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Abstract: A copula is a multivariate cumulative distribution function with marginal distributions
Uni f orm(0, 1). For this reason, a classical kernel estimator does not work and this estimator needs
to be corrected at boundaries, which increases the difficulty of the estimation and, in practice, the
bias boundary correction might not provide the desired improvement. A quantile transformation of
marginals is a way to improve the classical kernel approach. This paper shows a Beta quantile trans-
formation to be optimal and analyses a kernel estimator based on this transformation. Furthermore,
the basic properties that allow the new estimator to be used for inference on extreme value copulas
are tested. The results of a simulation study show how the new nonparametric estimator improves
alternative kernel estimators of copulas. We illustrate our proposal with a financial risk data analysis.

Keywords: nonparametric copula; kernel estimation; Beta transformation; extreme value copula

1. Introduction

Based on the kernel method and transformations, we present a new nonparametric
estimator of a multivariate copula that improves the empirical copula and the most promi-
nent kernel estimators (see reference [1], for a detailed review). We use the new estimator
to analyse and test the extreme value dependence between the losses in the Spanish stock
market index and different stock market indexes of Europe, USA and China.

The copula model allows us to represent the dependence structure of a multivariate
random vector of continuous variables X =

(
X1, ..., XJ

)′, which combines with marginal
distributions to give the multivariate distribution. This idea was established in the funda-
mental theorem proposed by Sklar [2]. This theorem shows that a multivariate cumulative
distribution function (cdf) H of the random vector X, with marginal distributions functions
F1, ..., FJ , has associated a copula C, so that:

H
(

x1, ..., xJ
)
= C

(
F1(x1), ..., FJ(xJ)

)
. (1)

In practice, the dependence structure and marginal distributions are unknown and
both will need to be fitted. We assume that marginal cdfs can be easily adjusted using
parametric distributions or nonparametric methods and we focus on the fitting of depen-
dence structure using a copula. It is often difficult by visualizing the data to select the
appropriate dependency structure and, therefore, the right copula model. Alternatively,
a nonparametric estimation of a copula can be obtained whose results can be used for
estimating joint probabilities or for testing the adequacy of a copula family, for example,
the extreme value copula family. In this paper, these two aims of our new nonparametric
estimator are analysed through a simulation study.

Because there are a lot of dependence structures represented by different copulas
families, specific tests for choosing the best copula are useful. The approach for developing
a test for the adequacy of copulas takes its lead from, for example, the proposal of Genest
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and Rivest [3] for bivariate Archimedean copulas; the test of Scaillet [4] on inference for the
positive quadrant dependence hypothesis; the test for equality between two copulas of [5]
or the test of symmetry for bivariate copulas of Genest et al. [6].

On inference for extreme value copulas, alternative types of tests have been proposed,
among which the most well known are the test of Genest et al. [7] based on a Cramér-
von Mises statistic, the test analysed by Ghorbal et al. [8] based on an U-statistic and
the test of Kojadinovic et al. [9] that uses the max-stable property and is also based on
a Cramér-von Mises statistic (see also [10] for complete properties of the test based on
max-stable property).

The test proposed by Kojadinovic et al. [9] is based on the empirical copula that is
equivalent to the multivariate empirical distribution. However, the empirical copula is
inefficient for certain shapes of distribution, for example, when the marginal cdfs are associ-
ated with extreme value distributions. Alternatively, Omelka et al. [1] analyse how testing
extreme value copula can be based on different kernel estimators. The main difficulty of a
classical kernel estimator is its bias on the boundaries when the function values at these
points are positive. Based on this concern, Chen and Huang [11] analyse the kernel copula
estimator with local linear boundary correction which the authors proved reduces bias and
variance. Alternatively, Omelka et al. [1] propose the transformation of a kernel copula
estimator based on standard normal inverse distribution function transformations, which
is very easy to implement and has the same weak convergence properties as the previous
proposal. In this paper, an improved transformed kernel estimator is proposed that has the
same weak convergence properties and is useful for the inference on extreme value copulas.
The theoretical results are shown for the bivariate case, but they are easily extrapolated to
the multivariate case.

In Section 2, we present the background on kernel estimation of copulas, the new
estimator and its theoretical asymptotic properties for testing the max-stable property of
extreme value copulas. Section 3 presents the simulation results that allow us to analyse
finite-sample properties and inference errors type 1 and 2. As an illustration, in Section 4,
a financial risk analysis is carried out where the extreme value copula family hypothesis
between the Spanish stock market index and different neighbouring and non-neighbouring
countries is tested. Finally, we conclude in Section 5.

2. Kernel Estimation of Copulas

Let (Xi1, Xi2)
′, ∀ i = 1, ..., n, be a sample of n independent and identically distributed

(i.i.d.) bivariate data, the product kernel estimator of the bivariate cdf can be expressed as:

Ĥ(x1, x2) =
1
n

n

∑
i=1

K
(

x1 − Xi1
b1

)
K
(

x2 − Xi2
b2

)
, (2)

where K is the cdf associated with the kernel function k, that is a bounded or asymptotically
bounded and symmetric probability density function (pdf) (see [12,13] for a review on
kernel estimation of the multivariate distribution function). Examples of such functions
are the Epanechnikov and the Gaussian kernels (see [14]). The parameters b1 > 0 and
b2 > 0, known as the bandwidths or smoothing parameters, control the smoothness
of the estimation. Thus, the larger the value of b1 and b2, the smoother the resulting
function. Their values depend on the sample size n—the biggest sample size n, the lower
the smoothing parameters—but obtaining optimal values for these smoothing parameters
is one of the greatest difficulties posed by the kernel estimation.

