginalised constraints for the five parameters of interest for each of
the GC in the sample (CG id, in the x-axis, corresponds to the ordering of table 3). The shaded blue
regions represent boundaries of the uniform prior. There are additional gaussian priors of �[Fe/H] = 0.2
dex for metallicity, �dm = 0.5 on the distance modulus, �[↵] = 0.2 for alpha enhancement and
�abs = 0.06 in the absorption centered around values from the literature (see text for details).

5 Results

We apply the methodology presented in previous sections to our catalog of 68 GCs. Two-
dimensional marginalized posteriors for all pairs of parameters can be found for a represen-
tative GC in appendix F. Figure 4 shows our main results (see also appendix E and tables 3
and 4). We present marginalized constraints on the absolute age, metallicity, distance, ab-
sorption and [↵/Fe] of each GC assuming the DSED model. The x-axis in each panel shows
the cluster id following the same order as in table 3. The gray horizontal areas show the
hard priors imposed by the stellar models domain in parameter space and the gray vertical
band (when reported) illustrates the width the gaussian prior adopted (see section 4). We
find no correlation between age and distances, absorption or [↵/Fe]. In particular the ab-
sorption values are low and the distribution presents a scatter that is not correlated with the
age. On an individual cluster-basis the constraints on [↵/Fe] are very weak, however values
of [↵/Fe]> 0.6 are typically disfavored. A comparison with Dotter et al. [14] spectroscopic
measurements can be found in figure 11 in appendix F.

In figure 5 we compare our inferred constraints with the findings of ref. [4] for the 22 GCs
in common. It is interesting to note the good agreement obtained for the metallicity estimates
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Figure 5. Direct comparison between our marginalized constraints on the age, distance and metal-
licity of GCs with results from ref. [4] for the 22GCs in common. The blue lines indicate the identity.
We plot uncertainty bars for both determinations when available. There is excellent agreement for
the metallicity determination and reasonable agreement for the distance determinations, although our
distances (with error bars so small that are behind the red dots) are on average somewhat shorter
than those of ref. [4] by about 200 pc. The age agreement is within the uncertainties, but our ages
are slightly older on average. See text for more details.

of [Fe/H]. Our distances, using information from the color-magnitude diagram and only very
weak priors, are in reasonable agreement with those obtained ref. [4], which rely on external
information (GAIA parallaxes and accurate distance to nearby dwarf stars). However, we
find a small shift as our determination of distances is ⇠ 200 pc smaller on average. This small
discrepancy arises because the analysis in ref. [4] assumes a fixed extinction value, while we
treat extinction as a free parameter to be constrained by the data and marginalized over. For
the ages determination the agreement is within 68% confidence level uncertainties. From the
first panel of figure 5 it is possible to appreciate that the errors from this study are smaller
that those of ref. [4] even when ref. [4] uses additional external information, not used here.
This illustrates the advantage of considering regions of the color-magnitude diagram beyond
the main sequence.

The use of the full color-magnitude diagram, along with the adoption of the priors moti-
vated in section 4, enables us to break the age-distance-metallicity degeneracy. In particular,
the breaking of the age-metallicity degeneracy is visualized in appendix A where we show
how the isochrones and the color magnitude diagram change in response to variations of these
parameters.

5.1 The age of the oldest GCs

On average, the oldest GCs are those expected to be more metal poor. Here we consider
two metallicity cuts as a way to select the oldest GCs: [Fe/H]< �2 as adopted in ref. [33]
— leaving 11 clusters — and [Fe/H]< �1.5 — leaving 38 clusters. We estimate the age
distribution tGC for these two samples by multiplying the individual bayesian posteriors (see
figure 6).
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Figure 6. Age distribution for globular clusters with di↵erent metallicity cuts ([Fe/H] < 2 (dot-
dashed); [Fe/H] < 1.5 (solid); no cut (dashed)). The behavior is consistent with the expected age-
metallicity relation. We only display the statistical uncertainty. An additional uncertainty of 0.5Gyr
at 68% confidence level needs to be added to account for the systematic uncertainty.

For [Fe/H]< �2 this yields tGC = 13.32+0.15
�0.20(stat.)±0.5(sys.), while for [Fe/H]< �1.5 we

obtain tGC = 13.32±0.1(stat.)±0.5(sys.). The first uncertainty is the statistical uncertainty
while the second uncertainty is the systematic one, as calculated in section 4.1. The results for
the two cuts are very consistent; as expected, the additional 27 clusters in the [Fe/H]< �1.5
cut reduce the statistical error significantly; here we therefore adopt the [Fe/H]< �1.5 cut
due to the increased statistical power.

5.2 From globular cluster ages to the age of the Universe

The age of the oldest stars sets a lower limit for the age of the Universe. These stars and
the oldest GCs formed at a redshift zf . Hence, it is possible to estimate the age tU of the
Universe from the age tGC of the oldest GCs adding a formation time �t, corresponding to
the look back time at zf .

As argued in ref. [33], it is possible to estimate the probability distribution of �t by
considering that the first galaxies are found at z ⇠ 11 and a significant number of galaxies
are found at z > 8. Many of these galaxies contain stellar populations that indicate that
star formation started at z ⇠ 15–40 [34–36]; zf is thus assumed to be zf � 11. Both
theoretically [37–41] and observationally [42] GC seem to form at zf > 10. On the other
hand, GCs could not have formed before the start of reionization which is estimated to
happen around zf,max ⇠ 30. Ref. [33] includes a computation of the probability distribution
of �t marginalizing over H0, ⌦m,0 and zf , with zf varying between zf,min = 11 and zf,max.
The resulting distribution depends very weakly on cosmology for reasonable values of the
cosmological parameters, and very weakly on the choice of zf,max provided zf,max > 20. Here
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Figure 7. Estimate of the age of the Universe from the age of the oldest globular clusters (solid
thick black line) including systematic uncertainties (dashed line) added in quadrature to a gaussian
fit (with asymmetric variances) of the statistical distribution (dotted line). The thin blue line shows
the Planck 2018 posterior for the age of the Universe.

we estimate the full probability distribution of tU = tGC +�t by performing a convolution
of the posterior probability distribution for tGC as provided in § 5.1 and the probability
distribution of �t from ref. [33] for which we provide a fitting formula in appendix G.

We find tU = 13.5+0.16
�0.14(stat.)±0.5(sys.) at 68% confidence level. The resulting posterior

distribution for the age of the Universe tU is presented in figure 7. The solid black line is the
result including only statistical errors, the dashed line is obtained by fitting this distribution
with two gaussians with the same maximum but independent variances for the two sides
(dotted line), and then adding the systematic error in quadrature (dashed line). For reference
the blue thin line shows the constraint inferred from CMB observations from Planck, assuming
the ⇤CDM model [43].

6 Summary and conclusions

Resolved stellar populations of GCs provide an excellent data set to constrain the age of the
Universe, which in turn is a key parameter in cosmology governing the background expansion
history of the Universe. Since the mid 90’s, estimates of the ages of GCs have been in the
range 12–14Gyr consistently (see e.g. ref. [10]). With current improvements in observational
data and stellar modeling, it is possible to decrease the uncertainty on the ages by a factor 4.
Given the high-quality of data obtained by HST and the improvement in the accuracy of
stellar models, we have attempted to estimate the physical parameters of GCs including
their age, using as many features as possible in their color-magnitude diagrams.

It is well known that the MSTOP is very sensitive to the GC’s age; however, it is
also sensitive to distance, metallicity, and other parameters, due to significant degeneracies
in parameter space. However, degeneracies can be in large part lifted if other features of
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the color-magnitude diagram are exploited (see appendix A). In this paper, we have an-
alyzed a sample of 68 ACS/HST globular clusters using most of the information in the
color-magnitude diagram: specifically, the main sequence and red giant branch. We have de-
veloped a Bayesian approach to perform an analysis of each GC, varying simultaneously their
age, distance, metallicity, [↵/Fe] and reddening adopting physically-motivated priors based
on independent measurements of distances, metallicities and extinctions found in recent lit-
erature. Our obtained posteriors yield constraints that are fully compatible with previous,
and independent, values in the literature.

The average age of the oldest (and most metal poor) GCs is tGC = 13.32± 0.1(stat.)±
0.5(sys.)Gyr. The systematic errors are due to theoretical stellar model uncertainties and in
particular uncertainties in the mixing length, reaction rates and opacities. Systematic errors
are now bigger than the statistical error, once constraints from several objects are combined.
Hence, to make further progress, uncertainties in stellar model-building should be addressed.

This determination can be used to estimate the Universe absolute age by taking into
account the look back time at the likely redshift of formation of these objects. We find the age
of the Universe as determined from stellar objects to be tU = 13.5+0.16

�0.14(stat.)±0.5(sys.) at 68%
confidence level. The statistical error is 1.2%; the error budget is dominated by systematic
uncertainties on the stellar modeling. The prospect of determining the age of the Universe
with an accuracy competitive with current cosmology standards, may serve to motivate an
e↵ort to reduce uncertainties in stellar-model building. This will be addressed in future work.
The statistical uncertainty in tU is now su�ciently small to warrant comparison to the CMB
model-dependent inferred age, which is one of the most accurately quantities inferred from the
CMB [44]. Thus comparing the CMB derived value to independent astrophysical estimates
can yield precious insights into possible new physics, or support the ⇤CDM model. Our
determined value of tU is fully compatible with the inferred value from the Planck mission
observations assuming the ⇤CDM model.
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A Test of sensitivity of the color-magnitude diagram to model parameters

In this appendix we explore the dependence of the isochrones in the color-magnitude diagram
of a GC on the model parameters. On top of illustrating the sensitivity of di↵erent sections
of the evolutionary track to these parameters, this exercise will allow us to convey how
parameter degeneracies can be lifted by considering regions above the main sequence. We
start from a common set of parameters (based on estimates from literature, see ref. [14]) and
vary one parameter at a time, while we keep the others fixed. As we vary the parameter of
interest, we compare the color at the interpolated magnitudes for each isochrone.

We show the corresponding comparison as function of age, metallicity, and [↵/Fe] in
figure 8. The figure clearly shows that most of the sensitivity to age is around the MSTOP,
but if only this point is used, age is degenerate with metallicity. However, both the red
giant branch and the lower main sequence are sensitive to metallicity, significantly more than
to age. This explains why using more features of the color-magnitude diagram breaks the
degeneracy. Further, the whole color-magnitude diagram has a di↵erent sensitivity to [↵/Fe]
than to [Fe/H]. Thus, with enough signal-to-noise, both quantities can be constrained in a
joint analysis.
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Figure 8. Dependence of the stellar isochrone on variations of age, metallicity and [↵/Fe] of the GC
with all other parameters fixed. Right panels show the relative di↵erence in color.
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B Globular clusters properties after the cuts

Cluster name Total number of stars Stars with magnitude < mcut percentage of remaining stars
arp2 23010 10611 46
ic4499 61931 33938 54
lynga7 44927 27496 61
ngc0104 140016 113700 81
ngc0288 26814 14465 53
ngc0362 111393 71978 64
ngc1261 97780 61767 63
ngc1851 130655 82732 63
ngc2298 20288 13453 66
ngc2808 277727 214443 77
ngc3201 31908 17056 53
ngc4147 19717 13977 70
ngc4590 60058 33182 55
ngc4833 60889 41720 68
ngc5024 222899 132605 59
ngc5053 23957 11104 46
ngc5139 300622 206535 68
ngc5272 161342 106494 66
ngc5286 190379 131490 69
ngc5466 29776 13660 45
ngc5904 108602 73235 67
ngc5927 96349 69333 71
ngc5986 148963 100314 67
ngc6093 125128 88784 70
ngc6101 67032 33715 50
ngc6121 11975 7070 59
ngc6144 22485 15612 69
ngc6205 138295 97673 70
ngc6218 29767 20840 70
ngc6254 54662 38462 70
ngc6304 100830 58706 58
ngc6341 129969 83376 64
ngc6352 25779 14784 57
ngc6362 30541 17724 58
ngc6366 10567 4427 41
ngc6388 310630 257049 82
ngc6397 14277 9404 65
ngc6426 57321 30576 53
ngc6441 340872 299187 87
ngc6496 22938 14486 63
ngc6535 9590 3640 37
ngc6541 111010 71816 64
ngc6584 62694 35346 56
ngc6624 62637 40960 65
ngc6637 61801 44484 71
ngc6652 29936 16586 55
ngc6656 92090 57379 62
ngc6681 48442 32417 66
ngc6715 345989 270157 78
ngc6717 15209 8235 54
ngc6723 60289 42353 70
ngc6752 47657 31250 65
ngc6779 79381 47224 59
ngc6809 42870 24095 56
ngc6838 14504 7582 52
ngc6934 81104 47218 58
ngc6981 44154 29154 66
ngc7006 72056 46216 64
ngc7078 243929 152629 62
ngc7089 227533 159739 70
ngc7099 67053 37756 56
palomar1 9330 685 7
palomar12 7915 1981 25
palomar15 22790 6648 29

pyxis 11311 6281 55
ruprecht106 23800 13285 55
terzan7 21637 7752 35
terzan8 39847 16477 41

Table 2. Impact of the magnitude cut on the number of stars; all numbers are given after the
photometry cleaning
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Figure 9. Distribution of color inside a typical MS magnitude bin (at the dim end of the MS) showing
secondary population contamination. The black solid line shows how the algorithm isolates and fits
the distribution of the main population.

Figure 10. Orientation of the data compared to the vertical axis inside a typical MS magnitude bin
(far away from the dim end cut).

C Main sequence calibration

We fit the histogram of the color distribution within each magnitude bin with a unimodal
Gaussian with the curve fit routine of Scipy, for a maxfev=950000.12 If the routine cannot
find a fit to the color distribution, the bin is ignored. Otherwise, the bin is retained and the
resulting Gaussian distribution is adopted. A typical example of a small contamination is
shown in figure 9: the fitting procedure captures the distribution of the main “population”.

Once the central value of the distribution is obtained (see figure 9), we rescale the
error on the distribution due to the inclination of the observed stars in the color-magnitude
diagram. The orientation of the data in a MS magnitude bin i is obtained by linear regression
the median of the data in sub-bins, and is compared to a vertical line passing through the
color of the central value (see figure 10). The resulting angle is referred to as �i and it ranges
between [ ' 0–10�].

12maxfev is set to a very large value to make sure of the non convergence of the unimodal fit.
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D Mixing length theory

Uncertainties in the modeling of convection in the envelopes of low mass stars are the main
contributor to systematic uncertainties in determining stellar parameters (see table 2 in
ref. [4]). Given the broad audience which this paper (hopefully) reaches, it is worth to briefly
review mixing length theory (MLT), to understand the origin of these uncertainties.

The envelopes (about the outer 30% radius) of low mass (< 2 M�) stars are fully
convective and turbulent, with Reynolds number ⇡ 1010. Modeling these systems is highly
challenging: in principle, a full hydro-dynamical solution should be obtained. Instead, the
standard solution is to model the gradient of convective transport by the so-called MLT.
Conceptually, it is a very simple approach: it assumes that a blob of gas starts at a point
and continues moving until it dissolves after a certain length, the mixing length lm.

Consider a sphere of radius r and an element e of the envelope (a blob of gas) located
there. After e has traveled a mixing length lm, its increase in temperature T will be

�T

T
=

1

T

@(�T )

@r
lm = (r�re)lm

1

HP
(D.1)

where the scale height is HP = �dr/d lnP , P is the pressure, r denotes the gradient in the
environment and re is the gradient in the blob. Now, combining this with the equations of
stellar structure, it is possible to obtain a system of five di↵erential equations for five inde-
pendent variables, namely: pressure, temperature, density, and the advective and radiative
gradients. Then lm is an extra free parameter which needs to be determined from observa-
tions. The usual parameter that stellar modelers fit is ↵MLT = lm/HP ; this has a typical value
of 1.6 from fits to the Sun and to the position of red giant branch in the color-magnitude
diagram of GCs [10]. The interested reader can consult the textbook by Kippenhahn &
Weigert for a detailed account of all equations of stellar structure [45]. Changes for this
parameter from the typical value would propagate into systematic shifts in the metallicity
and age determinations.
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E Parameter constraints: globular clusters

The table shows the best-fit parameters for the GC sample considered in this paper and the
one-dimensional marginalized statistical uncertainties at 68% confidence level.

