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Abstract Plaques of the amyloid beta (Aß) peptide are a pathological hallmark of Alzheimer’s

disease (AD), the most common form of dementia. Mutations in Aß also cause familial forms of AD

(fAD). Here, we use deep mutational scanning to quantify the effects of >14,000 mutations on the

aggregation of Aß. The resulting genetic landscape reveals mechanistic insights into fibril

nucleation, including the importance of charge and gatekeeper residues in the disordered region

outside of the amyloid core in preventing nucleation. Strikingly, unlike computational predictors

and previous measurements, the empirical nucleation scores accurately identify all known dominant

fAD mutations in Aß, genetically validating that the mechanism of nucleation in a cell-based assay is

likely to be very similar to the mechanism that causes the human disease. These results provide the

first comprehensive atlas of how mutations alter the formation of any amyloid fibril and a resource

for the interpretation of genetic variation in Aß.

Introduction
Amyloid plaques consisting of the amyloid beta (Aß) peptide are a pathological hallmark of Alz-

heimer’s disease (AD), the most common cause of dementia and a leading global cause of morbidity

with very high societal and economic impact (Ballard et al., 2011; World Health Organization,

2012). Although most cases of AD are sporadic and of uncertain cause, rare familial forms of the dis-

ease also exist (Campion et al., 1999). These inherited forms of dementia typically have earlier onset

and are caused by high penetrance mutations in multiple loci, including in the amyloid precursor

protein (APP) gene, which encodes the protein from which Aß is derived by proteolytic cleavage

(O’Brien and Wong, 2011). Several mutations in PSEN1 and PSEN2, the genes coding for the secre-

tases performing sequential cleavage of APP, also lead to autosomal dominant forms of AD. The

two most abundant isoforms of Aß generated upon cleavage are 42 and 40 amino acids (aa) in

length, with the longer Aß peptide associated with increased aggregation in vitro and cellular toxic-

ity (Meisl et al., 2014; Sandberg et al., 2010). The amyloid state is a thermodynamically low energy

state but, both in vitro and in vivo, the spontaneous formation of amyloids is normally very slow

because of the high kinetic barrier of fibril nucleation (Knowles et al., 2014). The process of nucle-

ation generates oligomeric Aß species that have been hypothesized to be particularly toxic to cells

and that then grow into fibrils (Michaels et al., 2020; Bolognesi et al., 2010; Cleary et al., 2005).

Fourteen different mutations in the Aß peptide have been reported to cause familial Alzheimer’s

disease (fAD), with all but two having a dominant pattern of inheritance (Weggen and Beher, 2012;

Van Cauwenberghe et al., 2016). However, it is not clear why these particular mutations cause fAD
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(Weggen and Beher, 2012; Van Cauwenberghe et al., 2016), and these 14 mutations represent

only 3.7% of the possible 378 single nucleotide changes that can occur in Aß. As for nearly all dis-

ease genes, therefore, the molecular mechanism by which mutations cause the disease remains

unclear and the vast majority of possible mutations in Aß are variants of uncertain significance (VUS).

This makes the clinical interpretation of genetic variation in this locus a difficult challenge

(Starita et al., 2017; Gelman et al., 2019). Moreover, given the human mutation rate and popula-

tion size, it is likely that nearly all of these possible variants in Aß actually exist in at least one individ-

ual currently alive on the planet (Conrad et al., 2011). A comprehensive map of how all possible

mutations affect the formation of Aß amyloids and how these changes relate to the human disease

is therefore urgently needed.

More generally, amyloid fibrils are associated with many different human diseases

(Knowles et al., 2014), but how mutations alter the propensity of proteins to aggregate into amy-

loid fibrils is not well understood and there has been no large-scale analysis of the effects of muta-

tions on the formation of any amyloid fibril. Here, we address this shortcoming by quantifying the

rate of fibril formation for >14,000 variants of Aß. This provides the first comprehensive map of how

mutations alter the propensity of any protein to form amyloid fibrils. The resulting data provide

numerous mechanistic insights into the process of Aß fibril nucleation. Moreover, they also accu-

rately classify all the known dominant fAD mutations, validating the clinical relevance of a simple

cell-based model and providing a comprehensive resource for the interpretation of clinical genetic

data.

eLife digest Alzheimer’s disease is the most common form of dementia, affecting more than 50

million people worldwide. Despite more than 400 clinical trials, there are still no effective drugs that

can prevent or treat the disease. A common target in Alzheimer’s disease trials is a small protein

called amyloid beta. Amyloid beta proteins are ‘sticky’ molecules. In the brains of people with

Alzheimer’s disease, they join to form first small aggregates and then long chains called fibrils, a

process which is toxic to neurons.

Specific mutations in the gene for amyloid beta are known to cause rare, aggressive forms of

Alzheimer’s disease that typically affect people in their fifties or sixties. But these are not the only

mutations that can occur in amyloid beta. In principle, any part of the protein could undergo

mutation. And given the size of the human population, it is likely that each of these mutations exists

in someone alive today.

Seuma et al. reasoned that studying these mutations could help us understand the process by

which amyloid beta forms new aggregates. Using an approach called deep mutational scanning,

Seuma et al. mutated each point in the protein, one at a time. This produced more than 14,000

different versions of amyloid beta. Seuma et al. then measured how quickly these mutants were able

to form aggregates by introducing them into yeast cells.

All the mutations known to cause early-onset Alzheimer’s disease accelerated amyloid beta

aggregation in the yeast. But the results also revealed previously unknown properties that control

how fast aggregation occurs. In addition, they highlighted a number of positions in the amyloid beta

sequence that act as ‘gatekeepers’. In healthy brains, these gatekeepers prevent amyloid beta

proteins from sticking together. When mutated, they drive the protein to form aggregates.

