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Abstract: Spin Torque Nano Oscillators are nanometric devices that turn polarized electrical
current into magnetic oscillations via the spin transfer torque effect. These nanometric oscillators
present non-linear behavior between amplitude and frequency resulting in synchronization with
external perturbations or other oscillators. These properties, as well as the dependency of their
characteristic oscillation with the current applied makes them very suitable candidates to be the
physical hard-ware for artificial neural networks.

I. INTRODUCTION

In the recent years, Artificial Neural Networks (ANN)
have become the algorithm benchmark for artificial intel-
ligence. An ANN consists of a large set of units, called
artificial neurons, connected between them. Computa-
tion is achieved by transferring information throughout
the different layers of neurons. An input signal is given
to the system, neurons in the input layer compute a se-
ries of non-linear operations to the signal and passes it
on to a deeper layer of the network. Further operations
transform the signal throughout the hidden layers until
it gets to the output layer of neurons, which gives an out-
put signal. This algorithm is extremely useful for pattern
recognition tasks as we can create a map of expected out-
puts given known inputs so when an unknown input is
given we can recognize its state just by comparing its out-
put value with the map created beforehand. Nowadays,
computation with ANN must be done with simulations,
which require a large amount of electrical and comput-
ing resources. However, new studies present Spin-Torque
Nano-Oscillators (STNOs) as efficient candidates to im-
plement ANN. [2]

STNOs are nanometric devices that turn electrical cur-
rent into magnetic oscillations. The basic concept of
STNO devices can be seen in FIG 1. A nanoscale elec-
trical contact is attached to a multilayered ferromagnetic
structure [1]. The multilayer consists of a fixed layer
(PL) and a free layer (FL) separated with a non-magnetic
material. The free layer is typically made of permalloy
(Ne80Fe20) or iron (Fe) and between 2-5 nm thick. The
fixed layer is also known as polarized layer as its main
purpose is to generate a polarized current of electrons.
Polarization is achieved with an external magnetic field.
This layer is thicker than the free layer and is typically 10-
40 nm wide. The purpose of the FL is to generate a spin-
wave resonance due to the interaction with the polarized
current of electrons (spin transfer torque). These two
layers are separated by a non-magnetic material in order
to avoid any magnetic interaction between the states of
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the two layers. [1][3][4]

(a) (b)

FIG. 1: Representation of an STNO (a) and the different
terms of the Landau-Lifshitz-Gilbert equation for the preces-
sion of the magnetization (b). ε represents the oscillating
perturbation of the input data and ϕ the interaction between

oscillators.

II. MATHEMATICAL MODEL

In order to simulate the STNOs we used the Landau-
Lifshitz-Gilbert equation in thin ferromagnetic films[1].
This equation models the dynamics of a magnetization

vector ~M in an external magnetic field, ~Heff. If an exter-
nal field is applied, the spin-magnetic moments will begin
to precess around the direction of the applied field. The
magnetic moment will eventually align with the exter-
nal field due to damping effects. However, if a polarized
current is applied to the magnetic moment a positive
damping factor will appear, which will lead us to stable
oscillations of the magnetic moment. This phenomena is
described by the following expression:

∂ ~M

∂t
=− |γ|µ0

~M × ~Heff − α
|γ|µ0

Ms

~M × ~M × ~Heff

+ β ~M × ~M × ~mp,

(1)

where γ is the electron gyromagnetic factor, µ0 is the per-
meability of empty space and Ms is the saturation mag-
netization. A visual representation of the precession of
the magnetization as well as the different terms of Equa-
tion 1 is illustrated in FIG. 1. We can identify that the
precession (first) term and the damping (second) term

are moderated by the effective field ~Heff which is a sum
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Material Ms (T) ωL (GHz)

Fe 2.14 60

Ni80Fe20 1.05 29.43

Fe3O4 0.6 16.82

TABLE I: Saturation magnetization and Larmor frequency
of typical materials used for STNOs

of the applied field, demagnetizing field and the exchange

field, proportional to ∇2 ~M . However, in the situations
studied, the exchange field term is negligible as we can

consider the variations of ~M uniform due to the size of
the STNO. Besides, we will keep adding terms as we de-
velop our simulation. So, for an isolated spin-magnetic
moment in a external magnetic field the effective field
remains as follows:

~Heff = (H0 −Mz)ẑ, (2)

note that we have defined the direction of the applied
field to the z axis. This will remain throughout the study.
In order to obtain general and more intuitive results we
normalize the equation (1). Henceforth, we define the
following dimensionless parameters:

~m =
~M

Ms
= (mx,my,mz); τ =

ωL

2π
t;

~heff =
~Heff

Ms
,

(3)

where ωL = 2πγµ0Ms is the Larmor frequency for an
applied field Ms. Further note that every single param-
eter is described by Ms, so if we choose a value for the
saturation magnetization the experiment would be fully
determined. Typical values for Ms are given in the table
I. We can see how a large range of typical frequencies
can be achieved. Take into account that iron is the ma-
terial with the highest known value for Ms so we won’t
have Larmor frequencies larger than 60 GHz. However,
lower frequencies can be achieved just by diluting the fer-
romagnet. After the normalization we end up with the
following equation:

d~m

dτ
=− ~m× ~heff − α~m× ~m× ~heff

+ β ~m× ~m× ~mp,
(4)

further note that, as we normalized the magnetization,
only two coordinates are needed to complete the sim-
ulation as the third one is restricted by the following
expression:

mz =
√

1−m2
x −m2

y, (5)

however, this expression is not used in our simulation as
for a certain value of β the z component of the mag-
netization becomes negative. If we take a look at the

negative damping term we can see that is characterized
by α. This parameter is called damping constant and it is
a property of each material. Typical values of α for good
ferromagntes like iron or cobalt are α = 0.01, yet some
reports affirm that for new meta-materials this constant
can be reduced one or even two orders of magnitude. The
damping constant can be greater than one for bad fer-
romagnets. Theoretically, the smaller the constant the
better as wider ranges of frequencies would be achieved.

On the other hand, the positive damping term is only
characterized by β as ~mp, due to normalization, is a vec-
tor in the z axis equal to one. The parameter β depends
on the geometry of the STNO and its material, nonethe-
less, we can express β as a function linearly dependent
with the applied polarized current, β = β0I.

If the applied current has enough intensity, the spin-
torque term can overcome the damping term and can
induce an oscillation of the magnetization depending
mainly on β and the applied field h. As we will main-
tain the applied magnetic field constant throughout the
simulation, the only factor that is able to change the fre-
quency of oscillation is the applied current, characterized
by β.

(a) β = 0 (b) β = 0.015

(c) β = 0.020 (d) β = 0.033

FIG. 2: Normalized magnetization’s x, y and z components
over time under a constant magnetic field (h = 2) on the z
axis. Synchronization over a long period of time is achieved
in (b), (c) and (d) whereas in (a) m quickly orientates in the
direction of the applied field due to negative damping. In case
(d) mz opposes to the applied field due to the fact that the

positive damping term easily overcomes the negative one.

III. SIMULATION

All simulations mentioned below have been simu-
lated solving equation 4 with the Odeint function from
Python’s Scipy.integrate library. Before analyzing the
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coupling map of two interacting STNOs with two exter-
nal frequencies, we will study the dynamics of a STNO
under different circumstances. Note that the initial con-
ditions (mx,my,mz) = (0,

√
2

2 ,
√

2
2 ) are the same in every

case studied. The external magnetic field applied is the
same in every simulation and always applied along the z
axis. We have chosen h = 2 as h > 1 is mandatory in
order to overcome the demagnetizing field caused by the
spontaneous magnetization.

A. Isolated STNO

First we will start by simulating an isolated STNO un-
der a constant magnetic field. Results can be seen in
FIG 2. As we can see, if no polarized current is applied
(β = 0), the damping factor will align the magnetization
in the direction of the applied field. Note how the am-
plitude of the x and y go from the initial conditions to
zero as the z component grows. No stable oscillation is
achieved for β < 0.012, the negative damping term over-
comes the positive. We can see how for β = 0.015 stable
oscillations are achieved yet the amplitude of the oscilla-
tion is not maximum as mz 6= 0. On the contrary, max-
imum amplitude oscillations can be seen for β = 0.020,
the negative damping term is compensated by the pos-
itive. Note that mz = 0 so the precession describes a
circumference on the z = 0 plane. For β > 0.035 the sta-
ble oscillation range narrows and mz quickly turns the
negative z axis overcoming the external field, the posi-
tive damping term easily overcomes the negative one.

