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We study the optical properties of an ordered atomic array when the interparticle distance is
smaller than the light wavelength, for which collective effects arising from light-induced dipole-dipole
interactions become relevant. In this case the scattered fields by the atoms interfere and can lead
to an enhanced or suppressed spontaneous emission of photons corresponding to superradiance or
subradiance, respectively. For a single excitation the system can be described in terms of collective
eigenmodes, which have a modified decay rate and frequency shift compared to a single atom.
By using exact diagonalization we derive the collective decay rates of an atomic array coupled to a
nanophotonic waveguide and also in free space, whose atoms are transversally polarized to the atomic
chain. We then study an application that takes advantage of the collective decay and subradiance
arising in atomic arrays.

I. INTRODUCTION

The radiation properties of a single atom are modi-
fied in presence of other atoms due to the interaction
with a common electromagnetic vacuum field. The elec-
tromagnetic vacuum can mediate dipole-dipole effective
interactions between the atoms, by exchange of a vir-
tual photon. This can lead to collective effects such as a
strong enhancement or suppression of spontaneous emis-
sion of photons, leading to the well known phenomena of
superradiance and subradiance [1].

Spontaneous emission of photons occurs in random di-
rections which are often undetectable and thus, repre-
sents a loss of information hindering quantum applica-
tions based on an efficient interaction between atoms and
photons. In standard treatments of atomic disordered en-
sembles in free space, the spontaneous emission of pho-
tons is considered to be an independent single-atom pro-
cess. However, we can expect that in dense atomic media,
and moreover for spatially ordered ensembles for which
interference effects of the emitted fields become maxi-
mal, this assumption breaks down, and subradiance and
superradiance start to be relevant.

In subradiant states, the decay is strongly suppressed
and the lifetime of the atoms is increased. However, these
states are by nature decoupled from optical propagating
modes, what makes it difficult to access them for prac-
tical applications. Instead, selectively radiant states are
those that can efficiently emit in a preferred mode that
can be detected. Therefore, such states might find useful
applications in the areas of quantum information process-
ing or quantum optics.

Here we study the collective photon emission of an
ordered chain of two-level atoms coupled to a nano-
waveguide, and analyse a particular application where
collective radiation can be exploited to create a high
quality factor optical cavity with the atoms. This work
is organized as follows. First we present the theoret-
ical framework that describes the interaction between
light and atoms. In particular, we present the effective

Hamiltonian governing the atomic part and the relevant
Green’s function that describes how photons propagate
in the medium. Next, we analyse the decay rate of the
collective modes for three different situations. The first
one, the Dicke model, a simple system of N two-level
atoms with infinite range dissipative interactions. The
second one, corresponds to the ordered chain coupled
to a one-dimensional waveguide that mediates the in-
teractions. The third model corresponds to an ordered
chain of two-level atoms in free space. Finally, we analyse
an application that exploits collective radiation of these
modes. Specifically we show that two arrays of atoms
coupled to a waveguide can behave as an optical cavity
that reversibly exchange an excitation with an impurity
atom at its center.

II. THEORETICAL FRAMEWORK

The density operator ρ is the more general object to
describe an open quantum system. ρ can represent pure
states and also mixed states. It is defined as:

ρ =

N∑
i=1

pi |Ψi〉 〈Ψi| (1)

Where Ψ is a pure state with probability pi.
In this paper we will work with two-level atoms with

ground state |g〉 and excited state |e〉. In this way and
within the Born–Markov approximation [2], the evolution
of ρ in time is described by the Lindblad master equation:

∂tρ = −i[H, ρ]/~ + L[ρ̂] (2)

In absence of any external field the Hamiltonian is de-
fined by:

H = ~ω0

N∑
i=1

σ̂iee + ~ω0

N∑
i,j=1

J ij σ̂iegσ̂
j
ge (3)
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FIG. 1: Scheme of the desexcitation operator that takes the
atom from the excited level to the fundamental and the ex-
citation operator that takes the atom from the fundamental
level to the excited.

Where

J ij = −
µ0d

2
egω

2
eg

~
Re {G (r, rj , weg)} · d̂j (4)

And the Lindbald operator:

L[ρ̂] =

N∑
i,j

Γij

2

(
2σegj ρ̂σ

ge
i − σ

eg
i σ

ge
j ρ̂− ρ̂σ

eg
i σ

ge
j

)
(5)

Where

Γij = µ0d
2
egω

2
egd̄
∗
j · Im {G (rj , rl, weg)} (6)

Where d is the electric dipole moment strength, d̂j is
the polarization orientation and σ̂ge/ σ̂eg are the de-
sexcitation/excitation operators (see Fig.1). The func-
tion G (rj , rl, weg) is the electromagnetic Green’s tensor,
that depends on the particular electromagnetic environ-
ment and describes how photons propagate between two
atoms.