Based on Slark’s theorem, from (2) we specify the kernel estimator of copula as:

C̃
(

F̂1(x1), F̂2(x2)
)
=

1
n

n

∑
i=1

K
(

x1 − Xi1
b1

)
K
(

x2 − Xi2
b2

)
, (3)

where F̂j(xj), j = 1, 2, are estimators of the marginal cdfs that, in practice, can be obtained
based on a parametric distribution or with a non-parametric estimator. Given that the
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copulas allow us to separate dependence structure from marginal distribution, we focus
on estimating the first; so, the aim is to estimate a multivariate cdf with Uni f orm(0, 1)
marginal distributions, whose kernel estimator for bivariate case is expressed as:

C̃(u1, u2) =
1
n

n

∑
i=1

K
(

u1 −Ui1
b

)
K
(

u2 −Ui2
b

)
, (4)

where, unlike (2), given that the marginal distributions are Uni f orm(0, 1), we assume
b1 = b2 = b and b → 0 as n → ∞, taking into account the relationship between b and
n, hereinafter we denote it as bn. In practice, we need to define observations (Ui1, Ui2)

′,
∀ i = 1, ..., n, the values of the marginal empirical distributions Uij =

1
n ∑n

k=1 I
(

Xkj ≤ Xij

)
,

j = 1, 2 and i = 1, ..., n, are a natural choice. However, it is known that empirical dis-
tribution takes value 1 at the maximum value observed and most of the commonly
used copulas (Gumbel, Clayton, Gaussian and Student’s t) are not finite derivatives
(copula density values) at corners (0, 0), (1, 1), (1, 0), (1, 1); then, these empirical distri-
butions are replaced by corrected versions that are known as pseudo-data and that
can be defined as: Ûij =

1
n+1 ∑n

k=1 I
(

Xkj ≤ Xij

)
or, as Chen and Huang [11] suggested,

Ûij =
1
n ∑n

k=1 I
(

Xkj ≤ Xij

)
− 1

2n . So, the kernel estimator of a copula is defined as:

Ĉ(u1, u2) =
1
n

n

∑
i=1

K
(

u1 − Ûi1
bn

)
K
(

u2 − Ûi2
bn

)
. (5)

To obtain the estimator defined in (5) a kernel function, K, needs to be selected that
will have minimal effect on the results obtained, and to calculate the bandwidth bn, whose
value will have an important effect on the estimated copula. The bandwidth bn can be
calculated using some cross-validation or plug-in method or using the rule-of-thumb
proposed by Silverman [14] for the kernel estimator of pdf adapted to the kernel estimator
of cdf (see [12,15]).

The properties of a kernel estimator depend on some smoothness characteristics of the
cdf; in our context in particular, it is a requirement that the first two derivatives take finite
values different from zero. Furthermore, when the distribution has a bounded domain
and the density at boundary takes positive values, as in the case of the bivariate copula
with domain on [0, 1]2, the estimator defined in (5) has boundary bias. This means that the
kernel estimator at boundary is not consistent (see [16] pp. 46–47, for a clear description
in the kernel density estimator context). This is problematic since our aim is to test if
our data is generated by an extreme value copula. There are three alternative proposals
to achieve consistency at boundary of a kernel estimator of a copula. Boundary kernel
methods are the most common techniques proposed in the context of kernel regression
and density estimation (see [17,18]), the main difficulty with the use of this type of kernel
being that it does not integrate one which, in practice, could be inconvenient. Chen and
Huang [11] proposed a kernel estimator of copulas with linear boundary correction, the
weakness of their method is that for many common families of copulas (e.g., Clayton,
Gumbel, Gaussian and Student’s t) the bias at some of the corners of the unit square is
only of order O(bn), versus the O(b2

n) that is reached in the central values of the domain,
where O(·) is the asymptotic order operator. Another way to correct boundary bias is
using the mirror-reflection kernel estimator, this method being proposed by Gijbels and
Mielniczuk [19] to estimate the density of the copula. In all cases, the main difficulty of a
kernel estimator with or without boundary bias is calculating the smoothing parameter
whose value will greatly affect the results.

An alternative strategy to avoid boundary bias and to calculate the smoothing pa-
rameter easily is to transform Uni f orm(0, 1) marginal distributions of the copula so that
the kernel estimator of the new marginal distributions does not have boundary bias and
their shapes allow us to minimise the bias of the kernel estimator. This idea also addresses
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the problems of the estimator defined in (3) based on the original scale of the data. On
the one hand, although the marginal distributions are not uniform, they can have shapes
that could also be subject to inconsistency at the boundaries, i.e., the distribution could
have bounded domain on one or both sides with positive density. On the other hand, the
problems associated with the kernel estimator defined in (3) are widely known when the
distribution to estimate has one or two long tails (see [20–22]).

The transformed estimator of the copula is based on the equality:

C(u1, u2) = CT(T(u1), T(u2)),

i.e., the values of the copula function C evaluated on original Uni f orm(0, 1) scale are equal
to the values of function CT evaluated on transformed scale. So, the transformed kernel
estimator (TKE) of a copula is defined as:

ĈT(u1, u2) =
1
n

n

∑
i=1

K
(

T(u1)− T(Ûi1)

bn

)
K
(

T(u2)− T(Ûi2)

bn

)
= ̂̂C(u1, u2), (6)

where T(·) is a transformation which is equal to the inverse of a given continuous cdf. The
estimator defined in (6) has a fundamental advantage over the kernel estimator defined
in (5) and its versions that incorporate boundary bias reduction; given that the function T(·)
is the inverse of a given cdf, we know the marginal distributions of CT and the bandwidth
can be calculated based on these distributions.