This comprehensive dataset will help researchers understand how proteins form toxic

aggregates, which could in turn help them find ways to prevent this from happening. By providing

an ‘atlas’ of all possible amyloid beta mutations, the dataset will also help clinicians interpret any

new mutations they encounter in patients. By showing whether or not a mutation speeds up

aggregation, the atlas will help clinicians predict whether that mutation increases the risk of

Alzheimer’s disease.
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Results

Deep mutagenesis of Aß
To globally quantify the impact of mutations on the nucleation of Aß fibrils, we used an in vivo selec-

tion assay in which the nucleation of Aß is rate-limiting for the aggregation of a second amyloid, the

yeast prion [PSI+] encoded by the sup35 gene (Chandramowlishwaran et al., 2018). Aggregation

of Sup35p causes read-through of UGA stop codons, allowing growth-based selection using an

auxotrophic marker containing a premature termination codon (Figure 1A and Figure 1—figure

supplement 1A). We generated a library containing all possible single nucleotide variants of Aß42

fused to the nucleation (N) domain of Sup35p and quantified the effect of mutations on the rate of

nucleation in triplicate by selection and deep sequencing (Faure et al., 2020; see Materials and

methods). The selection assay was highly reproducible, with enrichment scores for aa substitutions

strongly correlated between replicates (Figure 1B and Figure 1—figure supplement 1B).
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Figure 1. Deep mutagenesis of amyloid beta (Aß) nucleation. (A) In vivo Aß selection assay. Aß fused to the Sup35N domain seeds aggregation of

endogenous Sup35p causing a read-through of a premature UGA in the Ade1-14 reporter, allowing the cells to grow in medium lacking adenine. (B)

Correlation of nucleation scores for biological replicates 1 and 2 for single and double amino acid (aa) mutants. Pearson correlation coefficient and

p-value are indicated (Figure 1—figure supplement 1B) n = 10,157 genotypes. (C) Correlation of nucleation scores with in vitro primary and secondary

nucleation and elongation rate constants (Yang et al., 2018). Weighted Pearson correlation coefficient and p-value are indicated. (D) Nucleation scores

as a function of principal component 1 (PC1) aa property changes (Bolognesi et al., 2019) for single and double aa mutants (n = 14,483 genotypes).

Weighted Pearson correlation coefficient and p-value are indicated. (E) Solubility scores (Gray et al., 2019) as a function of PC1 changes

(Bolognesi et al., 2019) for n = 895 single and double mutants. Pearson correlation coefficient and p-value are indicated.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Reproducibility of the assay and correlation with in vitro fibril nucleation.

Figure supplement 1—source data 1. Raw colony counts from independent testing of the strains expressing the variants reported in Figure 1—figure

supplement 1A.
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In vivo nucleation scores are highly correlated with in vitro rates of
amyloid nucleation
Comparing our in vivo enrichment scores to the qualitative effects of 16 mutations analysed in vitro

across 10 previous publications validated the assay, with mutational effects matching the effects on

in vitro nucleation previously reported for 14 Aß variants out of 16. (Supplementary file 1). More-

over, the in vivo scores correlate extremely well with the rate of nucleation of Aß variants in positions

21, 22, 23 (Yang et al., 2018; Törnquist et al., 2018; Figure 1C and Figure 1—figure supplement

1C). We henceforth refer to the in vivo enrichment scores as ‘nucleation scores’ (NS).

Two mechanisms of in vivo Aß aggregation
A prior deep mutational scan quantified the effects of mutations on the abundance of Aß fused to

an enzymatic reporter (Gray et al., 2019). These ‘solubility scores’ do not predict the effects of

mutations on Aß nucleation (Figure 1—figure supplement 1D). Previously we identified a principal

component of aa properties (principal component 1 [PC1], related to changes in hydrophobicity)

that predicts the aggregation and toxicity of the amyotrophic lateral sclerosis (ALS) protein TDP-

43 when it is expressed in yeast (Bolognesi et al., 2019). PC1 is also not a good predictor of Aß

nucleation (Figure 1D) but it does predict the previously reported changes in Aß solubility

(Figure 1E), suggesting that Aß is aggregating by a similar process to TDP-43 in this alternative

selection assay (Gray et al., 2019) but by a different mechanism in the nucleation selection.

Nucleation scores for 14,483 Aß variants
The distribution of mutational effects for Aß nucleation has a strong bias towards reduced nucle-

ation, with 56% of single aa substitutions reducing nucleation but only 16% increasing it (Z-test, false

discovery rate [FDR] = 0.1, Figure 2A). Moreover, mutations that decrease nucleation in our dataset

typically have a larger effect than those that increase it, with many mutations reducing nucleation to

the background rate observed for Aß variants containing premature termination codons

(Figure 2A).

In addition to covering all aa changes obtainable through single nt mutations, our mutagenesis

library was designed to contain a substantial fraction of double mutants. In total, we quantified the

impact of 14,015 double aa variants of Aß. Double mutants were even more likely to reduce nucle-

ation, with 63% decreasing and only 5.5% increasing nucleation (Z-test, FDR = 0.1; Figure 2B).

Therefore, mutations more frequently decrease rather than increase Aß nucleation.

Aß has a modular mutational landscape
Inspecting the heatmap of mutational effects for aa changes at all positions in Aß reveals strong

biases in the locations of mutations that increase and decrease nucleation (Figure 2C and D, and

Figure 2—figure supplement 1A). Mutations that decrease nucleation are highly enriched in the

C-terminus of Aß, whereas mutations that increase nucleation are enriched in the N-terminus

(Figure 2E). Indeed, >84% of mutations in the C-terminus (residues 27-42) reduce nucleation and

only 9.6% increase it (FDR = 0.1). In contrast, the effects of mutations are smaller (Figure 2F) and

also more balanced in the first 26 aa of the peptide, with 38.6% decreasing and 20% increasing

nucleation (FDR = 0.1).

