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1. INTRODUCTION, MOTIVATION & 

GOALS 

 

Object detection is a technique that allows computers to identify objects in images 

or videos. The technique most commonly used for this operation is called 

Convolutional Neural Network (CNN), because of its good performance.  

Object detection had a big impact in the last two decades, because of its wide 

range of industries where it can be applied. Among which we can find autonomous 

driving where cars have to decide by their own when to accelerate, turn ,brake… 

face detection which can be used for unlocking phones or surveillance among 

others, object extraction of images, personal identification through iris code, smile 

detection for cameras, medical image processing tools and many more. We see 

the importance of finding ways to improve the way we teach computers to 

understand images, so we can have autonomous machines that are more accurate 

and reliable. 

Our goal in this project is to study the performance of different architecture 

designs and techniques in the task of object detection. This thesis could help as a 

guide for future projects to observe how changes with data augmentation and 

different architecture designs can affect their model. 

 

 

Convolutional Neural Networks (CNN) are one of the most promising branches of 

deep learning, not only because of its wide range of possible applications but also 

because of its scalability, performance and adaptability. Additionally, the way CNN 

algorithms understand objects is very interesting and leaves room to 

implementing new techniques. Studies showed models with a rate on face 

recognition of 98.3% for a dataset of 400 subjects [1]. On the CIFAR-10 dataset, 

which consists of 60.000 images with 10 classes and the objective is to categorize 

every image to their respective class, models achieved success rate of 99.37% 

[2,3]. 

 

With the advancements in technology, new image-based object detection 

techniques where originated, one of the pioneer techniques where Region-based 

CNNs (R-CNN) [10], which later was overcome by Faster-CNN [11]. The same year 
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a new object detection technique was developed (SSD [12]) which outperformed 

all existing algorithms. Later, another algorithm was developed with a different 

approach, called YOLO [6], which latest version (YOLOv3 [9]) outperformed in 

accuracy Faster-CNN and SSD. 

 

Despite of the extraordinary progress made in hardware and software to detect 

objects in images, it is still a challenging task to achieve a reliable autonomous 

system for recognition. Therefore, it is very important to keep improving the 

algorithms that are being used, so they can be more accurate without sacrificing 

time by incrementing needlessly the computation that the machines are making. 

 

 

In this 7-month project, we built a neural network from scratch for detecting hand 

written digits [5] to study different CNN architectures and designs. We 

implemented the Mixnet architecture [4] to our model, which combines different 

kernel sizes instead of the traditional one sized kernel, collected the results after 

training and compared the model with a version of YOLO. We worked with 

different types of data augmentation: horizontal flipping, cropping, scaling, 

rotation and 2 new types of data augmentation (Masking humans and Masking 

not humans). Finally, we trained our network with data augmentation and 

participated in an international competition [8] to analyze the results. Our start 

point for this project, was an already working image detection algorithm.
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2. RELATED WORK 
 

 

Faster-CNN: By 2016, this technique was one with the best performance in accuracy, 

obtaining the best mean Average Precision in the COCO dataset [13] with an accuracy of 

41.3% [14]. Instead of using Selective Search, which uses the image structure to search 

for shapes and performs an exhaustive search as R-CNN [10], Faster-CNN is using Region 

Proposal Network (RPN) [11]. In the PASCAL VOC 2012 dataset [15], it obtained an 

accuracy of 75.9%. This algorithm showed a small accuracy advantage over SSD if real-

time speed is not needed. 

 

Single Shot Detection (SSD): This algorithm [12] can outperform Faster-CNN in accuracy 

with larger objects and speed, but performs worse on small objects and if real-time 

detection is not required. By testing with the PASCAL VOC 2012 dataset [15], it obtained 

a mean Average Precision of 82.2%, which is 6.3% more than Faster-CNN achieved. It is 

called Single Shot Detection because, as in YOLO [6], it’s able to find objects in an image 

in one shot, and doesn’t have to look at multiple regions of the image as R-CNN or Faster-

CNN [10,11]. 

 

3. NEURAL NETWORK 

 

Neural network is a computational model used primarily in deep learning for image, 

video or voice recognition. 

 

3.1 Introduction to Neural Network 
 

Artificial Neural Networks are inspired by how biological neural networks in the human 

brain process information. A human brain contains around 86 billion neurons, since 

working with this number of neurons would be too expensive for any computer, Artificial 

Neural Networks emulate the behavior with fewer neurons. 

 

A Neural Network consists of several connected layers that apply convolutional filters of 

one or more dimensions. The layers are one input layer, multiple hidden layers and one 

output layer. A layer is formed by neurons, and a neuron is basically a variable that 

contains a numerical value. In case of image recognition, a neuron from the input layer 

would be a pixel. 



 

6 
 

3.2 Architecture of Neural Networks 
 

A Neural Network processes all the values of the input and transforms them to an output 

value. To do this, each neuron in the input layer will be connected through a weight to 

each neuron in the next layer. The weight that connects two neurons is a number that 

represents the influence the first neuron has on the second. After this, we apply an 

activation function (e.g. ReLU or Sigmoid) to add non-linearity to our model so that it 

can solve more complex tasks. 

 

Let’s take a look at a possible input layer. In Figure 1, we have an example of an input 

image which has 3 pixels height and 3 pixels width and 3 channels (Red, Green and Blue), 

making a total of 27 values for the image (or 27 neurons for the input layer). Each of 

these values represents the amount of color of their channel that is in this position. 

When these 3 channels overlap, we see the image how we are used to see it. This input 

image will form the first layer (input layer).  

 

 

 

Figure 1. Example of an RGB input image. 1 

 

 

 

 
1 https://brohrer.github.io/convert_rgb_to_grayscale.html 

https://brohrer.github.io/convert_rgb_to_grayscale.html
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The second layer will be formed by neurons computed by the first layer. The output 

value of one neuron in the second layer will be each neuron in the first layer multiplied 

by the weight that connects both neurons. Also, we add a bias that determines how high 

the value of a neuron should be to be meaningful active. 

 Finally, we use the activation function. This operation will go until we reach the output 

layer, where the neuron with the highest activation or value will be the one the model 

predicts as the correct output. 

 

Basically, each neuron in one layer will be multiplied by its associated weight and a bias 

will be added to form a neuron of the next layer. Then we apply the activation function. 

We show a neuron computation in equation (1) where w represents the weight, a is a 

vector of neurons in the previous layer, b is the bias and σ is the activation function. 

 

                                            σ((𝒘𝟏𝒂𝟏 +  𝒘𝟐𝒂𝟐 + ⋯ +  𝒘𝒏𝒂𝒏) + 𝒃)                                     (𝟏) 

 

Sigmoid and ReLU, two activation functions commonly used for neural networks, are 

shown below. 

 

Sigmoid: 

 

The sigmoid function normalizes the input to a range between 0 and 1, which uses the 

equation (2). We can observe an example at Figure 2(a). 

 

                                                                 𝑺(𝒙) =
𝟏

𝟏 + 𝒆−𝒙
                                                          (𝟐) 

 

Rectified Linear Units (ReLU): 

 

This activation function is currently the most popular for deep neural networks. This 

function transforms the negative inputs to 0, for larger values we get a linear function. 

We can see the behavior in equation (3) and Figure 2(b). 

 

                                                              𝒇(𝒙) = 𝐦𝐚𝐱 (𝟎, 𝒙)                                                        (𝟑) 
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Figure 2. Sigmoid function (left) and Rectified Linear Units function (right). 2 3 

 

In Figure 3, we have a simple neural network with 3 layers. If we take the image in Figure 

1 as our input layer after flattening (converting the data into a 1 dimensional array), and 

assume for this example that the second layer has a total of 10 neurons and the output 

layer has 5 neurons, we get a total of 335 parameters (27x10 + 10 + 10x5 +5).

