
DOBLE GRAU DE MATEMÀTIQUES I
ENGINYERIA INFORMÀTICA

Treball final de grau

Persistent Homology: Functional
Summaries of Persistence

Diagrams for Time Series Analysis

Autor: Manuel Lecha Sánchez

Directors: Dr. Miquel Crusells, Dr. Josep Vives

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, 24 de gener de 2021

Abstract

Topological data analysis (TDA) is a recently emerged field of study , a point
of confluence between Algebraic Topology, Statistics and Computation Theory,
born to develop a new set of tools capable of extracting qualitative and quantita-
tive information from the data’s underlying geometrical and topological structure.
In these notes, we first present the theoretical foundations of the flagship tool of
TDA, persistent homology. Later, we provide a framework that allows us to under-
stand homological persistence from a statistical perspective. The latter comprises
a set of maps called functional summaries, which map persistence diagrams -a
common representation of persistence homology- to L-Lipschitz functions, a more
convenient representation for data analysis. We present persistence landscapes,
silhouettes, and a new functional summary candidate based on persistence en-
tropy under this framework.

From this point on, we will focus our work on TDA for time series [31], and
more specifically, financial time series [35][32][17]. First, we present the time-delay
embedding and the sliding window approach, two methodologies that will allow
us to transform time series into sequences of point clouds, which is essential for
applying homological persistence tools.

Subsequently, mainly motivated by [1], an article that we could consider an
extension of [17], we prove that the results reflected on the dependency relation-
ship between persistence landscapes functional norms and variance-covariance for
multivariate time series embedded via the sliding window method are valid for
time series understanding them as a realization of a weakly stationary stochastic
process, and assuming that the point clouds are obtained by means of time delay
embedding. Furthermore, we assert that the validity of the results provided in [1]
and the validity of our adaptation hold for silhouettes.

Moreover, we provide two distinct Python frameworks for classical and topo-
logical data analysis, which serves us to validate results. First, we provide a col-
lection of tools to simulate time series from standard probability distributions and
time series models such as AR(1), ARCH(1), GARCH(1,1). We present the neces-
sary tools to embed, plot, and compute, topological summaries such persistence
diagrams, persistence landscapes (and their corresponding Lp norms), silhouettes
(and their corresponding Lp norms), persistence entropy, ES and NES functions.
Analogous work is done regarding statistical and topological data analysis of stock
index data.

Resumen

El análisis topológico de datos (ATD) es un campo de estudio de reciente apari-
ción, un punto de confluencia entre la Topología Algebráica, la Estadística y la
Teoría de la Computación, nacido con el objetivo de desarrollar un nuevo con-
junto de herramientas capaces de extraer información cualitativa y cuantitativa de
la estructura geométrica y topológica subyacente de los datos. Al inicio de estos
apuntes proporcionamos los fundamentos teóricos de la herramienta insignia del
ATD, la homología persistente. Posteriormente, proporcionamos un marco que
nos permite entender la persistencia homolǵica desde una perspectiva estadística.
Este último comprende un conjunto de mapas llamados resuúmenes funcionales,
que mapean los diagramas de persistencia -una representación común de la persis-
tencia homológica- con funciones L -Lipschitz, una representación que resulta más
conveniente para el análisis de datos. Bajo este marco, presentamos los paisajes de
persistencia, las siluetas y un nuevo mapa basado en la entropÃa de persistencia.

A partir de este momento, centraremos nuestro trabajo en ATD para series
temporales [31], y más específicamente, series temporales financieras [35][32][17].
En primer lugar, presentamos el time delay embedding y el sliding window method,
dos metodologías que nos permitirán transformar series de tiempo en secuencias
de nubes de puntos, lo cual es esencial para aplicar herramientas de persistencia
homológica.

Posteriormente, motivados principalmente por [1], un artículo que podríamos
considerar una extensión de [17], comprobamos que los resultados que reflejan la
relación de dependencia entre las normas funcionales de los paisajes de persisten-
cia y la varianza-covarianza de las series de tiempo multivariantes tratadas con el
sliding window method son también válidos para series de tiempo entendidas como
realizaciones de procesos estocásticos débilmente estacionarios y asumiendo que
las nubes de puntos asociadas se han obtenido mediante el time delay embedding.
Por otro lado, afirmamos la validez de los resultados proporcionados en [1] y la
validez de nuestra adaptación para las siluetas.

Además, proporcionamos dos programas en Python para el análisis de datos
clásico y topológico, que nos servirán para comprobar resultados. En primer lu-
gar, proporcionamos una colección de herramientas para simular series tempo-
rales a partir de distribuciones de probabilidad estándar y de modelos de series
temporales como AR (1), ARCH (1,1), GARCH (1,1). Presentamos métodos para
obtener nubes de puntos, visualizar y calcular diagramas de persistencia, paisajes
de persistencia (y sus correspondientes normas Lp), siluetas (y sus correspondi-
entes normas Lp), entropía de persistencia, funciones ES y NES. Se realiza un
trabajo anaĺogo con respecto al análisis estadístico y topológico de datos recogido
de índices bursat́iles.

Acknowledgements

En primer lugar, querría expresar mi más sincera gratitud hacia mis tutores, el
Dr. Josep Vives y el Dr. Miquel Crusells-Girona, quienes han constituido una pilar
fundamental para este trabajo. Agradecerles su entera disposición y generosidad
por el tiempo dedicado.

Agradezco a mis familiares y amigos su apoyo y confianza.
En memoria de mi madre, esta es una promesa que le he cumplido, aun de-

sconozco el significado de muchas otras.

Contents

1 Introduction 1

2 Simplicial Homology 4
2.1 Simplicial Complexes . 4

2.1.1 Geometric simplicial complex 4
2.1.2 Abstract simplicial complex . 5
2.1.3 Simplicial maps and triangulation of topological spaces . . . 6

2.2 Chain complexes and Simplicial Homology Groups 7
2.2.1 Chain complexes . 7
2.2.2 Simplicial homology groups and decomposition 10

2.3 Equivalence between simplicial and singular homology 12
2.4 Homotopy invariance . 13

3 Approximation of Topological Spaces from Data 14
3.1 The C̃ech complex . 14
3.2 The Vietoris-Rips complex . 16
3.3 Interleaving relation . 17

4 Persistence Homology 18
4.1 From Vietoris-Rips complex to N-persistence modules 19

4.1.1 Filtration . 19
4.1.2 Vietoris-Rips complex and R-persistence objects 19
4.1.3 From Vietoris-Rips complexes to N-persistence objects 20

4.2 Correspondence of N-persistent modules of finite type over R and
R[t]-modules . 21

4.3 Decomposition . 22
4.4 Barcodes and Persistent Diagrams . 23

4.4.1 Barcodes . 23
4.4.2 Persistence Diagrams . 23

iii

iv

5 Introduction to Stochastic Processes 27
5.1 Stationarity . 28

6 Persistence Diagrams Functional Summaries 30
6.1 Introduction to functional summaries 30
6.2 Persistence Landscapes and Silhouettes 32
6.3 Persistent Entropy . 35

7 Introduction to TDA for Financial Time Series 39
7.1 Takens’ embedding: From time series to point clouds 40
7.2 Sliding window of time series . 41
7.3 Financial Time Series and Stylized Facts 42
7.4 Practical implementation on Financial Time Series 42

7.4.1 Developed tools, Methodology and Data 43
7.4.2 A computed example . 45

7.5 Adapting theoretical dependency results, equivalences and further
work proposals . 46
7.5.1 Validity of the results for Silhouettes 48
7.5.2 Further work and intuition . 49
7.5.3 The AR(1) model . 50
7.5.4 Developed tools . 52

8 Conclusions 54

A TDA Financial Time Series 56
A.1 Code . 56
A.2 Plots . 64

B TDA Time Series Playground Code 68
B.1 Code . 68
B.2 Plots . 74

2010 Mathematics Subject Classification. 55-01, 55-04, 60G10,62-01,62-04,91-08

Chapter 1

Introduction

Topological data analysis (TDA) is a recently emerged field of study, a point of
confluence between Algebraic Topology, Statistics and Computation Theory, born
to develop a new set of tools capable of extracting qualitative and quantitative
information from the data’s underlying geometrical and topological structure. The
set of tools encompassed by TDA is fairly diverse, for example, we could find
the Mapper algorithm [41], capable of generating a simplified topological graph
given any set of points in Rd together with a map. However, our work will be
entirely based on persistent homology, the flagship tool of TDA, first introduced
by Edelsbrunner, Letscher and Zomorodian [14].

