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Abstract: The results obtained by Janssen in 1895 showed that when filling a silo with corn, there is a certain 

point where the pressure measured at the bottom saturates and does not linearly increase with added mass. Recent 

work with spherical grains found that when the silo is narrow enough a reverse Janssen effect is found and the 

pressure, rather than just saturate first increases faster than linearly due to the configuration the grains adopt inside 

the container. Via experimental investigation this work demonstrates that this behaviour is still fulfilled when 

changing the geometry of the grain to an oblate ellipsoid and that the deviation from fluid behaviour requires less 

added mass due to the larger packing fraction acquired in this case.  

  

I. INTRODUCTION 

It was 1895 when the German engineer H.A. Janssen 

performed experiments with granular particles aimed at 

designing strong silos to maintain the grain [1,2]. To do so, 
he measured the pressure exerted by the grains at the bottom 

of the container as a function of the added mass, as shown in 

Fig.(1).  

 

 
FIG. 1: Janssen’s original results of the pressure (in kg) at the 

bottom of a silo versus the amount of corn added (also in kg). The 
inset is the original sketch of the Janssen's original experimental 
setup. The data and the sketch have been extracted from [2]. 

 

Let us first discuss the case of filling a container with 

water. In this case, as we know from experience, the more 

liquid we add, the more it weights and the larger the pressure 
P it exerts at the bottom. In fact, in this case: 

 

 𝑃(𝑧)  =  𝜌𝑔𝑧 , (1)  

 

where z represents the depth, ρ is the density of the fluid and 

g is the gravitational acceleration on Earth, taken as 

approximately g = 9.81 m/s2. 

In contrast to the case of water, Janssen found that, when 

filling a container with corn grains instead of with liquid, the 

pressure showed a saturation regime above certain added 

mass and consequently, above a given height. The force per 
unit area that the grains exert over the bottom of the container 

remains constant despite you continue add grains. As a result 

of this unexpected behaviour, this experimental result became 

a benchmark for further work involving granular media. 

One of those posterior works [3] used modern techniques 

to determine the validity of the result obtained by Janssen 

back then. It reaffirmed the continuum model proposed by 

Janssen [1,2], finding the saturation of the pressure with 

added mass. 

 

More recently, the group I am working on with revisited 

Janssen’s work by using spherical plastic beads [4] with 

diameter σ = (5.94 ± 0.02) mm and mass M = (112.6 ± 0.1) 

mg, but using cylindrical containers that were narrower than 

the ones used by Janssen. Their diameters D were D ≤ 30σ. A 

new regime was found in [4], the measured mass was higher 

than the added mass (a reversed Janssen effect), followed by 

the saturation regime typical of Janssen. 

This discovery opens the door to additional work with, for 

example, other grain shapes. Amazed by the non-intuitive 

results in such a simple experiment, I decided to take the 

chance on working with the group. My work consists in 

doing similar experiments to those that were done in [4] but 

using grains with different geometry. Spherically oblate 
elipsoids will be used instead of spheres, in order to 

determine if the shape of the grain affects the behaviour. 

II. PHENOMENOLOGICAL MODELIZATION 

We can describe the observed behaviour using a physical 

model. Along this section I will discuss the model that 

Janssen used to describe his experiments [1,2], as well as the 

one developed for the behaviour seen in shallower containers 

[4].  

 

A. The elastic sea with friction 
Janssen’s results can be rationalized by considering that 

what prevented the grains to raise the pressure at the bottom 
of the silo was the friction between the grains and the walls 

of the container, which he considered to be at the Coulomb’s 

threshold. In [2], the equation that describes the pressure is 

derived considering the granular media as a continuum, 

commonly known as “elastic sea”, and applying the condition 

of mechanical equilibrium to a cylindrical slice. This 

treatment for the grains comes with the consideration that the 

radial component of the stress is proportional to the vertical 

component by a proportionality constant k:  

 

𝜎𝑧𝑧  =  𝑘 𝜎𝑟𝑟  =  𝑘 𝜎𝜑𝜑 (2)  