Omelka et al. [1] proposed that T = Φ−1, where Φ is the cdf of the standard normal
distribution. This standard normal transformation is based on the idea that the normal
distribution does not have boundary bias problems and it can be estimated easily using
a classical kernel estimator. This transformed estimator is called Gaussian transformed
kernel estimator and is defined as:

ĈG(u1, u2) =
1
n

n

∑
i=1

K
(

Φ−1(u1)−Φ−1(Ûi1)

bn

)
K
(

Φ−1(u2)−Φ−1(Ûi2)

bn

)
. (7)

In practice, in this case the value of bandwidth can be calculated using the idea of rule-of-
thumb of Silverman [14] applied to the standard normal marginal cdfs, that is bn = 3.572n−

1
3 .

In the simulation study presented in Section 3, we show the difference between the mean
integrated squared error of a copula, MISE =

∫ 1
0

∫ 1
0

[
Ĉ(u1, u2)− C(u1, u2)

]2du1du2, using
optimal bn and using the proposed rule-of-thumb.

We propose an alternative estimator to the one defined in (7) using a transformation
T that is better than Φ−1. Our proposal is based on the second-order approximation
properties of univariate kernel estimator of marginal distributions. When bn → 0 as n→ ∞,
f is a continuous pdf and the first derivative f ′ exists, the bias and variance of kernel
estimator of cdf are (see [15,23,24]):

E
[

F̂(y)
]
− F(y) =

1
2

b2 f ′(y)
∫ 1

−1
t2k(t)dt + o

(
b2
)

(8)

and

V
[

F̂(y)
]
=

F(y)[1− F(y)]
n

− f (y)
b
n

∫ 1

−1
K(t)[1− K(t)]dt + o

(
b
n

)
. (9)

By addition of the integrated variance and the integrated squared bias, we can approx-
imate the MISE of the kernel estimation of marginal distributions as:

MISE
[

F̂(y)
]

=
∫ F(y)[1− F(y)]

n
dy− b

n

∫ 1

−1
K(t)[1− K(t)]dt

+
1
4

b4
∫ [

f ′(y)
]2dy

(∫ 1

−1
t2k(t)dt

)2

+ o
(

b4
)
+ o
(

b
n

)
, (10)
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where the integral limits are given by the domain of argument variable Y. From expres-
sion (10) it is easy to deduce that the distribution that minimises MISE also minimises the
functional

∫
[ f ′(y)]2dt =

∫
[F′′(y)]2dt. Terrell [25] found the pdf family that minimises the

functionals of type
∫ [

f (p)(y)
]2

dy, where p is the order of the derivative. This principle
was applied to cdf and quantile kernel estimation by Alemany et al. [21], who showed how
the Beta(3, 3), whose pdf and cdf are:

m(t) =
15
16

(
1− t2

)2
,−1 ≤ t ≤ 1 and

M(t) =
3

16
t5 − 5

8
t3 +

15
16

t +
1
2

, (11)

minimises the functional
∫ [

F′′j
(
tj
)]2

dtj, j = 1, 2, and therefore minimises the integrated
bias of the classical kernel estimator of a cdf. Section 2 includes the theoretical results on
testing extreme value copulas, and Theorem 1 shows as the cdf M has the properties that
allow us to conclude that the kernel estimator of Beta(3, 3) does not have boundary bias
(see [1]). So, the Beta transformed kernel estimator of a copula is:

ĈB(u1, u2) =
1
n

n

∑
i=1

K
(

M−1(u1)−M−1(Ûi1)

bn

)
K
(

M−1(u2)−M−1(Ûi2)

bn

)
, (12)

where bn can be calculated using rule-of-thumb applied to the Beta(3, 3) marginal distribu-
tions, that is bn = 3

1
3 n−

1
3 . In the simulation study shown in Section 3, the MISE calculated

with this bandwidth is compared to the one that minimises MISE.
Next, we present some theoretical results related to the weak convergence to a Gaus-

sian process G of the estimator defined in (12) and the max-stable property for testing
extreme value copulas.

Theoretical Results

We use the result from Fermanian et al. [26] for the weak convergence of the kernel
estimator of a copula defined in (5) to a Gaussian process G in the space of all bounded
real-valued functions on [0, 1]2, i.e., l∞([0, 1]2), which is expressed as follows:

√
n
(

Ĉ(u1, u2))− C(u1, u2)
)
7−→ G(u1, u2) =

= B(u1, u2)− ∂1C(u1, u2)B(u1, 1)− ∂2C(u1, u2)B(1, u2), (13)

where ∂jC(u1, u2), j = 1, 2, are the partial derivatives of the function C with respect to
uj, 7−→ indicates weak convergence and B is a Brownian bridge on [0, 1]2 with covari-
ance function:

E[B(u1, u2)B(u′1, u′2)] = C(u1 ∧ u′1, u2 ∧ u′2)− C(u1, u2)C(u′1, u′2),

where ∧ is the minimum.
The weak convergence defined in (13) requires that the copula has continuous partial

derivatives. Furthermore, Omelka et al. [1] proved the weak convergence of local linear,
mirror reflection and Gaussian transformed kernel estimators of copula. These authors
remark that it is sufficient to assume that the first partial derivatives are continuous on
(0, 1)2, i.e., we can eliminate the corners. This is an important result, given that most of
the commonly used copulas (Clayton, Gumbel, Normal and Student’s t) do not have finite
partial derivatives at the corners.

The weak convergence of our Beta transformed kernel estimator is defined in the
following theorem.
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Theorem 1. Let us suppose a continuous copula C, with continuous first order partial derivatives
and bounded second order partial derivatives on (0, 1)2 that satisfies the following asymptotic
properties: ∂2

1C(u1, u2) = O
(

1
u1(1−u1)

)
, ∂2

2C(u1, u2) = O
(

1
u2(1−u2)

)
and ∂1∂2C(u1, u2) =

O
(

1√
u1u2(1−u1)(1−u2)

)
. If bn = O

(
n−

1
3

)
the Beta transformed kernel estimator ĈB meets the

weak convergence defined in (13).