 

Figure 3. Example of a basic Neural Network. 4 

 
2 https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-
networks/ 
3 https://en.wikipedia.org/wiki/Sigmoid_function 
4 http://www.mi.uni-koeln.de/wp-znikolic/wp-content/uploads/2019/06/11-Odenthal.pdf 

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://en.wikipedia.org/wiki/Sigmoid_function
http://www.mi.uni-koeln.de/wp-znikolic/wp-content/uploads/2019/06/11-Odenthal.pdf


 

9 
 

Finally, we will see a technique to avoid overfitting. Overfitting occurs when our model 

is learning to correctly recognize the images given in the training, but memorizing them 

rather than learning the shape of the objects, so when it’s given a new test set, it won’t 

perform as well as with the training data. Our goal to avoid overfitting is that our model 

is not so depend on individual neurons, but rather more dependent on the collective of 

neurons. We accomplish this with a dropout layer. 

A dropout layer ignores a given percentage of the neurons in the layer during the 

learning phase. Ignored neurons are randomly selected in each epoch of the training 

phase. In Figure 4 we can see a Neural Network before and after using a dropout layer.   

 

 

Figure 4. Standard Neural Network (a) and Neural Network using a dropout layer (b). 5 

 

3.3 Architecture of Convolutional Neural Networks 
 

The main difference between a Neural Network and a Convolutional Neural Network 

(CNN) is that the neurons that form the hidden layers, or also known as convolutional 

layers, transform the input they get by convolution. This helps the model to detect 

patterns in the image. Also, unlike neural networks, the kernels are shared for the entire 

image on CNNs. Let’s see some of the most used layer types. 

 

 

 
5 https://www.mdpi.com/2072-4292/11/16/1938?type=check_update&version=1 

https://www.mdpi.com/2072-4292/11/16/1938?type=check_update&version=1


 

10 
 

3.3.1 Convolutional layer 
 

To do a convolutional operation we need an input image and a filter/kernel. A kernel 

consists of a tensor. A tensor is an algebraic object that can take various forms with 

different dimensions (See Figure 5). The traditional kernel used is a 3x3 size matrix. 

 

 

Figure 5. Example of the basic Tensor shapes. 6 

 

The kernel at the beginning is usually initialized with random numbers, which will be 

optimized in the process of learning of the model. For convolution, the kernel goes 

through the input image starting at the first position and moving across the width and 

height so that it can cover all the neurons to create a new convolved image, this 

technique is called sliding window. 

 

In Figure 6, we see the first output of the convolutional operation of the image in the 

first position. This is the output obtained by adding the multiplications of the kernel on 

the image in the first position. 

 

The output tensor is downsized compared to the input image. This need not always be 

the case. When calling a convolutional operation, it is possible to use strides to choose 

the steps that the kernel should move through the width and height when performing 

 
6 https://mc.ai/the-shape-of-tensor/ 

https://mc.ai/the-shape-of-tensor/
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the sliding window technique, another option is to keep the same pattern as the input 

image so that the output tensor will have the same size. 

 

 

Figure 6. Example of a convolutional operation. 7 

 

3.3.2 Max-pooling layer 
 

Another useful layer used is the max-pooling layer. The objective of this layer is to down 

sample the given tensor.  For this, the max-pooling filter goes through the input tensor 

with the sliding window technique and in the overlapping region, takes the maximum 

value.  

 

 

Figure 7. Example of a max-pooling over a matrix with one channel. 8 

 

 
7 https://www.kaggle.com/inseltiger/plant-pathology-2020-with-custom-tensorflow-cnn 
8 https://amueller.github.io/COMS4995-s18/slides/aml-23-041818-convolutional-nets/#31 

https://www.kaggle.com/inseltiger/plant-pathology-2020-with-custom-tensorflow-cnn
https://amueller.github.io/COMS4995-s18/slides/aml-23-041818-convolutional-nets/#31
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In the previous image, Figure 7, we take the maximum value without overlapping 

previously selected regions, so we don’t hold any redundant values in the new tensor. 

 

Inside a CNN model, the tensor usually has more than one channel, because when 

convolving we generally apply several kernels, so we have more parameters for more 

complex detections. A max-pooling operation on a CNN model would look as followed 

Figure 8. 

There are two main down sample techniques (max-pooling and convolution with 

strides), which one we choose will depend on how we want to build our model. There 

are also variants such as average-pooling. 

 

 

Figure 8. Max-pooling with multiple channels. 9 

 

3.4 How to train the network? 
 

Let’s say we have a simple model for recognition. At first, all weights and biases are 

randomly initialized, so when we are feeding the first image, the output will be a random 

guess. From here we calculate the cost function. There are different ways to calculate 

the cost function (e.g. the categorical cross entropy loss function or L2 loss function), 

but the idea is that given the guessed output, we calculate the difference to the 

 
9 https://computersciencewiki.org/index.php/Max-pooling_/_Pooling 

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
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expected output, from here we tune the neurons that should be more relevant when 

activated or, in other words, the weights and biases that should have a higher or lower 

value.  

 

 

Figure 9. Backpropagation of weights. 10 

 

This process is called backpropagation, since it starts from the output and updates the 

weights and biases until it reaches the input layer. By training with a new image, the 

model has already learned something from the previous one and could perform better. 

We use optimizers to update the weights and biases (e.g. Adam optimizer or gradient 

descent optimizer).  With the same technique we also update the kernel that convolves 

the image. Visualization of backpropagation at Figure 9. 

 

A common way to train a model is to feed a batch of images as input rather than one at 

a time. This makes the training faster since we update the parameters once per batch 

instead of once per image.  

 

 
10 https://www.researchgate.net/figure/The-structure-of-single-hidden-layer-MLP-with-
Backpropagation-algorithm_fig2_234005707 

https://www.researchgate.net/figure/The-structure-of-single-hidden-layer-MLP-with-Backpropagation-algorithm_fig2_234005707
https://www.researchgate.net/figure/The-structure-of-single-hidden-layer-MLP-with-Backpropagation-algorithm_fig2_234005707


 

14 
 

4. YOLO 
 

Yolo (You Only Look Once) [6] algorithm is a single neural network that predicts 

bounding boxes and class probabilities in only one evaluation.  

 

4.1 YOLO introduction 
 

The original paper [6], achieved results where the model processes images at 45 frames 

per second. We observe, that this network is very promising since the speed 

performance is similar to the human one. A human brain understands objects in the 

environment instantly, and with this speed is doing YOLO too, although not with the 

same accuracy yet. We show an example of YOLO detection in Figure 10. 

 

 

Figure 10. Real output of a YOLO network. 11 

 

4.2 Architecture of YOLO 
 

YOLO divides each image into an SxS grid. In our models we use a grid size of 19x19. In 

Figure 11, we can see an example of how YOLO divides an image with a grid size of 13x13. 

 

 
11 https://www.thepythoncode.com/article/yolo-object-detection-with-opencv-and-pytorch-in-python 

https://www.thepythoncode.com/article/yolo-object-detection-with-opencv-and-pytorch-in-python
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Figure 11. Image divided into a grid of 13x13. 12 

 

In each grid, the model predicts the possible bounding boxes and their probability. Since 

it can happen that a grid cell contains the center point of more than one object, we use 

anchor boxes to allow detection of multiple overlapping objects. By defining anchor 

boxes, we prevent each grid cell from being forced to choose one of the classes it thinks 

it contains. In our models we use 5 anchor boxes. These anchor boxes have different 

scales and different aspect ratios, so the model can detect multiple objects of different 

shapes. 

 

For the experiments carried out in this project, we use an architecture called 

MyYOLONet, which is a modification of YOLOv2 [7]. We decided to use MyYOLONet 

because it can significantly improve accuracy compared to YOLOv2. 

 

In MyYOLONet we resize keeping the same width and height ratio by using zero padding. 

In YOLOv2, an image resizes by warping, therefore one axis of the image may not scale 

homogeneously. 

We also apply different types of data augmentation to our model, which can be found 

in the data augmentation section.  

 

 
12 https://arxiv.org/pdf/1506.02640.pdf 

https://arxiv.org/pdf/1506.02640.pdf
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One problem with YOLOv2 is that it doesn’t have a specific layer to detect objects with 

different scales. This is important because we can benefit if the model learns features of 

objects with different scales.  