Cluster name Age [Gyr] [Fe/H] Distance [kpc] AV [↵/Fe]

arp2 13.42+1.24
�1.65 �1.81+0.15

�0.18 29.61+1.46
�1.46 0.29+0.04

�0.04 0.14+0.18
�0.16

ic4499 12.80+0.66
�0.78 �1.54+0.09

�0.14 19.68+0.45
�0.45 0.64+0.03

�0.03 �0.09+0.17
�0.10

lynga7 10.82+2.12
�1.54 �0.88+0.15

�0.12 9.23+0.58
�0.58 2.22+0.05

�0.05 0.03+0.18
�0.12

ngc0104 13.54+1.03
�0.80 �0.81+0.10

�0.14 4.48+0.08
�0.11 0.06+0.03

�0.03 0.20+0.12
�0.16

ngc0288 11.20+0.67
�0.67 �1.43+0.18

�0.11 9.77+0.20
�0.20 0.05+0.04

�0.03 0.36+0.16
�0.18

ngc0362 11.52+0.84
�0.84 �1.30+0.14

�0.12 9.12+0.21
�0.21 0.06+0.03

�0.03 0.12+0.16
�0.14

ngc1261 11.54+0.67
�0.45 �1.32+0.12

�0.12 16.72+0.38
�0.25 0.00+0.03

0.00 0.12+0.16
�0.14

ngc1851 12.27+1.47
�0.98 �1.14+0.13

�0.13 12.19+0.32
�0.32 0.07+0.03

�0.04 0.05+0.14
�0.14

ngc2298 13.89+0.88
�0.63 �2.00+0.14

�0.16 10.23+0.22
�0.22 0.65+0.03

�0.03 0.18+0.12
�0.20

ngc2808 10.93+1.20
�1.03 �1.32+0.14

�0.12 10.84+0.38
�0.38 0.60+0.04

�0.04 �0.06+0.09
�0.13

ngc3201 13.05+1.05
�1.19 �1.57+0.12

�0.15 4.91+0.15
�0.08 0.74+0.04

�0.03 0.20+0.16
�0.14

ngc4147 13.02+0.50
�0.33 �1.77+0.14

�0.12 19.58+0.34
�0.34 0.04+0.02

�0.02 0.22+0.18
�0.16

ngc4590 12.03+0.54
�0.54 �2.28+0.17

�0.11 11.22+0.17
�0.25 0.18+0.02

�0.02 0.26+0.16
�0.22

ngc4833 14.69+0.23
�0.70 �2.09+0.15

�0.15 6.91+0.18
�0.12 0.97+0.02

�0.03 0.20+0.18
�0.14

ngc5024 13.31+0.66
�0.57 �1.95+0.11

�0.17 18.99+0.55
�0.37 0.03+0.01

�0.02 0.34+0.14
�0.18

ngc5053 13.84+0.50
�0.58 �2.33+0.14

�0.12 17.82+0.29
�0.29 0.02+0.01

�0.01 0.16+0.16
�0.18

ngc5139 14.91+0.00
�1.11 �1.63+0.11

�0.14 5.78+0.16
�0.16 0.36+0.03

�0.02 �0.00+0.11
�0.13

ngc5272 12.60+0.66
�0.66 �1.53+0.11

�0.13 10.41+0.18
�0.28 0.00+0.02

0.00 0.26+0.12
�0.22

ngc5286 14.55+0.36
�1.07 �1.71+0.15

�0.15 11.62+0.40
�0.27 0.73+0.03

�0.03 �0.01+0.14
�0.14

ngc5466 12.31+0.60
�0.40 �1.85+0.14

�0.12 16.47+0.39
�0.17 0.00+0.02

�0.00 0.30+0.18
�0.18

ngc5904 12.75+0.80
�0.80 �1.30+0.10

�0.16 7.53+0.11
�0.17 0.07+0.02

�0.03 0.12+0.14
�0.16

ngc5927 8.33+1.98
�1.13 �0.62+0.13

�0.13 8.87+0.20
�0.39 1.35+0.03

�0.07 0.16+0.12
�0.14

ngc5986 14.82+0.00
�1.12 �1.66+0.13

�0.16 10.95+0.40
0.00 0.82+0.03

�0.03 0.19+0.06
�0.22

ngc6093 13.83+0.96
�0.72 �1.79+0.16

�0.13 10.97+0.26
�0.26 0.61+0.03

�0.03 0.20+0.14
�0.18

ngc6101 13.22+0.66
�0.66 �1.84+0.15

�0.12 14.81+0.37
�0.25 0.30+0.03

�0.03 0.30+0.16
�0.16

ngc6121 13.01+1.01
�1.01 �1.22+0.16

�0.09 2.05+0.03
�0.05 1.15+0.02

�0.02 0.44+0.12
�0.10

ngc6144 14.47+0.42
�1.12 �1.76+0.15

�0.17 8.72+0.23
�0.23 1.27+0.03

�0.03 0.22+0.16
�0.18

ngc6205 13.49+0.62
�0.45 �1.48+0.08

�0.16 7.79+0.09
�0.12 0.00+0.02

0.00 0.08+0.27
�0.08

ngc6218 14.64+0.29
�0.64 �1.51+0.13

�0.11 5.27+0.12
�0.04 0.56+0.03

�0.03 0.28+0.10
�0.22

ngc6254 12.85+0.80
�0.80 �1.75+0.13

�0.13 5.71+0.14
�0.12 0.78+0.04

�0.03 0.09+0.10
�0.22

ngc6304 8.67+1.80
�1.80 �0.64+0.14

�0.12 7.20+0.35
�0.35 1.56+0.05

�0.05 0.09+0.14
�0.14

Table 3.
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Cluster name Age [Gyr] [Fe/H] Distance [kpc] AV [↵/Fe]

ngc6341 13.30+0.60
�0.60 �2.24+0.15

�0.13 8.94+0.20
�0.17 0.05+0.03

�0.03 0.26+0.16
�0.18

ngc6352 11.93+1.80
�1.57 �0.82+0.20

�0.09 5.64+0.23
�0.18 0.72+0.04

�0.04 0.26+0.18
�0.12

ngc6362 13.58+0.82
�0.61 �1.11+0.14

�0.11 7.69+0.18
�0.08 0.16+0.02

�0.02 0.34+0.14
�0.08

ngc6366 12.15+1.46
�1.46 �0.88+0.15

�0.12 3.68+0.11
�0.11 2.13+0.05

�0.03 0.03+0.16
�0.14

ngc6388 11.07+2.12
�1.42 �0.79+0.16

�0.11 12.65+0.49
�0.61 1.09+0.04

�0.04 �0.09+0.11
�0.10

ngc6397 14.21+0.69
�0.69 �2.06+0.14

�0.19 2.65+0.05
�0.05 0.51+0.03

�0.02 0.18+0.18
�0.16

ngc6426 13.92+0.96
�1.12 �2.16+0.18

�0.18 21.99+0.85
�1.02 1.12+0.04

�0.04 �0.05+0.20
�0.12

ngc6441 10.44+2.78
�1.62 �0.65+0.12

�0.12 14.38+1.15
�0.92 1.42+0.06

�0.05 �0.11+0.12
�0.09

ngc6496 10.86+2.11
�1.64 �0.57+0.08

�0.14 9.88+0.44
�0.29 0.68+0.05

�0.04 0.12+0.12
�0.12

ngc6535 13.81+1.06
�1.06 �1.82+0.18

�0.18 6.71+0.38
�0.31 1.22+0.02

�0.03 0.20+0.14
�0.20

ngc6541 13.51+0.86
�0.65 �1.98+0.16

�0.12 7.97+0.18
�0.18 0.35+0.04

�0.03 0.30+0.18
�0.16

ngc6584 12.72+0.76
�0.66 �1.56+0.12

�0.14 14.18+0.24
�0.37 0.25+0.03

�0.03 0.18+0.14
�0.18

ngc6624 11.26+1.90
�1.27 �0.61+0.10

�0.12 8.53+0.33
�0.41 0.80+0.05

�0.03 �0.10+0.11
�0.09

ngc6637 12.85+1.35
�1.35 �0.84+0.15

�0.10 9.09+0.29
�0.29 0.50+0.04

�0.04 0.08+0.14
�0.16

ngc6652 12.98+1.55
�0.86 �0.86+0.12

�0.14 9.57+0.39
�0.39 0.35+0.03

�0.03 0.18+0.14
�0.20

ngc6656 14.54+0.36
�0.97 �1.70+0.15

�0.15 3.62+0.09
�0.09 1.04+0.03

�0.03 0.03+0.12
�0.16

ngc6681 13.87+0.73
�0.83 �1.68+0.14

�0.14 9.66+0.22
�0.27 0.29+0.03

�0.03 0.16+0.16
�0.16

ngc6715 12.22+1.91
�1.43 �1.54+0.13

�0.19 28.25+1.58
�1.58 0.44+0.04

�0.04 �0.04+0.14
�0.14

ngc6717 11.65+1.50
�1.71 �1.29+0.15

�0.15 7.91+0.60
�0.34 0.66+0.05

�0.05 0.20+0.12
�0.20

ngc6723 13.81+0.70
�0.90 �1.06+0.07

�0.15 8.14+0.16
�0.16 0.20+0.03

�0.03 0.24+0.09
�0.13

ngc6752 13.48+0.81
�0.54 �1.57+0.14

�0.14 4.34+0.09
�0.06 0.13+0.03

�0.03 0.26+0.14
�0.18

ngc6779 14.85+0.08
�0.76 �2.13+0.14

�0.16 10.92+0.27
�0.18 0.69+0.02

�0.02 0.09+0.14
�0.16

ngc6809 13.93+0.50
�0.58 �1.80+0.11

�0.11 5.49+0.09
�0.07 0.28+0.02

�0.02 0.30+0.14
�0.14

ngc6838 11.21+1.59
�1.59 �0.91+0.15

�0.13 4.16+0.21
�0.14 0.72+0.05

�0.04 0.16+0.14
�0.18

ngc6934 13.24+0.71
�0.71 �1.54+0.08

�0.14 15.99+0.39
�0.29 0.28+0.02

�0.03 0.21+0.12
�0.18

ngc6981 12.72+0.69
�0.69 �1.47+0.12

�0.14 17.08+0.49
�0.32 0.12+0.02

�0.02 0.22+0.14
�0.20

ngc7006 13.18+1.14
�1.00 �1.51+0.12

�0.18 39.78+2.11
�1.41 0.24+0.03

�0.03 0.03+0.10
�0.20

ngc7078 13.28+0.82
�0.71 �2.36+0.08

�0.13 11.25+0.22
�0.33 0.25+0.02

�0.03 0.18+0.14
�0.20

ngc7089 13.08+0.85
�0.85 �1.65+0.14

�0.14 12.05+0.35
�0.29 0.14+0.03

�0.03 0.18+0.16
�0.16

ngc7099 12.82+0.33
�0.50 �2.22+0.12

�0.14 8.96+0.16
�0.13 0.14+0.02

�0.03 0.34+0.14
�0.20

palomar1 8.20+3.87
�1.93 �0.69+0.17

�0.17 11.44+0.78
�0.78 0.47+0.05

�0.05 �0.05+0.16
�0.12

palomar12 9.94+0.92
�0.73 �0.86+0.13

�0.13 18.62+0.63
�0.42 0.08+0.03

�0.04 �0.01+0.14
�0.14

palomar15 13.97+0.88
�1.76 �2.06+0.19

�0.19 49.35+4.04
�4.04 1.21+0.03

�0.04 �0.01+0.14
�0.16

pyxis 14.84+0.00
�3.28 �1.13+0.22

�0.15 38.29+2.77
�3.46 0.70+0.05

�0.04 0.12+0.14
�0.20

ruprecht106 11.30+1.55
�1.55 �1.62+0.13

�0.13 21.95+0.73
�0.73 0.56+0.03

�0.03 0.07+0.14
�0.16

terzan7 8.10+1.96
�1.40 �0.53+0.05

�0.14 23.65+1.42
�1.13 0.21+0.05

�0.05 �0.08+0.09
�0.11

terzan8 13.48+0.90
�0.77 �2.22+0.16

�0.12 28.74+0.99
�0.79 0.35+0.03

�0.03 0.34+0.18
�0.16

Table 4.

– 24 –



J
C

A
P

1
2

(
2

0
2

0
)

0
0

2

Figure 11. Comparison of [↵/Fe] best fits and 1-� errors with spectroscopic measurements from
Dotter et al. [14].

F Fits to ACS globular clusters

In this appendix we show fits for typical Globular clusters in the ACS sample as an illustration
of the adopted methodology. For each GC the upper row of figure 12 shows the color-
magnitude diagram for the globular cluster. The gray points correspond to the individual
stars, the red points show the best fit isochrone for the DSED model. The bottom row shows
the marginalized posteriors of the model parameters obtained applying our analysis. The
contours indicate the two-dimensional 68%, 95% and 99.7% confidence levels constraints,
while the panels in the diagonal show the one-dimensional marginalized posteriors.

We also show the comparison between the best fit of the 68 Globular clusters and
spectroscopic values from Dotter et al. catalog [14]. We find a very good agreement. For
alsmost all the clusters, the spectroscopic value is within the 1-� range of the best fit.

G Fitting formula for the distribution of �t

The distribution of�t shown in the right panel of figure 1 of ref. [33] can be well approximated
by the following fitting formula (see figure 13). Let x indicate �t, l = log10(�t) and l1 ⌘
log10(0.1155), l2 ⌘ log10(0.255), �1 = 0.15, �0

1 = 0.17, �2 = 0.155 then

F1(x) = exp

✓
�1

2

(l � l1)2

�
2
1

◆
if x  0.1155 (G.1)

F1(x) = exp

✓
�1

2

(l � l1)2

�
02
1

◆
if x � 0.1155 (G.2)

F2(x) = exp

✓
�1

2

(l � l2)2

�
2
2

◆
(G.3)

P�t(x) / 0.95F1(x) + 0.45F2(x) (G.4)
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Figure 12. Fit to 6 Globular clusters and the corresponding join Bayesian posterior for the corre-
sponding parameters. The contour levels are confidence, 2D join, intervals for 1, 2 and 3� �.
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Figure 13. Distribution of the �t taken from the right panel of figure 1 of ref. [33] (solid line) and
fitting formula used here (dot-dashed line).
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Chapter 3. Globular clusters as standard clocks 95

3.4 The Age of the Universe with Globular Clusters: reducing
systematic uncertainties

Compared to Planck’s value for the age of the universe (13.8± 0.02 Gyr Planck Collaboration
et al. 2020), our estimate of tU = 13.5+0.16

�0.14(stat.)± 0.5(sys.) at 68% confidence level is
in good agreement. In order to make this result more competitive, it is necessary
to reduce the various errors which affect the measurement. In particular systematic
errors.
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Abstract. The dominant systematic uncertainty in the age determination of galactic globu-
lar clusters is the depth of the convection envelope of the stars. This parameter is partially
degenerate with metallicity which is in turn degenerate with age. However, if the metal con-
tent, distance and extinction are known, the position and morphology of the red giant branch
in a color-magnitude diagram are mostly sensitive to the value of the depth of the convective
envelope. Therefore, using external, precise metallicity determinations this degeneracy and
thus the systematic error in age, can be reduced. Alternatively, the morphology of the red
giant branch of globular clusters color magnitude diagram can also be used to achieve the
same. We demonstrate that globular cluster red giant branches are well fitted by values of
the depth of the convection envelope consistent with those obtained for the Sun and this
finding is robust to the adopted treatment of the stellar physics. With these findings, the
uncertainty in the depth of the convection envelope is no longer the dominant contribution
to the systematic error in the age determination of the oldest globular clusters, reducing
it from 0.5 to 0.23 or 0.33 Gyr, depending on the methodology adopted: i.e., whether re-
sorting to external data (spectroscopic metallicity determinations) or relying solely on the
morphology of the clusters’s color-magnitude diagrams. This results in an age of the Universe
tU = 13.5+0.16

�0.14(stat.)± 0.23(0.33)(sys.) at 68% confidence level, accounting for the formation
time of globular clusters and its uncertainty. An uncertainty of 0.27(0.36) Gyr if added in
quadrature. This agrees well with 13.8± 0.02 Gyr, the cosmological model-dependent value
inferred by the Planck mission assuming the ⇤CDM model.
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1 Introduction

A Bayesian analysis to estimate, as precisely and accurately as possible, the absolute ages of
galactic globular clusters (GCs) with resolved stellar populations was presented in a recent
paper [1]. The objective of the work in Ref. [1] was to use the age of the oldest GCs
to obtain an estimate of the age of the Universe insensitive to cosmology and, in turn,
constrain cosmological models. By using the morphology of the color-magnitude diagram
(CMD) and not just the luminosity of the main sequence turn o↵, we showed that the age,
distance and metal content could be determined without relying on external data sets. By
using the extensive set of GC CMDs from the ACS-HST survey, an age for the oldest GCs
of tGC = 13.32 ± 0.1(stat.) ± 0.5(sys.), at 68% confidence level, was obtained. As it is
apparent, the uncertainty in the age is dominated by the systematic uncertainty, which in
turn dominates the estimate of the age of the Universe (see also [2–4]).