Proof of Theorem 1. Let J(t) = T−1(t) be the inverse transformation function in ĈT , the
proof of Theorem 1 comes directly from the results of Theorem 2 in Omelka et al. [1], who

proved that, if the first derivative J′(t) and [J′(t)]2

J(t) are bounded, then ĈT converge weakly

to the Gaussian process G. For ĈB we have that J(t) = M(t) = 3
16 t5 − 5

8 t3 + 15
16 t + 1

2 ,

J′(t) = m(t) = 15
16 (1− t2)2 and (M′(t))2

M(t) =
( 15

16 (1−t2)2)
2

3
16 t5− 5

8 t3+ 15
16 t+ 1

2
, |t| < 1. Directly, we know that

the pdf m of the Beta(3, 3) is bounded. Moreover, if the quotient (M′(t))2

M(t) is analysed, the
maximum is approximately found at t ≈ −0.45332.

The weak convergence of Theorem 1 allows us to use ĈB for the inference on copulas.
We focus on an extreme value copula test based on the proposal of Kojadinovic et al. [9],
that analyses the max-stable property associated with this family of copulas (see, for
example, [27]). A copula is max-stable if ∀r > 0 and ∀u1, u2 in [0, 1] the null hypothesis
Hr

0 : C(u1, u2) = Cr(u1/r
1 , u1/r

2 ) is not rejected from the alternative Hr
1 : C(u1, u2) 6=

Cr(u1/r
1 , u1/r

2 ). In practice, we test the max-stable hypothesis using some values of r ≥ 1
(see [9]),

H0 :
⋂

r≥1 Hr
0

H1 :
⋃

r≥1 Hr
1.

To test the previous hypotheses we propose estimating Dr(u1, u2) =
√

n
(

C(u1, u2)− Cr
(

u1/r
1 , u1/r

2

))
using the Beta transformed kernel estimator of the copula,

i.e., D̂r(u1, u2) =
√

n
(

ĈB(u1, u2)− ĈBr
(

u1/r
1 , u1/r

2

))
.

Proposition 1. If the partial derivatives of the copula C(u1, u2) are continuous then for any r > 0
we have:

D̂r(u1, u2)−Dr(u1, u2) 7−→ Cr(u1, u2) = rCr−1(u1/r
1 , u1/r

2 )G(u1/r
1 , u1/r

2 )−G(u1, u2), (14)

in l∞([0, 1]2).

Proof of Proposition 1. The result in Proposition 1 is obtained from:

D̂r(u1, u2)−Dr(u1, u2) =
√

n
[(

ĈB(u1, u2)− C(u1, u2)
)
−
(

ĈBr
(u1/r

1 , u1/r
2 )− Cr(u1/r

1 , u1/r
2 )

)]
.

Using the convergence of Theorem 1:

√
n
(

ĈB(u1, u2)− C(u1, u2)
)
7−→ G(u1, u2).

We now need to prove the weak convergence of
√

n
(

ĈBr
(u1/r

1 , u1/r
2 )− Cr(u1/r

1 , u1/r
2 )

)
. To

this end, we use the result of Kojadinovic et al. [9], that proved the weak convergence of this
difference for empirical copula (see also [10]). In general, this result can be directly extrapolated
to the kernel estimator and, in particular, to the Beta transformed kernel estimator, considering

that ̂̂Cr(
u1/r

1 , u1/r
2

)
= ĈBr

(
M−1(u1/r

1 ), M−1(u1/r
2 )

)
. Then, under H0, Dr(u1, u2) = 0, D̂r(u1, u2) it

weakly converges to process (14).
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For hypothesis testing given a fixed r, we use a Cramér-von Mises statistic:

Ŝr =
∫ 1

0

∫ 1

0

(
D̂r(u1, u2)

)2
du1du2 (15)

and for a range of values r1, ..., rt, the following statistic can be considered:

Ŝr1,...,rt =
t

∑
i=1

Ŝri . (16)

For implementing the test based on Ŝr1,...,rt , we use the numerical approximation
proposed by Kojadinovic et al. [9], replacing the empirical copula by a Beta transformed
kernel estimator of the copula. The procedure is as follows:

1. The statistics Ŝrl are approximated using a uniformly spaced grid (uj1, uj2), j = 1, ..., m,

of points on (0, 1)2, i.e., Ŝrl ≈ 1
m ∑m

j=1

(
D̂rl (uj1, uj2)

)2
.

2. R independent copies of D̂rl , D̂rl ,(1), . . . , D̂rl(R) are generated, such that(
D̂rl , D̂rl ,(1), . . . D̂rl ,(R)

)
7−→

(
Drl ,Drl ,(1), . . .Drl ,(R)

)
,

where Drl ,(1), . . . ,Drl ,(R) are independent copies of Drl . The process of obtaining these
independent copies of D̂rl is described in Appendix A.

3. To calculate the copies of Ŝrl as Ŝrl ,(k) = 1
m ∑m

j=1 D̂rl ,(k)(uj1, uj2) and to obtain the
p-value of the statistics as:

1
R

R

∑
s=1

I(Ŝrl ,(s) ≥ Ŝrl ).

3. Simulation Study

We summarise the results of our simulation study, we aim to evaluate the finite
sample properties of our Beta transformed kernel estimator in (12), and compare it with
the empirical copula, with the classical kernel estimator in (5) and with the Gaussian
transformed kernel estimator in (7). We also obtain some results using boundary kernel,
but the computational times are longer and in our simulation study we do not achieve
better results than those obtained with classical kernel.