Persistent homology provides a framework to study the topological features
of data. It has been successfully applied in a large number of problems in fields
as diverse as bioinformatics, medicine, neuroscience, astrophysics, economics and
finance [39][30][32][17][22][31].

Geometry, Algebraic Topology and more specifically, simplicial homology con-
stitute the mathematical basis on which persistent homology is built. That is why
our work introduces simplicial homology’s natural domain, simplicial complexes,
which can be understood as geometrical or abstract combinatorial objects. We
will show how simplicial complexes induce a particular algebraic structure called
chain complex, which leads to the definition of simplicial homology groups.

Computing persistence homology necessitates data to be fitted into a simplicial
complex following a topological scheme. Thus, our next concern will be to intro-
duce C̃ech complexes and Vietoris Rips complexes, the latter being fundamental to
our further work. We will see that under certain assumptions, both constructions
are homotopy equivalent to the underlying space from which the data is sampled,
and hence, homology remains invariant.

However, the Vietoris Rips does not provide a unique construction. Under this
scheme, a certain set of k + 1 points forms a k-simplex if a ball of radius ε can

1

2 Introduction

surround them. Hence, the yielded simplicial complex intrinsically depends on a
parameter and, any alteration of it could entirely modify the resulting topological
structure.

Persistence homology, which can be understood as the standard homology of a
particular graded module over a polynomial ring, provides a topological invariant
encompassing the homology groups induced by all these possible perturbations
of ε. The latter will allow us to know which topological features persist during a
wide range of parameter variations, i.e., the significant topological features. We
will see how persistence homology can be captured in a particular set of points in
R2 known as persistence diagram, where each point represents the birth (x-axis)
and death (y-axis) of a homology generator.

TDA works with data, and hence, we should not ignore the fundamental as-
pects of classical data analysis. Under certain assumptions, a probability space
over persistence diagrams can be defined. However, basic operations, such as ex-
pectations, become problematic. Thus, we will introduce functional summaries,
which map persistence diagrams to a collection of functions that, under the con-
dition of being L-Lipschitz, provide a better framework for statistics, where, for
instance, pointwise convergence holds. We present persistence landscapes and
silhouettes under this framework, which, by construction, satisfy the condition of
being one-Lipschitz functions. Moreover, we introduce a new functional summary
candidate based on persistence entropy, which satisfies the latter.

The work that follows is motivated by recent articles in TDA for time series
analysis and financial time series such as [17][31][35][32]. Notably, in [17], M.
Guidea and Y. Katz develop an EWS algorithm based on persistence landscapes
Lp norms. To obtain the sequence of point clouds, they apply the sliding window
method to a 4-dimensional signal consisting of four 1-dimensional time series of
stock indexes. However, the latter requires multiple time series to be performed.
When persistence homology has to be computed on a single time series, as we will
do, the standard approach relies on Takens’ embedding [43] (embedding process
to point cloud) and the sliding window method (obtain a partition or sequence of
point clouds) [31][35][32][18]. Hence, we presumed to be necessary introducing
both.

At this point, our work focuses on an article provided by Josep Vives, of which
he is a co-author [1], that can be considered as a continuation of [17]. In fact, we
prove that the results reflected on the dependency relationship between persis-
tence landscapes functional norms and variance-covariance in multivariate time
series embedded via the sliding window method are valid for time series un-
derstanding them as a realization of a weakly stationary stochastic process, and
assuming that the point clouds are obtained through the time-delay embedding.

3

We use the AR(1) model to show that dependency. Besides, we assert the validity
of the previous results for silhouettes.

Finally, we provide two distinct Python frameworks for classical and topologi-
cal data analysis, which serves us to validate results.

On the one hand, in FinTDA.ipybn A.1, we have developed a class (IndexTDA)
with which several empirical results can be easily computed from stock indexes
in a selectable date range. One can apply Takens’ Embedding and the sliding
window method to compute persistence landscapes Lp norms, persistence entropy
and other useful values such as the autocorrelation function, kurtosis, standard
deviation, for each of the point clouds.

On the other hand, in EmpTDA.ipynb B.1, first, we provide a bunch of meth-
ods to simulate time series using stochastic models, such as AR(1), ARCH(1)
and GARCH(1,1) and standard distributions. Moreover, we dispense the tools to
compute Takens’ embedding, persistence diagrams, persistence landscape, power
weighted silhouettes, persistence entropy, ES and NES functions.

Chapter 2

Simplicial Homology

2.1 Simplicial Complexes

In this section, we introduce simplicial complexes, which are the natural do-
main of definition of simplicial homology. Those mathematical objects can be
understood either as geometric objects admitting a topology or as abstract com-
binatorial structures. Both traits make them play a core role in computational
topology.

2.1.1 Geometric simplicial complex

Given a set X lying on an Euclidean space, we say that the convex hull of X is
the minimal convex set containing X. Let x0, ..., xk be points on a Euclidean space
RK, then the convex hull of that set of points can be understood as the set of their
possible convex combinations.

∆(x0, ..., xk) = {
k

∑
i=0

λixi|
k

∑
i=0

λi = 1, λi ≥ 0 , ∀i} (2.1)

A k-geometric simplex is said to be the convex hull of a set of k + 1 affinely
independent points. We say that a face from such a k-geometric simplex is the
convex hull of any subset of the set of points which its convex hull defines the
k-geometric simplex. The usual nomenclature calls vertices to the 0-dimensional
geometric simplices, edges to the 1-simplices, triangles to the 2-simplices and tetra-
hedra to the 3-simplices.

It will be very important for the development of our work, being able to build
structures made of glued complexes. Intuitively, a set composed of vertices, edges,
triangles, and their higher analogues.

4

2.1 Simplicial Complexes 5

Definition 2.1. A geometric simplicial complex K is a set of simplices satisfying the
following:

• Every face of a simplex from K is in K.

• The pairwise intersection of simplices of K is either empty or a common face of each
of them.

For further sections, it will be more convenient to get rid of the geometry and
define the purely combinatorial counterpart to the geometric simplicial complex,
known as an abstract simplicial complex. This process is called abstraction.

Abstraction

Given a geometrical simplicial complex K with a set of vertex Vert(K) =

{x0, ..., xn} ∈ RK, we consider V = {x0, ..., xn} as the set of abstract vertices. Ad-
ditionally, for each σ ∈ K, σ = {xi0 , ..., xik} consider σ̆ = {i0, ..., ik} the abstract
simplex. As the reader may note by reading the subsection below, under this con-
struction, we obtain an abstract simplicial complex K̆. In fact, we say K̆ to be an
abstraction of K.

As mentioned above, instead of delving into this subsection, we will deepen
more in the abstract simplicial complex concept due to its convenience. The fol-
lowing definitions are combinatorial equivalences to geometric notions related to
geometric simplicial complexes.

2.1.2 Abstract simplicial complex

Definition 2.2. An abstract simplicial complex is a pair (V, S), where V is a finite
set, and S is a collection of non-empty subsets of V such that for all element σ ∈ S, τ ⊆ σ

implies τ ∈ S.