The most important “known unknown” contributing to the systematic uncertainty bud-
get is the value of the depth of the convection envelope in low mass stars (those around solar
mass). This by itself contributes to 60% of the systematic uncertainty (see Table 2 in Ref. [2],
the rest of the systematic error budget being due to reaction rates and opacities). The prob-
lem is at follows: low mass stars have fully convective and turbulent envelopes (Reynolds
number ' 1010) and because of this, a full hydro-dynamical solution is prohibitive for a large
grid of stellar models varying parameters like mass, metallicity and age (this can be done
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for a single star, and it is done when modelling the Sun, but cannot -yet- be extended to a
full library of stellar models). Instead, one models the gradient of the convective transport
by assuming 1D geometry and following a convective cell as it dissolves into the envelope.
With this approach, the equations of stellar structure contain five independent di↵erential
equations for five variables and an extra parameter: the mixing length (↵MLT). The value
of the mixing length parameter has to be obtained from fits to observations. While there
is some recent theoretical progress on matching 3D to 1D models for low mass stars (see
e.g., Ref. [13]) which could open the possibility to eliminate the need to empirically calibrate
↵MLT, this step cannot be avoided at the moment.

The standard way to determine the free mixing length parameter is to fit it to the
Sun and assume this value applies to all stars. This, of course, is an assumption that is not
guaranteed to hold for stars in GCs which have very di↵erent metallicity than the Sun.1 While
the adopted value for the mixing length parameter does not a↵ect the age determination
directly, it indirectly does so via degeneracies with other parameters, most notably metallicity.
The approach of Ref. [1] is to propagate a variation of the mixing length parameter over a
wide range into the systematic error budget for the age, as adopted and motivated by e.g.,
Ref. [2]. However, as anticipated in Refs. [1, 8] this does not need to be the case as the
mixing length can, at least in principle, be constrained from the morphology of the CMD of
GCs. We address this methodology in this article.

The rationale behind this approach is simple. As a first step, let us assume that the
metallicity of the GC has been determined (for example, via spectroscopic observations). For
a fixed metallicity, the color of the red giant branch (RGB) in a theoretical CMD depends
mostly on the value of ↵MLT (see Fig. 1). As we will show below, other parameters a↵ecting
stellar structure do not modify the color of the RGB as much as ↵MLT. Hence the spread
in color of the RGB in the CMD of a single GC yields an upper limit to the star-to-star
variations in ↵MLT (assuming the scatter is solely due to spread in ↵MLT values). Without
resorting to external constraints on the GC metallicity, the metallicity determination for each
GC of Ref. [1], obtained assuming a fixed fiducial mixing length parameter value, should be
a↵ected by an (unknown) shift induced by the ↵MLT choice. Now, if the distance is known,
GCs of similar estimated metallicity can be suitably aligned on the theoretical CMD (or an
HR diagram). In this case, the dispersion in color of the RGB can be used to constrain the
↵MLT range, in particular if one assumes that the full scatter is solely induced by ↵MLT.

In this paper we quantify this dispersion and constrain the range of ↵MLT values. This
significantly reduces the systematic uncertainty in the age estimation of GCs, making the
mixing length contribution to the statistical error budget now subdominant to other system-
atics, and propagates into a determination of the age of the Universe with systematic errors
reduced by ⇠ 50%.

2 Data

Following Ref. [1], we consider the globular clusters from the HST-ACS catalog which we
group into three metallicity samples (according to the best fit metallicity value): 12 clusters
with [Fe/H] < 2.0, 11 clusters with �2 < [Fe/H] < -1.75 and 15 with �1.75 < [Fe/H] <
-1.5. One of the clusters in Ref. [1], (NGC6715) shows clear signs of multiple populations
in the RGB, its metallicity is just at the high edge of the range considered in this work and
its age determination has a very large error-bar. We exclude this cluster from the present

1See the discussion in section 2.2 in Ref. [2] and references therein.

– 2 –



Figure 1. Variation of the HR diagram due to changes in the mixing length parameter ↵MLT (�↵ =
0.1) for a star with a fixed initial mass and metallicity. As we can see, the color (e↵ective temperature)
of the RGB is the most sensitive region to the mixing length value, while the sub-giant branch is the
least sensitive part of the HR diagram.

analysis, leaving us with a sample of 38 clusters (including it does not change the results in
any significant way, due to the large uncertainties on its age).

These clusters also have spectroscopically-determined metallicities from Ref. [2] (for
only 16 of the 38 clusters) and [14, 15] (for all 38); the latter determination is complete for
our purposes, then it is the main one we use here. The comparison between spectroscopic
metallicity and the metallicities estimated by Ref. [1] is shown in Fig. 2. The comparison
with Ref. [2] metallicities can be found in Fig. 5, of Ref. [1].

In order to compare the clusters with each other and with the stellar tracks, it is
necessary to convert the apparent magnitudes of each star into absolute magnitudes. To do
this we use the best fits obtained in Ref. [1] (see their Table 3, Appendix E) for the absorption
and the distance modulus. In the three panels of Fig. 3, we show the (absolute) CMD of all
the clusters, as if they were all at the same distance (i.e., 10 pc), subdividing the sample in
the three metallicity ranges listed above. Clearly, the RGBs of the di↵erent clusters appear
nicely aligned in each metallicity interval. When considering the combined distribution of
all the stars from all the GC in each sample, there are many possible contributions to the
resulting width of the RGB: photometric errors, errors in the best-fit parameter values (e.g.,
distance, absorption) used to generate the plots, errors in metallicity determinations and the
spread in metallicity within the selected sample, and the e↵ects of variations in ↵MLT (which
is the quantity we are interested in).

3 Method

Several parameters a↵ect the color of the RGB in low-mass stars (< 2M�). The most
important one is the metallicity content, as can be seen from Fig. 8 in Ref. [1], where
one can appreciate that the color of the RGB is quite insensitive to age, but sensitive to
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Figure 2. Metallicity determination of Ref. [1] vs spectroscopic metallicity determination of Ref. [15]
of the 38 clusters in our sample. The 1:1 line guides the eye. The scatter around this relation is
�[Fe/H] = 0.09, with no indication of a dependence on metallicity or systematic bias (i.e., a systematic
deviation from the 1:1 line).

metallicity. The next leading parameter determining the color of the RGB is the mixing
length (↵MLT), as we will show below by varying the parameters of the microphysics in
the star and comparing the resulting stellar tracks (see Fig. 1). As recognized by Ref. [2],
this parameter dominates the systematic uncertainty when obtaining ages of GCs using the
luminosity of the main sequence turn o↵.

Here we explore two approaches to reduce this uncertainty. The first one is based on
external metallicity determinations, the second one uses only internal information from the
morphology of the CMDs of each GC.

3.1 Resorting to Spectroscopic metallicity determination

We can appreciate in Fig. 2 that there is a good agreement between spectroscopic and CMD-
estimated metallicities, with no indication of a dependence on metallicity and no indication
of a systematic bias (i.e., a systematic deviation from the 1:1 line). When a linear fit is
performed, the best-fit line has a slope of 0.89±0.15 and an intercept of �0.21±0.28. When
forcing the line to have a slope of 1 a possible systematic normalization shift in the metallicity
determination is �0.023±0.093. We find similar results when limiting this comparison to each
of the subsamples in metallicity. Hence, we quantify the scatter in the relation i.e., a possible
di↵erence between spectroscopic and CMD-estimated metallicity to be �[Fe/H] = 0.093.

These results are obtained using the metallicities from Ref. [15]; results obtained using
Ref. [2] instead are consistent, but more uncertain because of the smaller number of objects
included. Since the metallicity determination of Ref. [1] is obtained for a value of ↵MLT =
1.938 fixed a priori,2 and there is an expected degeneracy between ↵MLT and metallicity,
a systematically incorrect choice of ↵MLT would have biased the metallicity determination,

2The value of the ↵MLT parameter assumed depends on the stellar code used. In Ref. [1], the values reported
were according to the convention of the codes used there i.e., DSED. Here we convert to the convention of the
MESA (and JimMacD) codes, see below. For reference the solar value for ↵MLT are 1.938, 2, 1.4, respectively.
This change, however, only amounts to a shift; the relevant quantity for our argument is the interval or range
adopted, which does not depend on the convention.
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Figure 3. Top panel: Combined CMD of the GCs with metallicities below [Fe/H] < �2, shifted to
be at the same distance using the best fit distances and absorption from Ref. [1]. Middle and bottom
panels: same as top panel but for metallicity ranges as indicated.

and hence the age. On the other hand, an incorrect value of ↵MLT with a cluster-to-cluster
variation would induce a scatter in the comparison of Fig. 2, which we estimate to be �[Fe/H] =
0.093. Below, we will estimate the allowed range of ↵MLT by attributing the full scatter of
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this relation to variations in the mixing length parameter.

3.2 Using only internal information

When using the full morphology of the CMD, it should be possible to treat ↵MLT as an
additional model parameter to be constrained by the data, as mentioned in Ref. [1]. Here we
develop this idea. We start by illustrating the sensitivity of the RGB to stellar parameters
and in particular to ↵MLT using the publicly available 1D stellar structure and evolution
codes MESA [5] and the JimMacD code [6]. These codes compute the 1D equations of stellar
structures and evolve them in time, thus providing the structure of a star and its position and
evolution in time in the theoretical CMD for given initial mass and chemical composition.
The numerical solution of the stellar structure equations of both codes are the same. The
main di↵erence between the two codes is that MESA is a modern 1D stellar code that employs
new updates in opacities and nuclear reaction rates. On the other hand, the older version
of JimMacD that we use adopts di↵erent values for opacities and nuclear reaction rates and a
di↵erent formulation of the mixing length formulation. We use these two di↵erent codes to
illustrate that recent updates in nuclear reaction rates and opacities do not a↵ect our results.
We then proceed to constrain the mixing length parameter from the color of the RGB and
quantify its spread for the oldest GCs.

3.2.1 Color transformation

The output of MESA allows us to plot directly the evolution of a star in the theoretical HR
diagram (e↵ective temperature vs log luminosity), but if we want to compare our tracks with
the GCs observations we must transform the luminosity into the magnitudes corresponding
to the filters of the HST-ACS catalog (F606W and F814W). The transformation is carried
out in 4 stages:

1. convert luminosity to bolometric magnitude using the formula

Mbol = �2.5 log10
L?

L0

where L? is the star’s bolometric luminosity in watts and L0 is the zero point luminosity
= 3.0128⇥ 1028 W,

2. produce bolometric correction tables using the Vega calibration (Calspec Alpha Lyrae)3

and the atmospheric models of Castelli & Kurucz [9] for various metallicity values, or the
Bolometric Corrections code from Casagrande & VandenBerg [10]4 . This is further
discussed in Appendix A, where we show that the choice of bolometric correction is
unimportant for our purpose,

3. interpolate bolometric corrections (BC) using e↵ective temperature, surface gravity,
and extinction where we assume to have corrected the data for extinction and therefore
take E(B - V) = 0 ,

4. transform bolometric magnitude into absolute magnitude

Mfilter = Mbol � BCfilter

where Mfilter and BCfilter are respectively the absolute magnitude and the bolometric
correction in the desired filter.

3https://ssb.stsci.edu/cdbs/current calspec/
4For the rest of the paper we choose to work with bolometric corrections from Ref. [10].
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3.2.2 Stellar tracks

The CMD of a GC is an isochrone which covers a range of initial masses for the stars.
Isochrones are generally more complicated to model than stellar tracks and are usually avail-
able for more limited choices of parameters (such as ↵MLT, opacities, reaction rates, etc.)
than stellar tracks. However, it is well known that a stellar track for a fixed mass, corre-
sponding to the mass of the main sequence turn o↵, will approximate very well the parts of
CMD of the GC which we consider here, in particular the upper part of the RGB (where
the dependence on the mass is very small). The RGB for an isochrone of a fixed age can
always be approximated by a stellar track for a suitable choice of the initial mass. We fix
the age for the isochrone to be 13.32 Gyr and find that M = 0.75M� yields the best fit for
our purposes. A variation of the value of the initial mass has an e↵ect on an isochrone very
similar to changing the age, and mainly a↵ects the main sequence and its turn o↵. This is
further discussed in Appendix A, especially Fig. 7, but see also Figure 8 in Ref. [1].

The isochrone-track agreement is illustrated in Fig. 4. In both panels, the dotted lines
correspond to isochrones, and the solid lines, to stellar tracks for representative values of
metallicity and mixing length parameter. For the magnitude range (M & 0), and the combi-
nation of parameters we are interested in, the di↵erences between isochrones and stellar tracks
are very small and completely negligible compared to the di↵erences induced by changes in
metallicity and ↵MLT considered here. In our analysis, we also include a cut for magnitudes
M & �2; for M < 0 the di↵erences between isochrones and tracks as obtained according to
our procedure of sec. 3.2.1, are slightly more pronounced. For this reason, the M > �2 cut
is only reported in the appendices and serve to check for possible e↵ects of outliers and to
cap the e↵ect of such mismatch.

We begin by computing stellar tracks using the MESA software package [5], evolving a
star from pre main-sequence to a luminosity limit of log10(Lmax) = 3.25, su�cient to compare
the tip of the RGB for di↵erent values of the mixing length parameter. Among the various
parameters needed to configure the tracks, the initial mass and metallicity are the two most
important.

We calculate the stellar tracks for 8 initial values of metallicity spanning a range from
Z = 0.00005 to Z = 0.0004 (equivalent to �2.45 < [Fe/H] < �1.55)5 to sample the [Fe/H]
range of the 38 GCs in our sample (see Table 3 in Ref. [1]). Except for its tip, the RGB varies
only slightly with changes in the metallicity. This is why we argue that, for a metallicity
range comparable to current uncertainties from CMD studies, the scatter around the the
RGB may be used to constrain the maximum range of ↵MLT. The impact of the choice of
mass, metallicity and the stellar model on the stellar tracks and the CMD is explored in more
detail in Appendix A (see Figure 8).

Besides adopting the solar abundance scale, we use the same configuration parameters
as those presented in Ref. [7] (see table 1 and section 3 for further explanations). All other
parameters have been used with their default values. Table 1 summarizes the value of the
relevant parameters used in our study. We also compute stellar tracks with the old stellar
code JimMacD [6] in order to show the robustness of the position of the RGB to input physics
and how a di↵erent modelling of stellar structure doesn’t a↵ect our conclusions. While
the inital mass value adopted using the MESA code is M = 0.75 M�, this exact value is
not available for JimMacD. Hence, when comparing the two codes directly, we also consider
the closest available value in JimMacD which is M = 0.80 M�, and use initial metallicity

5Recall that [Fe/H] = log10(Z/Z�) where Z� = 0.02 for JimMacD and Z� = 0.0142 for MESA .
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Figure 4. The upper part of the RGB of an isochrone is very well approximated by the stellar track
for a suitable choice of mass (and age, but the sensitivity to age is small). For each isochrone the age
is equal to 13.32 Gyr and for each track the mass is equal to 0.75M�. In this figure the dotted lines
correspond to isochrones, the solid lines to stellar tracks. The top panel shows the agreement for few
representative values of metallicity; the bottom panel shows that the di↵erences between isochrones
and tracks are much smaller than those induced by a change in ↵MLT of the magnitude of interest.