The two last terms of the Lindblad operator Eq.(5)
can be recasted in the form of an effective non-Hermitic
Hamiltonian, defined as:

Heff = ~ω0

N∑
i=1

σ̂iee + ~ω0

N∑
i,j=1

(
J ij − iΓij

2

)
σ̂iegσ̂

j
ge (7)

that dictates the deterministic evolution of the atoms
following the differential equation i∂tρ = (Heffρ−ρH†eff).
Besides this evolution, the atoms can undergo quantum
jumps given by the first term in the Lindblad expression.
However, in our work we will be interested in the case
where a single excitation is present in the system. In
this case, the stochastic or quantum jumps only trivially
desexcite the atoms leading them into the ground state.
For most observables of interest here the physics can be
properly described only with Ĥeff [3].

III. COLLECTIVE DECAY RATES IN
ORDERED ATOMIC ARRAYS

A. Dicke model

The phenomena of superradiance arising in a collection
of particles interacting with a common radiative bath

was first introduced by Dicke in 1954 [1]. He studied the
collective radiative properties of a gas of molecules when
they are confined in a small volume compared to the light
wavelength, and effectively can be described as being at
the same real space position. This case corresponds to
a constant value of the coupling constants J ij = 0 and
Γij = Γ0 in Eq.(7), for all possible pairs of interacting
atoms.

As a first example, and to get some intuition, we will
study how subradiant an superradiant eigenmodes arise
in this simple system, for which Heff can be rewritten as:

ĤDicke
eff = −iΓ0

2

N∑
i,j

σ̂egj σ̂
ge
i , (8)

Let us first consider only the case of two atoms. For a
single excitation, the basis vectors are |↑↓〉 and |↓↑〉. We
can construct Heff :

HDicke
eff = −iΓ0

2

(
1 1
1 1

)
(9)

and diagonalize it in order to find the eigenvectors and
the eigenvalues:

λ+ = Γ0 and λ− = 0

|+〉 = 1√
2

(|↑↓〉+ |↓↑〉)

|−〉 = 1√
2

(|↑↓〉 − |↓↑〉)

. (10)

This represents collective modes where the excitation
is delocalized over the two atoms. The fields emitted by
the two atoms perfectly constructively (destructively) in-
terfere leading to the brightest (darkest) state with max-
imum (minimum) decay rate λ+ (λ−).

For the case of N identical atoms, we can define col-
lective spin operators Sα =

∑
i σ

α
i . Taking into account

that Ŝ± = Ŝx ± iŜy, the Hamiltonian can be rewritten
as

HDicke
eff = −iΓ0

2

(
Ŝ2 − (Ŝz)2

)
. (11)

Therefore the eigenmodes of this Hamiltonian have a
well defined value of the collective spin operator Ŝ and
third component Ŝz. The decay rate is then given by
Γ(S, Sz) = Γ0S(S + 1)− Sz. In particular, the brightest
state is the state with maximum value of S = N/2 (max-
imally symmetric) and Sz = 0, whereas the darkest state
is the total singlet state with S = 0 and Sz = 0.

B. 1D Waveguide

In this section we will work with N two-level atoms
coupled to a 1D dielectric nanofiber oriented along x̂ axis
(Fig. 2). Atoms are separated by a constant distance d.

As shown in Fig. 2 the atom emits in two different
ways. The decay rate Γ′ refers to spontaneous emission
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FIG. 2: Representation of the waveguide: N atoms in chain
along a nanofiber in the x̂ axis with a distance d < λ/2. Γ′

and Γ1D represents the singel-atom emission rates into the
free space and into the waveguide, respectively.

of nonguided photons into free space modes and Γ1D is
the photon decay into the waveguide mode. In this case
the Green’s function can be approximated by:

G (ri, rj , weg) = G0 (ri, rj , weg)+G1D (ri, rj , weg) , (12)

Where the first term G0 is the Green’s tensor in free
space, given by

G0 (rj , rl, weg) =
eik0r

4πk2
0r

3

((
k2

0r
2 + ik0r − 1

)
I
)

+ (13)

(
−k2

0r
2 − 3ik0r + 3

) r⊗ r

r2
, (14)

while the G1D is the Green’s function associated with the
nanofiber guided mode

G1D (rj , rl, weg) = g eik1D|zi−zj |, (15)

with g being a constant that depends on the radial dis-
tance of the atoms to the nanofiber and the exponential
represents the mediated interaction of the atoms by the
waveguide mode.