P = -𝜎𝑧𝑧 (3)  

 
Relations (2) and (3) between pressure and the components of 

the stress tensor implies that the surfaces of equal pressure 

for the elastic sea are horizontal in both the absence and 

presence of friction. With all this in mind, we can find the 

differential equation for the longitudinal component of the 

stress tensor, 𝜎𝑧𝑧 , obtaining: 
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ⅆ𝜎𝑧𝑧 

ⅆ𝑧
= −𝜌𝑔 −

2 𝑘 𝜇𝑠

𝑅
 𝜎𝑧𝑧 .  (4)  

 

Where ρ is the density of the media, R is the radii of the 

circular cross section of the cylindrical container and μs is the 

friction coefficient at Coulomb’s threshold. If we integrate 

Eq.(4) applying the bounding condition that 𝜎𝑧𝑧(z=0) = 0 and 

defining λ ≡ 
𝑅

2𝜇𝑠𝑘
 and using Eq.(3), we obtain: 

 

P (z) = ρgλ (1 - ⅇ
−𝑧

𝜆 ) (5)  

 

This expression is what Janssen obtained as the solution for 

his problem [1,2], all material details are embedded into λ. In 

Fig.(2) we plot the result and compare it with the pressure 

that a fluid would have. As we can see, Eq.(5) reproduces a 

similar behaviour to the experimental results shown in 

Fig.(1).  

 

 
FIG. 2: Comparison between the normalized pressure of an ideal 
fluid and the normalized pressure obtained in Eq.(5) versus a 
normalized depth.  

 

Despite the model qualitatively captures the experiments, 

we know that some assumptions do not hold in reality. For 

example, the model assumes horizontal isobar surfaces and, 

as discussed in [5], these surfaces can in reality be concave or 

convex. The curvature of the surfaces is directly related to the 

frictional forces acting between the media and the walls of 

the container. If the surface is concave (seen from below) the 

resultant forces act in the opposite sense to gravity and 

therefore, are the ones responsible for the saturation regime. 
Convex surfaces could also be expected and would imply that 

the frictional forces acted in the same sense as gravity, 

leading to higher effective masses measured at the bottom of 

the container. The latter, however, were not found until the 

experiments with cylinders of smaller diameters [4]. Due to 

the fact that Eq.(5) does not describe these compressive 

forces, a new model was required. 

 

B. The overshoot model 
The experiments realized in [4] consisted on adding 

spheres in chunks into the cylinder and letting them reach 

mechanical equilibrium before adding additional chunks of 
spheres. This was repeated adding the same plastic beads in 

cylindrical recipients with different diameters. The effect was 

also studied numerically, by using simulations in which 

spheres with mass M and diameter σ were added into 

cylinders with diameter D, and assuming Coulomb’s 

threshold was fulfilled for both the wall-sphere contact and 

the sphere-sphere contacts. The main advantage of doing 

these simulations is that you can visualize the forces inside 

the cylinder and their distribution.  

There are three characteristic heights found in these 

experiments that allows us to compare the measurements for 

different D. The first one is ha, the height at which the system 

starts deviating from the fluid behaviour. The second one is 

h*, the height at which one finds the maximum deviation of 
the apparent mass form the added mass. Lastly, we have hd, 

which is the height at which the system crosses again the 

dependence of the fluid behaviour and enters into the 

saturation regime that Janssen originally found and described. 

The results can be described by the following continuity 

equation for the pressure: 

 
ⅆ𝑃

ⅆ𝑧
 =  𝜌𝑔 −  

4

𝜎
𝜏(𝑧) , 

 
(6)  

where τ(z) is the stress, which depends on frictional forces 

and the number of contacts per unit length: 
 

𝜏(𝑧)  =  
𝑛𝑐(𝐷)⟨𝐹𝑤(𝑧)⟩

𝜋𝐷
 . (7)  

 

Here ⟨𝐹𝑤(𝑧)⟩ is the average frictional force for each sphere at 

a considered depth z and 𝑛𝑐(𝐷) the number of contacts per 

unit length. The value of ⟨𝐹𝑤(𝑧)⟩ was taken as ⟨𝐹𝑤(𝑧)⟩ = 0 

for depths z<ha, equal to ⟨𝐹𝑤(𝑧)⟩ = Fc for region ha<z<h*, 

where Fc < 0 is the frictional force at Coulomb’s threshold. 

