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Abstract: In this work the energies and wave functions of 2-electron atoms have been studied.
To this end, the Hartree–Fock self-consistent method has been applied to explore the isoelectronic
series of He in the ground state. The bulk of the work has consisted in writing a program, based
on the Numerov–Cooley method, to solve the radial Schrödinger equation. The final results are
discussed and compared to reference values.

I. INTRODUCTION

The Hartree–Fock (HF) method [1] is an accurate
framework to study many-electron atoms. In this ap-
proximation, each electron moves in an effective po-
tential composed of the electron-nucleus attraction and
the electron-electron repulsion. In order to derive the
HF equations, which are a coupled system of integro-
differential equations, it is assumed that the wave func-
tion of the N -electron system is a single Slater deter-
minant. The variational method is then applied and the
optimum Slater determinant is obtained. In atomic units,
the HF equations are[
− 1

2
~∇2
~r+VHF(~r)

]
ψi(~r) = Ei ψi(~r) i = 1, . . . , N (1)

where ψi(~r) are the one-electron spin orbitals and VHF(~r)
is the HF potential,

VHF(~r) = Vn(r) + Vd(~r) + Vex(~r). (2)

The first term is the electron-nucleus (Coulomb) attrac-
tive potential,

Vn(r) = −Z
r
, (3)

whereas

Vd(~r) =

∫
d~r′

ρ(~r′)∣∣~r−~r′∣∣ (4)

is the direct contribution of the electron-electron repul-
sion. The third term, Vex, is the exchange potential.
The self-consistent method to solve the HF equations is
started making an initial guess for the potential (or the
wave functions), then VHF(~r) is evaluated and the HF
eigenvalues and eigenfunctions are obtained numerically.
These new wave functions are used in a subsequent iter-
ation to evaluate VHF(~r). The process is repeated until
the desired precision is reached.

Here we are interested in 2-electron atoms in the
ground state 1S [2]. Therefore, as Vex is proportional
to δms,m′

s
and the two spins are always opposed due to

the Pauli exclusion principle it follows that Vex = 0 and

the HF equations reduce to only one equation for the 1s
spatial orbital.

The aim of this TFG is to write, from scratch, a
FORTRAN program to solve self-consistently the HF equa-
tion for the ground state of 2-electron atoms adopting
the Numerov–Cooley algorithm. The program gives both
the eigenvalue E10 and the reduced radial wave function
P10(r). The program will be run for the first members of
the isoelectronic series of He, viz., from Z = 2 to Z = 10.
Once all the runs are finished, additional calculations can
be done in order to study 2-electron atoms such as the
HF energy. Our results will be compared to reference
HF results from the literature and their validity will be
discussed. A relative error of the order of 10−6 in the
calculation of the HF energies is aimed at. Furthermore,
some checks will be made such as the HF energy consist
in an upper bound for the energy of the atom or that the
system verifies the virial theorem.

In this TFG, all the equations and results are expressed
in Hartree atomic units (~ = e = me = 1).

II. METHODOLOGY

The main objective of the program is to solve the HF
equations for 2-electron atoms and ions. The program,
written in FORTRAN, was developed in three consecutive
stages. The process had to be progressive, namely, each
stage had to be completed before proceeding to the next
one. It was divided into three stages because the program
had to do three different and specific tasks: firstly it
had to calculate the wave function with the eigenvalue
and the potential, in the second one, besides, it had to
obtain the eigenvalue and finally in the third one it had to
become self-consistent. Developing it like this facilitated
the debugging, and specific crosschecks could be done for
each stage.