Z = 0.0002 ([Fe/H]= �2). As discussed above, the RGB is very insensitive to the choice
of mass. The detailed comparison of the two codes is presented in Appendix B where also
the corresponding stellar tracks are shown. Since the impact of di↵erences between the two
codes in our results is negligible, in what follows the main text only report results for the
MESA code.

3.3 Response of the color of the RGB to changes in metallicity and ↵MLT

The grid of stellar tracks enables us to estimate how changes in key parameters (metallicity
and ↵MLT) a↵ect the color of the RGB. For relatively small changes around fiducial values we
can linearize this dependence and report an estimate of dC/d↵MLT (where C denotes the color
of the RGB at a given magnitude) and dC/dZ or dC/d[Fe/H], obtained as finite di↵erences
for few representative magnitudes. These quantites are only indicative, but can help build
physical intuition about the e↵ect we want to describe. We find that these quantities, as
expected, depend on the magnitude; results are reported in table 2. The color response to
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Parameter Value

Initial mass M 0.75, 0.80
Initial metallicity Z [0.00005, 0.004] �Z = 0.00005

Initial Helium mass fraction 0.24 + 2 ⇥ Initial metallicity Z (default)
Mixing length ↵MLT [1.2, 2.8], �↵ = 0.1

Atmosphere boundary conditions
model atmosphere tables for photosphere constructed

using the PHOENIX model atmospheres [21, 22]
and the models in Ref. [9].

Table 1. Values for the stellar parameters used when computing the MESA stellar tracks.

metallicity (Z) is linear to a very good approximation, the response does not depend on the
�Z adopted to compute the derivative, but it shows some dependence on the fiducial choice of
↵MLT. We find that we can approximately rescale the derivative to di↵erent fiducial values as
(↵MLT/↵fid)3dC/dZ|↵fid = const. if ↵fid is around the solar value (↵MLT� ⇠ 2). The relation
between Z and [Fe/H] is not linear hence we report �C

�[Fe/H] = Z
�C
�Z for two represenative

metallicities; using the linearized relation for [Fe/H] is valid only for small shifts. The ↵MLT

dependence on the other hand is not linear, so the linearized approximation is only valid for
small changes �↵ < 0.1, which is what we adopt here.

M = 0 M = �2

�C
�Z |Z=0.00015 115 285

�C
�Z |Z=0.00025 106 297

�C
�[Fe/H] |[Fe/H]=�2.0 0.017 0.043

�C
�[Fe/H] |[Fe/H]=�1.75 0.027 0.074

�C
�↵MLT

(Z = 1.5⇥ 10�4) 0.116 0.202

�C
�↵MLT

(Z = 2.5⇥ 10�4) 0.125 0.225

Table 2. Response of the RGB color to changes in metallicity and mixing length parameter around
a fiducial model for the stellar track of ↵ = 2. Here M denotes the magnitude in F606W filter and
color, C, denotes the di↵erence F606W-F814W. The response to ↵MLT show some dependence on the
fiducial metallicity so we report several representative values.

We can then proceed to estimate (approximately, given the linearization assumption im-
plicitly made when computing derivatives by finite di↵erences) what change �↵ is needed to
keep the color of the RGB unchanged under a change in metallicity �[Fe/H]. This is visualized
in Fig. 5 where one can directly appreciate that a change in metallicity of ±�[Fe/H] = 0.09
(which is close to the value of the scatter found in sec. 3.1) is compensated by a change
±�↵ . 0.04. This upper limit in the required shift in ↵MLT provides a conservative estimate
of the uncertainty in this parameter introduced by its degeneracy with [Fe/H]. This is in
broad agreement with the values reported in Tab. 2 if one keeps in mind that the results in
the table are approximated because evaluated at a fixed magnitude value implicitly assuming
linear dependence of the color on the parameters and that in practice the overall e↵ect should
be seen as a suitably weighted average shift over the magnitude range M > 0. In section 4
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Figure 5. Response of the color of the RGB to a change in metallicity and a change in ↵MLT for
discrete representative values. The top panels show the full RGB range while the bottom panels are
a zoom in around magnitude M1 (solid horizontal line). This illustrates that to keep the color of the
RGB unchanged for a small change in metallicity �[Fe/H] = 0.09, (very close to the scatter evaluated
in sec. 3.1, Fig. 2) around the fiducial ([Fe/H] = �1.75 and ↵MLT = 2), the corresponding change in
↵MLT is given by �↵/�[Fe/H] ' �0.4. This is the value we adopt, as it corresponds to that of the
e↵ective metallicity of our GC sample.

we conservatively adopt d↵MLT/d[Fe/H] = �0.4 when converting the measured metallicity
scatter into an estimate fo the scatter in ↵MLT.

3.3.1 Selecting the RGB

In order to select only stars in the RGB for each cluster we define a band of color around
the best fit obtained in Ref. [1]. We choose a value of �C = 0.06 large enough to include all
the stars in the red giant branch and narrow enough to remove most of the stars belonging
to the horizontal branch. We also define a magnitude cut, M0, corresponding to the start
of the RGB. The collection of stars selected for all clusters in the low metallicity sample is
shown in Figure 6 where the 12 low metallicity GCs are plotted on top of each other. Indeed
the best fit ↵MLT can be biased and the dispersion �↵ can be increased by the dispersion
in color induced either by outliers or by misclassified stars belonging to the horizontal or
asymptotic branch. As the number of stars decreases when we move towards the brightest
magnitudes, we define two additional magnitudes cuts to study the dispersion in ↵MLT. The
first one M1 = M0 � 2.0 and the second one M2 = M1 � 2.0 = M0 � 4.0. A value of
the scatter in the color of the RGB changing across di↵erent magnitude cuts would indicate
outlier contamination. Because the correspondence isochrone-stellar tracks is less precise
for M > 0, we adopt results using the M1 cut and report the M0 cut results only in the
Appendices.
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Figure 6. The di↵erent cuts in luminosity used to define the spread computed in Table 3 and Table 4.
The gray points represents all the stars in the CMD of the combined 12 GCs of the [Fe/H] < 2 sample,
the black points show those passing the color selection of the RGB.

3.3.2 Computing RGB dispersion

We compute the RGB dispersion for each individual cluster and the combination of all the
GC in each of the three metallicity samples. If we assume that the photometric dispersion is
Gaussian around the isochrone (as argued in Ref. [1]), we can define the dispersion of color
by measuring the color distance to the fit:

�color =

vuut 1

N

NX

i=1

(Ci
star � Ci

fit)
2 (3.1)

where Ci
star and Ci

fit respectively correspond to the color of a given star (index i) and the
color of the track at the same magnitude, and N is the number of stars in the magnitude
interval considered. As we compute the dispersion for brighter magnitude cuts (M1 and
M2), the number of stars N decreases and the distribution becomes sometimes dominated
by Poisson noise for individual clusters. Therefore, we set a limit of N = 10 under which the
dispersion is not computed. To estimate the scatter in the mixing length the ideal approach
would be to perform a Bayesian analysis with the mixing length as a free parameter (akin
to the approach of Ref. [1]). However stellar grids are defined only for a specific value of
↵MLT; recomputing full grids of di↵erent mixing lengths and would be very computationally
expensive and is beyond the scope of this paper. We proceed instead as follows. We start by
mapping the response of the RGB track to discrete changes in ↵MLT (see Appendix B).

A (small) shift in the ↵MLT value might happen when matching tracks with isochrones.
We then perform a least square fit between stellar tracks for di↵erent values of the mixing
length parameter and the isochrone obtained from the best fit parameters of Ref. [1] for each
GC. First we select all the evolutionary equivalent points of the isochrone for the magnitude
range considered in this work. Then we interpolate all the computed tracks on the same
magnitude interval. Finally we compare the tracks and the isochrone at each EEPs magnitude
and do a least square fit for ↵MLT. This yields for each cluster a “best match” ↵MLT since it
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is obtained by comparing two di↵erent models (track to isochrone). For the combination of
all the clusters within a metallicity sample, since a best fit isochrone is not available we do
not compare tracks to the best fit isochrone, instead we perform a fit to all the stars in the
CMD for the full sample following the same fitting procedure as in Ref. [1] but using tracks
as the theoretical model instead of isochrones and varying only ↵MLT. We refer to this as
best fit ↵MLT since it is obtained via a model to data comparison.

To compute the scatter for each cluster, each star in the RGB is assigned a value of the
mixing length parameter, ↵i

MLT, obtained by linear interpolation of the values corresponding
to the two closest tracks at the same magnitude, and a corresponding shift Si as the di↵erence
between the interpolated ↵

i
MLT and the corresponding best match ↵MLT.

The dispersion in ↵MLT is then given by

�↵ =

vuut 1

N

NX

i=1

(Si)2 . (3.2)

For each sample we take the mean of the scatters of the individual clusters in the sample.
The results can be seen in in Table 3, but more detailed results on a cluster by cluster basis
are reported in Appendix C, Table 4.

4 Results

The considerations of Sec. 3.1 indicate that the adopted fiducial value for ↵MLT adopted by
Ref. [1] is not biased. The findings of Sec. 3.3 and Fig. 5 yield an estimate for �↵/�[Fe/H] =
�0.4 (the change in ↵MLT required to compensate a change in metallicity in order to keep
the color of the RBG unchanged) around the fiducial value for ↵MLT and for the e↵ective
value of [Fe/H] and magnitude cut. In Sec. 3.1 the scatter between spectroscopic and CMD-
estimated metallicity is estimated to be �[Fe/H] = 0.093. If this is attributed solely to cluster
to cluster (or star to star) changes in mixing length parameter, we obtain an upper limit
of �spec.met

↵ = 0.04 (the superscrip stresses that this is computed resorting to spectroscopic
metallicity data).

Without resorting to external data sets, we can proceed empirically. The spread in
color (color scatter) of the RGB for each GC, is generated by a combination of e↵ects,
the dominant one being measurement and photometric errors, as well as all other stellar
parameters variations, which are subdominant. If the color scatter is attributed solely to
changes in mixing length parameter it can be used to provide a conservative estimate of star
to star variations in ↵MLT. This statement assumes that measurement and photometric errors
and variations of stellar parameters are all random and uncorrelated. In principle, if di↵erent
sources of scatter are suitably (anti) correlated, this would not necessarily be conservative
estimate. We deem this possibility very unlikely. Combining GC of similar metallicity, the
scatter around the RGB also accounts for possible cluster-to-cluster variations as RGBs of
clusters of similar metallicities are mostly a↵ected by ↵MLT. In this case there is an additional
contribution to the scatter arising from the fact that to convert the observed CMD to the
absolute one we have used the best-fit values of absorption and distance, which may be
a↵ected by their own measurement errors.

Results are reported in table 4. First note that the scatter in color ⇠ 0.02 is much
smaller than the initial color cut of �C = 0.06, which clips only the tails of the color distri-
bution beyond 3�s and thus confirming that the initial cut does not a↵ect the estimate of the
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[Fe/H] < �2.0, 12 clusters
Metallicity ↵(M1) best fit ↵(M1) best match �↵(M1) �↵(M2)
Z = 0.00005 1.9 1.89 0.17 0.08
Z = 0.00010 1.9 1.95 0.17 0.1

Z = 0.00015 ** 2.0 1.98 0.17 0.08
Z = 0.00020 2.0 2.03 0.17 0.08

�2.0 < [Fe/H] < �1.75, 11 clusters
Metallicity ↵(M1) best fit ↵(M1) best match �↵(M1) �↵(M2)
Z = 0.00015 1.8 1.81 0.14 0.07

Z = 0.00020** 1.9 1.85 0.14 0.08
Z = 0.00025** 1.9 1.89 0.14 0.07
Z = 0.00030 1.9 1.93 0.13 0.08

�1.75 < [Fe/H] < �1.50, 15 clusters
Metallicity ↵(M1) best fit ↵(M1) best match �↵(M1) �↵(M2)
Z = 0.00025 1.8 1.81 0.14 0.07

Z = 0.00030** 1.8 1.85 0.14 0.08
Z = 0.00035 1.9 1.89 0.13 0.07
Z = 0.00040 1.9 1.91 0.13 0.07

Table 3. Summary of the mixing length best fit and best match for the M1 cut and dispersion for
each of the metallicity samples (full information for individual clusters is available in appendix C).
Each sample spans a range in metallicities, and we report results for several fiducial metallicity values
covering the range. The values closer to the e↵ective [Fe/H] metallicity of the sample are flagged by
the asterisks. The best fit value for ↵MLT depends very weekly on metallicity (both the metallicity of
the sample and the adopted fiducial metallicity), the scatter does not show any significant dependence
on metallicity.

scatter. In Appendix C we report the results for the dispersion in color and in mixing length
parameter for each cluster and for each of our three sub-samples combined. We note that all
GCs of similar metallicity have a similar value of the dispersion. Finally, Table 3 reports the
mixing length best fit and dispersion for each of the metallicity samples. The best fit value
for ↵MLT depends very weekly on metallicity (both the metallicity of the sample and the
adopted fiducial metallicity), the scatter does not show any significant dependence on metal-
licity. The scatter for each metallicity sample (which include & 10 clusters) is comparable
with the individual cluster scatter indicating that there is not additional cluster-to-cluster
variation. We adopt a, suitably weighted combined scatter across the three metallicity sam-
ples of �CMD

↵ = 0.15 as a conservative estimate of the ↵MLT scatter estimated from the CMD
of the clusters in the sample. Recall that we have attributed the full color scatter of the RGB
to ↵MLT, when the color scatter include contributions from measurement errors, photometric
errors as well as variations of all other model parameters.

A suite of tests ensuring the robustness of these results to several commonly adopted
assumptions is presented in the appendices. In particular Appendix A discusses the impact
of chosen fiducial values of mass and metallicity; Appendix B compares di↵erent stellar
codes and Appendix D tests the e↵ects of microphysics modelling. In summary, there is no
indication that stars in old GCs have values for the depth of the convection envelope di↵erent
from those obtained for the Sun. For the 38 GC considered here we find that the preferred
value for the mixing length parameter is ↵MLT = 1.90 ± 0.04 (or ± 0.15) with (without)
resorting to spectroscopic metallicity determinations, where the reported error is estimated
conservatively.
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5 Conclusions and implications for the age of the Universe

An estimate of the age of the Universe from the age of the oldest globular clusters was
presented in Ref. [1]: the age of the oldest clusters being tGC = 13.32±0.10(stat.)±0.5(sys.)
Gyr, and the inferred age of the Universe tU = 13.5+0.16

�0.14(stat.)±0.5(sys.) Gyr. The dominant
contribution to the error on this quantity is due to the systematic uncertainty in the depth
of the convention envelope (the mixing length parameter) accounting for 0.3 (i.e. 60%) of
the 0.5 systematic error budget. Ref. [1] adopted a range in ↵MLT corresponding to the full
range considered in Ref. [2] which in the convention of this paper corresponds to 2�↵ = 0.7.

Here we have studied the dependence of the morphology of the RGB in the GCs CMD
on changes in ↵MLT, in order to provide a more realistic estimate of the uncertainty on this
parameter. We have shown that the range used in Ref. [1] include values that do not fit the
observed properties of the GCs in our sample. After studying the degeneracy between ↵MLT

and metallicity, we have estimated an upper limit for the uncertainty of ↵MLT for our sample:
�
spec.met
↵ = 0.04 or �CMD

↵ = 0.15 (depending whether using external spectroscopic metallicity
determinations or not). It is interesting to note that recently, Ref. [11] performed a Bayesian
calibration of the mixing length parameter ↵ using mock and real data of the Hyades open
cluster and found an average value h↵i = 2.01± 0.05. This result is in good agreement with
our findings.