These differences in the direction and strength of mutational effects between the N- and C-termi-

nal regions of Aß suggest a modular organization of the peptide. This modularity is also reflected in

the primary sequence of Aß, which has a hydrophobic C-terminus and a more polar and charged

N-terminus (eight out of nine charged residues in Aß are found before residue 24 and the peptide

consists entirely of hydrophobic residues from position 29) (Figures 2C and 3A). Consistent with this

modular organization, mutations in the few hydrophobic residues in the N-terminus have effects that

are more similar to mutations in polar residues in the N-terminus rather than in hydrophobic residues

in the C-terminus. Similarly, mutations in the most C-terminal charged residue (K28) frequently

strongly reduce nucleation, just as they do in the adjacent hydrophobic positions (Figure 3A).

Gatekeeper residues act as anti-nucleators
Considering the entire Aß peptide, there are only seven positions in which mutations are not more

likely to decrease rather than increase nucleation (FDR = 0.1; Figure 2D). Strikingly, these positions,
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Figure 2. Modular organization of mutational effects in amyloid beta (Aß). (A and B) Nucleation scores distribution for single (A) and double (B) amino

acid (aa) mutants. n = 468 (missense), n = 31 (nonsense), n = 90 (synonymous) for singles, and n = 14,015 (missense) for doubles. Vertical dashed line

indicates wild-type (WT) score (0). (C) Heatmap of nucleation scores for single aa mutants. The WT aa and position are indicated in the x-axis and the

mutant aa is indicated on the y-axis, both coloured by aa class. Variants not present in the library are represented in white. Synonymous mutants are

indicated with ‘*’ and familial Alzheimer’s disease (fAD) mutants with a box, coloured by fAD class. (D) Number of variants significantly increasing (blue)

and decreasing (orange) nucleation at different false discovery rates (FDRs). Gatekeeper positions (D1, E3, D7, E11, L17, E22, and A42) are indicated on

top of the corresponding bar and coloured on the basis of aa type. The N-terminal and C-terminal definitions are indicated on the x-axis. Gatekeeper

positions are excluded from the N-terminal and C-terminal classes. (E) Aa position distributions for variants that increase (+), decrease (�), or have no

effect on nucleation (WT-like) (FDR < 0.1). (F) Nucleation score distributions for the three clusters of positions defined on the basis of nucleation: Nt (2-

26), Ct (27-41), and gatekeeper positions (clusters are mutually exclusive). Horizontal line indicates WT nucleation score (0). Nonsense (stop) mutants

were only included in A and C. Boxplots represent median values and the lower and upper hinges correspond to the 25th and 75th percentiles,

respectively. Whiskers extend from the hinge to the largest value no further than 1.5*IQR (interquartile range). Outliers are plotted individually or

omitted when the boxplot is plotted together with individual data points or a violin plot.

Figure 2 continued on next page
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which we refer to as ‘gatekeepers’ of nucleation (Rousseau et al., 2006; Pedersen et al., 2004),

include five of the six negatively charged residues in Aß. The sixth gatekeeper is an unusual hydro-

phobic residue in the N-terminus, L17, where seven mutations increase nucleation and only one

decreases it (FDR = 0.1; Figure 2D). The final aa of the peptide, A42, also has an unusual distribu-

tion of mutational effects that is different to the rest of the C-terminus, with four mutations increas-

ing and three mutations decreasing nucleation (FDR = 0.1; Figure 2D).

Taken together, on the basis of mutational effects, we therefore distinguish the following mutually

exclusive positions in Aß: the C-terminus (aa 27-41) where the majority of mutations strongly

decrease nucleation, the N-terminus (aa 2-26) where mutations have smaller and more balanced

effects, and seven gatekeeper residues (D1, E3, D7, E11, D22, L17, A42) where mutations frequently

increase nucleation. We consider each of these classes below.

Mutations in the N- and C-terminal regions
Mutations in the C-terminus nearly all decrease nucleation (Figure 3A). This is consistent with the

C-terminus forming part of the tightly packed amyloid core of all known structural polymorphs of

both Aß42 (Colvin et al., 2016; Meier et al., 2017; Wälti et al., 2016; Xiao et al., 2015;

Gremer et al., 2017; Lührs et al., 2005; Schmidt et al., 2015) and Aß40 (Kollmer et al., 2019;

Lu et al., 2013; Qiang et al., 2012; Sgourakis et al., 2015; Paravastu et al., 2008; Schütz et al.,

2015). Consistent with this, we quantified the nucleation of three C-terminal fragments of the pep-

tide (aa 22-42, 24-42, 27-42) and found that they nucleate similarly or better than full length Aß (Fig-

ure 3—figure supplement 1C). Mutations to polar and charged residues in this region nearly all

decrease nucleation, but so too do most changes to other hydrophobic residues (Figure 3B), sug-

gesting specific side chain packing in this region is important for nucleation. The relative effects of

different mutations are only partially captured by changes in hydrophobicity (Figure 3F; Pearson cor-

relation coefficient, R = 0.45) and by predictors of aggregation potential (Figure 3—figure supple-

ment 1A). Only a few mutations in this region increase nucleation: substitutions to isoleucine at

positions 30, 34, and 39; mutations to valine at positions 29, 30, and 34; a change to threonine at

position 30; changes to leucine and methionine at 36; and a mutation to phenylalanine at position

41 (FDR = 0.1).

Mutations in the N-terminus of Aß have a more balanced effect on nucleation, and these effects

are not well predicted by either hydrophobicity or predictors of aggregation potential (Figure 3—

figure supplement 1B,D and E). The effects of introducing particular aa are, however, biased, with

the introduction of asparagine, isoleucine, and valine most likely to increase nucleation (Figure 3C

and Figure 3—figure supplement 2). As at the C-terminus, the introduction of negative charged

residues typically strongly reduces nucleation (Figure 3B and C). However, in contrast to what is

observed in the C-terminus (Figure 3B), the effects of introducing positive charge are less severe

(Figure 3C). Interestingly, the effects of mutations to proline, isoleucine, valine, and threonine in the

N-terminus depend on the position in which they are made: mutations in the first 12 residues typi-

cally decrease nucleation, whereas mutations in the next four to nine residues increase nucleation

(Figure 3E). The conformational rigidity of proline and the beta-branched side chains of isoleucine,

valine, and threonine that disfavour helix formation suggest that disruption of a secondary structure

in this region may favour nucleation. Interestingly, this same region was highlighted as the part of

the peptide remaining most disordered across different states of the solution ensemble of Aß in

molecular dynamics simulations, with the same region also making extensive long-range contacts in

different states of the kinetic ensemble (Löhr et al., 2021).