Finally, for region z > h*: 

 

⟨𝐹𝑤(𝑧)⟩ =  𝑘𝜋𝐷𝑃(𝑧) (1 − ⅇ
−(𝑧−ℎ∗)

𝜉 ) , (8)  

 

where ξ ≈ 6σ is an experimentally found decay length. By 

solving Eq.(6) up to the regime where z<h*, we find that 
 

𝑚𝑎𝑥 [
𝑚𝑎

𝑚
]  −  1 =  

𝐹𝑐𝑛𝑐(𝐷)

𝜋𝜌𝑔𝐷2
 (1 − 

ℎ𝑎

ℎ∗
) . (9)  

 

Therefore, the model predicts that the maximum deviation 

from the fluid behaviour varies with D as ~1/𝐷 , since 

nc(D) ~ D, as shown in the supplemental material of [4]. 

These expectations are on agreement with both experiments 

and simulation. Note that if we consider containers with large 

diameters, we recover Janssen’s results [1,2], where the 
reverse Janssen effect is absent. 

 

C. The packing fraction 
Given that the continuity equation (6) has a dependence 

on the number of contacts nc(D), it is relevant to introduce the 

packing fraction. Which is defined as: 

 

𝑓 =  
𝑂𝑐𝑐𝑢𝑝𝑖ⅇⅆ 𝑣𝑜𝑙𝑢𝑚ⅇ

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙ⅇ 𝑣𝑜𝑙𝑢𝑚ⅇ
 (10)  

 

The possible arrangements of the grains leads to different 

values of the packing fraction. This may change the number 

of contacts and impact the results for the measured apparent 
mass. Another important aspect, since I am going to work 

with ellipsoids instead of spheres, is that the occupied volume 
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depends on the geometry of the grain, since the number of 

contacts required for mechanical equilibrium depends on 

grain geometry. 

There are several ways of distributing spheres, but we 

will focus on random close packing, which is a way of 

placing spheres inside a volume with no preferred 

disposition. The maximum packing expected for this case is 

about 64% [6,7]. Another value of interest is random packing 
of oblate ellipsoids, since it is the geometry I am going to 

work with here. From [8] we can see that the packing fraction 

of an ellipsoid with semiaxes a, b and c, depends on its aspect 

ratio α = 𝑎/𝑏. For α = 0.5 we would expect a random close 

packing fraction between 60% and 70%. In this case: 

𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 =  
𝑁 

4

3
𝜋𝑎𝑏𝑐

𝜋𝑅2ℎ
 =  

4𝑁

3
 (

𝑎𝑏𝑐

𝑅2ℎ
) (11)  

where h and R are the height of the granular column and 
radius of the cylindrical container, and N is the number of 

grains. 

III. EXPERIMENTAL WORK

A. Set up and experimental procedure

The grains used for these experiments are lentils since 

they can be characterized as an oblate ellipsoid. They are 

relatively monodisperse, since their dimensions do not differ 

enormously from grain to grain. To determine the 

characteristic of the ones I have used along these 

experiments, I measured the mass of 30 lentils with an 

analytic scale with a sensitivity of δm= 0.1 mg. For axes, a 

and b we used a MatLab program to analyse an image from 
the grains, and determined c using a calliper whose 

sensitivity is δc= 0.05 mm over 30 grains. A characteristic 

mean diameter σ=2√𝑎𝑏𝑐
3

 is also defined. The values of the 

parameters of the lentils are shown in Table I. 

a (mm) 2.58 ± 0.05 M (mg) 35.950 ± 0.003 

b (mm) 2.40 ± 0.05 V (mm3) 31.6 ± 0.9 

c (mm) 1.23 ± 0.01 Ρ (g/cm3) 1.14 ± 0.03 

α 0.49 ± 0.01 σ (mm) 3.92 ± 0.01 

TABLE I: Experimental values for a single lentil. We report the 
axes, aspect ratio, mass, volume, density, and characteristic 
diameter. The errors have been computed by considering the 

sensitivity of the instruments, the standard error of the mean and 
propagation errors. 