For the moment, we will only consider mediated inter-
actions through the nanofiber guided mode, which means
that G = G1D. In this case the effective Hamiltonian is:

Ĥ1D
eff = −Γ1D

2

∑
i,j

eik1D|zi−zj |σ̂egi σ̂
ge
j (16)

We now calculate the eigenvalues and the eigenvectors
of the Hamiltonian in order to analyze the decay rate
modes. Fig 3 shows the decay rate (imaginary part of
the eigenvalues) with N = 20 for different values of d/λ.

As we can see it has a periodically behaviour. For
d/λ = n/2 with n ∈ Z+ we can see a radiant state
with collective decay Γ = NΓ0, together with N − 1
completely dark states. This is due to the constructive
and destructive interference between the electromagnetic
waves emitted by the atoms, respectively.

If all the atoms are in phase, for n even the exponential
turns +1 and we have a constructive interference. For n
odd the exponential turns (−1)|i−j| and we have a de-
structive interference (see Fig.4). Therefore a maximally
bright state corresponds to a superposition of excitations
between the different atoms that are in phase (out of
phase, with relative phase π) for n even (odd).

FIG. 3: Γ/Γ0 (decay rate) of the N modes for different values
of d/λ for a chain of N = 20 atoms coupled to a waveguide.

FIG. 4: Representacion of the electromagnetic waves of the
atoms with n even (d/λ0 = 1, construcitve) and with n odd
(d/λ0 = 1/2, destructive),

C. Free space: subradiant states

In this section we will apply the spin model to a one-
dimensional ordered chain of N two-level atoms in free
space. The polarization of the atoms is considered to be
transversal with respect to the axis defined by the chain.
In this conditions we can treat the position of atoms as
classical points rij = ri − rj = r. By replacing this in
the expression of the Green’s function (14) and inserting
it in the effective Hamiltonian (7) we arrive at:

Ĥ0
eff =− 3πΓ0

k0

N∑
i,j

eik0r

4πk2
0r

3

((
k2

0r
2 + ik0r − 1

)
I+

(
−k2

0r
2 − 3ik0r + 3

) r⊗ r

r2
)σ̂egi σ̂

ge
j

(17)

where Γ0 = |d|2k3
0/3π~ε0 is the rate of spontaneous emit-

ted photons, d the lattice constant, k0 = ω/c is the wave
number of the atomic transition and r

⊗
r is a tensor

product that depends on the direction of the polarization
and the particles position. More specifically, in our sys-
tem (1D chain), the atoms are in the z axis so r = zi−zj
and x is the direction of the polarization. We have to take
into count that we have a term that goes like 1/(zi−zj)α,
so for ri = rj we have a discontinuity. We can fix it by
doing an expansion of the Green’s function in the limit
ri → rj so that ρ2G0(ri → rj) = −iΓ0/2 [5].
We can now apply all this formalism to a real system.
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We fix the number of atoms to N = 50 and analyze how
the decay varies with d/λ0. For each d/λ0 we diagonalize
Heff and compute the eigenvalues. The decay rate (the
imaginary part of the eigenvalues) has been calculated as
a function of Γ0 so that the result is expressed in terms of
the single-atom spontaneous emission rate. The results
are shown in Fig. 5.

FIG. 5: Γ/Γ0 (decay rate) of the N modes for different values
of d/λ0 for a chain of N = 50 atoms in 1D free space with
transverse polarization.

We can see that for large d/λ0 the collective decay
rate Γ → Γ0 because this limit corresponds to a system
with effectively independent atoms and therefore the de-
cay rate is the spontaneous emission rate of a single atom
Γ0. In the other hand, for decreasing d/λ0 we observe a
periodical behaviour due to the constructive or destruc-
tive interference of the fields emitted by the atoms. Fi-
nally we notice an interesting behaviour for d/λ0 < 1/2.
In this region there exist collective modes with Γ/Γ0 � 1,
which are strongly subradiant.

IV. AN APPLICATION: CAVITY QED WITH
ATOMIC MIRRORS

In this section we will show that it is possible to con-
struct an effective high finesse cavity coupled to an impu-
rity atom by taking advantage of the collective radiative
properties of ordered atomic arrays in free space studied
in the previous section. Let us consider a chain of atoms
coupled to the waveguide that can spontaneously emit
a photon into the waveguide mode at rate Γ1D. If the
atoms are separated by d = λ/2, and as shown before,
the system possesses a single bright mode and can act as
an atomic mirror, perfectly reflecting light. By coupling
two of these atomic mirrors to an additional impurity
atom placed at a particular distance (cavity QED config-
uration as shown in Fig. 6), we will observe vacuum Rabi
oscillations where an excitation is reversibly exchanged
between the impurity atom and the rest of the chain (see
Fig. 7).