The role of charge in limiting Aß nucleation
At five of six negatively charged positions in Aß, mutations frequently increase nucleation

(Figures 2D and 3A). Moreover, the introduction of negative charge at other positions strongly

decreases nucleation (Figure 3A), suggesting that negatively charged residues act as gatekeepers

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Mutational effects in amyloid beta (Aß).
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Figure 3. Determinants of amyloid beta (Aß) nucleation. (A) Effect of single aa mutants on nucleation for each Aß position. The wild-type (WT) aa and

position are indicated on the x-axis and coloured on the basis of aa type. The horizontal line indicates the WT nucleation score (0). (B to D) Effect of

each mutant aa on nucleation for the Ct (27-41) (B), the Nt (2-26) (C), and the negatively charged gatekeeper positions (D1, E3, D7, E11, and E22) (D).

The three position clusters are mutually exclusive. Colour code indicates aa type. The horizontal line is set at the WT nucleation score (0). (E) Effect on

Figure 3 continued on next page
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(Pedersen et al., 2004; Rousseau et al., 2006) to limit nucleation (Figure 3D and Figure 3—figure

supplement 1D). In contrast, mutations in the three positively charged residues (R5, K16, K28)

mostly decrease nucleation (Figure 2D). Mutating the negatively charged gatekeepers to the polar

aa glutamine and asparagine, to positively charged residues (arginine and lysine), or to small side

chains (glycine and alanine) increases nucleation (Figure 3D). Mutating the same positions to hydro-

phobic residues typically reduces nucleation (Figure 3D). This is consistent with a model in which the

negative charge at these positions acts to limit nucleation, but that the overall polar and unstruc-

tured nature of the N-terminus must be maintained for effective nucleation.

To further investigate the role of charge in controlling Aß nucleation, we extended our analyses

to the double mutants. Including double mutants allows the net charge of Aß to vary over a wider

range and it also allows comparison of the nucleation of peptides with the same net charge but a dif-

ferent total number of charged residues (e.g., a net charge of �3 can result from a negative/positive

aa composition of 6/3, as in wild-type Aß, or compositions of 7/4, 5/2, etc.). Considering all muta-

tions between charged and polar residues or glycine reveals that, although reducing the net charge

of the peptide from �3 progressively increases nucleation (Figure 3G), the total number of charged

residues is also important: for a given net charge, nucleation is increased in peptides containing

fewer charged residues of any sign (Figure 3G and Figure 3—figure supplement 1F and G). Thus,

both the overall charge and the number of charged residues control the rate of Aß nucleation.

Hydrophobic gatekeeper residues
In addition to the five negatively charged gatekeeper residues, mutations most frequently increase

nucleation of Aß in two specific hydrophobic residues: L17 and A42 (Figure 2C and D). At position

17, changes to polar, aromatic, and aliphatic aa all increase nucleation, as does the introduction of a

positive charge and mutation to proline. Only a mutation to cysteine reduces nucleation (Figure 2C).

This suggests a specific role for leucine at position 17 in limiting nucleation, perhaps as part of a

nucleation-limiting secondary structure suggested by the mutational effects of proline, isoleucine,

valine, and threonine in this region (Figure 3E).

Finally, the distribution of mutational effects at position 42 differs from that in the rest of the

hydrophobic C-terminus of Aß, with mutations most often increasing nucleation (Figure 2D;

FDR = 0.1). The mutations that increase nucleation are all to other aliphatic residues (Figures 2C

and 3A). The distinction of position 42 is interesting because of the increased toxicity and aggrega-

tion propensity of Aß42 compared to the shorter Aß40 APP cleavage product (Meisl et al., 2014;

Sandberg et al., 2010).

Nucleation scores accurately discriminate fAD mutations
To investigate how nucleation in the cell-based assay relates to the human disease, we considered

all the mutations in Aß known to cause fAD. In total, there are 11 mutations in Aß reported to cause

dominantly inherited fAD and one additional variant of unclear pathogenicity (H6R) (Janssen et al.,

Figure 3 continued

nucleation for single aa mutations to proline, threonine, valine, and isoleucine. Mutations to other aa are indicated in grey. The horizontal line indicates

WT nucleation score (0). Point size and shape indicate false discovery rate (FDR) and familial Alzheimer’s disease (fAD) class, respectively (see legend).

(F) Nucleation scores as a function of hydrophobicity changes (Kyte and Doolittle, 1982) for single and double aa mutants in the Ct (27-41) cluster.

Only double mutants with both mutations in the indicated position-range were used. Weighted Pearson correlation coefficient and p-value are

indicated. (G) Nucleation score distributions arranged by the number of charged residues (y-axis) and the total net charge (x-axis) for single and double

aa mutants in the full peptide (1-42). Only polar, charged, and glycine aa types were taken into account, for both WT and mutant residues. Colour

gradient indicates the total number of charged residues. Numbers inside each cell indicate the number of positive and negative residues. The

horizontal line indicates WT nucleation score (0). Boxplots represent median values and the lower and upper hinges correspond to the 25th and 75th

percentiles, respectively. Whiskers extend from the hinge to the largest value no further than 1.5*IQR (interquartile range). Outliers are plotted

individually or omitted when the boxplot is plotted together with individual data points or a violin plot.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Determinants of amyloid beta (Aß) nucleation.

Figure supplement 1—source data 1. Raw colony counts from indepednet testing of the strains expressing the N-terminal truncated varaints reported

in Figure 3—figure supplement 1C.

Figure supplement 2. Effect of mutations to each specific amino acid (aa) on amyloid beta (Aß) nucleation.
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2003). These 12 known disease mutations are not well discriminated by commonly used computa-

tional variant effect predictors (Figure 4 and Figure 4—figure supplement 1A) or by computational

predictors of protein aggregation and solubility (Figure 4 and Figure 4—figure supplement 1B).