With this reduction of the dominant systematic contribution to the age determination
(from 0.3 to 0.13 or 0.034 Gyr), the mixing length parameter cease to be the dominant
contribution to the uncertainty; now the leading systematic uncertainties are due to nuclear
reaction rates and opacities.

Thanks to the reduction in the systematic error budget achieved in this work, we con-
clude6 that the age of the oldest globular clusters is tGC = 13.32±0.10(stat.)±0.23(0.33)(sys.)
Gyr, which corresponds to an age of the Universe of tU = 13.5+0.16

�0.14(stat.) ± 0.23(0.33)(sys.)
Gyr., an uncertainty of 0.27(0.36) Gyr if statistical and systematic errors are added in quadra-
ture. This determination of the age of the Universe is cosmological-model agnostic, in the
sense that it does not depend in any significant way on the cosmological model adopted, and is
in good agreement with the cosmological model-dependent determination of tU = 13.8±0.02
Gyr inferred from the Planck mission from observations of the Universe at z ⇠ 1100, assum-
ing the standard ⇤CDM model. The implications for cosmology of this consideration are
explored in a companion paper [20].
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Figure 7. E↵ect of varying mass for a star with a fixed metallicity and mixing length. The grey
points represent the CMD of all the clusters in the low metallicity sample. The lines are stellar tracks
for an age of 13.32 Gyr corresponding to di↵erent initial masses. If the tracks are interpreted as
isochrones such a spread in mass would correspond to a (widely unrealistic) range in age from 11
to 30 Gyr. Note that the RGB morphology is very insensitive to mass (and age). The ↵MLT value
adopted here is 1.9 as it is the closest in our grid to the DSED code solar value.

A Impact of mass, metallicity and ↵MLT on the RGB

As mentioned in section 3.2.2, mass and metallicity are key parameters for our purpose of
constraining the mixing length parameter. It is possible to compare the e↵ect of mass (for
a track) to the e↵ect of age (for an isochrone). The initial mass of the star influences the
time spent on the main sequence but a↵ects very little the red giant branch. In figure 7 we
explore a range of masses from M = 0.65 to 0.85 M� with �M = 0.05.

Metallicity a↵ects the color of the RGB: an increase in metallicity will result in a tilt
of the RGB towards higher C. In Figure 8 we show the e↵ect of varying metallicity for a
track with a fixed mass and mixing length, compared to a change in mixing length for fixed
mass. This figure illustrates that for a metallicity interval comparable with that of each of
our samples, the mixing length is the determining parameter in the color of the RGB.

The value of the ↵MLT parameter is stellar code dependent. The conversion between
di↵erent code-conventions is just a shift, while the relevant quantity for our argument here
is the interval or range adopted which is convention-independent. In Ref. [1] we used the
isochrones from the DSED model for a solar value for ↵MLT and here stellar tracks from
an independent code. An even slightly incorrect conversion would result into adopting an
incorrect fiducial ↵MLT value and possibly an over-estimate of the color scatter. To map the
response of the RGB to changes in mixing length parameter values, we compute tracks for
discrete values of ↵MLT (from 1.2 to 2.8 in steps of 0.1) as illustrated in Figure 9 where the
tracks are centered around ↵MLT = 2.
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Figure 8. E↵ect of varying metallicity for a track with a fixed mass and mixing length, compared to
a change in mixing length for fixed mass. Top panel: Grey points: the combined CMD of the sample
of 12 clusters with metallicity Fe/H< �2. Solid lines tracks color-coded by metallicity for a range
spanning the low metallicity sample. Blue lines: e↵ects of changes in ↵MLT. Bottom pane: as for top
panel but for the intermediate metallicity sample.

Bolometric corrections are used to transform from observed colors to theoretical e↵ec-
tive temperature and viceversa. These corrections, if not accurate enough, can lead to an
additional systematic uncertainty. To quentify this e↵ect, we use two di↵erent sets of bolo-
metric corrections [9, 10]. As it is shown in Fig. 9 both lead to the same transformation of
colors to e↵ective temperature. We therefore do not propagate any additional uncertainty
due to bolometric corrections.
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Figure 9. Stellar tracks are shown for a star with initial mass 0.80 M� and Z = 0.0002 for the
MESA code and several values of the mixing length around ↵ = 2 . The spread of the RGB roughly
corresponds to �↵ ⇠ 0.1. Top panel: Using the Casagrande & VandenBerg [10] bolometric correction,
Bottom panel: Using bolometric correction computed from the Castelli & Kurucz 2003 [9] atmospheric
spectra. on the relevant part of the RGB the two plots are virtually indistinguishable.

B E↵ect of opacities and nuclear reaction rates

Uncertainties in opacities and nuclear reaction rates also contribute to the systematic error
budget on age determinations, but are expected to be sub-dominant compared to the e↵ect
of the mixing length parameter. Here we illustrate this by resorting to available outputs of a
di↵erent stellar code where these quantities are di↵erent from those assumed in MESA. In this
case we chose the old version (1996) of the JimMacD code and stellar tracks [6], which uses
very di↵erent stellar opacities, boundary conditions and mixing-length formulation. JimMacD
tracks are available for initial mass 0.8 M� (hence we compare directly with MESA for this
value of the mass) and for a coarse grid of ↵MLT values (recall that the solar value for ↵MLT

for JimMacD is 1.4, which is however not available on the provided grid). This is shown in
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Figure 10. Response of the RGB to changes in ↵MLT across di↵erent codes. As before, the gray
points correspond to all the stars in the CMD of the 12 clusters in the low metallicity sample. The
black solid line corresponds to MESA track for ↵MLT = 2, M = 0.8M�, Z = 0.00002, the dotted line
to ↵MLT = 1.9 for reference, and the dashed lines illustrate a change �↵ = ±0.35 around the solar
value. The solid lines in colors correspond to JimMcD tracks for the same mass and metallicities and
for shifts from the solar value as indicated in the legend. The poor fit at the very tip of the RGB is
due to the lack of cool opacities in the code unlike the modern MESA stellar code.

Fig. 10. Note that the JimMacD code fails to fit the tip of the RGB because of the lack of cold
opacities, not available at that time. Where this is not a relevant e↵ect, tracks for solar values
of the mixing langth parameters agree well, and the response of the RGB color to changes
in ↵MLT is very similar across the two codes: we find that for M = 0 and for the same mass
0.8 M�, metallicity and ↵MLT step sampled by JimMacD tracks, �C/�↵MLT = �0.12 and
�0.13 for MESA and JimMacD respectively. We therefore conclude that the di↵erences do not
significantly bias the RGB color or consequently the recovery of an ↵MLT value consistent
with solar, further supporting the robustness of the results reported in the main text.

C Parameter constrains for all GCs

We double check that the ↵MLT that best fits the RGB is consistent with the adopted fiducial
value of Ref. [1] and consequently the fiducial adopted here too. An incorrect fiducial ↵MLT

value would yield to biases and possibly an over-estimate of the color scatter. Table 4 reports
for each cluster the color scatter as a function of magnitude cut, the best match ↵MLT, the
scatter in this quantity as a function of magnitude cut and fiducial assumed metallicity. The
table also report the best fit ↵MLT for the combination of the GC in each sample and the
recomputed scatter with respect to this quantity rather than the best match ↵MLT. The
di↵erences, however are unimportant.

The tables presented here compement Table 3 in the main text. The best fit ↵MLT is
well consistent with the solar value adopted by DSED (↵MLT = 1.938), validating this choice
for the fiducial value assumed with no evidence for any bias.
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Sample 1, 12 clusters with [Fe/H] <2.0

Z = 0.00005 Z = 0.00010 Z = 0.00015 Z = 0.00020
GC name �color(M0) �color(M1) ↵ best match �↵(M0) �↵(M1) �↵(M2) ↵ best match �↵(M0) �↵(M1) �↵(M2) ↵ best match �↵(M0) �↵(M1) �↵(M2) ↵ best match �↵(M0) �↵(M1) �↵(M2)

NGC 2298 0.0231 0.0236 1.8 0.22 0.19 N/A 1.9 0.22 0.16 N/A 1.9 0.22 0.17 N/A 2 0.21 0.16 N/A

NGC 4590 0.0198 0.0158 1.9 0.21 0.14 N/A 2 0.19 0.13 N/A 2 0.2 0.13 N/A 2.1 0.18 0.14 N/A

NGC 4833 0.018 0.0196 1.8 0.16 0.15 0.09 1.9 0.15 0.14 0.08 1.9 0.16 0.14 0.09 2 0.16 0.14 0.08

NGC 5053 0.0155 0.0195 1.9 0.15 0.14 N/A 2 0.18 0.16 N/A 2 0.16 0.15 N/A 2.1 0.21 0.18 N/A

NGC 6341 0.0172 0.0175 1.9 0.17 0.15 0.05 2 0.16 0.16 0.08 2 0.16 0.15 0.04 2 0.16 0.15 0.04

NGC 6397 0.0254 0.0277 1.9 0.21 0.2 N/A 1.9 0.22 0.22 N/A 1.9 0.24 0.24 N/A 2 0.22 0.2 N/A

NGC 6426 0.0239 0.0287 1.9 0.23 0.24 N/A 2 0.22 0.21 N/A 2 0.22 0.22 N/A 2.1 0.21 0.2 N/A

NGC 6779 0.0241 0.0258 1.9 0.21 0.18 0.09 1.9 0.22 0.19 0.11 2 0.2 0.17 0.09 2 0.21 0.18 0.1

NGC 7078 0.0219 0.0204 2 0.19 0.15 0.08 2 0.2 0.16 0.08 2.1 0.18 0.15 0.08 2.1 0.18 0.15 0.07

NGC 7099 0.0268 0.0211 1.9 0.25 0.16 0.11 1.9 0.27 0.18 0.14 2 0.22 0.14 0.09 2 0.23 0.14 0.12

Palomar 15 0.0285 0.0284 1.9 0.27 0.21 N/A 2 0.24 0.17 N/A 2 0.25 0.18 N/A 2 0.26 0.2 N/A

Terzan 8 0.0169 0.0189 1.9 0.17 0.14 N/A 1.9 0.17 0.14 N/A 2 0.18 0.15 N/A 2 0.17 0.14 N/A

All 12 GCs 0.0226 0.0223 1.89 0.2 0.17 0.08 1.95 0.2 0.17 0.1 1.98 0.2 0.17 0.08 2.03 0.2 0.17 0.08

GC name �color(M0) �color(M1) ↵ best fit �↵(M0) �↵(M1) �↵(M2) ↵ best fit �↵(M0) �↵(M1) �↵(M2) ↵ best fit �↵(M0) �↵(M1) �↵(M2) ↵ best fit �↵(M0) �↵(M1) �↵(M2)

All 12 GCs 0.0226 0.0223 1.9 0.21 0.17 0.1 1.9 0.22 0.19 0.13 2 0.2 0.16 0.1 2 0.2 0.17 0.12

Sample 2, 11 clusters with -2.0 <[Fe/H] <-1.75

Z = 0.00015 Z = 0.00020 Z = 0.00025 Z = 0.00030
GC name �color(M0) �color(M1) ↵ best match �↵(M0) �↵(M1) �↵(M2) ↵ best match �↵(M0) �↵(M1) �↵(M2) ↵ best match �↵(M0) �↵(M1) �↵(M2) ↵ best match �↵(M0) �↵(M1) �↵(M2)

Arp 2 0.0164 0.0156 1.8 0.16 0.13 N/A 1.9 0.15 0.11 N/A 1.9 0.15 0.11 N/A 2 0.16 0.12 N/A

NGC 4147 0.0155 0.0151 1.8 0.14 0.12 N/A 1.8 0.14 0.12 N/A 1.9 0.16 0.11 N/A 1.9 0.15 0.11 N/A

NGC 5024 0.0173 0.0193 1.8 0.17 0.16 0.07 1.9 0.16 0.14 0.05 1.9 0.16 0.14 0.06 2 0.16 0.14 0.06

NGC 5466 0.0154 0.0159 1.8 0.14 0.12 N/A 1.9 0.14 0.11 N/A 1.9 0.13 0.11 N/A 1.9 0.13 0.11 N/A

NGC 6093 0.0212 0.022 1.8 0.21 0.16 0.08 1.8 0.21 0.16 0.1 1.9 0.2 0.14 0.08 1.9 0.2 0.15 0.09

NGC 6101 0.0181 0.0215 1.8 0.15 0.15 0.07 1.8 0.16 0.16 0.1 1.9 0.16 0.14 0.06 1.9 0.16 0.14 0.08

NGC 6144 0.027 0.0308 1.8 0.24 0.21 N/A 1.8 0.25 0.22 N/A 1.8 0.26 0.24 N/A 1.9 0.22 0.19 N/A

NGC 6254 0.0226 0.0219 1.8 0.24 0.15 0.08 1.9 0.21 0.14 0.09 1.9 0.22 0.14 0.08 1.9 0.22 0.14 0.08

NGC 6535 0.0201 0.0155 1.8 0.21 0.09 N/A 1.9 0.17 0.07 N/A 1.9 0.17 0.07 N/A 1.9 0.18 0.08 N/A

NGC 6541 0.0216 0.0208 1.9 0.19 0.14 0.07 1.9 0.2 0.14 0.07 2 0.18 0.14 0.08 2 0.18 0.13 0.07

NGC 6809 0.0177 0.02 1.8 0.15 0.15 N/A 1.8 0.15 0.15 N/A 1.8 0.15 0.15 N/A 1.9 0.17 0.14 N/A

All 11 GCs 0.0205 0.0217 1.81 0.18 0.14 0.07 1.85 0.18 0.14 0.08 1.89 0.18 0.14 0.07 1.93 0.18 0.13 0.08

GC name �color(M0) �color(M1) ↵ best fit �↵(M0) �↵(M1) �↵(M2) ↵ best fit �↵(M0) �↵(M1) �↵(M2) ↵ best fit �↵(M0) �↵(M1) �↵(M2) ↵ best fit �↵(M0) �↵(M1) �↵(M2)

All 11 GCs 0.0205 0.0217 1.8 0.2 0.16 0.09 1.9 0.19 0.14 0.07 1.9 0.19 0.14 0.07 1.9 0.19 0.15 0.09

Sample 3, 15 clusters with -1.75 <[Fe/H] <-1.5

Z = 0.00025 Z = 0.00030 Z = 0.00035 Z = 0.00040
GC name �color(M0) �color(M1) ↵ best match �↵(M0) �↵(M1) �↵(M2) ↵ best match �↵(M0) �↵(M1) �↵(M2) ↵ best match �↵(M0) �↵(M1) �↵(M2) ↵ best match �↵(M0) �↵(M1) �↵(M2)

IC4499 0.0186 0.0215 1.9 0.16 0.14 N/A 1.9 0.16 0.14 N/A 1.9 0.16 0.15 N/A 2 0.16 0.13 N/A

NGC 3201 0.0241 0.0248 1.8 0.18 0.14 0.08 1.8 0.17 0.13 0.06 1.8 0.18 0.13 0.07 1.9 0.2 0.14 0.08

NGC 5139 0.0192 0.0211 1.9 0.17 0.14 0.06 1.9 0.17 0.14 0.07 1.9 0.17 0.14 0.09 2 0.18 0.14 0.06

NGC 5272 0.0157 0.0202 1.7 0.15 0.14 0.08 1.8 0.13 0.13 0.05 1.8 0.13 0.13 0.06 1.8 0.14 0.13 0.07

NGC 5286 0.0221 0.0228 1.9 0.2 0.16 0.07 1.9 0.21 0.17 0.09 2 0.18 0.15 0.06 2 0.18 0.15 0.07

NGC 5986 0.0268 0.0285 1.8 0.23 0.17 0.07 1.8 0.23 0.19 0.08 1.9 0.22 0.16 0.08 1.9 0.22 0.16 0.07

NGC 6218 0.0161 0.0141 1.7 0.15 0.07 N/A 1.7 0.15 0.07 N/A 1.8 0.12 0.08 N/A 1.8 0.12 0.07 N/A

NGC 6584 0.0173 0.0194 1.8 0.16 0.14 0.05 1.8 0.17 0.15 0.06 1.9 0.14 0.13 0.06 1.9 0.14 0.13 0.05

NGC 6656 0.0233 0.0243 1.9 0.19 0.14 0.07 1.9 0.2 0.15 0.1 2 0.17 0.13 0.05 2 0.17 0.13 0.07

NGC 6681 0.0206 0.0214 1.8 0.19 0.15 0.09 1.9 0.18 0.14 0.1 1.9 0.18 0.13 0.09 1.9 0.18 0.14 0.09

NGC 6752 0.0174 0.0204 1.7 0.17 0.12 0.11 1.8 0.14 0.11 0.08 1.8 0.14 0.11 0.09 1.8 0.15 0.11 0.11

NGC 6934 0.017 0.0211 1.8 0.15 0.14 0.08 1.8 0.15 0.14 0.06 1.8 0.16 0.14 0.06 1.9 0.14 0.13 0.08

NGC 7006 0.0197 0.0258 1.8 0.17 0.18 0.09 1.9 0.17 0.17 0.1 1.9 0.17 0.17 0.09 1.9 0.17 0.17 0.09

NGC 7089 0.0176 0.0184 1.8 0.18 0.14 0.05 1.9 0.16 0.13 0.06 1.9 0.16 0.13 0.05 1.9 0.16 0.13 0.05

Ruprecht 106 0.0223 0.0202 1.9 0.22 0.13 N/A 1.9 0.23 0.14 N/A 2 0.18 0.11 N/A 2 0.19 0.11 N/A