We show two types of results; in the former, the errors between the estimations and
true copulas are compared and, in the latter, the differences between the extreme value
copula tests obtained with the empirical copula and with the Beta transformed kernel
estimator are analysed.

3.1. Analysing the Errors of Kernel Estimators

To carry out the study, we simulate 500 samples of size n = 50 and n = 500 from
different family and parameters of copulas that are indicated in the tables with the sim-
ulation results shown in this section. The alternative estimators are compared approxi-
mating the MISE =

∫ 1
0

∫ 1
0

[
Ĉ(u1, u2)− C(u1, u2)

]2du1du2 using a grid uniformly spaced
in 99× 99 points on (0, 1)2. The Epanechnikov kernel is used in all cases. Furthermore,
bandwidth bn needs to be calculated, its value has an important impact on the results.
Sometimes, the calculation of bn requires long optimization processes based on leave-one
out estimators (see [16] for a review on kernel density estimation). Alternatively, the
rule-of-thumb similar to the proposal of Silverman [14] can be used; however, to calculate
the rule-of-thumb smoothing parameter we would need to use a parametric copula with a
given parameter. A direct alternative, based on the product kernel estimator, consists of
using the rule-of-thumb based on independent marginal reference distribution. The diffi-

culty with Uni f orm(0, 1) marginal is that
∫ [

F′′j (t)
]2

dt = 0, j = 1, 2, and the rule-of-thumb



Mathematics 2021, 9, 1078 8 of 16

smoothing parameter based on the proposal of Silverman [14] can not be calculated. In this
case, to use the standard normal bandwidth is an easy solution (see [20] for an example
on kernel density estimation of Uni f orm(0, 1) transformed data). In our simulation study,
two types of results are shown, on the one hand, the obtained with the rule-of-thumb
bandwidth based on standard normal distribution for kernel and Gaussian transformed
kernel estimator and based on Beta(3, 3) for Beta transformed kernel estimator. On the
other hand, the obtained optimizing the approximate MISE on a grid the values for bn.

To facilitate the interpretation of the results, we calculate the quotient between the
MISE obtained for each kernel estimator and the one obtained using the empirical cop-
ula. The reference values of MISE for the empirical copula are shown in Table A1 in
Appendix B. Tables 1 and 2 contain, respectively, the quotients for the analysed elliptical
and archimedean copulas. These results show how, using the adequate smoothing parame-
ter, the analysed kernel estimators improve the empirical copula. Focusing on archimedean
copulas in Table 1, it can be seen that, if the optimal smoothing parameter is used, in
all cases the best results are obtained with the Beta transformed kernel estimator (ĈB).
With the optimal bandwidth, the Gaussian transformed kernel estimator (ĈG) only slightly
improves the classical kernel estimator (Ĉ) for Gumbel with dependence parameter equal
to 3 and 4, i.e., for the most extreme value dependence copulas. In Table 2, for elliptical
copulas, the results with optimal smoothing parameter are similar, ĈB is the best and ĈG

improves Ĉ when the data is generated by the most extreme value copulas, the Student’s t
with dependence parameter equal to 0.9.

In practice, we will not know what the optimal smoothing parameter is, and having
estimators that allow this parameter to be obtained in a direct and simple way is essential.
As shown in Tables 1 and 2, ĈB and ĈG have this characteristic; in both cases the results
with the rule-of-thumb smoothing parameter are near the optimal results and the lowest
MISEs are obtained with ĈB.

Table 1. Quotient betweenthe approximate MISE of kernel estimators of the copula (numerator)
and approximate MISE of the empirical copula (denominator) for elliptical copulas (* indicates
optimal bandwidth).

n = 50

Copula Parameter ĈB ĈB * ĈB ĈG * Ĉ Ĉ *

Gaussian 0.9 0.7727 0.6910 0.7861 0.7423 3.8676 0.7079
0.5 0.6649 0.5879 0.6795 0.6993 2.7843 0.6108
0.3 0.6394 0.5889 0.6553 0.6572 2.5860 0.6046

Student’s t (d.f. = 1) 0.9 0.8186 0.6516 0.8350 0.7120 3.8347 0.6626
0.5 0.7211 0.6294 0.7368 0.6734 2.9403 0.6679
0.3 0.7005 0.6793 0.7176 0.7254 2.9272 0.6467

Student’s t (d.f. = 2) 0.9 0.7907 0.6405 0.8055 0.6769 3.6564 0.6650
0.5 0.7022 0.6338 0.7163 0.6569 2.8777 0.6432
0.3 0.6592 0.6676 0.6746 0.7255 2.8678 0.6519

Student’s t (d.f. = 3) 0.9 0.7962 0.6671 0.8112 0.6782 3.8211 0.7376
0.5 0.6912 0.6354 0.7083 0.6506 2.8528 0.5949
0.3 0.6626 0.6243 0.6790 0.6636 2.6940 0.6084
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Table 1. Cont.

n = 500

Copula Parameter ĈB ĈB * ĈB ĈG * Ĉ Ĉ *

Gaussian 0.9 0.9099 0.8032 0.9199 0.8347 6.3718 0.8162
0.5 0.8445 0.7300 0.8532 0.7915 3.8651 0.7603
0.3 0.8298 0.7316 0.8388 0.7905 3.4954 0.7757

Student’s t (d.f. = 1) 0.9 0.9232 0.8285 0.9337 0.8479 6.0640 0.8557
0.5 0.8513 0.7903 0.8602 0.8267 4.1395 0.8244
0.3 0.8361 0.7852 0.8454 0.8201 3.8260 0.8224

Student’s t (d.f. = 2) 0.9 0.9129 0.8110 0.9231 0.8371 6.1449 0.8448
0.5 0.8445 0.7733 0.8532 0.8229 3.8651 0.8109
0.3 0.8298 0.7710 0.8388 0.8172 3.4954 0.8123