A. Numerov’s method

The first stage consisted in calculating the reduced ra-
dial wave functions for central-field potentials using the
Numerov method. To this end, the program was fed with
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the exact (analytical or numerical) eigenvalue. The pro-
cess followed to obtain the Numerov recursion formula
is based in [3, 4]. The Numerov method is an iterative
method to solve second-order ordinary differential equa-
tions which do not contain the first derivative. An exam-
ple of these type of equations is the radial Schrödinger
equation, which has the general form

d2y

dr2
= −g(r) y(r). (5)

The recursion formula is obtained by doing the Taylor
expansion of the function y(r) around the point r,

y(r ± h) =

∞∑
n=0

(±h)n

n!
y(n)(r), (6)

where h is the step size of integration and the superscript
n of the function y(r) on the right-hand side of the equa-
tion indicates the nth derivative. Eq. (6) includes all
derivatives of y(r), however, while the second derivative
can be replaced by the right-hand side of Eq. (5), the
rest of them might be difficult to calculate. Therefore,
as each derivative is proportional to a higher power of
h, which is a small quantity, we can stay in the second
derivative term. At this point, one might wonder how
to compute the first derivative term, which seems to be
the only term hard to calculate. But this term can be
eliminated as follows:

1

2
[y(r + h) + y(r − h)] =

∞∑
n=0

h2n

(2n)!
y(2n)(r). (7)

If we stay here, a precision to the 3rd order would be
achieved. Nevertheless, acquiring a precision to the 6th
order is easily achieved by deriving Eq. (7) twice:

1

2
[y(2)(r + h) + y(2)(r − h)] =

∞∑
n=0

h2n

(2n)!
y(2n+2)(r). (8)

Finally, the Numerov recursion formula is obtained

yn+1

(
1 +

h2

12
gn+1

)
= 2yn

(
1− 5h2

12
gn

)
−yn−1

(
1 +

h2

12
gn−1

)
, (9)

with an error of orderO(h6), yi ≡ y(ri), gi = 2(E−V (ri))
and ri ≡ ih.

In this stage, the integration is started outward at the
origin. The initial value is y0 = 0 and y1 is set at an
arbitrary value, e.g. y1 = h. A uniform radial grid of
step h is also defined. Thus, we can compute the re-
duced radial wave function using the recursion formula
presented above. Once the wave function is obtained, it
is normalized using the Simpson 3/8 rule.

It was checked that the program delivers the correct
reduced radial wave functions for the Coulomb potential
Eq. (3) for n = 1, 2, 3 and Z = 2, 6, 10.

B. Search for the eigenvalue. Cooley’s method

In the second stage our aim was to obtain, besides the
reduced radial wave function, the eigenvalue E. Since we
are interested in bound states, E < 0. E is related to
the number of nodes of the radial reduced wave function,
given by the radial wave number, nr, which is easy to
calculate knowing the principal and angular momentum
quantum numbers; nr = 0 for 1s orbitals. Due to the
form of the wave function, increasing near the origin as
a power of r and decreasing exponentially at infinity, in-
tegrating just outward would dramatically increase the
numerical error at infinity. On the other hand, integrat-
ing inward would diminish the error near the last points
of the grid but would magnify the error near the origin.
Because of this, the strategy was to start integrating in-
ward from infinity (a very large r) to the second classical
turning point and then integrate from the origin to this
turning point. The integration inward is started with
yn = 0 and yn−1 = h and the recursion formula Eq.
(9) is applied backwards. The search of the eigenvalue
is started then by setting up limits [1]. As mentioned
above, we are just interested in bound states so we can
set the upper bound at Esup = 0. The lower bound, Einf

is set at the minimum value of the effective potential. At
this point, we compute E = (Einf + Esup)/2 and we ob-
tain the reduced radial wave function using the strategy
explained. We have now to check whether our calculated
wave function has the correct number of nodes or not.
If the wave function has more zeros than expected, we
set Esup = E and we restart the process. If it has less
zeros, we set Einf = E and we do the same. The process
is repeated until we get the correct number of zeros.

However, we have not obtained the correct eigenvalue
yet. When we have an energy which give us the correct
number of nodes, it is time to compute the Cooley energy
correction formula [5]. Firstly, the normalization of the
outward and inward solution is needed as they both have
to match at the turning point, rm. Then the energy
correction ∆E, according to Cooley, is

∆E =
[
(−Ym−2 + 2Ym − Ym+2)/4h2

+ 2(Vm − E)Pm
]
/

n∑
i=1

P 2
i , (10)

where

Yi =

[
1− h2

12
(Vi − E)

]
Pi. (11)

Now E+∆E is closer to the correct eigenvalue. With this
new value of the energy, the wave function is recomputed
and the process is iterated until we achieve the desired
numerical precision.