All 15 GCs 0.021 0.0251 1.81 0.18 0.14 0.07 1.85 0.17 0.14 0.08 1.89 0.16 0.13 0.07 1.91 0.17 0.13 0.07

GC name �color(M0) �color(M1) ↵ best fit �↵(M0) �↵(M1) �↵(M2) ↵ best fit �↵(M0) �↵(M1) �↵(M2) ↵ best fit �↵(M0) �↵(M1) �↵(M2) ↵ best fit �↵(M0) �↵(M1) �↵(M2)

All 15 GCs 0.021 0.0251 1.8 0.19 0.16 0.1 1.8 0.19 0.17 0.12 1.9 0.18 0.15 0.1 1.9 0.18 0.15 0.1

Table 4. Dispersion in color and mixing length for the 4 fiducial adopted metallicity values. The
results are given for each cluster in each of the sub-samples and all combined. For the combined sample
we report both the means of the best match ↵MLT values and the best-fit ↵MLT. For magnitude bins
with less than 10 stars, the dispersion ↵ is not computed (N/A). The color dispersion is not a↵ected
by the choice of initial metallicity.

D Assessing robustness: Tests of microphysics

Throughout this work, we have assumed a fixed ↵MLT through the stellar tracks: this value
does not change in itself the duration of the lifetime of the star. The lifetime of low-mass
stars to helium flash is mostly dependent on mass and metallicity. In fact, the lifetime in
Gyr to the He flash can be fitted with 5% precision by the formula (adopting a helium mass
fraction Y = 0.24)

log t = �0.207� 3.691 log(M/M�) + 11.327 log(1.76� Z) + 0.870 log(0.0086 + Z) (D.1)

Beside the mixing length and the metallicity, which, as we have seen, determine the
color of the RGB to leading and next-to-leading order, other parameters can also a↵ect the
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Figure 11. The e↵ect on the RGB of (extreme) changes of other microphysics parameters besides
the mixing length. The three panels are subsequent zoom ins in the relevant part of the CMD. Note
that the e↵ect is much smaller than that of ↵MLT, and well below the intrinsic broadening of the RGB
(gray points) and thus below star-to-star color variations.

color of the RGB, although with a weaker dependence: initial mass, initial helium mass
fraction, overshooting of the convection depth, mass loss, rotational mixing and element
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di↵usion. These are kept fixed at their fiducial values in our main analysis, here we quantify
their e↵ect. We also explore changing the mixing length theory to the Cox formulation [17] .
We compute stellar tracks by varying a single parameter at the time while keeping the other
parameters fixed to the fiducial configuration (see section 3.2.2) with a mixing length value
↵ = 1.9 being this the closest in our grid to the solar value 1.938.

This is illustrated in Figure 11 where the top panel shows the full RGB and the bottom
panel is a zoom-in on the Helium flash region, to make visible the (small) e↵ect of some
of the parameters we consider. Variations of initial mass, initial helium mass fraction and
di↵usion, which alters the lifetime of the star, a↵ect the main sequence more severely than
the RGB. The rest of the parameters influence the more advanced life stages of the star.
Type 2 opacities are important to compute the helium burning rate and a variation of the
mass loss parameter cause the tracks to deviate towards the end of the RGB. It is well known
that a shift in mass of �M = 0.1 or a shift in Helium of �Y = 0.04, are heavily disfavoured
by the data as these parameters also change the main sequence and the MSTO and with such
shifts models do not fit this part of the CMD. We also test di↵erent models of convection
(Henyey and Cox [17, 18]), the implementation or not of overshoot, and with or without
Ledoux criterion (for more information see Ref. [6] and references therein). The value for the
mass loss Reimers parameter ⌘ = 0.8 is an extreme value motivated by the morphology the
horizontal branch of the CMD of globular clusters (e.g., [8, 19]). For completeness, we also
show rotational mixing, even though it mainly a↵ects massive stars. This is the motivation
for the adopted choices in the Figure. Most of the parameters tested have little to no impact
for low mass stars or will a↵ect the horizontal or asymptotic branch which are not of interest
for this paper.

Changes in the initial mass �M and in the initial helium mass fraction �Y have a
much bigger e↵ect than all other changes, which are much more subtle, and small compared
to the intrinsic broadening of the RGB. Unlike ↵LMT, the other parameters of the mixing
length theory do modify the stellar tracks but maintaining the color of the RGB unaltered.
We also illustrate the e↵ect of �↵ = 0.35 , the value very conservatively adopted by [1], and
�↵ = 0.2 and 0.04 as estimated by the two approaches presented in the main text. These
considerations indicate that the results reported are robust to any possible changes in key
stellar parameters.
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FIGURE 3.1: The Messier 80 globular cluster in the constellation
Scorpius by NASA, The Hubble Heritage Team, STScI, AURA. Public

domain

FIGURE 3.2: CMD of the globular cluster IC4499 made with data from
the HST-ACS survey (Sarajedini et al., 2007).

3.5 Cosmic chronometers and standard clocks

In section 1.2, I presented the tension which exists between the direct and indirect
measurements of the rate of expansion of the universe today, H0. On one side as these
measurements seem to indicate that the expansion rate at early times is different from
that at late times, various solutions modifying the physics beyond the standard model
have been proposed. On the other side as it is not necessary to assume a cosmological
model for direct determinations, systematic errors and new ways of measuring the
constant are sought in order to achieve a convergence of the results.

Since the velocity can be determined from the redshift, the quantity to constrain
should be related to the redshift and H0. As the expansion describes the evolution of
the scale factor as a function of time, we can derive a relationship between time t and
redshift z.
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H(z) ⌘ ȧ
a
⌘ da

dt
1
a

a =
1

1 + z

da = � 1
(1 + z)2 dz

9
>>>>>>=

>>>>>>;

dt = � dz
H(z)(1 + z)

(3.1)

Cosmic chronometers (Jimenez and Loeb, 2002; Stern et al., 2010) use the differential-
age technique where the quantity measured is the change in the age of the universe
as a function of redshift dt/dz. This method is based on the calibration of old stellar
populations. To be qualified as standard clocks, celestial objects must fulfill two requirements:

1. The stellar populations must be found in bound systems in order to assume a
common formation history.

2. Even though the objects have experienced several periods of stellar formation,
their light must be dominated by an old stellar population.

In their articles Jimenez and Loeb 2002; Stern et al. 2010 used passively–evolving red-
envelope galaxies with little to no stellar formation because the models at the time
were less prone to systematic errors. However, globular clusters can also be used as
standard clocks.

3.6 The trouble beyond H0 and the new cosmic triangles

It is generally easier to measure with precision the relative age of standard clocks than
their absolute age because assumptions on the time of formation need to be made, but
a measurement of the absolute age with sufficiently small errors would bring a new
perspective to the H0 tension and may even allow to discriminate between the models.
If we integrate the relationship given by the equation 3.1,

Z t2

t1

dt = �
Z z2

z1

dz
(1 + z)H(z)

(3.2)

the age of the universe tU can be expressed as a function of the Hubble constant:

tU =
Z t0

0
dt =

1
H0

Z •

0

dz
(1 + z)E(z)

(3.3)

with

E(z)2 =
H2(z)

H2
0

=
h
Wr,0(1 + z)4 + Wm,0(1 + z)3 + Wk,0(1 + z)2 + WL,0

i
(3.4)

where E(z) is a function depending on the assumed cosmological model and the
inferred value of the various cosmological parameters (Wm, WL etc.). As can be seen
from Equation 3.3, a determination of tU independent of a cosmological model would
make it possible to constrain some of the parameters.
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The distance ladder using supernovae yields higher values of the Hubble constantH0 than those inferred
from measurements of the cosmic microwave background (CMB) and galaxy surveys, a discrepancy that
has come to be known as the “Hubble tension”. This has motivated the exploration of extensions to the
standard cosmological model in which higher values of H0 can be obtained from CMB measurements and
galaxy surveys. The trouble, however, goes beyond H0; such modifications affect other quantities, too. In
particular, their effects on cosmic times are usually neglected. We explore here the implications that
measurements of the age tU of the Universe, such as a recent inference from the age of the oldest globular
clusters, can have for potential solutions to the H0 tension. The value of H0 inferred from the CMB and
galaxy surveys is related to the sound horizon at CMB decoupling (or at radiation drag), but it is also related
to the matter density and to tU. Given this observation, we show how model-independent measurements
may support or disfavor proposed new-physics solutions to the Hubble tension. Finally, we argue that
cosmological measurements today provide constraints that, within a given cosmological model, represent
an overconstrained system, offering a powerful diagnostic tool of consistency. We propose the use of
ternary plots to simultaneously visualize independent constraints on key quantities related toH0 like tU, the
sound horizon at radiation drag, and the matter density parameter. We envision that this representation will
help find a solution to the trouble of and beyond H0.
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I. INTRODUCTION

The standard, ΛCDM, cosmological model, has success-
fully passed increased scrutiny, as observations of the
cosmicmicrowave background (CMB) [1–3], type-Ia super-
novae (SNeIa) [4] and large-scale structure [5–8] have
improved drastically over recent years. Nonetheless, ten-
sions have arisen for specific parameters when their values
are inferred, within the ΛCDM, from different probes
and observables. The biggest tension is related to determi-
nations of the Hubble constant H0 ≡ 100h km=s=Mpc,
and has increased in the last decade to be in the
4−5σ [9,10].
The current state of theH0 tension is illustrated in Fig. 1,

where we show marginalized posteriors for measurements
depending on early-times physics (like Planck [1] or
baryon acoustic oscillations with a big bang nucleosyn-
thesis (BBN) prior on the physical density of baryons
[11,12]), late-time expansion history (using strong lensing

time delays from TDCOSMO [13–17]1 and cosmic chro-
nometers [19,20]), and local measurements, independent of
cosmology, from SH0ES [21] and CCHP [22]. Except for
cosmic chronometers, all competitive H0 constraints con-
sidered here rely on distance measurements.2

The two determinations yielding the largest tension are
obtained from the CMB power spectra and the SH0ES
distance ladders using SNeIa calibrated by Cepheids.
CCHP calibrates the SNeIa instead with the tip of the
red giant branch (TRGB) and finds a lower value ofH0 [22]
(see also [26–28]).

1There are ongoing efforts to relax the dependence of
strong lensing time delays H0 inference on the assumed
expansion rate [18].

2Some H0 constraints related with large-scale structure
do not depend on the sound horizon, but still depend on distance
scales, such as the size of the horizon at matter-radiation
equality [23,24].
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Given the strong constraints imposed by available data
on the product of the sound horizon rd at radiation drag and
h, rd has been targeted as the critical quantity to be
modified in order to solve the H0 tension. Baryon acoustic
oscillations (BAO) and SNeIa disfavor any strong deviation
from the evolution of the expansion rate predicted ΛCDM,
while strongly constraining rdh [29–31]. In light of current
constraints, the modifications of ΛCDM best poised to
reduce the H0 tension involve altering prerecombination
physics as to lower the value of rd, as it is discussed in
Ref. [32], where it is argued that other possibilities,
both before and after recombination are disfavored
by observations or theoretically unlikely. There is a
plethora of proposed models to do so and those showing
more promise involve boosts of the expansion history
between matter-radiation equality and recombination (see
e.g., [33–48]).
Despite the fact that most of the attention has been

focused on modifying distance scales across cosmic his-
tory, the expansion rate, thus H0, also determines the age-
redshift relation. Measuring cosmic ages can provide a
constraint on H0 completely independent from rd, other
standard scales, or distance measurements (see e.g., [49] for
a study regarding the presence of a cosmological constant).
Cosmic chronometers measure directly the expansion rate
using differential ages [19]; this approach is limited to
relatively low redshifts, covering a range that overlaps with
distance measurements. On the other hand, since relative
changes in the expansion history at early times do not
significantly modify the age of the Universe, independent

inferences of absolute lookback times, such as the age of
the Universe, may weigh in on the H0 tension.
In this work, we discuss how the age of the Universe

inferred from a recent determination of the age of the
oldest globular clusters [50–52] can offer an additional
perspective on the H0 controversy. Our results suggest
that an accurate and precise measurement of the age
of the Universe provides an important test of the hypoth-
esis that the H0 tension suggests new early-Universe
physics but standard late-Universe physics. In the
process, we also update constraints on the low-redshift
expansion rate using recent relative distance redshift
measurements.
In the same way as the H0 tension was reframed as the

inconsistency between rd, h, and their product rdh
(inferred independently in a model-agnostic way from
low redshifts observations) [29–31], the same can be said
about other sets of quantities that can be constrained
independently, albeit assuming a cosmological model.
One is the combination of the matter density parameter
ΩM today, h2, and their product, the physical matter
density ΩMh2. The other set is the age tU of the Universe
and h, and their combination tUh, which is completely
determined by the shape of the expansion history and
measured independently.
This is reminiscent of the “cosmic triangle” proposed

in Ref. [53] two decades ago, where the matter, cosmo-
logical constant, and curvature density parameters are
related to one another because they sum to unity.
The original cosmic triangle is a ternary plot which
served to visualize cosmological constraints that led to
favor the (now standard) flat ΛCDM model. Here, in full
analogy, we propose the use of ternary plots as diagnosis
diagrams to examine the tension between cosmological
quantities independently measured from different obser-
vations. Ternary plots are specially suited for this
purpose, as we show for the cases of rd, ΩM, and tU
listed above.
This article is organized as follows. We present updated

constraints on the late-Universe expansion rate as a
function of redshift in Sec. II; discuss the role cosmic
ages play in the H0 tension in Sec. III; present the new
cosmic triangles in Sec. IV; and finally conclude in
Sec. V.