We can get the frequency of the oscillation by analyzing
the Fourier Transform of a component perpendicular to
the external field.

β 0 0.015 0.020 0.035

Frequency(GHz) 5.33 7 9.36 14

TABLE II: Frequency of oscillation for different polarized
currents for a Permalloy STNO (Ms = 1.05 T) and external

magnetic field H0 = 2.1 T.

From TABLE II we can see that the frequency rises
with the current applied. If we take a look at FIG 3 there
is a certain range of β (0.012 < β < 0.033) in which the
frequency is linearly dependent with the applied current.
Out of this range frequency remains the same regardless
the applied current.

B. Coupling with an external frequency

STNOs are non-linear oscillators and have the ability
to synchronize with external harmonic electromagnetic
perturbations. Different type of data can be parame-
terized with frequencies, the most obvious one is sound
[2], apart from that, shapes and colors can also be repre-
sented as frequencies, making STNOs very suitable hard-

FIG. 3: Frequency of the STNO as a function of the applied
current factor β. Frequency of oscillation is linearly depen-
dent with the applied current for 0.012 < β < 0.033. Outside

this range the frequency does not depend on β.

ware for image recognition. These input data can be
given to the system as an external harmonic magnetic
field along the x or y axis with a characteristic frequency
of oscillation. We can include these perturbation to our
simulation by modifying the effective magnetic field form
Equation 2.

~heff = (h0 −mz)ẑ +
∑
i

εi sin(ωiτ)x̂, (6)

where εi and ωi are the amplitude and angular frequency
of the ith perturbation. In this project we used two differ-
ent frequencies to parameterize the input data, although
higher dimension maps with more interaction between
different oscillators can be achieved. FIG 4 shows that
when the external frequency is near the the character-
istic frequency of the prcession, the STNO couples with
the perturbation oscillating at the same rate for a cer-
tain region. The synchronization range can be modified
by changing the amplitude of the magnetic perturbation.
Moreover, FIG 4 also shows how as the characteristic
frequency of oscillations rises, the synchronization range
rises with it. Typical values for the external magnetic
field perturbation are two orders of magnitude smaller
than the main magnetic field applied. This shows how
small perturbations can drastically affect an STNO os-
cillating rate, being this the main drawback of this tech-
nology as it can be affected easily by external noise.

C. Interacting STNOs

The precession of an STNO produces a small harmonic
magnetic field with the same frequency as the preces-
sion of the magnetization. The generated field is weak
and banishes quickly with distance, however, as STNOs
are nanodevices, several oscillators can be placed close
enough that they interact with each other. If we have
system with multiple STNOs their oscillation can mod-
ify each others precession and synchronize with other
STNOs even without an external perturbation. This phe-
nomena is very similar to the one described in section
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FIG. 4: Frequency of an STNO as a function of an external
frequency for different values of β for a magnetic perturbation
amplitude of ε = 0.05. Synchronization with the external fre-
quency can be seen for a certain range of frequencies when the
external frequency approaches the characteristic frequency of
the oscillator. For the same value of the amplitude of the
perturbation the synchronization range rises with the charac-

teristic frequency of the oscillator.

III B and can be added to the simulation just by adding
an interacting term between oscillators in the effective
field:

~heffk
= (h0 −mzk)ẑ +

∑
i

εi sin(ωiτ)x̂+

n∑
j 6=k

ϕj,k ~mj , (7)

where ϕj,k is the coupling constant between the jth and
kth oscillators. The coupling constant basically depends
on the distance between the STNOs. Coupling with
other oscillators can be achieved with values relatively
low, three orders of magnitude lower than the external
magnetic field, which, again, shows how sensitive STNOs
are. Note that now every STNO in the system perceives
a different effective field as ϕj,k. Further note that the
sum over the total number of STNOs, n, is restricted to
j 6= k as an oscillator does not have any influence over
itself (ϕj,j = 0). In FIG 5, we change the characteristic
frequency of one oscillator by rising the polarized current
as we did in FIG 3 while the other oscillator frequency
remains the same. When ϕ1,2 = 0 both oscillations are
completely independent, however, when ϕ1,2 6= 0 the os-
cillators synchronize when its frequencies are in a certain
range. Note that when synchronized, their frequency set-
tles in a medium frequency between both STNOs.

