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Abstract: In this project, the Casimir force between two object will be studied in light of the
Lifshitz theory. The general expression as well as the small and large separation distance limits
are discussed in detail. The analysis is complemented with numerical computations of the force
as a function of the separation for Au and SiC at different temperatures. We numerically verify
the analytical limits and compare the original result by Casimir with the force arising between real
materials at non-zero temperature.

I. INTRODUCTION

The discovery by Casimir that two electrically-neutral
objects can attract to each at small separations plays
an important role in several branches of physics. The
celebrated result states that for two perfect conductors
with planar surfaces at zero temperature, the attraction
force per unit area is given by [1]

PCasimir =
~cπ2

240d4
, (1)

where ~ is the reduced Planck constant, c is the speed
of light and d is the thickness of the vacuum gap be-
tween the objects. A generalization of this phenomenon
was developed by Lifshitz [2] using the theory of fluctu-
ating electromagnetic fields developed by Rytov [3]. The
idea behind this formulation is to incorporate a random
current to Maxwell equations that arise from the fluctua-
tions occurring inside the materials. We can understand
this current as analogous to the random force introduced
in the Langevin equation for the Brownian motion. As
shown by Lifshitz [2, 4], the use of the Maxwell equations
with a stochastic term gives the possibility to take into
account the particularities of different materials, and the
inclusion of the fluctuation-dissipation theorem (FDT) in
the deduction leads to a temperature dependence of the
force. Thus, Lifshitz’s theory not only includes purely
quantum fluctuations of the electromagnetic field at zero
temperature, but also the contribution of thermal fluctu-
ations.

In this project, the general expression for the force
firstly derived by Lifshitz will be obtained following the
scattering-matrix approach [5–9]. Once the force is ob-
tained, we will study in detail the small and large separa-
tion distance limits and analyze how these limits are re-
lated to the temperature. The original result by Casimir
is obtained in the proper limit. Finally, we will compute
numerically the force for two materials in concrete con-
figurations: we consider gold (Au) as an example of a
metal and silicon carbide (SiC) as an example of a polar
dielectric. These numerical results will be compared with
the theoretical limits.

II. ELECTROMAGNETIC FIELD

The considered system is composed of two plane-
parallel slabs, denoted by j = 1, 2, which are supposed
to be infinite in the x and y directions and which are
located along the z-axis. The slabs are centered at zj
and are separated by a distance d. We formally assume
that the bodies have a thickness δ, but below we will
take δ →∞ considering them to be optically opaque. As
shown in Fig. 1, the slabs define three vacuum regions
that we name as γ = 0, 1, 2. Furthermore, the full sys-
tem is assumed in thermal equilibrium with a bath of
thermal radiation at temperature T .
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FIG. 1: Our system in the y-z plane. The sketch shows the to-
tal field modes Eγφ in each region and the modes Ejη coming
out of the different sources.

The radiation emitted by the bodies and the environ-
mental radiation of the thermal bath constitute sources
for the electromagnetic field in the different vacuum re-

gions. The total electric field at a point ~R = (x, y, z)
in region γ at time t can be expressed as the follow-

ing Fourier expansion ~Eγ(~R, t) =
∫∞
−∞

dω
2π e
−iωt ~Eγ(~R, ω),

where ω is the frequency and we require that ~Eγ(~R, ω) =
~Eγ∗(~R,−ω) in order for ~Eγ(~R, t) to be real, where
the asterisk denotes complex conjugate. In turn, the
monochromatic field can be expanded in terms of the

wave vector parallel to the surfaces ~k = (kx, ky), the
direction of propagation φ and the polarization p =
TE,TM, where φ = + indicates propagation to the right
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and φ = − to the left. Hence, taking into account all the
previous expansions, we obtain the complete expressions
for the field as