They are also poorly predicted by the previous deep mutational scan of Aß designed to quantify

changes in protein solubility, suggesting the disease is unrelated to the biophysical process quanti-

fied in this assay (Gray et al., 2019; Figure 4—figure supplement 1C).

In contrast, the scores from our in vivo nucleation assay accurately classify the known dominant

fAD mutations, with all 12 mutations increasing nucleation (Figure 4, area under the receiver operat-

ing characteristic curve, ROC�AUC = 0.9, two-tailed Z-test, p<2.2e-16). This suggests the

biophysical events occurring in this simple cell-based assay are highly relevant to the development

of the human disease.

Consistent with the overall mutational landscape, the known fAD mutations are also enriched in

the N-terminus of Aß (Figure 2C). In some positions the known fAD mutations are the only mutation

or one of only a few mutations that can increase nucleation. For example, based on our data, K16N

is likely to be one of only two fAD mutations in position 16. However, in other positions, there are

several additional variants that increase nucleation as much as the known fAD mutation. At position

11, for example, there are five mutations with a NS higher than the known E11K disease mutation

(Figure 2C and D). Overall, our data suggest there are likely to be many additional dominant fAD

mutations beyond the 12 that have been reported to date (Supplementary file 2).

In addition to the 12 known dominant fAD mutations, two additional variants in Aß have been

suggested to act recessively to cause fAD (Di Fede et al., 2009; Tomiyama et al., 2008). One of

these variants is a codon deletion (E22D) and is not present in our library. The other variant, A2V,

does not have a dominant effect on nucleation in our assay (Figure 2C), consistent with a recessive

pattern of inheritance and a different mechanism of action, such as reduced ß-cleavage and

increased Aß42 generation, as previously proposed (Benilova et al., 2014). More generally, of the

hundreds of aa changes possible in the peptide, our data prioritize 63 as candidate fAD variants

(Supplementary file 2); 131 variants are likely to be benign, and 262 reduce Aß nucleation and so

may even be protective. These include variants already reported in the gnomAD database of human

genetic variation (Figure 4—figure supplement 1D). With the currently available data for patients
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Figure 4. Amyloid beta (Aß) nucleation accurately discriminates dominant familial Alzheimer’s disease (fAD)

variants. Receiver operating characteristic (ROC) curves for 12 fAD mutants versus all other single aa mutants in the

dataset. Area under the curve (AUC) values are indicated in the legend. Diagonal dashed line indicates the

performance of a random classifier. The nucleation scores and categories for all fAD variants are reported in

Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Discrimination of familial Alzheimer’s disease (fAD) variants by aggregation and variant

effect predictors.

Seuma et al. eLife 2021;10:e63364. DOI: https://doi.org/10.7554/eLife.63364 9 of 19

Research article Computational and Systems Biology Genetics and Genomics

https://doi.org/10.7554/eLife.63364


carrying fAD mutations, we could not observe a correlation between NS and disease age-of-onset

(Ryman et al., 2014; Figure 4—figure supplement 1E).

Discussion
Taken together, the data presented here provides the first large-scale analysis of how mutations pro-

mote and prevent the aggregation of an amyloid. The results reveal a modular organization for the

impact of mutations on the nucleation of Aß. Moreover, they show that the rate of nucleation in a

cell-based assay identifies all of the mutations in Aß that cause dominant fAD. The dataset therefore

provides a useful resource for the future clinical interpretation of genetic variation in Aß.

A majority of mutations in the C-terminal core of Aß disrupt nucleation, consistent with specific

hydrophobic contacts in this region being required for nucleation. In contrast, mutations that

increase nucleation are enriched in the polar N-terminus with mutations in negatively charged gate-

keeper residues and the L17 gatekeeper being particularly likely to accelerate aggregation. Indeed,

decreasing both the net charge of the peptide and the total number of charged residues increases

nucleation.

Little is known about the structure of Aß during fibril nucleation, but the results presented here

are in general consistent with the nucleation transition state resembling the known mature fibril

structures of Aß where the C-terminal region of the peptide is located in the amyloid core and the

N-terminus is disordered and solvent exposed (Figure 5 and Figure 5—figure supplements 1 and

2). Although the N-terminus is not required for nucleation, it does affect the process when present

and most mutations that accelerate nucleation are located in the N-terminus. Interestingly, the

effects of mutations in residues immediately before position 17 suggest that the formation of a struc-

tural element in this region may interfere with nucleation.

That accelerated nucleation is a common cause of fAD is also supported by the effects of muta-

tions in APP outside of Aß and by the effects of mutations in PSEN1 and PSEN2. These mutations

destabilise enzyme-substrate complexes, increasing the production of the longer Aß peptides that

more effectively nucleates amyloid formation (Szaruga et al., 2017; Veugelen et al., 2016). In addi-

tion, Aß42 oligomers are hypothesised to be more toxic (Michaels et al., 2020; Bolognesi et al.,

2010). It is possible that the effects of some of the mutations reported here on nucleation are also

mediated by a change in the concentration of Aß rather than by an increase in a kinetic rate parame-

ter. Some of the variants evaluated here may have additional effects, for example, altering cleavage

of APP. Future work will be needed to test these hypotheses.

Comparing our results to the effects of mutations on Aß solubility quantified in a previous high-

throughput analysis (Gray et al., 2019) provides evidence that, in the same type of cell (yeast), Aß

can aggregate in at least two different ways. Moreover, the different performance of the two sets of

scores from these datasets in classifying fAD mutations suggests that one of these aggregation pro-

cesses (quantified by the nucleation assay employed here) is likely to be very similar to the aggrega-

tion that occurs in the human brain in fAD. The other pathway of aggregation (quantified by the

solubility assay; Gray et al., 2019), however, is less obviously related to the human disease, because

mutations that cause fAD do not consistently affect it. This second aggregation pathway is, at least

to a large extent, driven by changes in hydrophobicity, similar to what we previously reported for

the aggregation in yeast of the ALS protein, TDP-43 (Bolognesi et al., 2019).