The element σ of S is called simplex of S, and it is said to be a k-simplex, or
equivalently, have dimension k, if |σ| = k + 1, i.e, the number of elements of σ

is k+1. Sk denotes the set of k-simplices of S. Sometimes, we will call Sk as the
k-skeleton of the abstract simplicial complex. The latter allows us to define the
simplicial complex’s dimension as the largest positive integer k such that Sk is not
an empty set. To add some more common notation, we will say that V elements
are usually called vertices. Observe that we shall not make any distinction between
v ∈ V and the 0-simplex {v} ∈ S.

Definition 2.3. Given an abstract simplicial complex K, L is said to be a subcomplex of
K if it is an abstract simplicial complex satisfying L ⊆ K

6 Simplicial Homology

Due to homology purposes, it will be crucial to keep track of the order of
simplex’s vertices. Hence, it is necessary to introduce the notion of an ordered
abstract simplicial complex in this subsection.

Definition 2.4. An abstract simplicial complex K = (V, S) is said to be ordered if the
set V is totally ordered.

In such case, we will typically choose a bijection φ : V → {1, 2, ..N} and denote
the k-simplices as σ = [v0, ..., vk] in such a way that v0 ≤ ... ≤ vk. Unless otherwise
specified, whenever we talk about simplicial complexes, we will be referring to
ordered abstract simplicial complexes.

Geometric realization

In the same way we have said that we can obtain an abstraction K̆ from a ge-
ometric simplicial complex K, we can contrariwise associate a topological space
|(V, S)| to an abstract simplicial complex and obtain what is called its geomet-
ric realization. This space can be defined as the subspace of RN defined as
|(V, S)| =

⋃
σ∈S

∆(σ) where φ is the bijection above, and ∆(σ) the convex hull of

the set {eφ(v)}v∈σ , each ei representing the ith standard basis vector, i.e., a N-
dimensional vector with a 1 in the ith position and 0 otherwise (0, ..., 1i, ..., 0).

2.1.3 Simplicial maps and triangulation of topological spaces

Given K, L abstract simplicial complexes, a vertex map is said to be a function
f : VK → VL sending every vertex v ∈ VK to a vertex f (v) ∈ VL. In our work, we
need maps preserving the structure of the space.

Definition 2.5. Given K, L abstract simplicial complexes, a map f is called a simplicial
map if it is a vertex map sending simplices to simplices; that is, being [v0, ..., vk] a simplex
of K, implies [f (v0), ..., f (vk)] being a simplex of L. Notice that since f does not need to
be injective, it could appear redundancy in the vertexes of the simplex [f (v0), ..., f (vk)],
and hence, have a lower dimension than [v0, ..., vk].

Then, we can extend the notion of a simplicial map f to a continuous map
between |K| and |L|. Since every x ∈ |K| belongs to the interior of one unique
simplex, according to 2.1 the latter can done by setting f (x) = ∑d

i=0 λi f (xi) where
σ = {x0, ..., xd} is such that x ∈ σ◦. Simplicial complexes together with simplicial
maps offer a piecewise linear counterpart to topological spaces and continuous
maps.

There is a class of topological spaces - triangulable spaces - which can be repre-
sented by simplicial complexes up to homeomorphism.

2.2 Chain complexes and Simplicial Homology Groups 7

Definition 2.6. A triangulation of a topological space X is a homeomorphism h : |K| →
X where K is an abstract simplicial complex.

A topological space X is said to be triangulable if there exists an abstract sim-
plicial complex K such that |K| ∼= X. Therefore, we can study the topological
invariants of any triangulable topological from a homeomorphic simplicial com-
plex, which gives a discrete representation of it.

2.2 Chain complexes and Simplicial Homology Groups

The primary purpose now is to define the simplicial homology groups for a
given abstract simplicial complex K. If we can intuitively understand abstract
simplicial complexes as a generalization of graphs, their corresponding homology
groups can be understood as higher dimension analogues to graph connectivity.
They provide a mathematical language to capture k-dimensional holes by study-
ing what surrounds them. Additionally, they are topological invariants; that is,
two homeomorphic topological spaces have isomorphic homology groups.

2.2.1 Chain complexes

Free R-modules over Sn

First of all, we introduce the concept of a module over a ring, which intu-
itively corresponds to a generalization of the notion of a vector space, wherein the
corresponding scalars are allowed to lie in an arbitrary ring.

Definition 2.7. Given a ring R, a left R-module M over the ring R, denoted by RM,
consists of an abelian group (M,+) and an operation R×M → M (called scalar multi-
plication, usually just written by juxtaposition, i.e. as rx for r in R and x in M) such that
for all r,s in R, x,y in M the following holds

• r(x + y) = rx + ry

• (r + s)x = rx + rs

• (rs)x = r(sx)

• 1Rx = x if R has a multiplicative identity 1R.

A right R-module MR is similarly defined with the ring just acting on the
right. Observe that if R is commutative, left and right R-modules are the same,
and hence, we call them R-modules.

8 Simplicial Homology

Remark 2.8. If K is a field, the concept of a vector space over K and the concept of
a K-module are identical.

Remark 2.9. Every abelian group is a is a module over the ring of integers Z in
a unique way. For n ≥ 0, let nx = x + x + ... + x (n summands), 0x = 0 and
(−n)x = −nx.

Definition 2.10. Given a ring R and a R-module M, the set E j M is a basis for M if:

• For all m ∈ M, m =
|E|
∑

i=0
riei for all ri ∈ R, ei ∈ E, i.e, E is a generating set.

• For all E′ ⊆ E, E′ = {ei1 , ..., ein}, if
n
∑

j=1
rjeij = 0M, it implies that r1 = ... = rn =

0R, i.e, E is linearly independent.

Definition 2.11. It is said that a module M with a basis E ⊆ M is a free module.

Remark 2.12. Directly from the definition of a free module, we can observe that
for given a set S and a ring R, we can induce an R-module with basis S called free
module on S.

Definition 2.13. Free modules over the ring of integers Z are called free abelian groups.

Recall that a group G is said to be a free group if there exists a generating set
X of G such that every non-empty reduced group word in X defines a non-trivial
element of G. Hence, the reader must not confuse free abelian groups with free
groups.

To illustrate, in free groups ab must be different from ba if a and b are different
elements of the basis, however, in free abelian groups, ab must be equal to ba. Free
abelian groups are abelian groups but not free groups except in two specific cases,
when the group is the trivial group or when it has just one element in the basis,
i.e., the infinite cyclic group.

Recall that given an ordered abstract simplicial complex K = (V, S) we have
defined Sn as its n-simplices set. Hence, observe that, accordingly to 2.12 , given
an ordered abstract simplicial complex K = (V, S) and a ring R, we can construct
the free module over Sn. The latter will be denoted as Cn(K, R). Henceforth, we
will assume R to be either the integral domain Z or a field F.

In this context, elements of Cn(K, R) are called n-chains, and as a consequence
of the imposed total order on K, each c ∈ Cn(K) can be written as a formal sum

c = ∑
σ∈Sn

nσσ, nσ ∈ R

2.2 Chain complexes and Simplicial Homology Groups 9

where every σ is a oriented n-simplex. The opposite orientation of a certain n-
simplex in the chain will be denoted with its corresponding opposite sign coeffi-
cient of the chain .

Remark 2.14. Note that if R = Z, Cn(K, Z) is the free abelian group over Sn. In
such case, to ease notation we may refer to Cn(K, Z) as Cn(K).