~Eγ(~R, t) =

∫ ∞
0

dω

2π
e−iωt

∑
φ,p

∫
d2~k

(2π)2
ei
~Kφ·~R

× ε̂φ(ω,~k, p)Eγφ(ω,~k, p) + c.c.,

(2)

where Eγφ(ω,~k, p) is a field mode in this decomposi-

tion, ~Kφ = (~k, φkz) is the total wave vector, kz =√
ω2/c2 − k2 is the normal component for which k = |~k|,

ε̂φ are the polarization vectors [8], and c.c. indicates

complex conjugate. The magnetic field ~Bγ(~R, t) in any
vacuum region is obtained from the Maxwell equation

∇× ~Eγ(~R, t) = −∂t ~Bγ(~R, t) and expression (2), and can
be written in a plane-wave decomposition as

~Bγ(~R, t) =
1

c

∫ ∞
0

dω

2π
e−iωt

∑
φ,p

∫
d2~k

(2π)2
ei
~Kφ·~R

× β̂φ(ω,~k, p)Eγφ(ω,~k, p) + c.c.,

(3)

where β̂φ are directly related to the polarization vec-
tors [8]. We remark that both the electric and mag-
netic fields are expanded in terms of the same modes

Eγφ(ω,~k, p). Furthermore, the total field in region γ is a
superposition of the source fields present in that region.

In other words, the modes of the total field Eγφ(ω,~k, p)
are a linear combination of the source field modes that we
now denote as Ejη(ω,~k, p), where the index j = 0, 1, 2, 3
labels the corresponding source and η = +,− indicates
the direction which, in general, can be different from φ.
Here j = 1, 2 identifies radiation emitted by the bodies,
while j = 0 and j = 3 correspond to the contribution of
the thermal bath arriving to the system from the left and
from right, see Fig. 1. The linear relation between the

fields can then be written as Eγφ =
∑
j,η L

γφ
jη Ejη, where

Lγφjη are the coefficients solving the scattering problem
and which depend on the reflection coefficients of the
sources [9].

III. CALCULATION OF THE FORCE

In order to describe the Casimir-Lifshitz forces, we
have to consider the Maxwell stress tensor in any region
γ of the system, that in cartesian components is [8]

T γij(
~R, t) = ε0[Eγi (~R, t)Eγj (~R, t) + c2Bγi (~R, t)Bγj (~R, t)]

− ε0
2
δij [| ~Eγ(~R, t)|2 + c2| ~Bγ(~R, t)|2]

(4)

with i, j = x, y, z and where ε0 is the vacuum permit-
tivity. The momentum flux in region γ is equal to the
symmetrized statistical average defined by

Pγ ≡ 〈T γzz(~R, t)〉. (5)

The expression of the stress tensor involves products of
the electric and magnetic field components. These com-
ponents are written in terms of the field modes, so to
compute the stress tensor we need to solve the averaged
products of these field modes. To proceed, we introduce
the correlation functions Cγφφ

′
= Cγφφ

′
(ω, k, p) which

are defined as

〈Eγφ(ω,~k, p)Eγφ
′∗(ω′,~k′, p′)〉

= (2π)3δ(ω − ω′)δ(~k − ~k′)δpp′Cγφφ
′
.

(6)

Here we have set the fields to be stationary and taken into
account the planar geometry of the problem. The correla-
tion functions are obtained by means of the fluctuation-
dissipation theorem (FDT) for the total field outside a
single body (assuming the fields emitted from different
bodies are uncorrelated), which can be formulated as [10]

〈E(tot)φ
i (ω, ~R)E

(tot)φ′∗
i (ω′, ~R′)〉

=
2hω2

ε0c2
δ(ω − ω′)N (w, T )ImGij(~R, ~R

′, ω),
(7)

where Gij(~R, ~R
′, ω) is the Green function of the system

and

N (ω, T ) =
1

2
coth

( ~ω
2kBT

)
= n(ω, T ) +

1

2
, (8)

n(ω, T ) being the thermal photon distribution. It is im-
portant to note the term 1/2 in this expression, which
leads to zero-point energy fluctuations persisting even as
T → 0. This contribution is essential to understand the
limit at which we will find the Casimir formula.