To solve this, MyYOLONet extends the last layer into 5 different branches, one for each 

anchor size and therefore each branch is learning independent features for each anchor. 

We do this to have a better estimation for objects with different scales. During the 

training phase, each branch is feeded with objects that correspond to its branch anchor 

size. In Figure 12¸we have the MyYOLONet architecture, where at the end we see the 

branch divisions for each anchor size, where b is the batch size, w and h are the number 

of cells of width and height and v is a vector containing a confidence probability. In 

YOLOv2 there is only one branch for detections. 

 

 

Figure 12. Architecture of MyYOLONet. 

 

Another difference is that YOLOv2 calculates the probabilities with Softmax. This can 

lead to slow convergence. For this reason, in MyYOLONet we use Sigmoid for possible 

faster convergence. Also, with Softmax we cannot apply multi-label detections, 

because Softmax forces the network to detect only the object class per cell size. 

 

MyYOLONet uses a weighted L2 loss function, which has a weight for classes and a 

weight for offsets. This helps us when the model predicts a bounding box with a high 

probability but it is a False Positive, then the penalization is less toward zero probability. 

 

In Figure 13, we have the first part of YOLOv2 or MyYOLONet architecture. As mentioned 

before, the last layers differ from each other. We see that the layer 26 is a reorg layer. 

This layer is used to reorganize the features so they fit into the last layer. Reorg layer 

takes a tensor of shape [B, C, H, W], where B is the batch size, C the number of channels, 

H the height of the tensor and W the width of the tensor. Then it transforms it to a 

tensor with size [B, C𝒔𝟐, 
𝑯

𝒔
, 

𝑾

𝒔
]. In our case s is equal to 2. (B, 512x22=2048, 26/2=13, 

26/2 =13). We are also using route layers. The route layer, at position 27, will 

concatenate the layers 24 and 26. 
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Figure 13. First part of YOLOv2 architecture. 

 

5. MIXNET ARCHITECTURE 
 

5.1 Mixnet introduction 
 

The Mixnet architecture [4] replaces single convolutional kernels with different kernels 

of different sizes that can lead to better accuracy and efficiency. 

Conventional kernels are 3x3 in size, but studies showed that combining multiple kernels 

with sizes of 3x3, 5x5, 7x7 and 9x9 can potentially improve performance.  

 

Larger kernels do not always achieve better results, the accuracy will depend on the 

dataset and the class of the objects. Another thing to keep in mind is that larger kernel 

sizes increase considerably the model size with more parameters, so the computation 

will take longer.  
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On the official paper of Mixnet (Mixed Depthwise Convolutional Kernels) [4], authors 

have studied the accuracy and efficiency with different kernels and observed that the 

performance dropped when the kernel size is larger than 9x9. See Figure 23 for a 

visualization of the accuracy over the ImageNet Top-1 dataset, where model size is 

represented by point size. 

 

 

Figure 23. Accuracy when implementing different kernel sizes over ImageNet Top-1. 

 

The bottom line is that it can improve model performance if we use large and small 

kernels to detect high-resolution and low-resolution patterns.  

Mixnet-L, which is the largest of the models proposed in the Mixnet paper [4], achieves 

a state-of-the-art of 78.9% in ImageNet top-1 under standard mobile metrics. 

The kernel sizes used in each model start with 3x3 and increases by 2 every time we 

make a split on the tensor to apply a new kernel. For example, if we want to apply 3 

different kernel sizes in the convolution, the sizes will be 3x3, 5x5 and 7x7. 

For each kernel in a layer, we can use the following equation (13) to find out the size of 

the kernel: 

 

                                                                 𝑲𝒆𝒓𝒏𝒆𝒍𝒔𝒊𝒛𝒆 = 𝟐𝒊 + 𝟏                                                         (𝟏𝟑) 

 

Where i goes from 1 to group size. Therefore, a tensor with splits or groups of 3 channels 

would have 3 kernels with sizes 3x3 (2x1+1), 5x5 (2x2+1) and 7x7 (2x3+1). 
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5.2 Architecture of Mixnet 
 

In the official paper [4], there are 3 different models proposed: Mixnet-S, Mixnet-M and 

Mixnet-L. 

 

5.2.1 Mixnet-S 
 

Mixnet-S [4] has more than 4.1 million parameters that achieve a state-of-the-art of 

75.8% in ImageNet top-1.  

The proposed architecture consists of 17 convolutional layers with 5 max-pooling layers 

and kernel sizes from 3x3 to 11x11. See Figure 24. 

 

Figure 24. Original Mixnet-S architecture. 13 

 

Our network expects an input image size of 608x608 and has a grid size of 19x19, so 

we changed the original proposal to one that fits our model. The architecture we 

choose is in Figure 25. 

 

Figure 25. Modified Mixnet-S architecture. 

 
13 https://arxiv.org/abs/1907.09595 

https://arxiv.org/abs/1907.09595
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We made changes to the tensor size, but keeping the channels of the original proposal. 

We also used the max-pooling layer at the positions indicated in the source code. Also, 

keep in mind that the expected input is 608x608xC since we want to train our model 

with RGB or 1-channel images. 

Finally, we removed larger 9x9 and 11x11 kernels due to their high computational cost. 

 

5.2.2 Mixnet-M and Mixnet-L 
 

Mixnet-M [4] has more than 5 million parameters achieving a state-of-the-art 77.0% on 

ImageNet top-1.  

 

The proposed architecture consists of 20 convolutional layers with 5 max-pooling layers 

and kernel sizes from 3x3 to 9x9. See Figure 26. 

 

 

Figure 26. Original Mixnet-M architecture. 14 

As explained in Mixnet-S, our network expects a 608x608xC size input image, therefore 

we scaled the original Mixnet-M architecture to start with the expected input size and 

end with the expected output size of 19x19xC. The architecture we choose is at Figure 

27. 

 

 

 

Figure 27. Modified Mixnet-M architecture. 

 
14 https://arxiv.org/abs/1907.09595 

https://arxiv.org/abs/1907.09595
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Mixnet-L [4] has over 7.3 million parameters that achieve a state-of-the-art 78.9% on 

ImageNet top-1. 

 

The Mixnet-L architecture is the Mixnet-M architecture with a depth multiplier of 1.3 

over the number of filters per layer.  The final number of filters is rounded if it is decimal 

number. For example, if we apply 4 splits on the tensor channels in Mixnet-M, in Mixnet-

L it would be 5 (4x1.3 = 5.2 ≈ 5). Therefore, layers with multiple kernels in Mixnet-M like 

the last one (3x3, 5x5, 7x7 and 9x9) would be transformed into layers with 5 different 

kernel sizes (3x3, 5x5, 7x7, 9x9 and 11x11).  

 

Since these networks are very large, their computation is taking too long even by 

removing large kernels, so we decided to leave the Mixnet-M model similar to the 

original and make the tests with the Mixnet-S model. 

 

We have also applied different data augmentation techniques to our models, which we 

will see in the next section. 

 

5.3 Data augmentation 
 

Data augmentation is a technique for expanding the dataset without obtaining new 

data. This is very useful to improve results and reduce overfitting. 

 

The idea is to make minor alterations or modifications (e.g. flipping, rotating…) in the 

images of the dataset, so that our model can train with them as if they were new images. 

An important thing to keep in mind when we are doing data augmentation, is that we 

do not change the class of the objects in the image or delete objects, we are making 

small changes in the image so that the objects are still recognizable. 

Another thing to take into consideration is to recalculate the ground-truth of the 

bounding boxes of each object in the image, as they might have changed after the 

modifications. 

In our model we introduced horizontal flipping, cropping, scaling, rotation, masking with 

human patches and masking without human patches. 
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5.3.1 Horizontal flipping 
 

Let’s start by looking at a very basic and frequently used data augmentation technique.  

By using horizontal flipping, we transfer each pixel from the ‘x’ axis to their opposite 

side. This effect is the same such as when we turn a page. We can see an example in 

Figure 14, where the original image 14(a) was flipped horizontally and turned into 14(b). 