Moreover, synchronization between coupled oscillators
and an external frequency can also be achieved. This is
seen in FIG. 6. Note that there is no coupling between
the oscillators when they are not coupled with the exter-
nal frequency.

D. Coupling maps

The coupling map represents the possible outputs of
the system. Every possible output describes, with its
singular color, a unique state of synchronization between
all oscillators. For instance, if oscillator one has synchro-
nized with the external frequency A the state would be

(a) ϕ1,2 = 0 (b) ϕ1,2 = 0.004

FIG. 5: Frequency of two nano-oscillators as a function the
polarized current of one of them with (b) and without (a)
interaction. The current applied to the first oscillator (O1)
is β = 0.02. When there is no interaction between oscilla-
tors each frequency is independent from the other. Note the
similarities bewteen (a) O2 and FIG 2, an isolated STNO.
When ϕ1,2 6= 0 both oscillators couple as their frequencies
approach for a certain range. The coupling frequency settles

in a medium frequency between both STNOs.

(a) ϕ1,2 = 0 (b) ϕ1,2 = 0.005

FIG. 6: Frequency of two STNOs as a function of an exter-
nal frequency. β1 = 0.02 and β2 = 0.024. Note that when
synchronized, their frequency settles in a medium frequency
between both STNOs. It is just when one of them couples
with fA an lowers its characteristic frequency that is able to
interact ans synchronize with the other STNO. We can also
see how the synchronization range with the external frequency
grows without changing ε just due to the interaction between

the oscillators.

”1A”. Multiple combinations may occur as there is more
than one external frequency to synchronize to. This be-
ing said, the configuration of the first oscillator coupled
with frequency A and the second oscillator coupled with
frequency B would be ”1A2B”. An example of a com-
plete coupling map of two STNOs with two external fre-
quencies can be seen in FIG. 7. We can identify several
rectangle-shaped regions that divide the map, these re-
gions describe a state where only one oscillator couples
with one external frequency, such as ”1A” or ”2B”. We
find more complex and interesting regions in the inter-
sections of the rectangle-shaped regions. There we find
states where one oscillator is coupled with a frequency
and the other oscillator is coupled with the other fre-
quency, as ”1A2B” or ”1B2A”. These states give us very
concrete information about the unknown input data due
to the fact that they take a small an concrete part of
the map. As seen in section III C, a realistic model of
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(a) ϕ1,2 = 0

(b) ϕ1,2 = 0.004

FIG. 7: Coupling map of two nano-oscillators with (b) and
without (a) interaction as a function of two external frequen-

cies. β1 = 0.018, β2 = 0.023, εA = εB = 0.05.

a STNO system includes interaction between them. In
FIG. 7 we can also see the difference between a coupling
map with and without interaction. We can identify a
small region in the intersection of the rectangle-shaped
regions. These type of states, ”12A” and ”12B”, give us
a lot of information about one of the external frequen-
cies, nevertheless, further oscillators would be needed to
guess the unknown frequency. A big uncertainty hap-
pens in the diagonal fA = fB , as they interfere with each
other and can produce several states in a small region.

Note that by changing the current applied to each oscil-
lator (βi) and the amplitude of the perturbations (εj) we
can change the position and size of the different regions.
This is an extremely useful tool as an STNO system is
able to adapt and learn from new sets of data to give
even better results.[2]

β1 β2 f1 (GHz) f2 (GHz) ∆fA (GHz) ∆fB (GHz)

0.020 0.023 9.36 10.74 2.24 1.85

TABLE III: Parameters and results of the FIG.7 with a
Permalloy STNO system.

FIG. 8: Coupling map for β1 = 0.02 and 0.033. We can see
that by changing the current and the perturbations applied
we can move the coupling regions for learning from new sets

of data.

IV. CONCLUSIONS

We have analyzed the structure and dynamics of an
STNO. We also have been able to successfully simulate
multiple interacting nano-oscillators and produce differ-
ent coupling maps depending on the applied current to
adapt the map to new sets of data.

It is clear that STNOs are great candidates to imple-
ment ANN for their accuracy learning properties, even
with their sensibility with external noise as their main
drawback. However, it remains to be seen how can
we overcome the challenges of practical implementation.
Further research is needed in this bright and promising
technology.
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