With the above results and taking into account the
coefficients solving the scattering problem, we can work
out an explicit expression for the momentum flux in any
region γ as defined by (5). In region γ = 0, we get

P0 = − ~
3c3π2

∫ ∞
0

dωω3
[ 1

e~ω/kBT − 1
+

1

2

]
, (9)

which is simply the blackbody radiation pressure includ-
ing the contribution of the zero-point energy fluctuations,
kB being the Boltzmann constant. This flux is thus a di-
verging quantity. Although this solution might seem un-
physical, we are able to normalize this result when taking
into account the momentum flux in region γ = 1 and look
at the net force acting on body 1 given by P ≡ P1 − P0.
From (5), (7) and the scattering coefficients, this net force
reads [9]

P = − ~
π2

Re

∫ ∞
0

dω
[ 1

e~ω/kBT − 1
+

1

2

]
×
∫ ∞
0

dkk
∑
p

kzr
1
pr

2
pe
i2kzd

1− r1pr2pei2kzd
,

(10)

where rjp = rjp(ω, k) are the vacuum-medium Fresnel re-
flection coefficients that depend on εj = εj(ω), the dielec-
tric permittivity of the body j. Although expression (10)
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still contains the contribution of the zero-point fluctua-
tions, the net force P is finite. In addition, we can express
this force as a sum over the poles in the imaginary axis of
the frequencies instead of the integral over the real posi-
tive line. If we introduce the bosonic Matsubara frequen-

cies ζn = 2πnkBT/~ and the variables k = ζn
√
q2 − 1/c

and sj =
√
εj − 1 + q2, we obtain the same expression

as [2]

P =
kBT

πc3

∞∑
n=0

′ζ3n

∫ ∞
1

dqq2

×
{[ (s1 + q)(s2 + q)

(s1 − q)(s2 − q)
exp

(
2qζnd/c

)
− 1
]−1

+
[ (s1 + qε1)(s2 + qε2)

(s1 − qε1)(s2 − qε2)
exp

(
2qζnd/c

)
− 1
]−1}

,

(11)

where the prime indicates that the pole at n = 0 has an
additional factor of 1/2 that comes from the quarter-turn
contribution in the complex plane integration. The inte-
gral is performed with a contour in the positive-positive
quadrant of the complex plane.

A. The limit of small separations

In order to obatain approximate expressions for the
force (11), we consider in this section a situation such
that kBTd/c~ � 1. The quantity kBTd/~c is a dimen-
sionless parameter that relates quantum effects to ther-
mal effects, and the considered limit here is equivalent to
take T → 0. Since ~c/kBT ≈ 10µm at room tempera-
ture, neglecting thermal effects is a good approximation
even for separation distances up to about 1µm. Fur-
thermore, we first assume that the distance d is small
as compared to the absorption wavelengths λ0 of the
slabs, d � λ0. At room temperature, and for separa-
tions above 1 nm, these conditions are met for metals,
since λ0 typically lies in the visible or ultraviolet. For po-
lar dielectrics, this regime can be achieved at very small
separations (below 1 nm) because λ0 lies in the infrared.
Under these conditions, the dominant terms of the sum
(11) satisfy n ∼ c~/kBTd (which appears in the exponen-
tial through ζn), therefore meaning a large n limit. With
this, we can convert the sum over n into an integral with
dn = ~dζ/2πkBT , so

P =
~

2π2c3

∫ ∞
0

dζζ3
∫ ∞
1

dqq2

×
{[ (s1 + q)(s2 + q)

(s1 − q)(s2 − q)
e2qζd/c − 1

]−1
+
[ (s1 + qε1)(s2 + qε2)

(s1 − qε1)(s2 − qε2)
e2qζd/c − 1

]−1}
.