This stage was critical. Unless we made sure that
the program worked correctly and gave the eigenvalues
with the desired precision, we could not proceed. To this
end, the program was checked with two potentials whose
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bound-state eigenvalues and eigenfunctions (or some of
them) are known analytically: the Coulomb potential,
Eq. (3), and the Hulthén potential V (r) = − Zα

exp(Zα)−1 ,

where α is the screening parameter. The program was
run for several orbitals for the Coulomb potential, and
for different values of α for the Hulthén potential. Even-
tually, only when it was verified that all worked properly
could we advance to the last stage.

C. The Hartree–Fock iteration

In the last stage of the program the HF iteration loop is
implemented. It consists in an iterative calculation with
which the wave functions and the energy of 2-electron
atoms will be obtained self-consistently.

In order to start the iteration process, an initial guess
for the reduced radial wave function (0th-order wave
function) is needed. We have chosen

P
(0)
10 (r) = P

(Zeff )
10 (r) = Z

3/2
eff 2r exp(−Zeffr) (12)

with Zeff = Z − 5
16 . Then the direct potential is calcu-

lated using the following expression

V
(n+1)
d (ri) =

1

ri

∫ ri

0

[
P

(n)
10 (rj)

]2
drj

+

∫ ∞
ri

[
P

(n)
10 (rj)

]2 1

rj
drj , (13)

where the superindex indicates the order of the iteration.
Feeding our program based on the Numerov–Cooley

method with the HF potential VHF(r), a better estimate
for the wave function is obtained. We repeat the process
recalculating the direct potential until the difference be-
tween the potentials in the (n+1)th and nth iterations is
smaller than the requested precision, namely 10−6. With
our program the eigenvalues of the HF equations are ob-
tained.

The HF energy of 2-electron atoms is given by

EHF = 2E10 − J12, (14)

where the Coulomb integral J12 is calculated with the
self-consistent (converged) wave function P10(r).

III. RESULTS AND DISCUSSION

The program was run from r = 0 to r = 30 using a
uniform radial grid of 105 points, i.e. the integration step
was h = 0.0003. The eigenvalues of the HF equation
and the direct Coulomb integral were obtained. There
is an unavoidable error made because of the finite h. A
strategy to solve this is implementing the Richardson ex-
trapolation formula [7]. This formula allowed us to get an
extrapolated value with h → 0, i.e. as if we had infinite
points in the radial grid. Another run of the program

was required but this time using a radial grid of 50000
points. Then, the following formula could be applied,

ER =
E(M) − E(N)(N/M)4

1− (N/M)4
, (15)

where M and N are numbers of steps of the two calcu-
lations, in our case M = 100000 and N = 50000.

The results for the He isoelectronic series in the ground
state 1S are shown in Table I. All values were obtained
after ∼ 10 iterations (see below).

TABLE I: Variational, reference HF taken from [8], obtained
HF and exact energies. The relative errors ε between what
we have obtained and the reference HF values are shown.

Atom Eref
HF EHF Eexact 106 ε EZeff

He − 2.861 68 − 2.861 67 − 2.903 72 1.9 − 2.848

Li+ − 7.236 42 − 7.236 40 − 7.279 91 1.5 − 7.223

Be2+ −13.611 30 −13.611 28 −13.655 57 1.6 −13.598

B3+ −21.986 23 −21.986 19 −22.030 97 1.8 −21.973

C4+ −32.361 19 −32.361 12 −32.406 25 2.2 −32.348

N5+ −44.736 16 −44.736 04 −44.781 45 2.8 −44.723

O6+ −59.111 14 −59.110 94 −59.156 60 3.5 −59.098

F7+ −75.486 13 −75.485 81 −75.531 71 4.2 −75.473

Ne8+ −93.861 11 −93.860 64 −93.906 81 5.1 −93.848

As expected, the HF energies provide an upper bound
which is lower than provided by the simple variational
method, i.e.