II. UPDATED EXPANSION
RATE CONSTRAINTS

We begin by presenting updated model-agnostic con-
straints on the expansion rate as a function of redshift,
EðzÞ≡HðzÞ=H0, using the latest, state-of-the-art data.
These constraints on EðzÞ are a key input for the results
of Secs. III, IV, and our conclusions.
We use SNeIa observations from Pantheon [4] and BAO

measurements from 6dFGRS [54], SDSS DR7 [55], BOSS
[5], and eBOSS, including galaxies, quasars, and Lyman-α

FIG. 1. Summary of constraints on H0 from cosmic chronom-
eters (CC) [20], Planck (P18) [1], baryon acoustic oscillations
with a BBN prior on the baryon abundance (BAO þ BBN) [12],
CCHP [22], SH0ES [25], and strong-lensing time delays
(TDCOSMO) [17]. We also show (dashed line) the TDCOSMO
constraint including resolved kinematics from SLACS galaxies,
which assumes both samples belong to the same parent pop-
ulation. Note that the results shown in this figure are subject to
different model assumptions.
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forest [56–60] as relative distance indicators.3 Note that
although BAO-only analyses assume a fiducial cosmology,
their results are robust to be applied to other cosmologies
(see e.g., [61,63]).
Two models for EðzÞ are examined: ΛCDM, and a

parametrization using natural cubic splines, the nodes of
which have a varying position, without imposing flatness,
which we refer to as “generic” expansion and as such falls
under what we here refer to as “model-agnostic” approach.
Given its flexibility, the generic expansion shall be under-
stood as a marginalization over cosmological models
predicting a smooth EðzÞ. Other uses of this parametriza-
tion, known as flexknot, can be found in e.g., Refs. [64,65].
The free parameters for the ΛCDM case are

fΩM; rd; h;MSNg, where MSN is the absolute magnitude
of SNeIa; on the other hand, the generic expansion needs
fzð1;N−1Þ

knot ;Eð1;NÞ
knot ;Ωk; rd; h;MSNg as free parameters, where

Eknot are the values of EðzÞ at the knots of the splines,
located at zknot, and Ωk is the density parameter associated
with curvature. The first and last knot are fixed at z ¼ 0
and z ¼ 2.4, respectively, and Eð0Þ ¼ 1 by definition.
Although our results do not significantly depend on the
number of knots used, we find N ¼ 4 provides the best
performance, allowing for as much freedom as possible but
avoiding overfitting and dE=dz changing sign too many
times, and report the results obtained under this choice. We
use uniform priors in all cases.
We use the public code MABEL

4 [67], to run Monte Carlo
Markov chains with the sampler ZEUS [68,69]5 to constrain
the shape of the expansion rate in the late-time Universe
(z ≤ 2.4) and the quantity rdh with uncalibrated distance
measurements from BAO and SNeIa measurements. Note
that, with the data included in the analysis, h and rd
individually are completely unconstrained; only their prod-
uct is constrained.
The new BAO and SNeIa data allow the constraints on

the generic EðzÞ to be extended up to z ¼ 2.4, as shown in
Fig. 2. The generic reconstruction yields an EðzÞ which is
consistent with the prediction of a ΛCDM model from
Planck and BAO þ SNeIa. Allowed deviations from
Planck’s ΛCDM best fit are ≲3–4% at z≲ 0.8; this bound
weakens slightly ≲10% at 0.8≲ z≲ 2.4, due to the
degradation in the constraining power of SNeIa observa-
tions. While still being consistent with the ΛCDM

prediction, the reconstructed posterior allows for a boost
of the expansion rate (∼15% larger than Planck’s ΛCDM
best fit) at 1.5≲ z ≲ 2.4, this can be seen as an “excess
wiggle” in the plot; however, it is not significant and we
should remark that there are no measurements in that
redshift range corresponding to the gap between the red-
shift covered by Supernovae data/eBOSS quasars and the
Lyman-α forest data. Note also that those expansion
histories showing an excess expansion rate at these red-
shifts need a lower EðzÞ than ΛCDM at low redshifts.
These results extend and improve previous constraints from
agnostic reconstructions of EðzÞ (see e.g., Ref. [29], where
reported 68% confidence level limits of the deviations are
5% at z≲ 0.6 but grow significantly at higher redshift).
Moreover, we find Ωk ¼ −0.02 % 0.10 and rdh ¼

100.3 % 1.2 Mpc which represent, respectively, a factor
of 6 and factor of 2 improvement compared to the results
reported in Ref. [71] [although the parametrization of EðzÞ
is different, so this comparison is more qualitative than
strictly quantitative; the improvement is driven by the new
data gathered over the past five years]. These constraints
can be compared to those obtained also from BAO þ
SNeIa when assuming a flat ΛCDMmodel: rdh ¼ 100.6 %
1.1 Mpc and ΩM ¼ 0.297 % 0.013. As can be seen, the
generic reconstruction, despite having five extra model
parameters, does not degrade the ΛCDM rdh constraints.
Furthermore, it returns constraints on rdh comparable to
Planck results assuming ΛCDM (rdh ¼ 99.1 % 0.9 Mpc),
without relying on early-time physics or observations.

FIG. 2. Best fit evolution of the expansion rate with
redshift (thick lines) normalized by Planck’s ΛCDM best fit
[EðzÞ=EPlanckðzÞ] and 68% confidence level uncertainties (shaded
regions, thin lines). Planck’s ΛCDM results are reported in red
and BAO þ SNeIa constraints assuming ΛCDM are in blue. In
purple, the reconstruction from BAO þ SNeIa assuming a
generic expansion; thin lines are a sample of 500 flexknot splines
reconstruction from the 68% cases with highest posterior.

3Standard BAO analyses adopt a prior on rd to break the rdh
degeneracy and calibrate the distance measurements, following
the approach known as inverse cosmic distance ladder. Not using
that prior and marginalizing over rd removes any dependence on
prerecombination physics, since the BAO measurements are
robust to modifications of the prerecombination physics of
ΛCDM [61]. We use measurements from BAO-only analyses,
following the eBOSS likelihoods and criterion to combine with
BOSS measurements from [62].

4See Ref. [66].
5See Ref. [70].
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III. COSMIC AGES AND H0

In addition to cosmic distances, the expansion rate of the
Universe determines the lookback time. This opens up the
possibility to use time (or age) measurements to weigh in
on the H0 tension. The cosmic chronometers method uses
relative ages to determineHðzÞ, but ages can also be used in
a complementary way. The lookback time t as function of
redshift is given by

tðzÞ ¼ 977.8
H0

Z
z

0

dz0

ð1 þ z0ÞEðz0Þ
Gyr; ð1Þ

with HðzÞ in km s−1Mpc−1. Following Eq. (1), the age of
the Universe is tU ≡ tð∞Þ. We show the dependence of tU
onH0,ΩM, and a constant equation of state parameter w for
dark energy in a wCDM model in Fig. 3. It is evident that
the strongest dependence is on H0, while ΩM and w have
less influence.
The integral in Eq. (1) is dominated by contributions

from redshifts below few tens, decreasing as z grows.
Therefore, any exotic prerecombination physics does not
significantly affect the age of the Universe. On the other
hand, EðzÞ is bound to be very close to that of a CMB-
calibrated ΛCDM model at z≲ 2.4, as shown in the
previous section. Hence, a precise and robust determination
of tU which does not significantly rely on a cosmological
model, in combination with BAO and SNeIa, may weigh
in on proposed solutions to the H0 tension. If an indepen-
dent (and model-agnostic) determination of tU were to
coincide with Planck’s inferred value assuming ΛCDM,
∼13.8 Gyrs, alternative models involving exotic physics
relevant only in the early Universe would need to invoke
additional modifications also of the late-Universe expan-
sion history to reproduce all observations with a high value
of H0 as their prediction for tU would be too low. This is
because the value of the integral in Eq. (1) assuming
standard physics after recombination cannot be too

different from ΛCDM’s prediction once BAO and SNeIa
are considered, and then tU ∝H−1

0 . As we will see below,
current measurements of tU are just precise enough to hint
at this scenario.
Recently, a value of the age of Universe, tU ¼ 13.5 %

0.15ðstat:Þ % 0.23ðsyst:Þ (% 0.27 when adding statistical
and systematic uncertainties in quadrature) was inferred
from a sample of old globular clusters (GCs) in
Refs. [51,52].6 This study involves a Bayesian analysis
of the properties of 38 GCs, including their age, distance,
metallicity, reddening, and abundance of α-enhanced ele-
ments. tU is inferred from the age of the oldest of these GCs
(marginalized over all other parameters and including
systematic errors) estimating and correcting for the age
of the Universe at the moment of GCs formation, and
generously marginalizing over the small residual depend-
ence on cosmology.
We can confront local H0 measurements with the tU

inferred from GCs, since they are related by H0tU, which
can be obtained using Eq. (1) and a constraint on EðzÞ for
all the redshifts that contribute significantly to the integral.
Redshifts below 2.4 [where the generic EðzÞ reconstruction
is available] only cover about 75% of the age of the
Universe. If we assume that deviations from a ΛCDM
expansion history are driven by the poorly known dark
energy component, then EðzÞ at z > 2 is effectively that of
an Einstein de Sitter Universe. In this case the reconstructed
EðzÞ is perfectly consistent with ΛCDM and only relatively
small deviations are allowed. If we consider more extreme
deviations from ΛCDM, additional data probing the
expansion history at higher redshifts would be needed to
extend the constraints on the generic EðzÞ to cover a larger
fraction of tU.

FIG. 3. Age of the Universe (in Gyr) as function ofH0 andΩM for w ¼ −1 (left panel),H0 and w forΩM ¼ 0.3138 (central panel), and
ΩM and w for h ¼ 0.6736 (right panel). When a parameter is not varied, it is fixed to Planck ΛCDM best-fit value. White lines mark
contours with constant value of tU.

6This systematic uncertainty was determined using external
metallicity spectroscopic measurements of the GCs. We refer the
interested reader to Ref. [52] for more details and an alternative
estimate based only on the color-magnitude diagrams of the
globular clusters.
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Hence, we assume for this study a ΛCDM expansion rate
EðzÞ, using the value of ΩM inferred from BAO and SNeIa
and its error.7 Note that exotic models modifying only
prerecombination cosmology do not affect directly the
late-time EðzÞ (which remains that of a ΛCDM model);
hence, our inferred H0tU also applies to these models.
As an example, we consider early dark energy (EDE)
models. In particular, we use the EDE model posterior
obtained in Refs. [72,73] for the Planck data; the model
features three additional cosmological parameters com-
pared to ΛCDM.
We show 68% confidence level marginalized con-

straints on the H0–tU plane from SH0ES, CCHP, GCs,
BAO þ SNeIa, and Planck in Fig. 4. We find H0tU ¼
945 % 11 GyrMpc−1 km=s from BAO þ SNeIa assuming
ΛCDM, whileH0tU¼928% 7 and 932% 7GyrMpc−1km=s
from Planck assuming ΛCDM and EDE, respectively. As a
reference, combining BAO þ SNeIa with SH0ES and
TRGB returns tU¼12.93% 0.29 and tU¼13.62% 0.42Gyr,
respectively, while Planck’s inferred values are 13.80 %
0.02 Gyr (ΛCDM) and 13.76þ 0.06

−0.16 Gyr (EDE).
These results show that for SH0ES to be compatible

with BAO þ SNeIa the Universe must be significantly
younger than inferred by Planck, no matter whether
ΛCDM or EDE are assumed; this statement is robust to
early-time physics assumptions. The age of the Universe
inferred from GCs weakly favors older Universes than
SH0ES combined with BAO þ SNeIa, but the current

systematic error budget is too large to firmly distinguish.
There are ongoing efforts to reduce the impact of system-
atic errors (see e.g., [52]), so that GCs constraints on tU
have the potential to discriminate among different scenarios
proposed to solve the H0 tension (statistical errors are
indicated with dashed lines).

IV. THE NEW COSMIC TRIANGLES

The H0 tension was reframed as a consistency test
between rd (an early-time quantity) and H0 (a late-time
quantity), which can be done using a model-agnostic
approach, in Ref [29]. Similarly, assuming a cosmological
model, allows for a similar consistency test between ΩM
and H0 to be performed, as proposed in Ref. [74]. With the
updated constraints on EðzÞ, rdh, and ΩM obtained in
Sec. II, we can revisit these consistency checks. Moreover,
the H0, tU, and H0tU constraints obtained with the ΩM
values inferred from BAO þ SNeIa, adds a third consis-
tency test related with H0.
These three cases are three triads of two cosmological

quantities and their product determined independently. These
triads are ftU; H0; H0tUg, frd; h; rdhg, fΩM; h2;ΩMh2g.
Within a given cosmological model (although some of the
constraints can be obtained model independently), and in the
absence of systematic errors, a generic triad fa; b; abg of
parameters determined by independent experiments i, j, and
k, respectively, is an overconstrained system which must
fulfill ai × bj ¼ ðabÞk within statistical uncertainty. This is
what makes these triads a powerful diagnostic tool of
consistency, especially in the context of the H0 tension.
Therefore, the cosmological model(s) yielding agreement of
all these triads are favored by the data.
Cosmology faced a similar situation in 1999, when

information from CMB anisotropies, SNeIa, and clusters
observations was combined to determine whether the
Universe is flat and if there was evidence for a nonzero
cosmological constant [53]. In that case, the triad was
fΩM;Ωk;ΩΛg, where ΩΛ ¼ 1 −ΩM −Ωk is the density
parameter associated to the cosmological constant today.
These triads may be represented in a plane (as done

e.g., in Fig. 4), but due to the relation between their
components, they can be more efficiently represented
in a ternary plot. Taking the logarithm of each quantity
in the triads of the form fa; b; abg [which fulfills
log10ðaÞ þ log10ðbÞ − log10ðabÞ ¼ 0], we can build ter-
nary plots; every point on these ternary plots sums up to 0.
This representation provides an intuitive and illustrative
simultaneous look at independent cosmological constraints.
We use them to illustrate the state of the H0 tension in each
of the three complementary frames that have been dis-
cussed. We refer to these ternary plots as the new cosmic
triangles.
Each of the triads discussed in this work involves

quantities directly related toH0 and provides different angles
to study theH0 tension: in terms of times, distances, and the

FIG. 4. 68% confidence level marginalized constraints in the
H0–tU plane, from independent measurements, as indicated in the
legend. Dashed cyan lines denote the size of the statistical 1σ
errors from globular clusters, while the shaded region also
includes systematic uncertainties. BAO þ SNeIa constraints
assume a ΛCDM cosmology. We show Planck results assuming
ΛCDM (red) and EDE (orange).

7The expected effect of adopting the reconstructed EðzÞ where
available and aΛCDM one at higher z is a possible increase of the
error bars on tUH0 of ≲10%.
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abundance of matter. In interpreting the observational con-
straints, we can distinguish between early-time, late-time,
and local observations, which in turn may depend on early-
time (prerecombination), late-time (low redshift), or fully
local physics. In all cases, we can use BAO þ SNeIa results
to link local and early-Universe measurements. Note that the
triad corresponding to h and rd is the only one that is agnostic
with respect to the choice of a cosmological model for the
low-redshift expansion history.8

We show the new cosmic triangles in Fig. 5; the
interpretation of the ternary plots can be eased by compar-
ing this figure with Fig. 4. Each side of the triangle
corresponds to the logarithm of one of the quantities
involved, or their product, and the direction of the ticks
in the axes determine the lines of equal value for each
quantity. All the constraints shown in these plots (with the
exception of the contours corresponding to Planck in the
upper panel) are bands that refer only to the axis with
aligned ticks. The preferred region in the parameter space
will be the one with constraints from where the three axes
overlap. On the other hand, if there is no point in which the
constraints referring to all three axes overlap, the measure-
ments are in tension. We can appreciate the tension within

FIG. 5. 68% confidence level marginalized constraints on the new cosmic triangles: we show the triad corresponding to the age of the
Universe and the Hubble constant (upper left), to the sound horizon at radiation drag and the reduced Hubble constant (bottom left), and
to the total matter density parameter today and the square of the reduced Hubble constant (bottom right). Note that all points in each
figure sum up to 0, while the ticks in the axes determine the direction of equal values for each axis.