 

We also have to recalculate the new ground-truth of the image, because since the image 

has flipped the ground-truth will be new situated too.  

 

Ground-truth annotations are usually given in a text file where each bounding box in the 

image is defined by 5 numbers. One defining the class (e.g. 0 for human, 1 for football), 

two to define the x and y positions and two to define the width and height of the 

bounding box ground-truth. The x, y, width and height coordinates are normalized on 

the image, so they represent the percentage where they are or how much they occupy 

and, in general, there are two representations, one where x and y represent the top left 

corner of the bounding box and one where x and y represent the center of the bounding 

box which is the one we use. 

 

Figure 16. Original image (left) and flipped image (right) with drawn ground-truth. 15 

 

In our case, as the width, height, y and class of the images are invariant, we just have to 

update the x coordinates. And since the coordinates are normalized, the new x 

coordinate will be the following (4): 

 

 
15 https://blog.paperspace.com/data-augmentation-for-bounding-boxes/ 

https://blog.paperspace.com/data-augmentation-for-bounding-boxes/
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                                                      𝒙𝒏𝒆𝒘 =  𝟏 − 𝒙𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍                                               (𝟒) 

 

For vertical flipping we would do the same but changing the y coordinate. 

 

5.3.2 Cropping 
 

By cropping, as the name implies, we are removing part of the image. In our case, what 

we are removing is a random percentage of the image margin, but we want to keep a 

few things in mind. 

First of all, we only want to remove or crop parts of the image that do not contain objects 

(humans in our case). Another thing we want is to avoid very narrow images (e.g. a large 

width but a poor image height), for this we put the boundaries to 25% of the image 

margin so that the cropping can just reach till there. And finally, we want to choose a 

random value between the edge of the image and the ground-truth with the values 

closest to the border of the image (or the boundaries in case the objects are situated at 

more than 25% away from the border). We can see an example of a cropped image in 

Figure 15, with original image being 15(a) and cropped 15 (b). 

 

 

Figure 15. Original image (left) and cropped image with drawn bounding box (right). 

 

The area ratio of the new bounding box will remain the same as the bounding box before 

cropping, so after cropping we have to normalize it again taking into consideration the 

new image size. Also, since after cropping we probably have new position coordinates, 

we have to calculate the new x and y. 
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The top left of the image has the coordinates (0,0) while the bottom right has the 

coordinates (W, H) where W is the image width and H is the image height. When we are 

cropping, we have to check whether we are cropping on the left or the top of the image, 

as cropping to the right or bottom of the image wouldn’t make any changes to the 

coordinates of the new ground-truth. If we take a look at Figure 15(b), we will see that 

it wouldn’t matter if we cropped more of the image below or at the right of the human 

being, since the ground-truth would remain with the same coordinates. 

For cropping on the top and left, we recalculate the new ground-truth by subtracting to 

the x and y coordinate the amount removed of the image. See equation (5). 

 

                                                             𝒙𝒏𝒆𝒘 =  𝒙𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 −  𝒙𝒄𝒓𝒐𝒑                                            (𝟓) 

    𝒚𝒏𝒆𝒘 =  𝒚𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 −  𝒚𝒄𝒓𝒐𝒑 

 

The x and y coordinates are those of the ground-truth bounding box, not the entire 

image.  

 

5.3.3 Scaling 
 

When we scale an image, we resize the given input image size to a new modified output 

size.  

For scaling, we take a random percentage between 0 and 10% of the image, since if we 

take a larger range, the resized image will have lost a lot of resolution and would be 

difficult to recognize even for humans. 

We selected a random percentage on each side which will extend the border by zero 

padding with black pixels. In Figure 16, we can see an example of the original image 

16(a) and the one after scaling 16(b). 

 

The new ground-truth coordinates have to add to the x and y coordinate the amount 

extended of the image. See equation (6). 

 

                                                           𝒙𝒏𝒆𝒘 =  𝒙𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 +  𝒙𝒆𝒙𝒕𝒆𝒏𝒅                                          (𝟔) 

    𝒚𝒏𝒆𝒘 =  𝒚𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 + 𝒚𝒆𝒙𝒕𝒆𝒏𝒅 
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Figure 16. Original image (left) and scaled image with drawn bounding box (right). 

 

5.3.4 Rotation 
 

The rotation we are doing is by making a circular movement of the image taking the 

center as reference point.  

 

The rotation we are doing takes a random angle between -15 and 15, so the rotation 

can be clockwise or counter-clockwise.  

The most challenging part of the rotation is calculating the new ground-truth of the 

objects in the image. We don’t want to compute every new ground-truth, since after 

rotation it could happen that an object rotates out of the image and is barely 

recognizable, so we want to keep the ground-truth bounding boxes of the objects that 

have at least 50% of the area of them inside the image.  

Let’s first look at how to calculate the ground-truth of objects within the image. 
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Counter clockwise rotation. 

 

We have to compute each new vertex position after the rotation, and after we have the 

4 vertices recalculate the area of the ground-truth.  

  

        𝒚𝒎𝒊𝒏 = (− (𝒙𝟐 −
𝒘𝒊𝒅𝒕𝒉

𝟐
) ∗ 𝐬𝐢𝐧 𝜽) + (𝒚𝟏 −

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
) ∗ 𝐜𝐨𝐬 𝜽 +

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
   (𝟕) 

𝒙𝒎𝒂𝒙 = (𝒙𝟐 −
𝒘𝒊𝒅𝒕𝒉

𝟐
) ∗ 𝐜𝐨𝐬 𝜽 + (𝒚𝟐 −

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
) ∗ 𝐬𝐢𝐧 𝜽 +

𝒘𝒊𝒅𝒕𝒉

𝟐
 

𝒙𝒎𝒊𝒏 = (𝒙𝟏 −
𝒘𝒊𝒅𝒕𝒉

𝟐
) ∗ 𝐜𝐨𝐬 𝜽 + (𝒚𝟏 −

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
) ∗ 𝐬𝐢𝐧 𝜽 +

𝒘𝒊𝒅𝒕𝒉

𝟐
 

    𝒚𝒎𝒂𝒙 = (− (𝒙𝟏 −
𝒘𝒊𝒅𝒕𝒉

𝟐
) ∗ 𝐬𝐢𝐧 𝜽) + (𝒚𝟐 −

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
) ∗ 𝐜𝐨𝐬 𝜽 +

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
 

 

To apply this equation, we convert the degrees to radians. We use equation (8) to 

achieve this. 

 

                                                         𝜽 = 𝒂𝒃𝒔(𝒂𝒏𝒈𝒍𝒆) ∗  
𝝅

𝟏𝟖𝟎
                                                 (𝟖) 

 

We use the absolute value of the angle, since the rotation equation will change if it is 

clockwise or counter-clockwise. We can see an example in Figure 17, the original image 

is 17(a) and the one after counter clockwise rotation 17(b). 

 

In equation (7), x1, x2, y1, y2 represent the original left, right, top and bottom of the 

ground-truth, in the respective order. Width and height are the width and height of the 

entire image, not the ground-truths. In the equation we calculate the new vertices after 

rotation, where 𝒚𝒎𝒊𝒏 is the vertex at bottom left, 𝒙𝒎𝒂𝒙 is the vertex of the bottom right, 

𝒙𝒎𝒊𝒏 is the vertex at the top left and 𝒚𝒎𝒂𝒙 is the vertex at the top right. We call them 

𝒚𝒎𝒊𝒏, 𝒙𝒎𝒂𝒙, 𝒙𝒎𝒊𝒏 and 𝒚𝒎𝒂𝒙 because we don’t need the exact coordinate of each vertex, 

we just want to know where the bottom, right, left and top are. From here we can 

calculate the new ground-truth, which we can see at equation (9). 
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Figure 17. Original image (left) and counter clockwise rotated image with drawn 
bounding box (right). 

 

Our notation for bounding boxes takes the center as reference point, so we have to 

calculate them (𝒙𝒄𝒆𝒏𝒕𝒆𝒓 , 𝒚𝒄𝒆𝒏𝒕𝒆𝒓). 