Eexact < EHF < EZeff
, (16)

where

EZeff
= −Z2

eff = −
(
Z − 5

16

)2

. (17)

The HF method disregards correlation effects. In fact,
the subtraction of the exact values of the energy and
HF values give an idea of the radial correlation. This
difference is known as correlation energy and it can be
observed that it barely varies throughout the studied 2-
electron atoms, taking values around −0.04Eh.

Moreover, it is interesting to analyze the errors made
calculating both the eigenvalues of the HF equations and
the Coulomb integral, J12. In order to study those made
obtaining J12, our eigenvalues can be compared to refer-
ence HF eigenvalues, see Table II. It is found that the
relative errors are ∼ 10−6. Therefore, the relative error
made calculating the Coulomb integral is at most of the
same order.
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TABLE II: Reference eigenvalues of HF equations compared
to ours and the respective relative error ε between them.

Atom Eref
10 E10 106 ε

He −0.917 956 −0.917 952 4.4

Li+ −2.792 367 −2.792 357 2.8

Be2+ −5.667 116 −5.667 102 2.5

B3+ −9.541 979 −9.541 954 2.5

C4+ −14.416 892 −14.416 851 2.8

N5+ −20.291 832 −20.291 766 3.3

O6+ −27.166 788 −27.166 683 3.9

F7+ −35.041 754 −35.041 594 4.6

Ne8+ −43.916 728 −43.916 490 5.4

At this point, we ask ourselves how the eigenvalue er-
ror decreases in each HF iteration. This can be eval-
uated by plotting the relative change in the eigenvalue
[E(n) −E(n−1)]/E(n) as a function of the iteration num-
ber n, Fig. 1. We conclude then that every 2 iterations
the value becomes 1 order of magnitude more precise.
However, the calculation for the He atom (Z = 2) is the
one which needs more iterations to achieve the requested
precision. For instance, for Z = 6 only 6 iterations are
needed and one magnitude order of precision is gained in
every iteration.
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FIG. 1: Relative change in the eigenvalue as a function of the
iteration number n for Z = 2 and Z = 6.

A question may arise to the reader related to the con-
vergence of the program if the potential is initially given,
namely, we are not in stage 3 of the program but in stage
2. It is found that after ∼ 5 iterations the correct eigen-
value is obtained. Then, as the HF loop needs ∼ 10 itera-
tions, the program needs to apply the Numerov recursion
formula ∼ 50 times.

With the calculated HF potential, the effective charge
that each 1s electron feels can be computed easily. Con-
sidering VHF(r) ∼ −Zeff(r)/r then the effective charge
can be calculated as follows

Zeff(r) = −r VHF(r). (18)

A plot of Zeff(r) for Z = 2, 4, 6 is shown in Fig. 2. We
see that as Z grows Zeff decrease quicker, i.e. the charge

of the other electron is screened in smaller r. That is
because as Z grows, the electron-nucleus attraction in-
creases and dominates over the electron-electron repul-
sion. For great r, far from the nucleus, the effective
charge of the atom becomes Z − 1, as expected.

 0

 1

 2

 3

 4

 5

 6

 7

 0.001  0.01  0.1  1  10

Z
e
f
f

r / a. u.

 Z = 2

 Z = 4

 Z = 6

FIG. 2: Effective charge Zeff as a function of r for Z = 2, 4,
6.

It is also interesting to investigate the difference be-
tween the initial wave function used to start the HF it-
eration and the last wave function obtained. As it can
be observed in Fig. 3, the wave function selected to start
the HF iteration, which is the “simple” variational wave
function, was already close to the one delivered by the
last HF iteration. As we discussed before, as Z grows
the electron-nucleus Coulomb interaction dominate over
the electron-electron repulsion. This explains that for
Z = 4 the HF reduced radial wave function is closer to
the “simple” variarional radial wave function.
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FIG. 3: Ground-state radial wave function P10(r). The HF

wave functions and P
(Zeff )
10 (r) are displayed for Z = 2 and

Z = 4 as a function of r.