Student’s t (d.f. = 3) 0.9 0.9289 0.8202 0.9389 0.8438 6.2509 0.8560
0.5 0.8529 0.7772 0.8619 0.8286 3.8559 0.8145
0.3 0.8384 0.7748 0.8479 0.8243 3.4502 0.8147

Table 2. Quotient between the approximate MISE of kernel estimators of the copula (numerator)
and approximate MISE of the empirical copula (denominator) for archimedean copulas (* indicates
optimal bandwidth).

n = 50

Copula Parameter ĈB ĈB * ĈB ĈG * Ĉ Ĉ *

Frank 1 0.6469 0.1641 0.6620 0.5961 2.3603 0.5979
2 0.6710 0.5689 0.6858 0.6412 2.5716 0.5896
3 0.6784 0.5684 0.6925 0.6099 2.5097 0.5584

Clayton 1 0.6859 0.5703 0.7012 0.7032 2.4038 0.6370
2 0.7645 0.5924 0.7803 0.7263 2.8428 0.5983
3 0.7839 0.6616 0.7968 0.7124 3.1101 0.6493

Gumbel 2 0.6531 0.2448 0.6645 0.2707 2.3911 0.2469
3 0.7739 0.5976 0.7862 0.6517 3.6354 0.5600
4 0.7781 0.6332 0.7959 0.6510 3.8202 0.6145

n = 500

Copula Parameter ĈB ĈB * ĈB ĈG * Ĉ Ĉ*

Frank 1 0.8117 0.7460 0.8216 0.8067 3.0013 0.7950
2 0.8204 0.7417 0.8304 0.8096 3.1943 0.7854
3 0.8298 0.7596 0.8401 0.8117 3.5081 0.7807

Clayton 1 0.8393 0.7561 0.8484 0.8253 3.3645 0.8131
2 0.8640 0.7674 0.8724 0.8291 4.3028 0.8225
3 0.8844 0.7811 0.8934 0.8303 5.0583 0.8290

Gumbel 2 0.8577 0.7698 0.8662 0.8180 4.8203 0.8009
3 0.8996 0.7982 0.9102 0.8286 6.1713 0.8298
4 0.9294 0.8148 0.9421 0.8357 6.9994 0.8444

3.2. Test for Extreme Value Copula

We show the results of a reduced simulation study (to avoid long computing periods)
that allows us to compare type 1 and 2 errors of the extreme value copula test on smaller-
sized samples, calculated from the empirical copula (proposed by [9]) and from the Beta
transformed kernel estimator (ĈB) proposed in this paper, where the optimal bandwidth is
used. For this experiment, we use 100 samples of size n = 50. Both tests are implemented
using a uniformly spaced 99× 99 points on (0, 1)2 for calculating Ŝr and with K = 100
estimated copies of Drl ,(k), k = 1, ..., 100. The results for type 1 errors are shown in Table 3
for theoretical extreme value copulas with which H0 is true. Table 4 shows the type 2 errors
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for copulas with non-dependence in extreme. They indicate that using ĈB we reduce type
1 error at the cost of increasing type 2 error, although for n = 50 this error is already high
for the test based on the empirical copula. In general, a larger-size sample is required for
reducing type 2 error.

The results in Table 3 imply that, if the data is generated by an extreme value copula,
ĈB based test practically ensures a correct result. This is fundamental in the context of risk
quantification, given that the consequences of not detecting extreme dependency could be
more serious than those of not detecting the opposite, i.e., non-dependence in extreme.

Table 3. Error type 1 calculated with different significant levels α.

Empirical Copula

Gumbel Student’s t (d.f. = 1) Student’s t (d.f. = 2) Student’s t (d.f. = 3)

Parameter 2 4 0.9 0.3 0.9 0.3 0.9 0.3

α = 0.10 0.08 0.02 0.25 0.38 0.59 0.86 0.70 0.56
α = 0.05 0.01 0.00 0.16 0.22 0.39 0.71 0.48 0.36
α = 0.01 0.00 0.00 0.03 0.07 0.14 0.39 0.23 0.13

ĈB

Gumbel Student’s t (d.f. = 1) Student’s t (d.f. = 2) Student’s t (d.f. = 3)

Parameter 2 4 0.9 0.3 0.9 0.3 0.9 0.3

α = 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α = 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α = 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Error type 2 calculated with different significant levels α.

Empirical Copula

Gaussian Frank Clayton

Parameter 0.9 0.3 1 3 1 3

α = 0.10 0.50 0.18 0.34 0.32 0.70 0.69
α = 0.05 0.61 0.37 0.54 0.53 0.80 0.87
α = 0.01 0.81 0.63 0.73 0.79 0.98 0.95

ĈB

Gaussian Frank Clayton

Parameter 0.9 0.3 1 3 1 3

α = 0.10 0.67 0.50 0.6 0.62 0.80 0.81
α = 0.05 0.85 0.77 0.80 0.79 0.95 0.98
α = 0.01 0.92 0.90 0.82 0.78 1.00 1.00

4. Data Analysis

For illustrating the usefulness of our proposed estimator ĈB, we analyse the depen-
dence between the Spanish stock market index (IBEX35) and the stock market indexes
of some neighbouring European countries, namely Germany (DAX) , France (CAC40),
Italy (FTSE MIB), Portugal (PSI20) and United Kingdom (FTSE100) as well as the two
principal stock market indexes of the USA (DOWJONES and S&P500) and the Hong
Kong stock market index (HANG SENG) (see [28] for an analysis of extreme dependence
between markets).

Two types of results are shown:

1. The fit of non parametric copulas to estimate the probability that the observed losses
of two stock market indexes together exceed some percentiles, i.e., we estimate the
value of 1− C(q, q), q = 0.9, 0.95, 0.99, 0.995, with the analysed kernels estimators.