Boundary operator

Given a a n-simplex σ = [v0, .., vn], its boundary corresponds to the n (n-1)-
simplices or faces [v0, ..., v̂i, ..., vn], meaning by ^ that the corresponding vertex is

suppressed. In terms of chains we will denote it by
n
∑

i=0
(−1)i[v0, ..., v̂i, ..., vn], using

the signs so as to keep faces of the simplex well-oriented. We now define the
following:

Definition 2.15. The n-boundary operator or n-boundary homeomorphism is δn :

Cn(K, R)→ Cn−1(K, R) where δn([v0, .., vn]) :=
n
∑

i=0
(−1)i[v0, ..., v̂i, ..., vn].

Lemma 2.16. Im(δn−1 ◦ δn) = {0}

Proof. By definition we have that δn([v0, .., vn]) =
n
∑

i=0
(−1)i[v0, ..., v̂i, ..., vn], then

δn−1(δn([v0, .., vn])) =
n
∑

i=0
(−1)iδn−1([v0, ..., v̂i, ..., vn]) =

∑
j<i

(−1)i(−1)j[v0, ..., v̂j, ..., v̂i, ..., vn] +

∑
j>i

(−1)i(−1)j−1[v0, ..., v̂i, ..., v̂j, ..., vn].

Now just notice that the elements of these two summations cancel in pairs by
switching i and j, i.e, one becomes the negative of the other.

Chain complex

Definition 2.17. A chain complex (A∗, d∗) is an algebraic structure consisting of a se-
quence of abelian groups or modules An, An−1, ..., A1, A0 which are connected by boundary
operators dn : An → An−1 satisfying Im(dn−1 ◦ dn) = {0}.

Thus, every ordered abstract simplicial complex determines a chain complex
(C∗(K, R), δ∗) known as simplicial chain complex. Algebraically speaking, a sim-
plicial chain complex (C∗(K, R), δ∗) represents the following situation:

...Cn+2
δn+2−−→ Cn+1

δn+1−−→ Cn
δn−→ ...

δ2−→ C1
δ0−→ C0

0−→ 0

10 Simplicial Homology

2.2.2 Simplicial homology groups and decomposition

Homology groups

Using the boundary operator we can define the following subgroups for each
Cn(K, R): the cycle group Zn(K, R) = Ker(δn), which is the group on n-cycles, and
the boundary group Bn(K, R) = Im(δn+1) , which is the group of n-boundaries.
Notice that from Lemma 2.16 we get Bn(K, R) ⊆ Zn(K, R) ⊆ Cn(K, R).

Definition 2.18. Given an abstract simplicial complex K, the nth simplicial homology
group over R, is the quotient group Hn(K, R) = Hn((C∗(K, R), δ∗)) = Zn(K, R)/Bn(K, R).

Decomposition

Decomposition over the integral domain (Z) On the one hand, as stated previ-
ously, when coefficients are in the integral domain Z, Cn(K, Z), or also denoted
as Cn(K), is the free abelian group over Sn. Hence, since Richard Dedekind [21]
proved that every subgroup of a free abelian group is a free abelian group itself,
we have that Bn(K, Z) and Zn(K, Z) are free abelian too.

However, the quotient of free Z-modules does not necessarily have to be free.
To illustrate, suppose n > 1, then Z and nZ are both free abelian groups, but since
there is no non-empty subset which is linearly independent over Z, Z/nZ is not
a free Z-module. Note that for all x ∈ Z/nZ nx = 0.

Nevertheless, since every quotient of a finitely generated abelian group is
finitely generated abelian too, such homology groups are finitely generated abelian
groups. Thus, in virtue of the fundamental theorem of finitely generated abelian
groups [p. 175][42] we have the following decomposition:

Hn(K, Z) = Zβn
⊕

q prime,di>0

(Z
qd1

n
⊕ ...⊕Z

qdt
n
)

The first part of the sum is called the free part and βn ≥ 0 is called the nth Betti
number of K. Note that qdi

n are powers of not necessary distinct prime numbers.
Those prime powers are said to be the torsion coefficients.

Decomposition over a field On the other hand, if R is a field F, all the groups
mentioned above became F-vector spaces, and as a result, we have the following
decomposition:

Hn(K, F) ∼= Fβn

In like manner as above βn ≥ 0 is called the nth Betti number of K. Note that in
such case, Hn(K, F) is torsion-free. Thus, the homology groups with coefficients
in a field are fully determined by the rank βn.

2.2 Chain complexes and Simplicial Homology Groups 11

The universal coefficient theorem for homology [20] establishes the relation-
ship between is homology over the integers and homology with field coefficients.
One implication is that the latter is deductible from the first one. However, ho-
mology groups over a field, offer some computational advantages, and as we will
see, better decomposition theorems for persistence.

A little simplicial homology computation example

In this subsection, we will show in two different manners, an approach to
compute the simplicial homology of S1. It will be very illustrative for our work to
provide an example of a simple computation of the H0 and H1 groups.

Example 2.19. Suppose we want to compute the simplicial homology of S1.

Figure 2.1: (Left to right) S1 and a triangulation of S1

First of all, we should observe that given the abstract simplicial complex K =

(V, S) such that V = {a, b, c} and S = {[a], [b], [c], [a, b], [b, c], [a, c]}, its geometri-
cal realization |K| ∼= S1. Thus, we have that S1 is a triangulable space, and we
automatically can compute its simplicial homology, by computing the simplicial
homology of K. In this example we are going to assume all the computations over
the coefficients of the field Z/2Z. Therefore, as mentioned above, n-chains become
vector spaces and H0 = (Z/2Z)β0and H1 = (Z/2Z)β1 .

To begin with, we are going to compute H0 and H1 in the "hand-craft" way:
Observe that in this case we have the following situation

C2(K, Z/2Z)
δ2−→ C1(K, Z/2Z)

δ1−→ C0(K, Z/2Z)
δ0=0−−→ 0

where

• C2(K, Z/2Z) = 0

• C1(K, Z/2Z) = Z/2Z[a, b]⊕ Z/2Z[b, c]⊕ Z/2Z[a, c] ∼= (Z/2Z)3

12 Simplicial Homology

• C0(K, Z/2Z) = Z/2Z[a]⊕ Z/2Z[b]⊕ Z/2Z[c] ∼= (Z/2Z)3

To compute H0(K, Z/2Z), we need Z0(K, Z/2Z) = Ker(δ0) and B0(K, Z/2Z) =

Im(δ1). Since δ0 = 0, Ker(δ0) = C0(K, Z/2Z) ∼= (Z/2Z)3. On the other hand,
Im(δ1) =< [b] − [a], [c] − [b], [c] − [a] >, since [c] − [a] = ([b] − [a]) + ([c] − [b]),
we have that Im(δ1) =< [b] − [a], [c] − [b] >. Thus, Im(δ1) ∼= (Z/2Z)2. There-
fore, H0(K, Z/2Z) = (Z/2Z)3/(Z/2Z)2 ∼= Z/2Z. Intuitively, this means that S1 has
one connected component. Note that in the case of H1(K, Z/2Z), since we do not
have any 2-simplex, Im(δ2) = {0} and therefore, H1(K, Z/2Z) = Ker(δ1). Hence,
we need to find the 1-cycles of our complex, δ1(C1(K, Z/2Z)) = α1([b] − [a]) +
α2([c] − [b]) + α3([c] − [a]) with α1, α1, α3 ∈ Z/2Z. Therefore, δ1(C1(K, Z/2Z)) =

[a](−α1 − α3) + [b](α1 − α2) + [c](α2 − α3) = 0 if and only if α1 = α2 = α3 and
Ker(δ1) ∼= Z/2Z, then H1(K, Z/2Z) ∼= Z/2Z. The latter intuitively means that S1 has
1D-loop.