(12)

This expression can be further simplified by noting that
due to the increasing exponential term, the dominant
contribution takes place when qζd/c ∼ 1. This requires
q � 1, and remembering the definition of sj , we can set

s1 ≈ s2 ≈ q. Finally, we change to a new integration
variable x = 2qζd/c instead of q and obtain

P =
~

16π2d3

∫ ∞
0

∫ ∞
0

x2
[ (1 + ε1)(1 + ε2)

(1− ε1)(1− ε2)
ex − 1

]−1
dζdx.

(13)
The previous equation gives the force for small separa-
tions in the quasi-static limit where retardation effects
are negligible. We highlight that the force is inversely
proportional to d3 in this regime.

Next we consider a limit in which the separations are
large as compared to the absorption wavelength, d� λ0
(intermediate distances), but the condition kBTd/c~ �
1 is still fulfilled (quantum effects dominate). At room
temperature, these conditions can be reached for both
metals and dielectrics at separations above 1 nm. We will
use the same variable as in the previous limit, although
now x = 2qζd/c is the new integration variable instead
of ζ. We then obtain

P =
~c

32π2d4

∫ ∞
0

∫ ∞
1

x3

q2

{[ (s1 + q)(s2 + q)

(s1 − q)(s2 − q)
ex − 1

]−1
+
[ (s1 + qε1)(s2 + qε2)

(s1 − qε1)(s2 − qε2)
ex − 1

]−1}
dqdx.

(14)

If we take a closer look to the integrand, we see a factor
of the form x3(αex − 1)−1. The dominant contribution
to the integral then occurs for x ∼ 1. In addition, the
permittivity is a function of the frequency that becomes
εj = εj(i

xc
2qd ) when written as a function of x. Since

q ≥ 1 (lower limit of the integral) and we assume large
separations as compared to λ0, the argument of the per-
mittivity is almost always zero. Therefore, we can make
the approximation εj(iζ) ≈ εj(0). If we further consider
metals for which εj(iζ) → ∞ as ζ → 0, the force (14)
reduces to

P =
~c

16π2d4

∫ ∞
0

∫ ∞
1

x3 dqdx

q2(ex − 1)
=

~cπ2

240d4
, (15)

which is the original formula obtained by Casimir [1].
We observe that this force does not depend on material
properties nor any other parameter except for the dis-
tance between the slabs with a dependence d−4.

B. The limit of large separations

In contrast to the previous section, we now consider
a situation for distances so large that kBTd/c~ � 1.
Quantum effects vanish in front of the thermal ones in
this regime and hence, it can be understood as a classical
limit [4] in which ~ω � kBT with ω ∼ c/d. To obtain the
force under these conditions, we start from the general
expression (11). The dominant values of the sum are
those with a small exponent and therefore small n. We
use the integration variable x = qn instead of q in (11)
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and keep only the first term (n = 0), yielding

P =
4π2(kBT )4

~3c3

∫ ∞
0

x2dx(
ε10+1
ε10−1

)2
exp

(
4πkBTd

~c x
)
− 1

,

(16)
where we have assumed identical materials such that
ε10 = εj(0), j = 1, 2. This integral gives the approxi-
mate result of

P =
kBT

8πd3

(
ε10 − 1

ε10 + 1

)2

. (17)

Notice that this result does not depend on ~. More-
over, we obtain a dependence d−3 in the separation, as
in the case with non-retardation effects. This is a clear
difference between this general theory and the formula
developed by Casimir.

IV. NUMERICAL CALCULATION

The last part of this project is intended to verify the
limits of the general formula (11) of the force. In or-
der to do so, the DQAG subroutine of the QUADPAC
library was used to numerically compute the integrals.
The method is a global adaptive Gauss-Krond quadra-
ture made by Robert Piessens and Elisse Doncker. The
two materials studied are Au and SiC, to compare the
force in a metallic and polar material. The permittivity
of SiC is described by the Drude-Lorentz model and that
of Au by a Drude model of the form [9]

εSiC(ω) = ε∞
ω2
L − ω2 − iΓω
ω2
T − ω2 − iΓω

, εAu(ω) = 1−
ω2
p

ω(ω + iΓ)
,

(18)
where ε∞ is the high frequency dielectric constant, ωL
longitudinal optical frequency, ωT transverse optical fre-
quency, ωp is the plasma frequency and Γ is the dissipa-
tion rate.