We used, three cylinders with diameters measured with 

the caliper. The values of D and of D/σ are shown in Table II. 

Cylinder D (mm) D/σ 

Small 20.45 ± 0.05 5.21 ± 0.02 

Medium 34.10 ± 0.05 8.69 ± 0.03 

Large 49.15 ± 0.05 12.52 ± 0.05 
TABLE II: Experimental values for the diameters and the 

characteristic ratios of the three different cylinders. The errors have 

been computed by considering the sensitivity of the instruments and 
error propagation. 

We used the same analytic scale as for measuring the 

weight of the lentils, two cameras (one to capture the value 

that the scale indicates and the other to capture the cylinder 

with the lentils) and a support with a hook for sustaining the 

cylinder right above the analytic scale. The complete set us is 

shown in Fig.(3). 

FIG.3: LEFT: Picture of the experimental set up. RIGHT: 
Images of lentils poured inside the three different cylindrical 
containers. From left to right D increases. 

To begin the experiment, I put the cylinder on the analytic 

scale supported by a hook, so that it does not touch the scale 

itself, since the function of the container is just to form a 

granular column. Then I add 30 lentils inside the cylinder in 

small chunks and I wait five seconds before measuring. We 

do this to let the system reach mechanical equilibrium. It is 

not optimal to wait much longer, since the system seems to 

exhibit time dependence. Each measurement consists on 
taking one photo with each camera, and right after, I add 

another 30 lentils and repeat the process until I get the 

number of measurements desired. Then, the photos are 

analysed using MatLab to get the height and the effective 

mass of the lentils added at each step. The experiment is 

realised three times for each cylinder in order to get some 

statistics. 

B. Experimental results

After data collection, we plot the apparent mass ma 

versus the added mass m. The following values are of special 
interest: ma (added mass where the system deviates from fluid 

behaviour), m* (added mass where the system reaches its 

maximum deviation from fluid behaviour) and md (added 

mass where the system enters into the saturation regime). The 

packing fraction will also be computed. 

The results for the small, medium and large cylinders are 

shown in Figs.(4), (5) and (6) respectively. The 

corresponding values for ma, m* and md are shown in Tables 

III, IV and V. 
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FIG.4: Representation of the experimental results for D/σ = 

5.21. We see the effective mass ma versus the added mass m for the 
three experiments compared with the behaviour for a fluid in the 

small cylinder. 
 

 ma (g) m* (g) md (g) f (%) 

#1 1.1 ± 0.2 11.86 ± 0.04 22.6 ± 1.0 - 

#2 2.2 ± 0.4 11 ± 2 19.4 ± 0.7 - 

#3 2.16 ± 0.04 14.0 ± 1.0 18.3 ± 1.2 - 
TABLE III: Experimental results obtained for the cylinder with 

ratio D/σ = 5.21 for ma, m* and md  and its packing fraction f. 

 
FIG.5: Representation of the experimental results for D/σ = 

8.69. We see the effective mass ma versus the added mass m for the 
three experiments compared with the behaviour for a fluid in the 
medium cylinder. 

 

 ma (g) m* (g) md (g) f (%) 

#1 3.24 ± 0.14 15.10 ±0.04 42.06 ± 0.14 65±3 

#2 3.24 ± 0.09 17.24 ±0.04 42.06 ± 0.09 73.4±0.5 

#3 3.24 ± 0.12 22.6 ± 1.1 47.5 ± 0.6 67.9±1.1 
TABLE IV: Experimental results obtained for the cylinder with 

ratio D/σ = 8.69 for ma, m* and md  and its packing fraction f. 