More generally, our results highlight how the combination of deep mutational scanning and

human genetics can be a general ‘genetic’ strategy to quantify the disease relevance of biological

assays. Many in vitro and in vivo assays are proposed as ‘disease models’ in biomedical research

with their relevance often justified by how ‘physiological’ the assays seem or how well phenotypes

observed in the model match those observed in the human disease. The range of phenotypes that

can be assessed and their similarity to the pathology of AD human brains are appealing features of

many animal models of AD and many important insights have been derived – and will continue to be

derived – from animal models (Sasaguri et al., 2017). However, there are applications where animal

models cannot be realistically used, for example, for high-throughput compound screening for drug

discovery and for testing hundreds or thousands of genetic variants of unknown significance. For

these applications, in vitro or cell-based (Pimenova and Goate, 2020; Veugelen et al., 2016) assays

are required and an important challenge is to evaluate the ‘disease relevance’ of different assays.

Our study highlights an approach to achieve this, which is to use the complete set of known disease-

Seuma et al. eLife 2021;10:e63364. DOI: https://doi.org/10.7554/eLife.63364 10 of 19

Research article Computational and Systems Biology Genetics and Genomics

https://doi.org/10.7554/eLife.63364


causing mutations to quantify the ‘genetic agreement’ between an assay and a disease. Thus,

although the yeast-based assay that we employed here might typically be dismissed as ‘non-physio-

logical,’ ‘artificial,’ or ‘lacking many features important for a neurological disease,’ unbiased mas-

sively parallel genetic analysis provides very strong evidence that it is reporting on biopysicall events

that are extremely similar to – or the same as – those that cause the human disease. Indeed, one

could argue that this simple system is now better validated as a model of fAD than many others,

including animal models where the effects of only one or a few mutations (including control muta-

tions) have ever been tested. Similarly strong agreement between mutational effects in a cellular

assay and the set of mutations already known to cause a disease is observed for other diseases

(Starita et al., 2017; Gelman et al., 2019), suggesting the generality of this approach.

K16A21

D23 Gatekeepers 

Mean Nucleation score

H6

E22

D7 E11

A42

L17

D1 E3 -3.5 0 0.5

Figure 5. Mutational landscape of the amyloid beta (Aß) amyloid fibril. Average effect of mutations visualized on

the cross-section of an Aß amyloid fibril (PDB accession 5KK3; Colvin et al., 2016). Nucleation gatekeeper

residues and known familial Alzheimer’s disease (fAD) mutations positions are indicated by the wild-type (WT) aa

identity on one of the two monomers; gatekeepers are indicated with blue dots and fAD are underlined. A single

layer of the fibril is shown and the unstructured N-termini (aa 1-14) are shown with different random coil

conformations for the two Aß monomers. See Figure 5—figure supplement 2 for alternative Aß42 amyloid

polymorphs.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Modular organization of Aß42 and Aß40 polymorphs.

Figure supplement 2. Modular organization of mutational effects and gatekeepers visualized on Aß42

polymorphs.
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We suggest therefore that the combination of deep mutational scanning and human genetics

provides a general strategy to quantify the disease relevance of in vitro and cell-based assays. We

encourage that deep mutagenesis should be employed early in discovery programmes to ‘geneti-

cally validate’ (or invalidate) the relevance of assays for particular diseases. The concordance

between mutational effects in an assay and a disease is an unbiased metric that can be used to prior-

itize between different assays. Quantifying the ‘genetic agreement’ between an assay and a disease

will help prevent time and resources being wasted on research that actually has little relevance to a

disease.

Finally, the strikingly consistent effects of the dominant fAD mutations in our assay further

strengthen the evidence that fAD is a ‘nucleation disease’ ultimately caused by an increased rate of

amyloid nucleation (Aprile et al., 2017; Cohen et al., 2018; Knowles et al., 2009). This accelerated

nucleation can be caused by the direct effects of mutations in Aß — such as those quantified here —

or by changes in upstream factors (Szaruga et al., 2017). If this hypothesis is correct, then nucle-

ation is the key bioph step to target to prevent or treat AD. We suggest that the ‘genetic validation’

of assays by mutational scanning and comparison to sets of known disease-causing mutations will be

increasingly important in assay development and drug discovery pipelines.

Materials and methods

Plasmid library construction
The plasmid PCUP1-Sup35N-Ab42 used in this study was a kind gift from the Chernoff lab

(Chandramowlishwaran et al., 2018).

The Ab coding sequence and two flanking regions of 52 bp and 72 bp, respectively, upstream

and downstream of Ab were amplified (primers MS_01 and MS_02, Supplementary file 3) by error-

prone PCR (Mutazyme II DNA polymerase, Agilent). Thirty cycles of amplification and 0.01 ng of ini-

tial template were used to obtain a mutagenesis rate of 16 mutations/kb, according to the manufac-

turer’s protocol. The product was treated with DpnI (FastDigest, Thermo Scientific) for 2 hr and

purified by column purification (MinElute PCR Purification Kit, Qiagen). The fragment was digested

with EcoRI and XbaI restriction enzymes (FastDigest, Thermo Scientific) for 1 hr at 37˚C and purified

from a 2% agarose gel (QIAquick Gel Extraction Kit, Qiagen). In parallel, the PCUP1-Sup35N-Ab42

plasmid was digested with the same restriction enzymes to remove the WT Ab sequence, treated

with alkaline phosphatase (FastAP, Thermo Scientific) for 1 hr at 37˚C to dephosphorylate the 5’

ends, and purified from a 1% agarose gel (QIAquick Gel Extraction Kit, Qiagen).