We note that the new ground-truth is slightly larger than the original, this decision is 

made because it is better to have a little more ground-truth information without 

humans than less information and risk eliminating part of the human. 
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                                                       𝑮𝒘𝒊𝒅𝒕𝒉 =  𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏                                                 (𝟗) 

 𝑮𝒉𝒆𝒊𝒈𝒉𝒕 =  𝒚𝒎𝒂𝒙 − 𝒚𝒎𝒊𝒏 

   𝒙𝒄𝒆𝒏𝒕𝒆𝒓 =  𝒙𝒎𝒊𝒏 +
𝑮𝒘𝒊𝒅𝒕𝒉

𝟐
 

     𝒚𝒄𝒆𝒏𝒕𝒆𝒓 =  𝒚𝒎𝒊𝒏 +
𝑮𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
 

 

Clockwise rotation. 

 

We go through the same process as with counter clockwise rotation, we only change the 

applied equation. See Figure 18, for the original image 18(a) and the one after clockwise 

rotation 18(b). 

 

           𝒚𝒎𝒊𝒏 = (𝒙𝟏 −
𝒘𝒊𝒅𝒕𝒉

𝟐
) ∗ 𝐬𝐢𝐧 𝜽 + (𝒚𝟏 −

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
) ∗ 𝐜𝐨𝐬 𝜽 +

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
      (𝟏𝟎) 

 𝒙𝒎𝒂𝒙 = (𝒙𝟐 −
𝒘𝒊𝒅𝒕𝒉

𝟐
) ∗ 𝐜𝐨𝐬 𝜽 − (𝒚𝟏 −

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
) ∗ 𝐬𝐢𝐧 𝜽 +

𝒘𝒊𝒅𝒕𝒉

𝟐
 

 𝒙𝒎𝒊𝒏 = (𝒙𝟏 −
𝒘𝒊𝒅𝒕𝒉

𝟐
) ∗ 𝐜𝐨𝐬 𝜽 − (𝒚𝟐 −

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
) ∗ 𝐬𝐢𝐧 𝜽 +

𝒘𝒊𝒅𝒕𝒉

𝟐
 

    𝒚𝒎𝒂𝒙 = (𝒙𝟐 −
𝒘𝒊𝒅𝒕𝒉

𝟐
) ∗ 𝐬𝐢𝐧 𝜽 + (𝒚𝟐 −

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
) ∗ 𝐜𝐨𝐬 𝜽 +

𝒉𝒆𝒊𝒈𝒉𝒕

𝟐
 

 

In equation (10) we can see how we calculate the new vertices of the bounding box. In 

this case, 𝒚𝒎𝒊𝒏 is the vertex of the bottom right, 𝒙𝒎𝒂𝒙 is the vertex of the top right, 𝒙𝒎𝒊𝒏 

the one bottom left and 𝒚𝒎𝒂𝒙  the one at top left. 

 

The only thing left is to check if more than 50% of the bounding box is inside the image. 

We perform this by calculating the area of the ground-truth bounding box and 

comparing it to the area of the ground-truth outside the image to see if it exceeds 50%. 

See equation (11). 

 

If 𝑮𝒂𝒓𝒆𝒂𝒊𝒏𝒔𝒊𝒅𝒆
 is bigger than 50% of the total area (

𝑮𝒂𝒓𝒆𝒂_𝒕𝒐𝒕𝒂𝒍

𝟐
), then the ground-truth is 

valid for the training and we are cutting the parts of the ground-truth outside the image. 
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Figure 18. Original image (left) and clockwise rotated image with drawn bounding box 
(right). 

 

 

                                                       𝑮𝒂𝒓𝒆𝒂 =  𝑮𝒘𝒊𝒅𝒕𝒉 ∗  𝑮𝒉𝒆𝒊𝒈𝒉𝒕                                               (𝟏𝟏) 

        𝑮𝒂𝒓𝒆𝒂𝒊𝒏𝒔𝒊𝒅𝒆
= 𝑮𝒂𝒓𝒆𝒂𝒕𝒐𝒕𝒂𝒍

− 𝑮𝒂𝒓𝒆𝒂_𝒐𝒖𝒕𝒔𝒊𝒅𝒆 

 

5.3.5 Masking with human patches 
 

Masking with human patches is a new data augmentation technique. The idea is to 

improve the model performance by training it with images that have human patches 

that are not associated with the environment. 

With this technique, we are not only providing the model with more data to train, but 

we are also helping the model detect only human objects by providing patches that are 

not connected to their surroundings.  
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For this, we take the image with which the model is training and add in a free place the 

ground-truth of a random image. We can see an example at Figure 19, with the original 

image 19(a) and the one after masking with human patches 19(b). 

 

There are a few things to take into consideration when applying this technique. First, we 

want the new patches to have an area similar to their actual ground-truth bounding box 

of the image. For this, before applying data augmentation to the model, we review our 

dataset and check the area of each bounding box and group them based on that. In our 

case, we created 3 groups, small patches (with an area less than 1000 pixels), medium 

patches (with an area greater than small patches but less than 10.000 pixels) and big 

patches (with an area greater than 10.000 pixels). The threshold used to make the 

groups is tuned based on the dataset. We want to do this, because it is more real to life 

to have humans in an image with a similar size. 

 

Once this is done, we look for a good position to place our human patch. We don’t want 

it to overlap with an existing bounding box because we would cover relevant 

information. For this, we first select a random human patch from a random image and 

apply it a random scale (from 0.9 to 1.1), so it also has the possibility of being somewhat 

different from the image from which we took the patch.  Next, we create a matrix of 

ones over the original image, so that the matrix will have one position with the value 1 

for each pixel of the original image at the beginning. We will use this matrix to find a 

position for the human patch, where each position in the matrix will represent the 

starting point at the top-left of the human patch. The representation will be, positions 

with the value 1 for the available spots and positions with the value 0 for the unavailable 

spots. We put zero to the positions where if we were placing the patch it would overlap 

with a bounding box or it would be outside the image. 

 

We already know from the beginning some places that will not be available. We can 

already put these spots in the matrix with the value 0 and thus improve the speed 

performance of this algorithm. In equation (12), we can see how we calculate which 

spots of the matrix can be discarded as valid positions. Since the new patch must be 

completely inside the image, we know a priori that positions with a distance less than 

the patch to the border of the image will not be valid. In the equation, 𝒊𝒎𝒂𝒈𝒆𝒕𝒂𝒓𝒈𝒆𝒕 is 

the matrix of the image where we want to put the patch (e.g. a matrix of ones over 

Figure 19(a)), 𝒊𝒎𝒂𝒈𝒆𝒑𝒂𝒕𝒄𝒉 is the patch we want to put on the image and the 𝒉𝒆𝒊𝒈𝒉𝒕 and 

𝒘𝒊𝒅𝒕𝒉 variables are the height and width of the entire image or patch, depending on 

associated variable.  In the first part of the equation, we are setting all positions that are 

too close to the bottom of the image to 0. The second part sets all positions too close to 

the right of the image to 0. 
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 Figure 19. Original image (left) and masked image with human patches (right). 

 

𝒊𝒎𝒂𝒈𝒆𝒕𝒂𝒓𝒈𝒆𝒕 [𝒊𝒎𝒂𝒈𝒆𝒕𝒂𝒓𝒈𝒆𝒕𝒉𝒆𝒊𝒈𝒉𝒕
− 𝒊𝒎𝒂𝒈𝒆𝒑𝒂𝒕𝒄𝒉𝒉𝒆𝒊𝒈𝒉𝒕

+ 𝟏 ∶ 𝒊𝒎𝒂𝒈𝒆𝒕𝒂𝒓𝒈𝒆𝒕𝒉𝒆𝒊𝒈𝒉𝒕
 , ∶] = 𝟎      (𝟏𝟐) 

𝒊𝒎𝒂𝒈𝒆𝒕𝒂𝒓𝒈𝒆𝒕[: , 𝒊𝒎𝒂𝒈𝒆𝒕𝒂𝒓𝒈𝒆𝒕𝒘𝒊𝒅𝒕𝒉
− 𝒊𝒎𝒂𝒈𝒆𝒑𝒂𝒕𝒄𝒉𝒘𝒊𝒅𝒕𝒉

+ 𝟏 ∶ 𝒊𝒎𝒂𝒈𝒆𝒕𝒂𝒓𝒈𝒆𝒕𝒘𝒊𝒅𝒕𝒉
] = 𝟎 

 

Next, we also set all positions of the matrix that overlap with a ground-truth bounding 

box to 0. In addition, we look at the positions above and to the left of each bounding 

box, and we discard the positions where it would overlap with the bounding box, 

considering that the position is the starting point of the top left pixel of the human patch. 
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 Figure 20. Original image (left) and masked image with human patches (right). 