 
FIG.6: Representation of the experimental results for D/σ = 

12.52. We see the effective mass ma versus the added mass m for 
the three experiments compared with the behaviour for a fluid in the 
larger cylinder. 

 

 ma (g) m* (g) md (g) f (%) 

#1 3.24 ± 0.02 30.20 ± 0.04 - 74 ± 4 

#2 6.5 ± 0.4 30.20 ± 0.04 - 70 ± 4 

#3 7.5 ± 0.4 26 ± 2 - 73 ± 4 
TABLE V: Experimental results obtained for the cylinder with 

ratio D/σ = 12.52 for ma, m* and md  and its packing fraction f. 

C. Discussion of results 
As shown in Figs.(4)-(6), lentils seem to behave similar to 

spheres when placed in narrow cylinders. We can clearly 

identify the reverse and conventional Janssen effects. For the 

large cylinder though none of the experiments reaches the 

saturation regime, mainly because the amount of added mass 

was not enough to reach it. If we compare Fig.(5) with the 

experimental results for D/σ=8.2 in [4], the ellipsoids seem to 

reach the overshoot earlier. However, the maximum deviation 

from the fluid behaviour is similar in both cases, as well as 

the point where the systems enters the saturation regime. 

As for the values of ma, m* and md, all of them seem to 

increase as the diameter of the container increases. This is 

because the system requires a certain height in order to form 

concave or convex surfaces with equal pressure, which are 

responsible for measuring less or more mass than the one that 

has been added to form. Note the value for md in the largest 

cylinder has not been determined because the system does not 
reach saturation. However, by extrapolation, we expect that 

md falls between 55 g and 60 g. 

Because of the similarity of our results to those obtained 

for spheres, I compare what is expected from Eq.(9) to my 

results to see if the results for spheres are also fulfilled with 

lentils. From Fig.(7) we see that the model determined for the 

spheres in [4] behaves reasonably well for the experimental 

values of our ellipsoids, even though it seems to have an 

underestimation for the largest cylinder. 

 

 

 
FIG.7: Comparison of the maximum deviation from the fluid 
behaviour between experimental values for ellipsoids and the model 
determined for spheres Eq.(9) versus the inverse of the diameter of 
the cylinder. 

 

From the determined packing fraction, I can use Eq.(11) 

and the fact that ρ=M/V to obtain ha, h* and hd by using M, 

ma, m* and md respectively. The results are shown in Fig.(8). 
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FIG.8: Comparison of the characteristic heights obtained in the 
experiments normalized by the mean diameter versus the normalized 
diameter of the cylinder. 
 

By comparing the results in [4] with Fig.(8) it can be seen 

that the behaviour in both cases is similar and that the 

characteristic heights do not vary much between experiments 

with the same cylinder. This heights tend to decrease as we 

increase the diameter of the container. Note that I have not 

determined the value of f for the small cylinder since the 

results obtained were not mathematically possible, probably 

due to parallax errors in the photos captured with the camera 
from which we determine the column height. However, the 

characteristic heights that are represented in Fig.(8) for this 

cylinder are computed by measuring directly the height in 

MatLab and shall be taken as an estimation. The values for 

the other packing fractions are consistent with the results in 

[8], considering that our mean aspect ratio is α= 0.49. 

IV. CONCLUSIONS 

 

 The main factor for the reverse Janssen effect is 

the ratio D/σ, since a change in the grain geometry 

does not make this phenomenon to disappear. 

 Packing fractions seem to play a role in where the 

overshoot starts, as more packed grains such as the 
ellipsoids deviate from the fluid with less added 

mass than in the case of spheres. 

 The maximum deviation between apparent and 

added mass can be considered proportional to 1/D 

as in the case of spheres. However, these results 

should be complemented with more experiments to 

have better statistics. 
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