As mentioned, we are going to compute the latter with another approach:
Observe that in this case, we have just taken care of the dimension of the ho-

mology group, i.e, the Betti number, which can be understood as βk = dim(Ker(δk))

−rank(δk+1). Moreover, recall the following fundamental theorem of linear al-
gebra for finite vector spaces, that states that for E a finite-dimensional vector
space and u a linear application from E to some other vector space, we have that
dim(E) = rank(u) + dim(Ker(u)). Therefore, we can turn this into finding the
rank of δk (which will also give us the dimension of its kernel), which can be eas-
ily computed by writing the matrix of δk. In our particular case, we can write the
matrix of δ1, which base is given by the three vectors [a, b], [b, c], [a, c], written in
the basis [a], [b], [c] of C0(K, Z/2Z). Hence, we have the following matrix

M =

1 0 1
1 1 0
0 1 1

Therefore, since rank(M) = 2 = dim(Im(δ1)) and hence, dim(Ker(M)) = 1 =

dim(Ker(δ1)), and we have that Ker(δ0) = C0(K, Z/2Z)and Im(δ2) = 0 we can
determine H0 and H1 (obviously we have the same results as in the "hand-craft"
computation above).

2.3 Equivalence between simplicial and singular homology

It is convenient for our work and particularly for the next section to point out
that there is a significant theorem of algebraic topology which states that sim-
plicial homology groups and singular homology groups are equivalent whenever

2.4 Homotopy invariance 13

both can be calculated. Since the latter is defined in every topological space, the
main proof consists of showing an isomorphism between nth singular homology
groups and nth simplicial homology groups. Notice that we do not consider those
topological spaces that are not homeomorphic to a simplicial complex.

For further information and detail refer the reader to [p. 128][20].

2.4 Homotopy invariance

Another fundamental result provides a certain property of the pushforward
of a continuous function in terms of homology. It is necessary to remind that
a pushforward of a continuous function f : X → Y between topological spaces
is a homomorphism f∗ : Hn(X) → Hn(Y) for n ≥ 0. This main result reveals
that pushforwards are homotopy invariant, in the sense that if f , g : X → Y are
homotopic, then f∗ = g∗. This result immediately implies that homology groups
of homotopic topological spaces are isomorphic.

For further detail and information refer the reader to [p. 110][20].

Chapter 3

Approximation of Topological
Spaces from Data

Let X be a finite set of points lying in a metric space (M, d), i.e., a point cloud,
and assume that X is sampled from a topological space X. One of the core tasks in
topological data analysis is to estimate the topology of the underlying space X ⊂
M based on its sampled points X via homology. Once we have introduced the
foundations of simplicial homology, it would be reasonable to define a topological
scheme able to construct an abstract simplicial complex from X in a manner that
the topological information of the underlying space X is kept.

Recall from section 2.3 and section 2.4 that homotopy equivalent topological
spaces that are triangulable, or in other words, in which both singular and sim-
plicial homology are correctly defined and coincide, can not be distinguished by
homology. Hence, a reasonable goal would be to define the previously mentioned
scheme so that its yielded simplicial complexes remain homotopy equivalent to X

by construction. Notice that building simplicial complexes homotopy equivalent
to another topological space homotopy equivalent to X would desirable too.

3.1 The C̃ech complex

In this subsection, we introduce the C̃ech complex, an abstract simplicial com-
plex built from X , capable of providing relevant information of the underlying
topological space X under certain assumptions. To do so, first, we need to intro-
duce the following concepts.

A covering U = {Ui}i∈I of a finite set of points X lying in a metric space (M, d)
is a family of subsets of (M, d) indexed by an index set I such that X ⊆ ⋃i∈I Ui.

Definition 3.1. The nerve of a covering U = {Ui}i∈I , denoted by N (U), is said to be

14

3.1 The C̃ech complex 15

the abstract simplicial complex (V, S) satisfying:

• V = I, i.e, the set of vertices of the abstract simplicial complex N (U) is the index
set I indexing the covering U .

• {i0, ...in} spans a n-simplex if and only if
⋂

i∈{i0,...in}
Ui 6= ∅.

Generally, the nerve complex N (U) of some covering U = {Ui}i∈I does not
need to reflect any substantial information about the topology such covering.
However, there exist certain conditions under which it reflects relevant informa-
tion about the topology. The following theorem, called "the nerve theorem", pro-
vides such criteria that guarantees N (U) being homotopy equivalent to

⋃
i∈I Ui.

Theorem 3.2 (Nerve Theorem). Let U = {Ui}i∈I be a covering of a finite set of points
X lying in a metric space (M, d). Suppose that for every finite subset of I, J ⊂ I, the set⋂
i∈J

Ui is either empty or contractible, then the geometric realization of N (U) is homotopy

equivalent to
⋃

i∈I Ui .

Definition 3.3. Let X be a point cloud in a metric space (M, d) satisfying X ⊆
⋃

x∈X
Bε(x)

for some ε > 0, then C̆ε(X) = N ({Bε(x)}x∈X) is said to be the C̃ech complex attached
to X and ε.

Observe that the C̃ech complex of X does not need to be embedded in the
same metric space in which X lies. To illustrate the latter, suppose X ⊂ Rn, and
|X | = d, with d > n + 1, then, the its associated C̃ech complex could have, for
instance, a simplex of dimension (d− 1), which obviously does not lie in Rn.

Hence, in virtue of 3.2, in order to conclude that C̃ε(X) is homotopy equiva-
lent to the underlying space X, it would be sufficient to prove that the union of
restricted balls (

⋃
x∈X

Bε(x))X covers X and that any arbitrary non-empty intersec-

tion of restricted balls is contractible. If X is a convex set, then the nerve theorem
applies straightforwardly.

However, it is difficult to establish when the property mentioned above holds.
It is not clear a priori what properties of X will imply it. That is why, for further
information and detail, we refer the reader to a recent paper [24] in which they
provide a more technical and complete exposition of certain conditions under
which the latter is satisfied.

However, even though under certain conditions [24] C̃ε(X) is homotopy equiv-
alent to X, their construction involves a highly computational cost.

16 Approximation of Topological Spaces from Data

The main computation regarding C̃ech complexes requires to compute the
minimum enclosing ball. Let us refer the reader to [15] to check a robust, practical
implementation.

Computing the minimum enclosing ball of K points can be linear in K, how-
ever, computing the C̃ech complex depends superexponentially on the dimension
N of RN . Let us refer the reader to [12] for further details of a C̃ech complex con-
struction algorithm and complexity. Hence, it would be desirable to find a more
computationally, relaxed scheme.

3.2 The Vietoris-Rips complex

In order to solve our main problem related to C̃ech complexes, we introduce
the following concepts.

Definition 3.4. A flag complex is an abstract simplicial complex that has no empty
simplices; that is, there is no subset of vertices such that each pair of vertices belongs to a
face of the complex, but the set of vertices is not a face of the complex itself.

Remark 3.5. Observe that an abstract simplicial complex K = (V, S) which sat-
isfies the property of being a flag complex, only depends on its 1-skeleton, i.e.,
S1.

The most used flag complex in our context is the Vietoris-Rips complex.

Definition 3.6. Let X be a point cloud in some metric space. Then the Vietoris-Rips
complex attached to X and δ for a certain δ > 0, denoted by VRδ(X), is the abstract
simplicial complex with vertex set X such that spans a n-simplex for each subset of X
with cardinality n + 1 and diameter δ.

Hence, observe that the Vietoris-Rips complex reconstruction involves less
computational cost than the C̃ech complex. As we have stated above, the 1-
skeleton of the Vietoris-Rips determines its whole structure. Let us refer the reader
to [46] to check an efficient implementation of the Vietoris-Rips reconstruction.
Observe that the Vietoris-Rips complex can be built in any metric space.

Moreover, in the same way, we did for C̃ech complexes, let us refer the reader
to [24] for further details about the homotopy reconstruction via Vietoris-Ribs
complex and the conditions under which it is homotopy equivalent to the target
space X.

3.3 Interleaving relation 17

3.3 Interleaving relation

At this point, we should have noted that Vietoris-Rips complexes do not gen-
erally inherit the same properties for topological reconstruction than C̃ech com-
plexes do.