If the two mirrors are separated by a distance which is

FIG. 6: Representation of the cavity QED configuration ex-
tracted from [4]. As we can see there are two chains of atoms,
one on each side separated by a distance d = λ/2, therefore
they act as mirrors. Between these two chains we have the
impurity atom. Finally ε is an additional term for guiding
the impurity ato

(2n + 1)λ1D/2 (n ∈ Z+), and the impurity is exactly at
the center between the two mirrors, only a single collec-
tive mode of the atomic mirrors (called the cavity mode)
with associated creation operator

S†cav =
1√
NA

∑
j>0

(−1)j
(
σ̂egj + σ̂eg−j

)
(18)

couples to the impurity. Then, the effective Hamiltonian
reduces to:

ĤQED
eff = g

(
σ̂geI S

†
cav + σ̂egI Scav

)
, (19)

with g = Γ1D

√
NA/2 and σ̂egI (σ̂geI ) the creation (annihi-

lation) operator of an excitation of the impurity.
With this atomic configuration, we study first the dy-

namic evolution of the excited state population of the im-
purity by starting with the initial state where all atoms
are in the ground state, except of the impurity. In ab-
sence of any additional decay rather than the one into
the fiber mode (that is, the system evolving under un-

der Ĥ1D
eff ), we observe the so-called Rabi oscillations with

damping given by Γ1D (the decay into the fiber). This is
shown in Fig.7(a) (blue solid line). This result is in stark
contrast to the case where atoms are spontaneously emit-
ting photons into free space in an independent fashion,
defined the following effective Hamiltonian:

Ĥ indep
eff = −iΓ0/2

N∑
j=1

σ̂jee. (20)

In this case, the excited state population of the impurity
simply decays exponentially with time, as shown by the
red dashed curve in Fig.7(a).

If we now consider independent atom decay into free
space modes on top of the nanofiber guided interac-
tion, that is, we let the system evolve under Ĥeff =

Ĥ1D
eff + Ĥ indep

eff we observe that the Rabi oscillations are
destroyed. This is shown in Fig.7(b) (red dashed curve).
We finally study the case where spontaneous emission
into free space is also collective, corresponding to the
case where d < λ0/2, where λ0 is the wavelength associ-
ated with the atomic transition. In this case, for which
the system evolves under Ĥeff = Ĥ1D

eff + Ĥ0
eff we observe

that Rabi oscillations can be recovered as the atoms are
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in a subradiant state with respect to free space emission.

FIG. 7: Excited state population of the impurity atom as a
function of time for different cases: (a) Decay only into the
waveguide mode (solid blue) and only independent decay into
free space modes (dashed red). In the former there is a re-
versible exchange of the excitation between the mirrors and
the impurity. (b) Collective decay into the fiber and indepen-
dent decay into free space modes (dashed red), and collective
decay into the fiber and into free space (blue solid). In pres-
ence of collective decay the Rabi oscillations are recovered.
(Γ1D = Γ0/4, λ1D = 2d, λ0 = 2d, N = 50).

V. CONCLUSION

We have shown how the radiative properties, such as
the decay due to spontaneous emission of photons, of a
collection of atoms are modified when they are coupled
to a common electromagnetic bath. We started finding
the equations that define the interactions of light and

matter and its evolution. We found the Lindblad master
equation with the corresponding Hamiltonian and Lind-
bald operator. We rewrote the Hamiltonian as a function
of the coherent and dissipative interactions. Finally we
defined the effective Hamiltonian that dictates the de-
terministic evolution of the atoms. We built the whole
theoretical model that has allowed us to know the collec-
tive behaviors of atoms.

Deriving the Hamiltonian from the different situations
posed and using computational methods we have been
able to know which modes of interaction the atoms de-
velop. Depending on how the atoms are arranged and ac-
cording to the parameters of the wavelength we have ob-
served superadiance (bright state) or subradiance (dark
state). For the waveguide case we observed the emer-
gence of perfectly dark states and a single bright mode for
d/λ0 = n/2, with n being an integer. On the other hand,
for the case of free space we also observe subradiance
(Γ � Γ0) when the interparticle separation is smaller
than half of the light wavelength.

Using the collective radiative properties that arise in
these systems we propose a protocol with two ordered
chains of atoms and an impurity atom at its center act-
ing as if they were two mirrors of a cavity coupled to a
single atom. With the appropriate spatial arrangement
it is possible to observe a reversible exchange of an exci-
tation between the mirror atoms and the impurity. If the
atoms can only decay into the waveguide mode, the oscil-
lations are maximal and damped with the rate Γ1D. For
atoms that are separated by large distances compared
to the atomic transition wavelength (i.e., d/λ0 > 1/2)
spontaneous emission into free space can destroy these
oscillations. However, we have shown that if the parti-
cles are placed at closer distances (i.e., d/λ0 < 1/2), for
which subradiant modes start to play a role, the oscilla-
tions are recovered.
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