Firstly we will compare the force for a system of two
slabs of Au, two slabs of SiC, and the original Casimir
force at low and high temperatures.

FIG. 2: Casimir force(blue), Casimir-Lifshitz force for
Au(orange) and SiC(lilac) and a reference force P ∼ d−3 at a
temperature of 0.1K

FIG. 3: Casimir force(blue), Casimir-Lifshitz force for
Au(orange) and SiC(lilac) and a reference force P ∼ d−3 at a
temperature of 300K

In both figures we have a reference function d−3 and
also the Casimir force that as shown by (15) is only d−4

dependent. In FIG. 2 we can observe that for small dis-
tances the force for both materials follows (13) and at
large distances equation (14) as expected. We have ver-
ified the limits for kBTd/c~ � 1. In FIG. 3, we have
something different. Firstly, for large distances both ma-
terials obey (17) as the d−3 dependence is clearly ob-
served. For small distances at room temperatures we
have to take into account the nature of the material. Au
is a metallic material, and thus, temperature dependence
is small enough for (13) to be valid. SiC is polar, and ex-
pression (14) is valid and we can see that it is parallel
to Casimir force (d−4). At intermediate distances we can
observe how the force for Au is approximately equal equal
to the Casimir force as expected.

Now we will study the dependencies on distance for
different temperatures for both materials separately.

FIG. 4: Casimir-Lifshitz forces for 5 different temperatures
differing in one order of magnitude for Au.
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FIG. 5: Casimir-Lifshitz forces for 5 different temperatures
differing in one order of magnitude for SiC.

In FIG. 4 (Au) we only deviate from (15) at tempera-
tures around 103 K for large distances, which exemplifies
that temperature dependence is almost non-existing for
metals at low temperatures. We can see that for interme-
diate d, the force has a non-trivial behaviour that gives
an important difference at small distance. Other than
that, for small separation we have d−3. In FIG. 5 (SiC)
we can see a much softer transition between the different
behaviours for small distances. For the two highest T ,
we obtain the limit (14), and for the lower ones a grad-
ual transition to (13). For large d, is very similar to Au,
we only obtain (17) at very high temperatures, and that
results in forces that are very close to zero.

V. CONCLUSIONS

We have presented a complete study of the Casimir-
Lifshitz force arising between two parallel slabs for two
different materials, gold and silicon carbide. Firstly, we
have obtained the general expression for the force (11)
with the scattering-matrix approach and the use of the
FDT (7). The formula obtained expresses the depen-

dency on the material in the values of the Matsubara
frequencies and the optical characteristics, and also its
temperature dependence.

Additionally, the expressions for the forces in the small
distance regime corresponding to the limit of vanishing
temperatures was obtained. In this limit, we obtained the
original Casimir force, and also the quasi-static limit. We
also relaxed the low-temperature condition and saw how
the distance dependence on the force changes for small
and large separations. Also in this last case, it has been
shown the importance of the material to obtain d−3 or
d−4. The limit of large separations has been obtained as
well, leading to a force vanishing as d−3.

Finally, we have done a numerical calculation for gold
and silicon carbide, to verify the limits theoretically ob-
tained for specific functions for the permittivity. We have
numerically obtained the different behaviors the force
has in its separation dependence. All of them correctly
matched the theoretical formulas obtained. It has been
shown how the force at large temperatures and distances
does not depend on the material and follows a d−3 law,
and also the transition between low and high tempera-
tures limits for metallic and polar materials.

In this project, we have studied a system with a specific
geometry and in equilibrium. Even so, the inclusion of
special geometries as well as an out of equilibrium theory
gives the outcome not only of attractive force but also
of repulsive [8]. Remarkably, experimental research has
been done in this research area [11, 12], and the field of
Casimir-Lifshitz phenomena is very active nowadays.
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