 

Finally, we choose an available random position that will be the starting point from 

where we put the human patch. It may happen that any spot is available, e.g. with very 

large bounding boxes. If after the first iteration of searching for an available spot a free 

position is not found, we change the human patch to another that belongs to a smaller 

area group (if the patch is already from the small group, we omit human masking in this 

image). We can see another example at Figure 20, with 20(a) as original image and 20(b) 

the image after masking. 

 

The annotations of the new ground-truth will be those of the original image (e.g. Figure 

20(a)) plus the bounding box of the infiltrated human patch. 
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5.3.6 Masking without human patches 
 

This technique is similar to the masking with human patches. We use patches that do 

not contain any relevant human information. This can improve the performance of our 

model by training to recognize humans without taking into consideration the 

environment, as our model should be good at understanding where humans are and 

where they are not. We see an example at Figure 21, with the original image 21(a) and 

the one after masking without human patches 21(b). 

 

 Figure 21. Original image (left) and masked image without human patches (right). 

 

We want the patches to be a similar size, so we don’t get a very large patch or a very 

narrow one. For this, we gave the patches an area of 10.000 pixels. On this area, we 

apply a random scale of 0.9 to 1.1. We always keep the same length in width and height 

of the patches without humans, so they are square. 

Just like masking with human patches, we have to search for available spots, but in this 

case, we have to do it twice. One to choose a random patch that does not contain any 

bounding box information, and another to choose an available spot to place the new 

patch. In both cases, we create a matrix on the target images (image where we want to 

place the patch and image where we want take the patch) and set the pixels as available 

(one) or unavailable (zero) as masking with human patches. Finally, we choose an 

available random position from both matrices. 
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Since one patch doesn’t cover much of an image, we choose the number of patches we 

use randomly (between 1 and 5, all from different images). Other patches can overlap 

as long as they don’t take exactly the same position. We can see another example at 

Figure 22, with 22(a) as the original image and 22(b) as the image after masking. 

Since there is no overlapping among patches and ground truth boxes, ground truth 

remains unchanged.  

 

6. EXPERIMENTS 
 

In this section we will see all the experiments carried out in this project. 

 

Figure 22. Original image (left) and masked image without human patches (right). 
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6.1 Datasets 
 

Here we will find the datasets used. 

 

Identity-preserver Human Detection dataset 

 

This dataset was provided by an international competition in which we participated, 

called ChaLearn LAP Challenge “Identify-Preserving Human Detection” [8]. 

The provided dataset included nearly 100.000 training images and 15.000 test images 

for each depth and thermal images.  

The depth data consists of 1-channel images with a size of 1280x720 where each pixel 

represents the distance to the camera in millimeters.  In Figure 28, we have an example 

of an image from the depth dataset. The image is color mapped to ease visualization. 

The red square represents a predicted bounding box.  

 

 

Figure 28. Image example of the depth dataset. 16 

Thermal data consists of 1-channel images with a size of 213x120 where each pixel 

represents the absolute temperature in Kelvin degrees multiplied by 100. In Figure 29, 

we have an example of an image from the thermal dataset. Here we also color map the 

image to ease visualization. 

 

 
16 http://chalearnlap.cvc.uab.es/dataset/34/description/ 

http://chalearnlap.cvc.uab.es/dataset/34/description/
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Figure 29. Image example of the thermal dataset. 17 

 

MNIST dataset 

 

The MNIST dataset is a database of handwritten digits [5]. The official dataset consists 

of 60.000 training and 10.000 test images. Each image is grayscale, has the digit 

centered, is normalized and 28x28 pixels in size.   

The digits were drawn by over 250 different writers, setting them apart for training and 

test samples, to make sure that the model learns to recognize the digit and not personal 

calligraphy. In Figure 30¸ we have two examples of handwritten digits from this dataset. 

 

 

Figure 30. Two examples of handwritten digits from the MNIST dataset. 18 

 
17 http://chalearnlap.cvc.uab.es/dataset/34/description/ 
18 http://yann.lecun.com/exdb/mnist/ 

http://chalearnlap.cvc.uab.es/dataset/34/description/
http://yann.lecun.com/exdb/mnist/
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PASCAL VOC dataset 

 

We wanted our models to train with RGB images too, so we introduced over 20.000 RGB 

images that contain human information from the PASCAL VOC dataset. In Figure 31¸ we 

have an example of an RGB image from this dataset. 

 

 

Figure 31. Example of RGB image from the PASCAL VOC dataset. 

 

6.2 Metrics 
 

A popular metric for measuring the accuracy of object detectors is mean Average 

Precision (mAP), which calculates the normalization of the accuracy between 0 and 1.  

To calculate the mAP, we must first understand Intersection over Union (IoU). This 

metric helps us identify the correctness of predicted bounding boxes, even if they do 

not exactly overlap with the ground-truth bounding box.  It is highly unlikely that the 

predicted bounding box fits perfectly over the ground-truth and just because it is moved 

a few pixels does not mean it is a wrong detection. In Figure 32 we can see an example 

of IoU, we use equation (14) to calculate the value of IoU. 

 

                                                                   𝑰𝒐𝑼 =
𝒂𝒓𝒆𝒂𝒐𝒗𝒆𝒓𝒍𝒂𝒑

𝒂𝒓𝒆𝒂𝒖𝒏𝒊𝒐𝒏
                                                          (𝟏𝟒) 
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Figure 32. Example of IoU. 19 

 

With the IoU parameter we can calculate the True Positives/Negatives and the False 

Positives/Negatives, which we will need to calculate the Precision and Recall of the 

model. 

A commonly used threshold for IoU is 0.5, so if the IoU of a predicted bounding box is 

above 0.5 it is considered a True Positive, otherwise it is considered a False Positive.  

 

Now that we have the True Positives and False Positives, we can calculate the Precision 

from the model. Precision calculates the correct detections of the model. See equation 

(15), where TP stands for True Positives and FP for False Positives: 

 

                                                               𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
                                                      (𝟏𝟓) 

 

Recall calculates the number of True Positives found. See equation (16), FN stands for 

False Negatives: 

 

                                                                   𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
                                                         (𝟏𝟔) 

 

Finally, we can calculate the Average Precision which finds the area under the precision-

recall curve, which contains the Precision and Recall of each image. See equation (17). 

 

 
19 https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/ 

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
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                                                                      𝑨𝑷 = ∫ 𝒑(𝒓)𝒅𝒓
𝟏

𝟎
                                                             (𝟏𝟕) 

 

Since we only have one class (humans), we already have the mAP. In case of more 

classes, we would add the AP of each class divided by the total number of classes. 

 

6.3 Non-Maximal Suppression (NMS) 
 

Non-maximal suppression (NMS) is a technique we are using in the detection algorithms 

that allows us to discard all bounding boxes that do not reach a selected threshold of 

probability of containing an object. So, for example, if we want our network to detect 

every single possible object this parameter should be very low but we probably will get 

a lot of false positives. In Figure 33 we see an image before and after removing the 

bounding boxes with lower confidence than the NMS threshold. 