Furthermore, the expected values of the kinetic and
potential energies of the atom can be computed to assess
the quality of the numerical wave function by means of
the virial theorem

2 〈T 〉 = −〈V 〉 . (19)
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It has to be kept in mind that we want to compute the en-
ergy of the whole atom and not just one electron. There-
fore, the kinetic and potential energies are calculated in
the following form

〈T 〉 =

∫ ∞
0

(
dP10(r)

dr

)2

dr (20)

〈V 〉 = 2

∫ ∞
0

P 2
10(r)

(
− Z

r

)
dr (21)

+

∫ ∞
0

P 2
10(r)Vd(r) dr.

For Z = 2 we have 〈T 〉 = 2.861 664 and 〈V 〉 = −5.723 336
and therefore 〈V 〉 / 〈T 〉 = −2.000 003. For Z = 4, 〈T 〉 =
13.611 202 and 〈V 〉 = −27.222 443, thus 〈V 〉 / 〈T 〉 =
−2.000 003. The virial theorem is fulfilled satisfactorily,
supporting the robustness of the numerical methods im-
plemented in the program.

Expected values
〈
rk
〉

can be also computed using the
HF wave function, where r is the distance of one of the
electrons to the atomic nucleus. 〈r〉 and 〈1/r〉 for Z = 2
and Z = 10 will be calculated and compared to reference
results [8]. In the case of the He atom, we obtain 〈r〉He =
0.927 28 and 〈1/r〉He = 1.687 28. The reference value for
〈r〉He differ from ours in 1 · 10−5 while we get exactly the
same value for 〈1/r〉He. In the latter case, our results are
〈r〉Ne8+ = 0.155 86 and 〈1/r〉Ne8+ = 9.687 23 which differ
from the reference values by 0.001 and 0.07, respectively.

In fact, with the help of
〈
r2
〉

some magnetic properties
can be determined. Imagine we have a monoatomic gas
within a magnetic field. We could wonder how the mag-
netization of the gas changes as a function of the applied
magnetic field. To answer that, the magnetic suscepti-
bility has to be calculated. For a diamagnetic gas, e.g. a
He monoatomic gas, the molar magnetic susceptibility is

χ = −NAN
〈
r2
〉
/(6c2), (22)

where NA is the Avogadro constant, N the number of
electrons in the atom and c the speed of light in vac-
uum. With our HF program,

〈
r2
〉

He
= 1.185 is obtained.

Then, substituting in the expression for the susceptibility,
χHe = 1.88× 10−6 cm3/mol, which agrees perfectly with
the experimental value χHe,exp = 1.88× 10−6 cm3/mol.

IV. CONCLUSIONS

A program in FORTRAN has been developed to solve
the HF equation for 2-electron atoms and it has been de-
bugged thoroughly. The numerical results are presented
and compared to reference data, concluding that we have
achieved the sought precision, i.e. an error of the order
of 10−6 in the calculation of the HF energy.

The execution time for each Z is roughly half an hour
on a PC. Writing an optimized program was beyond the
scope of this TFG, but there are several things that might
be done in the future to reduce the computing time.
Firstly, it is known that the reduced radial wave func-
tion decreases exponentially to zero. Therefore, there is
a long range of our calculation where the wave function
is really small in absolute value and it varies smoothly.
Thus, a greater step size that the one used near the origin
could be used. To implement this, a logarithmic radial
grid should be used instead of a constant grid. As the
logarithm of a number smaller than 1 is negative, a good
idea is to use as the radial grid ln (1 + r). Besides allow-
ing to increase the step size far from the origin and thus
reduce substantially the CPU time, this change would
also enable us to have an smaller step size near the ori-
gin, where the wave function varies rapidly. Moreover,
the starting values of the inward integration could have
been chosen more wisely using the well-known asymp-
totic behaviour of the reduced radial wave function at
infinity.
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