Figure 3.1: C̃ech complex reconstruction (lower -left) and Vietoris Rips reconstruc-
tion (lower-right) over a set of points for a certain ε parameter. Extracted from [16].

However, the Vietoris-Rips can approximate the C̃ech complex. In fact, the
Vietoris-Rips complex and the C̃ech complex have the following interleaving rela-
tionships.

Lemma 3.7. For a point cloud X in some metric space, C̃ε(X) ⊆ VR2ε(X) ⊆ C̃2ε(X).

Let us refer the reader to [40] for the proof of 3.7.
In fact, the following is fulfilled.

Lemma 3.8. For a point cloud X ∈ Rn, C̃ε(X) ⊆ VR2ε(X) ⊆ C̃√ 2n
n+1 ε

(X).

Let us refer the reader to [40] for the proof of 3.8.

Chapter 4

Persistence Homology

As stated in previous sections, homology groups are topological invariants,
i.e., if two topological spaces are homeomorphic, they have isomorphic homology
groups. Hence, they are sensible to continuous transformations of the topologi-
cal space under consideration. Moreover, in the previous chapter, we presented
the Vietoris Rips complex, the topological scheme that we will use to build ab-
stract simplicial complexes structures from data which intrinsically depends on a
parameter δ.

At this point, one may notice that we will need a tool capable of dealing with
two basic problems while reconstructing the topological features of a space from
a sample of it. First, we have noisy data which could provide an inaccurate repre-
sentation of the real space under study. Second, small alterations of the parameter
δ can definitely modify the resulting simplicial complex.

Persistence homology first appears in [14], to formalize and define a topolog-
ical invariant for sequences of simplicial complexes linked via simplicial maps
which could be capable of summing up the induced homological information. In-
tuitively, it provides a topological invariant encompassing the homology groups
induced by all these possible perturbations of δ. Then, the main idea is moti-
vated by the fact that significant topological features persist on a wide range of
parameters.

This chapter is mainly based on the publications [47], and [8] and will provide
the theoretical foundations of persistence homology.

Recall that R the integral domain Z, or an arbitrary field F.

18

4.1 From Vietoris-Rips complex to N-persistence modules 19

Figure 4.1: Vietoris-Rips complex reconstruction encoding different for diferent ε

parameters. Observe that different topologies appear. Extracted from [16].

4.1 From Vietoris-Rips complex to N-persistence modules

4.1.1 Filtration

First of all, it is convenient to define the notion of filtration since it is widely
used in persistence articles. In fact, some further stability results of certain topo-
logical summaries that will be latter discussed are usually given by employing
functions f such as the one described in the following definition.

Definition 4.1. Let K be a simplicial complex, and f : K → R a monotonic function, i.e,
σ ⊆ τ for σ, τ ∈ K implies f (σ) ≤ f (τ). Then, due to the monotonicity of the function f,
we are able to construct subcomplexes of K for all a ∈ R as follows K(a) = f−1(−∞, a].
Hence, having a1 < a2 < ... < an function values and a0 = −∞, by denoting K(ai) = Ki,
we can form the following increasing sequence called filtration:

∅ = K0 ⊆ K1 ⊆ ... ⊆ Kn = K.

However, in our next discussion, we will employ another kind of construction
to understand and define persistence homology.

4.1.2 Vietoris-Rips complex and R-persistence objects

Let us refer the reader to [26] to understand the following category theory no-
tation. Given a partially ordered set P, there is a corresponding category P whose
objects are the elements of the set P; that is, obj(P) = P, and whose morphisms
link an element A to an element B whenever A ≤ B. Then, let C be a category and
P a partially order set with its corresponding category P constructed as above.
A P-persistence object in C is a functor Π : P → C. Therefore, it is a family

20 Persistence Homology

{CX}X∈obj(P) of objects of C together with a family of morphisms πXY : CX → CY

whenever X ≤ Y. P-persistence objects form a category by their own, where every
morphism correspond with a natural transformation. These category is denoted
by Ppers(C).

Recall that if δ ≤ δ′ then VRδ(X) ⊆ VRδ′(X); the same states for C̃ech com-
plexes. Hence, note that of Vietoris-Rips or Cech complexes yield an R-persistence
simplicial complex if equipped with inclusion maps VRδ(X) ↪→ VRδ′(X) when-
ever δ ≤ δ′ . Moreover, the associated sequence of chain complexes over R con-
nected by inclusion maps form an R-persistence chain complex over R. Hence,
the homology of an R-persistence chain complex is an R-persistence module over
R.

Recall that in section 2.2.2 we stated the homology groups decomposition over
R. Those structure theorems make homology very useful and easy to compute.
Thus, in the same way, it would be highly desirable to have an easy decompo-
sition structure for R-persistence modules over R. However, there is just a clas-
sification theorem for a subcategory of the category of N-persistence F-vector
spaces, more concretely, N-persistence F-vector spaces of finitely generated type.
Therefore, first of all, we need to find a way to redefine Vietoris-Rips complex as
N-persistence simplicial complexes, i.e., filtrations.

4.1.3 From Vietoris-Rips complexes to N-persistence objects

Since we work with finite point clouds, the distance function on our met-
ric space takes just finitely many values, and thus, there are finitely many real
values in which the structure of our simplicial complex changes. Therefore, we
can enumerate those distances {δ0, ..., δn} and define an order preserving map
p : N → R such that g(i) = δi if i ≤ n and g(i) = δn if i > n. Hence, we
can consider the family of Vietoris-Rips complexes {VRδi(X)}i=0÷n attached to
a point cloud X . The collection {VRδi(X)}i=0÷n together with inclusion maps
πi,i+1 : VRδi(X) ↪→ VRδi+1(X) form a N-persistence simplicial complex, or in
other words, a filtration of K. Hence, we hace the following situation:

VRδ0(X)
π0,1−−→ VRδ1(X)

π1,2−−→ ...
πn−1,n−−−→ VRδn(X).

Note that for each VRδi we have associated a chain complex (Ci
∗(K, R), δ∗), and

thus, our N-persistence simplicial complex induces a N-persistence chain com-
plex. Moreover, such inclusion maps induce group homomorphisms on homology,
Hn(VRδi(X), R)→ Hn(VRδi+1(X), R) and hence, a N-persistence module.

Definition 4.2. An N-persistence module is said to be of finitely generated type if
every module Mi is finitely generated and there exists an m ∈ N such that for all i ≥ m,

4.2 Correspondence of N-persistent modules of finite type over R and
R[t]-modules 21

πi,i+1 : Mi → Mi+1 is an isomorphism.

Observe that the above-mentioned N-persistence modules induced by the N-
persistence Vietoris-Rips complex are of finite type by construction.

4.2 Correspondence of N-persistent modules of finite type
over R and R[t]-modules

Before starting the correspondence theorem, which is the main result of this
subsection, we need to introduce the following concepts.

Definition 4.3. A graded ring is a ring (R,+, ·) equipped with a direct sum decomposi-
tion of abelian groups R ∼=

⊕
i Ri , i ∈ Z, so that RnRm ↪→ Rn+m.

Definition 4.4. A graded module over a graded ring R is a module equipped with a
direct sum decomposition M ∼=

⊕
i Mi, i ∈ Z, so that Rn Mm ↪→ Mn+m.

At this point, after having defined the previous concepts of the subsection, we
are allowed to define do the following construction or assignment. Let denote the
N-persistence module as M = {Mi, πi,i+1}i≥0 and let R[t] be equipped with the
standard grading, i.e, Rn = Rtn for n ≥ 0. We then define a graded module over
R[t] as

α(M) =
∞⊕

i=0

Mi,

where the R-module structure is simply the sum of the structures on the individual
components and where the action of t is given by

t(m0, m1, ...) = (0, π0,1(m0), π1,2(m1), ...).