 

 

Figure 33. Removing bounding boxes with low confidence using NMS. 20 

 

 

6.4 Results 
 

Results in ChaLearn LAP Challenge “Identify-Preserving Human Detection” 

 
20 https://arxiv.org/pdf/1506.02640.pdf 

https://arxiv.org/pdf/1506.02640.pdf
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This competition was organized in the context of the 15th IEEE International Conference 

on Automatic Face and Gesture Recognition. The goal was to develop a computer vision 

method for human recognition in depth and thermal images.  

 

We participated in two categories: depth and thermal recognition. For each category, 

we trained a model with the data corresponding to its category. We also trained a model 

with a mix of both dataset and adding RGB images, but the results were much lower in 

precision when comparing to the other two models. 

 

Depth competition 

 

First we submitted in the learning phase a model without data augmentation and with 

a small number of trained epochs and we obtained a mAP of 0.196 where the 

Intersection over Union (IoU) is at least 0.5, so the ground-truth bounding box and the 

predicted bounding box are sharing at least 50% of the area.  

 

 

Figure 34. Example of depth image with predicted bounding boxes with low NMS. 

 

In the submission, we were training with the Identity-preserver Human Detection 

dataset, with 80% as the training set and 20% as the validation set. The validation 

dataset provides an unbiased evaluation of our model while tuning the hyperparameters 

during training. The dataset provided consists of several separated videos in frames for 
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the images. We decided for future trainings to place only the frames belonging to 2 

random selected videos to the validation set (700 images) and the rest as training set. 

So, our model has more images to train. 

  

After training for 23 epochs and applying data augmentation, we obtained a mAP of 

0.318 with IoU at 0.5 and 0.533 with IoU at 0.25. For this result, we also internally fine-

tuned NMS and IoU threshold parameters. The NMS parameter for the first submission 

was very low, resulting in a large number of False Positives, as we were predicting a 

bounding box even if the confidence was low. In Figure 34, we can see that because we 

chose a low NMS threshold, the model made many false predictions, resulting in a lower 

precision. Above each bounding box we see confident the model has on each prediction. 

 

For the submission with 23 epochs, we fine-tuned the NMS threshold parameter to 0.65, 

which means that it must have at least 0.65 confidence to predict the bounding box. We 

set the intern IoU threshold parameter for mAP calculation to 0.5. In Figure 35, we have 

a better prediction of an image than with the model for the first submission. 

 

 

Figure 35. Example of depth image with predicted bounding boxes with fine-tuned 
NMS.21 

 

 
21 Competition leaderboard: https://competitions.codalab.org/competitions/21926#results , username: 
Lukaz 

https://competitions.codalab.org/competitions/21926#results


 

42 
 

Despite the fact that these results are still far from perfect, we achieved an improvement 

of more than 60% compared to the first model (IoU at 0.5) thanks to data augmentation, 

more training and fine-tuning parameters. 

 

In the final evaluation on the test depth data we obtained a mAP of 0.259 with IoU at 

0.5 and 0.594 at 0.25. 

 

Thermal competition 

 

Just like in the depth competition, we submitted a model without data augmentation, a 

small number of epochs and without fine-tuning parameters. Our score for this model 

was a mAP of 0.302 with IoU at 0.5. 

Here we also went from the 80/20 split for the training and validation set, to just placing 

the frames that belong to 2 videos for the validation set (2419 images). 

 

After training for 59 epochs and applying data augmentation, we obtained a mAP of 

0.364 with IoU at 0.5 and 0.556 with IoU at 0.25. As in the depth competition, we fine-

tuned NMS parameter, obtaining the best results with NMS threshold set to 0.6. In 

Figure 36, we have a bounding box prediction of an image. 

 

 

Figure 36. Example of thermal image with predicted bounding box. 22 

 
22 Competition leaderboard: https://competitions.codalab.org/competitions/21927#results , username: 
Lukaz 

https://competitions.codalab.org/competitions/21927#results
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This represents an improvement of more than 20% with respect to the first model (IoU 

at 0.5).  

In the final evaluation on the test thermal data we obtained a mAP of 0.304 with IoU at 

0.5 and 0.684 with IoU at 0.25. 

 

Results with MNIST dataset 

 

The objective for the MNIST dataset is to classify each digit. The best classifiers on the 

official MNIST page, achieve an accuracy of 99.77% using CNNs. 

We build our own model implementing Mixnet [4]. We tried different number of layers, 

optimizers, loss functions and kernel sizes. Our final and best model achieved a 

performance of 99.1% accuracy over the test data.  

 

The model we built consisted of 3 convolutional layers, where the first layer had the 

traditional 3x3 kernel and the second and third where each using two different kernels 

with different sizes in the layer (3x3 and 5x5). The last two layers are fully connected 

layers.  

We also down sampled the tensor with maxpooling, used ReLU as activation function 

and we used a dropout layer. As loss function, we used the categorical cross entropy 

loss and as an optimizer we used AdamOptimizer. We can see the architecture of our 

model at Figure 37. 

 

Figure 37. Architecture of the model for MNIST dataset experiments. 

 

In previous models, we tested one convolutional layer that used multiple kernel sizes. 

Here we obtained 91% accuracy after one training epoch and 97% accuracy after several 
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training epochs. By using 2 Mixnet convolutional layers, we achieved 99.06% accuracy 

after 3 training epochs, which increased slightly after 12 epochs to 99.1%.  

 

We wanted to compare this model with one that uses the exact same architecture, but 

changing layers with multiple kernel sizes to layers with one 3x3 kernel. Here we got a 

small disadvantage in accuracy comparing to the Mixnet model. We obtained a 

maximum of 97% accuracy after 12 epochs (2.1% less than the Mixnet model).  

 

We also tested the proposed Mixnet-S architecture of the Mixnet paper on the MNIST 

dataset, but obtained very low results (0.097% accuracy after 1 epoch and 0.12% 

accuracy after 6 epochs). These results are low because the proposed Mixnet-S 

architecture is very deep with 17 convolutional layers and is not intended to recognize 

simple objects such as the handwritten digits in the MNIST dataset. We have a summary 

of the results at Table 1. 

 

We observe a better performance using multiple kernels on the MNIST dataset, if the 

depth of the network is according to the dataset. 

 

 

SIMPLE 
MIXNET 
MODEL 

(3 epoch) 

SIMPLE 
CNN 

MODEL 
(3 epoch) 

SIMPLE 
MIXNET 
MODEL 

(12 epoch) 

SIMPLE 
CNN 

MODEL 
(12 epoch) 

ORIGINAL 
MIXNET-
SMALL 

(6 epoch) 

MNIST 
DATASET 

99.06% 96.5% 99.1% 97% 12% 

Table1. Results on MNIST dataset. 

 

Results of Mixnet-S and MyYOLONet on human detection 

 

We trained a model with the Mixnet-S architecture [4] for 48 epochs without data 

augmentation. The dataset we used was a combination of the depth and thermal images 

provided by the Identity-preserver Human Detection challenge (84818 images for each 

modality) and the images with human information we had from the PASCAL VOC dataset 

(23284 RGB images). 
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Since the combination of all these datasets contained almost 200.000 images, we 

trained our model with 10% randomly selected images from the entire dataset Our 

validation set contained over 2.500 images. The ratio of each modality, and therefore 

the probability of selecting an image of one of the 3 modalities, is 44% for depth, 44% 

for thermal and 12% for RGB images.  

 

On the evaluation of the model on the depth dataset provided by the Identity-preserver 

Human Detection challenge (almost 13.000 images in the validation set) we achieved a 

mAP of 0.49% with IoU at 0.5 and NMS at 0.65. 

On the evaluation of the model on the thermal dataset (also from the Identity-preserver 

Human Detection challenge with almost 13.000 images as validation set) we obtained a 

mAP of 0.42% with the same parameters as in the depth evaluation. 

 

If we compare these results with those we obtained in the International Competition, 

we observe an increase of more than 50% on depth (0.49 mAP on Mixnet and 0.318 on 

MyYOLONet) and an increase of more than 15% on thermal (0.42 mAP on Mixnet and 

0.364 on MyYOLONet), although we have to take into account that the Mixnet-S model 

trained for more epochs than MyYOLONet and that Mixnet trained one model over the 

entire dataset (depth, thermal and RGB) and MyYOLONet trained one model with depth 

dataset and one with thermal dataset. 