2. The test to analyse if the data is generated by an extreme value copula.

To carry out the analysis we use a database of the monthly losses of the stock market
indexes from January 2000 to March 2021. These losses are calculated from the quotes of the
analysed indexes that are public and can be downloaded, for example, from Investing.com.
Throughout the period analysed, three major events influenced market performance lead-
ing to higher losses than in periods of stability: the Lehman Brothers crisis that began in

Investing.com
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September 2008, the referendum on Brexit on 23 June 2016, and the ongoing COVID-19
crisis which started in March 2020. The three events are considered systemic risks that
affect all markets and, if this effect is simultaneous, the data should be generated by an
extreme value copula. In Table 5, the main descriptive statistics of the losses in percentage
are shown. Furthermore, normality tests and a positive skewness test are carried out and,
in all cases, normality hypothesis is rejected and skewness greater than zero can not be
rejected, i.e., in absolute value, positive losses are bigger that negative ones.

Table 5. Descriptive statistics of monthly losses in percentage: Means, Standard Deviation (STD), Minimum (Min), First
Quantile (Q25), Median, Third Quantile (Q75), Maximum (Mas), Skewness and Kurtosis.

Means STD Min Q25 Median Q75 Max Skewness Kurtosis

Spain 0.0565 2.5931 −9.7537 −1.3088 −0.2354 1.3759 10.9100 0.3025 2.0327
Germany −0.1196 2.6469 −8.4139 −1.7341 −0.3275 1.1770 12.7390 0.8978 2.9100

France 0.0043 2.2675 −7.9611 −1.3871 −0.3142 1.2895 8.3501 0.5444 1.4149
Italy 0.1044 2.6915 −8.9727 −1.5668 −0.2481 1.5654 11.0363 0.4579 1.5547

Portugal 0.1564 2.3768 −7.2752 −1.2973 0.0391 1.4856 10.1398 0.5301 1.6257
UK 0.0080 1.7670 −5.0582 −1.1605 −0.3326 0.9555 6.4533 0.6996 1.1175

USA (DJ) −0.1711 1.8644 −4.8586 −1.2329 −0.3472 0.7277 6.5807 0.6714 1.3456
USA (SP) −0.1650 1.9120 −5.1864 −1.2883 −0.4313 0.7868 8.0621 0.7009 1.4097

Hong Kong −0.0919 2.6021 −6.8459 −1.6894 −0.4514 1.2787 11.0508 0.5713 1.1150

The losses of the Spanish stock market index are plotted together with the indexes
of the countries listed for comparison. In Figure 1, we compare Spain (in blue) with four
countries that also currently belong to the European Union (in black) and, Figure 2, the
comparison is made with the other countries (in black).
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Figure 1. Losses of Spanish stock market index (dashed line in blue) and stock market indexes of
four countries in the European Union (solid line in black).
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Figure 2. Losses of Spanish stock market index (dashed line in blue) and stock market indexes of
four countries outside of the European Union (solid line in black).

To obtain the Beta transformed kernel estimator we need the data to be i.i.d. so,
with this in mind, we analyse if the the monthly losses of the stock market indexes have
some kind of time dependence on the mean or on the variance. The simple and par-
tial autocorrelation functions of the series and the square series allows us to find the
ARMA(p, q)− GARCH(P, Q) model used to filter series and to get i.i.d. data (see, for
example, [29]). The filter models used are shown in Table A2 of Appendix C.

In Table 6, we show the results of 1− C(q, q) for q = 0.9, 0.95, 0.99, 0.999 estimated
with ĈB, i.e., the probability of jointly exceeding a given extreme quantile. The upper

tail dependence can be approximated as ĈB(q,q)
q . In Appendix C, we show that the results

obtained with the empirical copula and ĈG provide lower values than ĈB. It should be
noted that the empirical copula tends to underestimate the probability of the tail when
extreme values exist. Furthermore, in the simulation study ĈB improves ĈG for all the
compared copulas.

Table 6. Values of 1− ĈB(q, q) for Spain and the countries analysed.

q 0.9 0.95 0.99 0.995

Germany 0.1533 0.0848 0.0246 0.0151
France 0.1500 0.0853 0.0244 0.0150
Italy 0.1497 0.0827 0.0234 0.0143

Portugal 0.1583 0.0858 0.0234 0.0145
UK 0.1585 0.0879 0.0253 0.0155

USA (DJ) 0.1583 0.0862 0.0242 0.0149
USA (SP) 0.1579 0.0880 0.0246 0.0149

Hong Kong 0.1662 0.0928 0.0255 0.0155

We obtain the results of the extreme value copula test of Kojadinovic et al. [9] based
on the empirical copula, and the same test based on the Beta transformed kernel estimator
that is analysed in this paper, using the asymptotically optimal smoothing parameter
bn = 3

1
3 n−

1
3 and a grid of 4 values around it. As expected, all the results indicate that all
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the analysed bivariate data have a dependence structure generated by an extreme value
copula. This behaviour has been accentuated by the COVID-19 crisis, which has led to
greater losses and a systemic risk that lasts over time (see [30,31] for a review on effect of
COVID-19 on markets returns and volatility). In Figures 3 and 4, pairs of pseudo-data are
plotted; in all cases some accumulation of points is detected near the corner [1, 1], which is
an indicator of extreme value dependence.
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Figure 3. Pseudo-data for each bivariate copula between Spain and Germany, Italy, France
and Portugal.
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Figure 4. Pseudo-data for each bivariate copula between Spain and UK, USA (DJ and SP) and
Hong Kong.