In other words, t shifts elements of the module up in gradation.

Theorem 4.5 (Correspondence). Let R be a commutative ring with unity. The category
of N-persistence modules of finitely generated type over R is equivalent to the category of
finitely generated graded modules over R[t].

Given the assignment α above, there is a proof of the equivalence stated in
Theorem 4.5 of [48] based on the Artin-Rees theory in commutative algebra (Eisen-
bud, 1995). For further explanation and a generalization of the Theorem 4.5 let us
refer the reader to [34].

22 Persistence Homology

4.3 Decomposition

The importance of the theorem above arises when R is a field F. In such case,
graded R[t]-modules (finitely generated persistence modules) allow the decompo-
sition stated in the following theorem:

Theorem 4.6 (Structure Theorem). Let D be a principal ideal domain. Then, every
finitely generated module M over D is isomorphic to a direct sum of cyclic D-modules.
That is, there is a unique decreasing sequence of proper ideals (d1) ⊇ (d2) ⊇ · · · ⊇ (dm)

such that it decomposes into the form:

M ∼= Dβ ⊕
(

m⊕
i=1

D/(di)

)
, (4.1)

where di ∈ R, and β ∈ Z.
Moreover, every graded module over a graded principal ideal domain D, decomposes

uniquely into the form:

M ∼=
(

n⊕
i=1

Σαi D

)
⊕

 m⊕
j=1

Σγj D/(dj)

 , (4.2)

where dj ∈ R are homogenous elements such that (d1) ⊇ (d2) ⊇ · · · ⊇ (dm), αi, γj ∈ Z,
and Σα denotes an α-shift upward in grading.

Remark 4.7. A classic algebra result states that if D is a domain, then D[x] is a
principal ideal domain, i.e., a PID, if and only if, D is a field.

From 4.7, observe that Z[x] is not a PID since Z is not a field. Thus, as Theo-
rem 4.5 suggests, there is no simple classification for persistence modules over Z.
Hence, as mentioned at the end of the subsection 2.2, in persistent homology, it is
convenient to work with coefficients over a field. Note that in the case of graded
F[t]-modules, ideals are of the form (t)n = tn, and hence, (4.2) can be rewritten as(

n⊕
i=1

Σαi F[t]

)
⊕

 m⊕
j=1

Σγj F[t]/(tnj)

 . (4.3)

Definition 4.8. We will say that a P-interval is a pair (i, j) with 0 ≤ i < j ∈ Z∪∞.

Hence, using the decomposition result (4.2) of Theorem 4.6 for a graded F[t]-
module, we can define a bijection U from the latter to a set S of P-intervals in the
following way:

4.4 Barcodes and Persistent Diagrams 23

Let S = {(i1, j1), (i2, j2), ..., (in, jn)} be the set of P-intervals. Then, let us define

U(i, j) =

ΣiF[t] if j = ∞

ΣiF[t]/(tj−i)otherwise

Finally, define

U(S) =
n⊕

l=1

U(il , jl).

Observe that at this point we have defined a bijection between the finite sets of
P-intervals and the finitely generated graded modules over the graded ring F[t].
Recall that Theorem 4.5 stated in the previous section establishes a correspon-
dence between the category of persistence modules of finitely generated type and
the category of finitely generated graded modules over R[t]. Consequently, the
isomorphism classes the isomorphic classes of N-persistence modules over F of
finite type are in bijective correspondence with the finite sets of P-intervals.

Observe that each P-interval describes an element of the basis of all homology
groups Hs

k(VRδk(X)), i ≤ s ≤ (j− 1) . In other words, each element is a k-cycle
e that is completed at the time i, forming a new homology class that remains
non-bounding until time j, at which time it joins the boundary group Bk. There-
fore, usually, the elements of the finite sets of P-intervals, (il , jl) , are denoted as
(bi, di) being bi the birth of the i-th homology feature and di the death of the ith
homology feature, and its persistence.

4.4 Barcodes and Persistent Diagrams

4.4.1 Barcodes

The latter may inspire a visual snapshot in the form of a barcode. That is a
graphical representation in the plane of H∗(VRδ∗(X), F)) as horizontal segment
lines, where the horizontal axis represents the value of the parameter δ and the
vertical axis an arbitrary order of homology generators. Moreover, note that the
free parts of the decomposition stated in the above section correspond to the bar-
code’s infinite bars, and the torsional parts of the decomposition correspond to
the finite bars of the barcode.

4.4.2 Persistence Diagrams

Another convenient representation, is the persistence diagram. Persistence
diagrams are topological summaries in bijective correspondence with barcodes,

24 Persistence Homology

Figure 4.2: Barcode visual snapshot of the H0, H1, H2 homology groups. Extracted
from [16].

defined as D = (S = {(b1, d1), ..., (bn, dn)} ⊂ R2), i.e, finite sets of P-intervals
embedded in R2.

At least in part, the interest in persistent homology intends to generate data
summaries revealing relevant information that, otherwise, classical data analysis
methods can not provide. As we have seen, different features, and in particu-
lar, homology generators are tracked resulting in an object known as persistence
diagram. Therefore, since we want to create an alternative framework for data
analysis, it is fair to ask ourselves questions such as the following. Given a collec-
tion of point cloud realizations of the same topological space, which is the average
of its corresponding persistence diagrams? Do small variations in the point cloud
result in little changes in its associated persistence diagram, or other words, are
they stable?

Now we will intend to briefly explain some of the work that has been done
to answer these questions. In order to measure similarities between the following
definition of distance ha been used.

Definition 4.9. Let be D1
k , D2

k persistence diagrams. The pth Wasserstein distance be-
tween them two (Bottleneck distance if p = ∞) is defined as

Wp(D1
k , D2

k) = inf
γ:D1

k→D2
k

 ∑
a∈D1

k

‖ a− γ(a) ‖p
∞

1/p

where the infimum is over all possible bijections γ : D1
k → D2

k .

The set of persistence diagrams D endowed with the p-Wasserstein distance

4.4 Barcodes and Persistent Diagrams 25

Figure 4.3: Random data H0 and H1 persistence diagram plot using Ripser.py

form a metric space (D, Wp). However, the latter turns out to be incomplete [27],
and therefore, not very appropriate for inference.

Recall that a metric space is said to be complete if for all d-Cauchy sequence
(xn)∞

n=1 in (X, d) it exists an element x ∈ X such that limn→∞ ‖ xn − x ‖= 0.

Example 4.10. Let xn = (0, 2n) ∈ R2, n ∈N and let Dn be the persistence diagram
containing x1, ..., xn (each with multiplicity 1). Then Wp

(
D1

n, D2
n+k

)
≤ 1

2n+k , so Dn is
Cauchy. However, the number of off-diagonal points in Dn grows to ∞ as n→ ∞,
so the limit of the sequence is not in (D, Wp). Hence, (D, Wp) is incomplete.

To solve the incompleteness, the generalized persistence diagram is defined
in [27] as D = (S ⊂ R2) ∪ ∆, for ∆ = {(x, x) ∈ R2|x ∈ R}, and the space of
persistence diagrams as Dp = {D : Wp(D, Dφ) < ∞}, being Dφ = ∆, the empty
persistence diagram.

Under the above construction, stability can be stated and proven. Before refer-
ring the reader to [9] we introduce the following concepts.

Definition 4.11. Given two metric spaces (X, dX) and (Y, dY), a function f : X → Y is
said to be L-Lipschitz or Lipschitz continuous if there exists a constant L ∈ R, L ≥ 0,
such that for all x1, x2 ∈ X, dY(f (x1), f (x2)) ≤ LdX(x1, x2). In this case, L is referred
as a Lipschitz constant. If L is the smallest constant satisfying the latter, it is said to be
the best Lipschitz constant Lip(f). Moreover, if L = 1, f is said to be a short map, and if
L ∈ [0, 1) , f is said to be a contraction.