8rd inferred values from Planck are largely independent of
standard postrecombination physics, as we can see comparing
results from standard analyses [1] with those using only early-
Universe information [71].
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ΛCDM in the triangles corresponding to rdh and
ΩMh2. As expected, considering the region favored by
BAO þ SNeIa, Planck constraints obtained within ΛCDM
are consistent with CCHP, but show some tension with
SH0ES. The tensions are always smaller in the case of
EDE, but not enough for this model to be preferred
over ΛCDM.
Figure 5 clearly shows the synergies of considering

the three triads at the same time. The most studied so far
has been the one involving rd and h, since it was argued
that the most promising way to solve the H0 tension was
to reduce the value rd while keeping a standard evolution of
the low-redshift expansion rate [29,32]. We can also see
that this triangle is the one showing the largest tension
between Planck assuming ΛCDM, SH0ES, and BAO þ
SNeIa, and the one for which models like EDE show
promise. The triangle including ΩM shows a smaller
tension: combining BAO þ SNeIa with SH0ES (CCHP)
we find ΩM ¼ 0.159 % 0.009 (ΩM ¼ 0.144 % 0.01), which
is in 1.8σ (0.1σ) tension with Planck’s constraint assuming
ΛCDM. The tension reduces to 1.5σ when compared to the
Planck results assuming EDE. Since BAO þ SNeIa con-
strain EðzÞ at low redshift to be very similar to (and fully
consistent with) the best fit of Planck assuming ΛCDM,
this tension is fully sourced by theH0 tension, no matter the
cosmological model under consideration.
However, the situation for the triad involving the

age of the Universe is different. As argued above, mod-
ifications of the early-Universe cosmology do not directly
change the age of the Universe. This is why Planck EDE
posteriors overlap with those assuming ΛCDM (extending
along the direction of constant ΩM, i.e., the constraint on
H0tU from BAO þ SNeIa). In this representation, the
region of overlap of Planck, BAO þ SNeIa, and GCs
posteriors is in large tension with SH0ES. However, current
determinations of tU alone are not precise enough to
definitively disfavor the combination of SH0ES with
BAO þ SNeIa.
Finally, Fig. 5 clearly indicates that if GCs were to still

return a high value of tU but with reduced error-bars,
deviations from ΛCDM that only affect prerecombination
physics will not be enough to reconcile all the measure-
ments. If this will turn out to be the case, a combination
of both high and low redshift modifications to the
ΛCDM model may be required to solve the H0 tension.
Alternatively one would have to look into much more local
effects, such as those affecting the distance ladder calibra-
tion and in particular effects or processes which may
be responsible for the mismatch between CCHP and
SH0ES.

V. CONCLUSIONS

The discrepancies between model-independent measure-
ments and model-dependent inferred values of H0 from
different experiments (each of them sensitive to different

physics and systematic errors) might be a hint for the need
of modifying the standard ΛCDM model. The most
promising deviations from ΛCDM proposed to solve such
tensions involve a boost in the expansion rate before
recombination, as to lower the value of rd and reconcile
the direct and the inverse distance ladder. However, we
argue in this work, there is a more varied phenomenology,
that goes well beyond rd, to be matched by any new physics
put forward to solve the H0 tension, especially regarding
cosmic ages: the trouble goes beyond H0.
We update agnostic reconstructions of the evolution

of the expansion rate of the late-time Universe with
recent BAO and SNeIa measurements, extending the
reconstruction up to z ∼ 2.4. We find that BAO and
SNeIa constrain the evolution ofHðzÞ to be fully consistent
with the one from ΛCDM Planck’s best-fit prediction: any
possible deviation must be well below the 5%(10%) level at
z < 0.8 (z < 2.4). This further supports previous claims
that modifications of the expansion rate at low redshifts are
disfavored by the data (see e.g., [29,30,32]). In the coming
years, line-intensity mapping [75–79], quasar observations
[80,81], and strong lensing systems [67] will probe
significantly higher redshifts, allowing for agnostic analy-
ses like this one to be extended up to z ∼ 10–20 (covering
effectively > 90% of the Universe’s history).
We discuss the impact of a recent, almost cosmology-

independent, inference of the age of the Universe from the
age of the oldest globular clusters. While the relation
between H0 and rd can be addressed with modifications
of the early-time physics, tU is dominated by the expansion
rate at z≲ 30, hence insensitive to high-redshift cosmol-
ogy. The tU determination is also insensitive to effects
such as cosmological dimming (e.g., violations of the
Etherington relation), cosmological screening, deviations
from general relativity at large scales affecting growth of
structures, and any phenomenology affecting cosmological
distance measures. Therefore, if a high tU were to be
measured reliably and with small enough error bars, it
would disfavor models with high H0 and standard low-
redshift physics. In this case then both, pre- and post-
recombination modifications to ΛCDM, may be required to
reconcile all measurements. Alternatively one would have
to invoke much more local effects (be these cosmological,
see e.g., [82–85], or astrophysical, in particular effects or
processes which may be responsible for the mismatch
between CCHP and SH0ES) affecting the local H0 deter-
mination only, while leaving all other cosmological obser-
vations unchanged.
In such case, viable solutions to the H0 trouble will

fall in either of two classes of very different nature: local
and global. Global solutions, would have to invoke new
physics beyond ΛCDM which affect the entire Universe
history from before recombination all the way to the low-
redshift, late-time Universe. Modifying only early-time
physics will not be enough. Because of their global nature,
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such solutions affect quantities well beyond H0, but would
be highly constrained by the wealth of high-precision
cosmological observations available. Local solutions on
the other hand, leave unaffected the global properties of
cosmology; as such either do not require new physics
beyond ΛCDM (and thus fall in the realm of astrophysics),
or include new physics which only affect very local
observations.
A program to improve the inference of tU and reduce the

systematic uncertainties, may give this measurement
enough power to discriminate between these two different
kinds of viable solutions for the H0 tension.
Finally we identify three triads of independently mea-

sured quantities, relating H0 with tU, rd, ΩM, respectively.
Each of these triads is an overconstrained system, hence
we propose the use of ternary figures (the new cosmic
triangles) to report and visualize the constraints. These new
cosmic triangles allow for a simultaneous and easy-to-
interpret visual representation of constraints on different yet
related quantities. We hope that this representation will help
to guide further efforts to find a solution to the trouble of
(and beyond) H0.
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Chapter 4

Conclusion

The objective of this thesis was to demonstrate "How cosmology can help and benefit
from other areas of physics" and I hope that after the presentation of the work carried
out during the doctorate, the reader will be a little more convinced.

4.1 Non linear bias and neutrino mass

In the first part of this thesis I devoted myself to the study of the clustering of dark
matter in the presence of massive neutrinos. The goal of the project was to measure
the extent to which massive neutrinos impact the bias of dark matter halos and to find
an easy way to implement the corrections for future analyzes. At the beginning the
idea was simply to use a phenomenological model in order to calibrate the bias of
halos produced by numerical simulations but the discovery of the FAST-PT (McEwen
et al., 2016) software pushed us to extend our methodology to perturbation theory.
This project gave rise to very interesting results such as the fact that it was possible to
rescale the amplitude of the power spectrum as a function of the mass of neutrinos or
that the prescriptions that we have proposed, using perturbation theory, still held in
non-linear scales.

It also enabled the creation of an emulator BE-HaPPy. There are a few bias emulators
in the literature (Tinker et al., 2010; McClintock et al., 2019; Muñoz and Dvorkin, 2018)
but either they often rely on analytical formulas which tend to break at non-linear
scales or they don’t really take into account the impact of massive neutrinos. The
innovation of BE-HaPPy is that the bias calibration has been carried out up to non-
linear scales on simulations with and without massive neutrinos. In addition, the
fact that most of the perturbative terms and the rescaling coefficients are calculated
beforehand makes the code less computationally expensive.

As seen in Chapter 2, the power suppression caused by neutrinos mostly affects
small scales. However in the past, the modeling of the power spectrum at these scales
was not precise enough for the fact of neglecting massive neutrinos to have a real
impact. In this new era of precision cosmology, incorrect processing of neutrinos
can lead to a systematic shift in the inference of cosmological parameters (Raccanelli,
Verde, and Villaescusa-Navarro, 2019). A good treatment of the power spectrum at
non-linear scales increases the chances of obtaining good constraints on the cosmological
model and therefore on the mass of neutrinos. It’s a win-win situation.
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4.2 Age of the universe and H0 tension

The second part of my thesis was devoted to the study of globular clusters. As seen
in the previous section, these objects are very valuable for astronomy but also for
cosmology. Not being an astronomer by training, I was able to approach the analysis of
globular clusters with a fresh pair of eyes. However, it is difficult to navigate between
astronomy and cosmology because at the same time I wanted the cosmological community
to understand the value of my research so I didn’t want to make things too technical
and at the same time I wanted to provide quality work with a solid theoretical and
experimental basis so that my work was acknowledged by astronomers.

Usually the determination of the characteristics of globular clusters is done by
methods such as main sequence fitting where the calibration is performed by measuring
the difference in luminosity at the main sequence turn-off point between apparent and
absolute magnitude. The introduction of a Bayesian method in the analysis of our
sample gave us a greater freedom in the choice of independent parameters, whether
it was the quantity or the different priors. The choice to use the full shape of the
color magnitude diagram also made it possible to reduce the degeneracies between
the different parameters. With this new methodology we obtained the most precise
estimate of the age of the universe ever using globular clusters. If we compare our
final result (tU = 13.5+0.16

�0.14(stat.)± 0.23(0.33)(sys.) at 68% confidence level) with recent
estimates (Chaboyer et al. 2017 using 9 clusters and O’Malley, Gilligan, and Chaboyer
2017 using 22 GCs), we see that the errors have been reduced by ' 2. As our results
in Valcin et al. 2020 were dominated by systematic errors, the next step was to find a
way to reduce them. Systematic errors come from uncertainties in the treatment of the
physics which governs the evolution of stars but also from the calibration mismatch
between the stellar model and the data. As it would have been time consuming to
deal with each and everyone of them, we focused on the mixing length theory which
allowed us to reduce the systematic error by half.

Once put in the context of the H0 tension, our estimate of the age of the universe
can provide new perspectives and ultimately help constrain the value of H0. It is a
very good example of interplay between different areas of physics where we applied
principles more familiar to cosmology to an open problem of astronomy and in return
we obtained an estimate of the age of globular clusters and by extension of the universe
(assuming a time of galaxy formation), almost independent of a cosmological model.

4.3 Prospects

In this section I chose to classify the prospects from the different publications into
two categories according to the two different aspects of my work. One specific to
cosmology itself and the other more technical, specific to computational methods.

4.3.1 Cosmology oriented prospects

Extension of BE-HaPPy

Although very useful, emulators are often overlooked in favor of analytical formulas.
This can be explained by the fact that the analytical formulas are more versatile while
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the emulators are dependent on the cosmology used during their calibration. One
solution to override the limitation of cosmology dependency would be to calibrate the
emulator with different base cosmologies.

BE-HaPPy has been calibrated with different redshifts, neutrino masses, mass ranges
etc., so that the user has the freedom to interpolate the parameters to the value of
her/his choice but unfortunately it is only available for a single cosmology close to
Planck (Planck Collaboration et al., 2016). To model the bias of the dark matter halos,
I used the HADES numerical simulations developed by Francisco Villaescusa-Navarro,
Arka Banerjee, Emanuele Castorina and Matteo Viel. HADES is available for several
masses of neutrinos and different cosmologies where s8 is varied, however the realizations
having sufficient resolution for the completion of our project all have the same cosmology.
Recently the successor to HADES, Quijote simulations (Villaescusa-Navarro et al., 2020),
was made public and simulations were created for Planck and 17 other cosmologies.
This would make it possible to extend BE-HaPPy.

Another long-term possibility for extending BE-HaPPy would be to provide an
emulator for the bias of galaxies. It is easier to model the clustering of halos because
it just represents a virialization of dark matter while the bias of galaxies on the other
hand requires the addition of HOD models which describe the occupation of halos by
galaxies according to their properties.

Constraining cosmological model with GCs

One of the conclusions of the publication "The trouble beyond H0 and the new cosmic
triangles" (Bernal et al., 2021) is that despite the reduction by half of the errors in the
estimated age of the universe, it is not yet possible to discredit certain values of the
Hubble constant, in particular the ones at odds namely those obtained with the CMB
and type Ia supernovae. Two possibilities are available to us to improve the estimation
of the age of clusters: either by reducing statistical errors or by reducing systematic
errors.

Assuming that the dispersion around the most likely age follows a Gaussian distribution
(which is almost already the case see Figure 6 and 7 of Valcin et al. 2020), increasing the
size of the sample would reduce statistical errors. We used 68 clusters from the HST-
ACS catalog (Sarajedini et al., 2007), a number already greater than that of previous
analyzes. Increasing the number of clusters would mean resorting to other catalogs.
The problem is that astronomical surveys generally use different filters and magnitude
cuts. It would therefore be necessary to convert everything into a common system.
Another way to improve statistical errors would be to reduce the degeneracies between
the different parameters. For our analysis we have limited ourselves to the main
sequence stars and the red giant branch. Adding the stars of the horizontal branch
would be a great asset. Its particular position in the color magnitude diagram would
allow to anchor the distance and thus considerably reduce the degeneracy with the
absorption.

Systematic errors, on the other hand, depend on the stellar model used. When it is
simply a question of a difference in calibration between the model and the data, it is
possible to measure the shift occasioned. This is what we did in the manuscript (Valcin
et al., 2021). But when the error comes from the treatment of a physical phenomenon,
it becomes more complicated. Either because it requires a modification of the stellar
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FIGURE 4.1: Figure made with the distance estimates of Valcin et al.
2020 and Baumgardt and Vasiliev 2021.

code (which in turn requires a good understanding of the theory) or because the theory
is not yet sufficiently developed.

Another possible development of this project would be to reanalyse the catalog
of clusters but this time using GAIA distances as prior. Indeed in Valcin et al. 2020
we compared our estimates of the distance to the ones of O’Malley, Gilligan, and
Chaboyer 2017 and found that our distances were a bit different and attributed the
difference to the degeneracy of the distance with other parameters. Recently we compared
our distances to GAIA EDR3 latest release (Baumgardt and Vasiliev, 2021) and found
a remarkable agreement, especially at smaller distances (see Figure 4.1). It would
therefore be very interesting to see the effect on the age determination since GAIA
distances have very small errors bars.

4.3.2 Code oriented prospects

Application of BE-HaPPy to data or mocks

Complex modeling of the effects at non-linear scales tend to lengthen the computation
time. This can be detrimental for Monte Carlo samplers such Emcee (Foreman-Mackey
et al., 2013) or Montepython (Brinckmann and Lesgourgues, 2019), where it is necessary
to recalculate the same quantity thousands of times. For example an addition of
one second per calculation results in an increase of nearly three hours after 10,000
iterations. For this reason when the data of large-scale surveys are analyzed, power
spectra are modeled using a fixed template, i.e formulas whose coefficients are calibrated
beforehand according to an assumed cosmological model. Corrections are then applied
to account for the effects of an incorrect cosmological model. These prescriptions are
intended to make analyses more efficient and less computationally expensive.

The combination of BE-HaPPy and FAST-PT (McEwen et al., 2016) makes the calculation
of the different power spectra very efficient. Thus the increase in computation time is
compensated by the increase in precision. It is an acceptable compromise. A new
idea for the analysis of surveys would be to implement the modifications that I made
to FAST-PT as well as the coefficients calibrated from the numerical simulations in a
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Monte Carlo sampler. It would therefore be possible to vary the cosmological model
at each iteration of the chains, which would provide a more agnostic inference of the
cosmological parameters.

Using machine learning to bypass stellar grids

Currently state of the art stellar grids (DSED Dotter et al. 2008, MIST Dotter 2016, BASTI
Pietrinferni et al. 2004, PARSEC Bressan et al. 2012 etc.) can only produce one dimensional
theoretical isochrones. However if we look at the CMD of a globular cluster (see
Figure 3.2) it is clear that not all features can be reproduced simply by applying a
photometric Gaussian dispersion around a true underlying isochrone. The origin of
this dispersion is not well understood, although it could be partly explained by the
presence of multiple populations.

A more efficient way to compare the CMD diagram of GCs would be to use a
theoretical model consisting of a 2D distribution rather than a 1D distribution. By
accessing Monte Carlo softwares such as MOCCA (Giersz et al., 2013; Giersz et al., 2014)
or N-Body codes like Dragon (Wang et al., 2016), which follow the dynamical history
and evolution of stars, binaries and clusters, it is possible to generate theoretical CMDs
and then compare them to data which is equivalent to measuring the distance between
two histograms. Machine learning has several algorithms perfectly suited to carry out
this task e.g. Earth Mover.

Cosmology is very good at reproducing and interpreting well understood phenomena
(see CMB) but it may come to a point where we need to model, subtract or marginalize
quantities that we do not understand to access the substance of the signal. In this
regard machine learning turns out to be a real asset. By providing a set of initial
conditions, it should be possible to produce color-magnitude diagrams without resorting
to stellar grids. E.g. Green et al. (2021) designed a new methodology to map stellar
parameters to broad-band stellar photometry.
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