5. Conclusions

A new kernel estimator of a copula based on a transformation is analysed. The
asymptotic theoretical properties that allow it to be used for inference are proved. A
simulation study shows that the proposed estimator improves the alternative estimator in
the most common copulas.
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The new estimator allows us to reduce the type 1 error associated with the extreme
value copula test, while the type 2 error increases slightly. A future line of work would be
to investigate how to reduce the type 2 error with a small sample size of the tests based on
the max-stable property.

The financial data analysis shows that the new estimator is useful for the risk analysis
linked to the dependence between stock markets.

Author Contributions: Conceptualization, C.B. and C.A.A.; methodology, C.B.; software, C.A.A.;
validation, C.B., C.A.A.; formal analysis, C.B.; investigation, C.A.A.; resources, C.B.; data curation,
C.A.A.; writing—original draft preparation, C.B. and C.A.A.; writing—review and editing, C.B. and
C.A.A.; visualization, C.B. and C.A.A.; supervision, C.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: Investing.com.

Acknowledgments: The authors gratefully acknowledge support from the BBVA Foundation and
the Spanish Ministry of Science and Innovation grant PID2019-105986GB-C21.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Procedure to Obtain Independent Copies

To generate independent copies of D̂rl we use the result of Proposition 1 and under
H0 we define D̂r(u1, u2) 7−→ rCr−1(u1/r

1 , u1/r
2 )G(u1/r

1 , u1/r
2 )−G(u1, u2). Following Kojadi-

novic et al. [9], replacing the empirical copula by a Beta transformed kernel estimator of
copula, the Gaussian process is estimated as:

Ĝ(s)(u1, u2) = α̂(s)(u1, u2)−
∂ĈB(u1, u2)

∂u1
α̂(s)(u1, 1)− ∂ĈB(u1, u2)

∂u2
α̂(s)(1, u2), (A1)

where s = 1, ...R is a large number of copies. In expression (A1) we have that α̂(s)(u1, u2) =
1√
n ∑n

i=1

(
Z(s)

i − Z̄(s)
)

K
(

M−1(u1)−M−1(Ûi1)
bn

)
K
(

M−1(u2)−M−1(Ûi2)
bn

)
, where Z(s)

i are i.i.d. ran-

dom variables with mean 0 and variance 1, so that
∫ ∞

0 Pr
(
|Z(s)

i | > t
)

dt < ∞, Pr(·) is the
probability function. Finally, we obtain the copies of the statistic for the extreme value
copula test as:

D̂rl ,(s) = rl

{
ĈB(u1, u2)

}rl−1
Ĝ(s)(u

1
rl
1 , u

1
rl
2 )− Ĝ(s)(u1, u2). (A2)

Appendix B. Simulation Study

Results of simulation study. Table A1 shows the MISE estimated with the empiri-
cal copula.

Table A1. Approximate MISE for the empirical copula ×1000 (d.f. indicates degree of freedom).

Copula Gaussian Student’s t (d.f. = 1) Student’s t (d.f. = 2) Student’s t (d.f. = 3)

Parameter 0.9 0.5 0.3 0.9 0.5 0.3 0.9 0.5 0.3 0.9 0.5 0.3

n = 50 3.2473 3.0454 2.9277 3.3064 3.1751 2.9481 3.4585 3.1341 2.8430 3.3167 3.0923 2.9834
n = 500 0.3152 0.3104 0.2984 0.3356 0.3101 0.2967 0.3272 0.3104 0.2984 0.3276 0.3098 0.2971

Copula Frank Clayton Gumbel

Parameter 1 2 3 1 2 3 2 3 4

n = 50 3.1141 3.0819 3.3664 3.2126 3.3294 3.4487 7.8489 3.4600 3.4147
n = 500 0.2873 0.2966 0.3040 0.3089 0.3201 0.3238 0.3081 0.3058 0.3029

Investing.com
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Appendix C. Application

Results of application. Table A2 shows ARMA-GARCH models and Table A3 shows
extreme probabilities estimated with the empirical copula and Gaussian transformed
kernel estimator.

Table A2. Filter models.

Model

Spain ARMA(0, 0)− GARCH(0, 0)
Germany ARMA(0, 0)− GARCH(0, 0)

France ARMA(0, 0)− GARCH(1, 1)
Italy ARMA(0, 0)− GARCH(0, 0)

Portugal ARMA(1, 0)− GARCH(0, 0)
UK ARMA(0, 0)− GARCH(1, 1)

USA (DJ) ARMA(0, 0)− GARCH(1, 1)
USA (SP) ARMA(0, 0)− GARCH(1, 1)

Hong Kong ARMA(0, 0)− GARCH(1, 1)

Table A3. Values of 1− C(q, q) for Spain and th countriese analysed, estimated with the empirical
copula and Gaussian transformed kernel estimator.

Empirical Copula ĈG

q 0.9 0.95 0.99 0.995 0.9 0.95 0.99 0.995

Germany 0.1294 0.0706 0.0157 0.0078 0.1490 0.0794 0.0176 0.0081
France 0.1339 0.0709 0.0118 0.0079 0.1469 0.0807 0.0171 0.0077
Italy 0.1294 0.0667 0.0118 0.0067 0.1464 0.0774 0.0150 0.0039

Portugal 0.1417 0.0669 0.0118 0.0079 0.1566 0.0797 0.0162 0.0076
UK 0.1378 0.0709 0.0157 0.0079 0.1549 0.0820 0.0184 0.0082

USA (DJ) 0.1417 0.0630 0.0118 0.0079 0.1546 0.0807 0.0169 0.0078
USA (SP) 0.1378 0.0709 0.0118 0.0079 0.1538 0.0836 0.0165 0.0075

Hong Kong 0.1378 0.0709 0.0118 0.0079 0.1538 0.0836 0.0179 0.0075
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