Mutagenised Ab was then ligated into the linearised plasmid in a 5:1 ratio (insert:vector) using a

ligase treatment (T4, Thermo Scientific) overnight. The reaction was dialysed with a membrane filter

(Merck Millipore) for 1 hr, concentrated 4x, and transformed in electrocompetent Escherichia coli

cells (10-beta Electrocompetent, NEB). Cells were recovered in SOC medium and plated on LB with

ampicillin. A total of 4.1 million transformants were estimated, ensuring that each variant of the

library was represented more than 10 times; 50 ml of overnight E. coli culture was harvested to

purify the Ab plasmid library with a midi prep (Plasmid Midi Kit, Qiagen). The resulting library con-

tained 29.9% of WT Ab, 23.8% of sequences with 1 nt change, and 21.8% of sequences with 2 nt

changes.

Large-scale yeast transformation
Saccharomyces cerevisiae [psi-pin-] (MATa ade1-14 his3 leu2-3,112 lys2 trp1 ura3-52) strain (also pro-

vided by the Chernoff lab) was used in all experiments in this study (Chandramowlishwaran et al.,

2018).

Yeast cells were transformed with the Ab plasmid library starting from an individual colony for

each transformation tube. After an overnight pre-growth culture in YPDA medium at 30˚C, cells were

diluted to OD600 = 0.3 in 175 ml YPDA and incubated at 30˚C 200 rpm for ~5 hr. When cells reached

the exponential phase, they were harvested, washed with milliQ, and resuspended in sorbitol mix-

ture (100 mM LiOAc, 10 mM Tris pH 8, 1 mM EDTA, 1M sorbitol). After a 30 min incubation at room

temperature (RT), 5 mg of plasmid library and 175 ml of ssDNA (UltraPure, Thermo Scientific) were

added to the cells. PEG mixture (100 mM LiOAc, 10 mM Tris pH 8, 1 mM EDTA pH 8, 40%

PEG3350) was also added and cells were incubated for 30 min at RT and heat-shocked for 15 min at
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42˚C in a water bath. Cells were harvested, washed, resuspended in 350 ml recovery medium (YPD,

sorbitol 0.5M, 70 mg/L adenine) and incubated for 1.5 hr at 30˚C 200 rpm. After recovery, cells were

resuspended in 350 ml -URA plasmid selection medium and allowed to grow for 50 hr. Transforma-

tion efficiency was calculated for each tube of transformation by plating an aliquote of cells in -URA

plates. Between 1 and 2.5 million transformants per tube were obtained. Two days after transforma-

tion, the culture was diluted to OD600 = 0.02 in 1 l -URA medium and grown until the exponential

phase. At this stage, cells were harvested and stored at �80˚C in 25% glycerol.

Selection experiments
Three independent replicate selection experiments were performed. Tubes were thawed from the

�80˚C glycerol stocks and mixed proportionally to the number of transformants in a 1 l total -URA

medium at OD600 = 0.05. A minimum of 3.7 million yeast transformants were used for each replicate

to ensure the coverage of the full library and reaching therefore a 10x coverage of each variant.

Once the culture reached the exponential phase, cells were resuspended in 1 l protein inducing

medium (-URA, 20% glucose, 100 mM Cu2SO4) at OD600 = 0.05. As a result, each variant was repre-

sented at least 100 times at this stage. After 24 hr the input pellets were collected by centrifuging

220 ml of cells and stored at �20˚C for later DNA extraction (input pellets). In parallel, 18.5 million

cells of the same culture underwent selection, with a starting coverage of at least 50 copies of each

variant in the library. For selection, cells were plated on -ADE-URA selective medium in 145 cm2

plates (Nunc, Thermo Scientific) and let grow for 7 days at 30˚C. Colonies were then scraped off the

plates and recovered with PBS 1x to be centrifuged and stored at �20˚C for later DNA extraction

(output pellets).

For individual testing of specific variants, cells were plated on -URA (control) and -ADE-URA

(selection) plates in three independent replicates. Individual growth was calculated as the percent-

age of colonies growing -ADE-URA relative to colonies growing in -URA.

DNA extraction
The input and output pellets (three replicates, six tubes in total) were thawed and resuspended in 2

ml extraction buffer (2% Triton-X, 1% SDS, 100 mM NaCl, 10 mM Tris pH 8, 1 mM EDTA pH 8), and

underwent two cycles of freezing and thawing in an ethanol-dry ice bath (10 min) and at 62˚C (10

min). Samples were then vortexed together with 1.5 ml of phenol:chloroform:isoamyl 25:24:1 and

1.5 g of glass beads (Sigma). The aqueous phase was recovered by centrifugation and mixed again

with 1.5 ml phenol:chloroform:isoamyl 25:24:1. DNA precipitation was performed by adding 1:10 V

of 3M NaOAc and 2.2 V of 100% cold ethanol to the aqueous phase and incubating the samples at

�20˚C for 1 hr. After a centrifugation step, pellets were dried overnight at RT.

Pellets were resuspended in 1 ml resuspension buffer (10 mM Tris pH 8, 1 mM EDTA pH 8) and

treated with 7.5 ml RNase A (Thermo Scientific) for 30 min at 37˚C. The DNA was finally purified using

75 ml of silica beads (QIAEX II Gel Extraction Kit, Qiagen), washed and eluted in 375 ml elution

buffer.

DNA concentration in each sample was measured by quantitative PCR, using primers (MS_03 and

MS_04, Supplementary file 3) that anneal to the origin of replication site of the plasmid at 58˚C.