 

We also trained MyYOLONet for 48 epochs with the same dataset Mixnet-S was training. 

In Table 2, we have the results. 

 

 

MIXNET-
SMALL 
MODEL 

(1 epoch) 

MYYOLONET 
MODEL 

(1 epoch) 

MIXNET-
SMALL 
MODEL 

(48 epoch) 

MYYOLONET 
MODEL 

(48 epoch) 

DEPTH 
DATASET 

14% 12% 49% 44% 

THERMAL 
DATASET 

15% 9% 42% 13% 

Table 2. Results on depth and thermal datasets with Mixnet-S and MyYOLONet. 
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We can see a small accuracy advantage from the Mixnet model when testing with the 

depth dataset and even greater advantage in the thermal dataset. In the depth dataset, 

we achieved an accuracy improvement of more than 10% with the Mixnet model and an 

improvement of more than 320% over the MyYOLONet algorithm. 

 

Let’s take a look at Mixnet’s results compared to MyYOLONet models from the 

international competition. See Table 3. In Figure 38, we can see some predictions 

made on the validation set from both models. 

 

Please note that the models have been trained with different dataset and different 

number of epochs. What they have in common is that they evaluated the same 

validation set (almost 2600 depth and thermal images). 

 

 
MIXNET-SMALL 

MODEL 

MYYOLONET MODEL 
WITH DATA 

AUGMENTATION 

DEPTH DATASET 49% 40% 

THERMAL DATASET 42% 45% 

Table 3. Results on depth and thermal datasets with Mixnet-s and MyYOLONet with 
data augmentation. 

 

When applying data augmentation, we have to take into consideration that it has a 

higher computational cost. For horizontal flipping, we are reversing each row of the 

matrix, so we have a time complexity of O(N*M) where N is the number of rows and M 

the number of columns. For scaling and cropping, the time complexity is related to the 

number of bounding boxes that the image has O(B). For rotation, the time complexity is 

O(N*M+B), where N is the number of rows of the image, M is the number of columns 

and B is the number of bounding boxes of the image. For masking with human patches, 

we have O(N*M*B + B)¸where N are the rows, M the columns and B the bounding boxes 

of the image, this is because we first go through the bounding boxes of the image to 

calculate the area and thus know which human patch with a similar area we can choose, 

and then, we go through width and height of the targeted image, discarding spots that 

are not available for the patch due to the bounding boxes. For masking without human 
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patches, the time complexity is O(P*G*N*M + B) where P is the number of patches 

without humans we are going to put ,G is the number of ground-truth bounding boxes 

of the image where we take the patches from and B,N and M are the same as in masking 

with human patches. Here we also go first through the bounding boxes of the target 

image to disable positions that are occupied, and then for each non-human patch we 

check the ground-truth bounding boxes of the image to take the patch without cutting 

any relevant information.  

 

 

Figure 38. Example of predictions on the depth and thermal datasets from MyYOLONet 
and Mixnet models. 

 

6.5 Setup 
 

Here we will show the hyperparameters used for the experiments. All models used 

Adam as optimizer with a learning rate of 1𝑒−4. 

 

Setup for ChaLearn LAP Challenge “Identify-Preserving Human Detection” 

 

On the international competition, we trained our model on a server with Python 2.7.12 

and tensorflow 1.12. For the data augmentation we used the libraries math, numpy 

and cv2. 

In the depth category, we trained a model for 23 epochs with MyYOLONet architecture, 

which took nearly 200 hours of computational training. As previously mentioned, the 

training set contained almost 100.000 images and the validation set almost 700, all 
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depth images. We used different type of data augmentation. We configured it so that it 

has a 75% probability of having data augmentation. If we apply data augmentation to 

the image, it has a 50% probability to flip horizontally, a 50% probability to mask (if we 

mask, we have 50% probability of masking with human patches and 50% to mask 

without), a 50% probability of rotation and a 50% probability of resizing (if we resize, we 

have 50% probability to crop and 50% probability to scale). The IoU threshold is 0.5 and 

the NMS threshold is 0.65. We also use a batch size of 10. Model evaluation is usually 

much faster and take less than an hour. 

In the thermal category we trained a model for 59 epochs with MyYOLONet architecture, 

which took almost 175 hours. The training set consisted in 95.000 images and the 

validation set in 2.500 images. We apply the same probabilities for data augmentation 

as in the depth category. The IoU threshold is 0.5 and the NMS threshold is 0.6. We used 

a batch size of 20. 

 

Setup for MNIST dataset experiments 

 

We used Python 3.6.10. We build the model on Jupyter-Notebook with version 6.0.3, 

running on Anaconda with version 4.8.1. We also used tensorflow 1.8.0 and the libraries 

mnist and numpy. Training the model for 12 epochs took nearly 4 hours. 

 

Setup for the results of Mixnet-S and MyYOLONet on human detection 

 

Here we also used Python 2.7.12 and tensorflow 1.12. 

The Mixnet-S model trained for 48 epochs, which took nearly 550 hours. IoU threshold 

is 0.5 and NMS threshold 0.65. We used a batch size of 10. 

The MyYOLONet model trained for 48 epochs, which took nearly 65 hours. The 

parameters are the same as for the Mixnet-S model. 

We can see that even Mixnet-S in some modalities had a better mAP than MyYOLONet, 

the training process takes much longer. 

 

7. CONCLUSIONS 
 

In this project, we saw different architecture designs. We built a model with different 

kernels in the layers (Mixnet) and we achieved an almost perfect model to classify 

handwritten digits (91.1% accuracy). The model without the multiple kernels remained 
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97%. We also train a modified Mixnet-S model with a combination of 3 different datasets 

and test its accuracy with depth and thermal images. We did the same with the 

MyYOLONet model and saw that the Mixnet-S model had a small accuracy advantage in 

depth and thermal images, but the training process took much longer. Finally, we tested 

two MyYOLONet models that were learning with data augmentation over depth and 

thermal images, in a separated way. With these two models we participated in a 

competition. In addition, we evaluated them on the validation set in which Mixnet-S was 

tested for comparison. Here we got a slight advantage for Mixnet-S in depth images and 

a slight advantage for MyYOLONet in thermal images. 

 

There are still many challenges for object detection. For training, a model needs 

thousands of images with their corresponding ground-truth. Labeling images with a 

ground-truth bounding box of the exact position of the object is a slow task, and some 

dataset do not have enough data for the model to learn to detect objects well. That’s 

also one reason why we mix 3 datasets for training our models. Another difficult task for 

object detection is to detect large and small objects as well. Objects in real life have 

different W/H ratios and scales, so they are in the images the model trains with. This is 

a reason why MyYOLONet implements multiple branches for each anchor size, where 

each branch is learning to recognize objects of a specific size. The model could then 

detect objects in multiple scales. However, object detection for small images remains a 

challenge. We also have challenges with unbalanced data, for example in the MNIST 

dataset there are 25% more images with digit 1 than with digit 5. This leads the model 

to learn more about features of digit 1 and this can be counterproductive for the 

accuracy. Note here that we got good accuracy with the MNIST model anyway, but 

MNIST is a simple dataset to recognize and we are classifying each image instead of 

detecting the exact position of the object, making the task easier. Another obstacle is 

that our models also have a slow convergence. The network takes a long time to learn 

more or less precisely the features of the objects in the images. It is likely that in the 

future we will benefit from advances in neural networking for a faster convergence time. 

 

Possible implementations for future work are combinations of MyYOLONet with Mixnet. 

We could test the mAP of the MyYOLONet architecture on different datasets, but 

applying multiple kernels instead of one in the layers. This could lead to better accuracy 

as we are using multiple branches to detect images of different sizes and multiple 

kernels for detecting high-resolution and low-resolution patterns.  

 

Image-based human detection algorithms offer good results, but are still far from 

human-level performance in most areas. But object detection has grown in popularity 

in recent years due to its wide range of opportunities, so the direction it is heading is 

promising to achieve reliable and autonomous machines. 
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