Sequencing library preparation
The library was prepared for high-throughput sequencing in two rounds of PCR (Q5 High-Fidelity

DNA Polymerase, NEB). In PCR1, the Ab region was amplified for 15 cycles at 68˚C with frame-

shifted primers (MS_05 to MS_18, Supplementary file 3) with homology to Illumina sequencing pri-

mers; 300 million of molecules were used for each input or output sample. The products of PCR1

were purified with an ExoSAP-IT treatment (Affymetrix) and a column purification step (QIAquick

PCR Purification Kit) and then used as the template of PCR2. This PCR was run for 10 cycles at 62˚C

with Illumina indexed primers (MS_19 to MS_25, Supplementary file 2) specific for each sample

(three inputs and three outputs). The six samples were then pooled together equimolarly. The final

library sample was purified from a 2% agarose gel with silica beads (QIAEX II Gel Extraction Kit, Qia-

gen); 125 bp paired-end sequencing was run on an Illumina HiSeq2500 sequencer at the CRG Geno-

mics Core Facility.
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Data processing
FastQ files from paired-end sequencing of the Aß library before (‘input’) and after selection (‘out-

put’) were processed using a custom pipeline (https://github.com/lehner-lab/DiMSum). DiMSum

(Faure et al., 2020) is an R package that uses different sequencing processing tools such as FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) (for quality assessment), Cutadapt

(Martin, 2011) (for constant region trimming), and USEARCH (Edgar, 2010) (for paired-end read

alignment). Sequences were trimmed at 50 and 30, allowing an error rate of 0.2 (i.e., read pairs were

discarded if the constant regions contained more than 20% mismatches relative to the reference

sequence). Sequences differing in length from the expected 126 bp or with a Phred base quality

score below 30 were discarded. As a result of this processing, around 150 million total reads passed

the filtering criteria.

At this stage, unique variants were aggregated and counted using Starcode (https://github.com/

gui11aume/starcode). Variants containing indels and nonsynonymous variants with synonymous sub-

stitutions in other codons were excluded. The result is a table of variant counts which can be used

for further analysis.

For downstream analysis, variants with less than 50 input reads in any of the replicates were

excluded and only variants with a maximum of two aa mutations were used.

Nucleation scores and error estimates
On the basis of variant counts, the DiMSum pipeline (Faure et al., 2020; https://github.com/lehner-

lab/DiMSum) was used to calculate nucleation scores (NS) and their error estimates. For each variant

in each replicate NS was calculated as:

Nucleationscore ¼ ESi�ESwt

where ESi ¼ log Fi OUTPUTð Þ � log Fi INPUTð Þ for a specific variant and

ESwt ¼ log Fwt OUTPUTð Þ � log Fwt INPUTð Þ for Aß WT.

DiMSum models measurement error of NS by assuming that variants with similar counts in input

and output samples have similar errors. Based on errors expected from Poisson-distributed count

data, replicate-specific additive and multiplicative (one each for input and output samples) modifier

terms are fit to best describe the observed variance of NS across all variants simultaneously.

After error calculation, NS were merged by using the error-weighted mean of each variant across

replicates and centered using the error-weighted means frequency of synonymous substitutions aris-

ing from single nt changes. Merged NS and NS for each independent replicate, as well as their asso-

ciated error estimates, are available in Supplementary file 4.

Nonsense (stop) mutants were excluded for the analysis except when indicated (Figure 2A and C

and Figure 2—figure supplement 1A).

K-medoids clustering
We used K-medoids, or the partitioning around medoids algorithm, to cluster the matrix of single aa

variant NS estimates by residue position with the number of clusters estimated by optimum average

silhouette width, for values of K in [1,10]. The silhouette width is a measure of how similar each

object (in this case residue position) is to its own cluster. In order to take into account uncertainty in

NS estimates in the determination of the optimum number of clusters, we repeated this analysis

after random resampling from the NS (error) distributions of each single aa variant (n = 100). Based

on this clustering, we defined the N-terminus as aa 2-26 and the C-terminus as aa 27-41 (Figure 2—

figure supplement 1B). Seven positions where as many (or more) single mutations increase as

decrease nucleation were defined as ‘gatekeepers’ (D1, E3, D7, E11, L17, E22, A42) and excluded

from the N- and C-terminus classes. Only those positions where most mutations are significantly dif-

ferent from WT (FDR = 0.1) were considered for the definition of gatekeepers.

Aa properties, aggregation, and variant effect predictors
Nucleation scores were correlated with aa properties and scores from aggregation, solubility, and

variant effect prediction algorithms. Pearson correlations were weighted based on the error terms

associated with the NS of each variant using the R package ‘weights.’ The aa property features were

retrieved from a curated collection of numerical indices representing various aa physicochemical and
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biochemical properties (http://www.genome.jp/aaindex/). We also used a principal component of

these aa properties from a previous work (PC1; Bolognesi et al., 2019) that relates strongly to

changes in hydrophobicity. For each variant (single and double aa mutants), the values of a specific

aa property represent the difference between the mutant and the WT scores.

For the aggregation and solubility algorithms (Tango [Fernandez-Escamilla et al., 2004], Zyggre-

gator [Tartaglia and Vendruscolo, 2008], CamSol [Sormanni et al., 2015], and Waltz [Olive-

berg, 2010]), individual residue-level scores were summed to obtain a score per aa sequence. We

then calculated the log value for each variant relative to the WT score (single and double aa mutants

for Tango, Zyggregator, CamSol and single aa mutants for Waltz). For the variant effect predictors

(Polyphen [Adzhubei et al., 2013] and CADD [Rentzsch et al., 2019]), we also calculated the log

value for each variant (only single aa mutants) but in this case values were scaled relative to the low-

est predicted score.

fAD, gnomAD, and Clinvar variants
The table of fAD mutations used in this study was taken from https://www.alzforum.org/mutations/

app. Allele frequencies of APP variants were retrieved from gnomAD (Karczewski, 2020) (https://

gnomad.broadinstitute.org/) and the clinical significance of variants was taken from their Clinvar

(Landrum et al., 2014) classification (https://www.ncbi.nlm.nih.gov/clinvar).

ROC curves were built and AUC values were obtained using the ‘pROC’ R package.

PDB structures
The coordinates of the following PDB structures were used for Figure 5, Figure 5—figure supple-

ments 1 and 2: 5OQV, 2NAO, 5KK3, 2BEG, 2MXU, 5AEF, 6SHS, 2LMN, 2LMP, 2LNQ, 2MVX, 2M4J,

2MPZ (Gremer et al., 2017; Colvin et al., 2016; Wälti et al., 2016; Lührs et al., 2005; Xiao et al.,

2015; Schmidt et al., 2015; Kollmer et al., 2019; Lu et al., 2013; Qiang et al., 2012;

Sgourakis et al., 2015; Schütz et al., 2015).
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