26 Persistence Homology

A crucial property of Lipschitz functions is that their level sets are well sep-
arated. In fact, the distance between the level sets defined by values a ≤ b is at
least the difference in values divided by the Lipschitz constant, d(x, y) ≥ (b−a)

Lip(f)
whenever f (x) = a and f (y) = b, or in other words that corresponding simplicial
complexes differ in points at distance at most (b−a)

Lip(f) .
At this point, let’s recall the construction on 4.1.1, and observe that nested

family of sublevel sets defines a sequence of homology groups analogous to the
ones defined in the previous subsection. We say that f is tame if this sequence
is finite and consists of homology groups whose ranks are finite. The latter is
analogous to ask persistence modules be of finitely generated type.

We can now refer the reader to [9] to check the Wasserstein stability theorem,
that shows that under mild assumptions on the topological space X, computing a
persistence diagram of a tame Lipschitz function defined as above is a continuous
map. Moreover, let refer the reader to [13] for further discussion on persistence
stability theorems.

On the other hand, much effort has been made to build a proper environment
where persistence diagrams could work well in terms of expectations, variances
and covariances. However, we have not obtained the desired results. For instance,
in [27] it is proven that Dp is, in fact, a Polish space, i.e., a space homeomor-
phic to a complete metric space that has a countable dense subset, i.e., separable
({xn}∞

n=1 such that every nonempty subset of the space contains at least one ele-
ment of the sequence). We will not deem in why Polish spaces provide the correct
framework for the latter, we will say with no rigour, that measurable functions
between Polish spaces always take Borel sets to analytical sets which are univer-
sally measurable, and hence, everything "works fine". After having shown the
latter, Fréchet expectation and variance definition for persistence diagrams over
the probability space (Dp,B(Dp),P) for a given probability measure [Definition
22][27] is provided. However, the latter definition involves a minimization, and
hence, expectation existence and uniqueness are not guaranteed. For the former,
certain regularity conditions on P under which existence is ensured are proposed
in [27]. Additionally, in [28], a solution that uses a probabilistic approach is pro-
posed to define a unique Fréchet average, but its computation remains practically
prohibitive. Therefore, persistence diagrams apparently do not work properly for
statistical analysis.

Before stepping into the next section it is necessary to remark that in [27] it is
shown how the probability space (X,B(X),Pθ) with X ⊂ Rd and Pθ a probabil-
ity measure from which point cloud data is randomly generated (X(ω)is a point
cloud) induces a measure PD on (Dp,B(Dp)).

Chapter 5

Introduction to Stochastic
Processes

This chapter aims to make a brief introduction to Stochastic Processes and its
basic concepts. The vast majority of the concepts have been extracted from [19]
and [45], the latter being provided by its author and thesis advisor. We need to
make this parenthesis because first, stochastic processes will appear in the form of
convergence results in the following chapter, and even more important, they will
serve us as a pillar for our last chapter.

A time series is a series of observations xt observed over a period of time. In
our work, we will focus on the case that observations are made at fixed equidistant
time points {xt : t ∈ Z}.

The progress in time series analysis requires to introduce the following proba-
bilistic model definition:

Definition 5.1. Given a probability space (Ω,F ,P), where Ω is a sample space, F a σ-
algebra and P a probability measure, and a measurable space (S, Σ), a stochastic process
is a collection of S-valued random variables which can be written as {X(t, ω) : t ∈ T, ω ∈
Ω}.

Definition 5.2. Given a stochastic process {X(t, ω) : t ∈ T, ω ∈ Ω}, the mapping
Xw : T → S is called a realization of the stochastic process.

In other words, a realization is a single outcome of the stochastic process. In
our work, we will interpret T as time, so a realization of the stochastic process will
represent a time series. In fact, we are going to take into account just discrete-time
stochastic processes, in which T = N or Z. In such case we can write {Xt : t ∈ T}.

27

28 Introduction to Stochastic Processes

Definition 5.3. Given a stochastic process {Xt : t ∈ N}, we say it is a second order
stochastic process if it satisfies

E[X2
t] < ∞, ∀t ∈N

Remark 5.4. The definition 5.3 guarantees that E[Xt] and V[Xt] are finite and well
defined.

Applying Jensen’s inequality

|E[Xt]| ≤ E[|Xt|] < ∞

together with Cauchy-Schwarz inequality

E[|Xt|] ≤ E([X2
t])

1
2 < ∞,

we get that
V[Xt] := E[X2

t]− (E[Xt])
2 < ∞.

It guarantees that for any two random variables of the process, the covariance is
well defined. Applying the Cauchy-Schwarz inequality, we have

|C[Xt, Xt+l]| = |E[(Xt −E[Xt])(Xt+l −E[Xt+l])]|
≤ E[|(Xt −E[Xt])||(Xt+l −E[Xt+l])|]
≤ E[|Xt −E[Xt]|2]

1
2 E[|Xt+l −E[Xt+l]|2]

1
2

= V[Xt]
1
2 V[Xt+l]

1
2 (5.1)

From now on, we assume that all stochastic processes appearing in this work are
second-order stochastic processes.

5.1 Stationarity

To be useful, in most cases, stochastic processes must preserve certain proba-
bilistic properties during time.

Definition 5.5. A stochastic process {Xt : t ∈ Z} is said to be (weakly) stationary it
satisfies the following properties:

1. E[Xt] = µ, ∀t ∈ Z

2. C[Xt, Xt+l] = γ(l), ∀t, l ∈ Z. By the symmetry of the covariance, γ(−l) = γ(l),
thus, γ(l) can be defined in N. We call γ(l) the autocovariance function (ACVF)
and the value "l", the "lag".

5.1 Stationarity 29

Remark 5.6. Note that in the case l = 0 , γ(0) = C[Xt, Xt+0] = C[Xt, Xt] = V[Xt].

Definition 5.7. Given a stationary stochastic process {Xt : t ∈ Z}, the auto-correlation
function is said to be

ρ(l) :=
γ(l)
γ(0)

, ∀k ∈ Z.

Notice that since γ(l) can be defined in N, so can be ρ(l).

Remark 5.8. From 5.1, we have that |γ(l)| ≤ |γ(0)|, ∀l ≥ 0. Hence, −1 ≤ ρ(l) ≤ 1.

Definition 5.9. Given a stochastic process {Xt : t ∈ Z}, we say that it is strictly sta-
tionary if for any {t1, ..., tn} ∈ Z, and l, the vectors (Xt1 , ..., Xt1) and (Xt1+l , ..., Xtn+l),
have the same law.

Note that the above implies that all the random variables Xt have the same
law too. Hence, it is obvious that if a stochastic process is strictly stationary, it is
stationary too. The reverse is false in general.

Before ending this chapter, let us give to common and basic examples of
stochastic processes.

Example 5.10. (IID Noise) We say that {Xk, k ≥ 1} is an i.i.d noise if all the
random variables are independent with mean µ and standard deviation σ. In this
case ρ(l) = 0 if l ≥ 1, i.e, is a completely random time series.

Example 5.11. (White Noise) We say that {Xk, k ≥ 1} is white noise if all the
random variables have expectation µ and standard deviation σ and ρ(l) = 0 if
l ≥ 1. Observe that IID is a particular case of White Noise.

Example 5.12. (Gaussian process) We say that a process {Xt, t ∈ T} is Gaussian
if and only if, for every set of indices t1, ..., tk in the index set T, (Xt1 , ..., Xtk) is a
multivariate Gaussian random variable, or equivalently, every lineal combination
of (Xt1 , ..., Xtk) has a univariate normal distribution.

Chapter 6

Persistence Diagrams Functional
Summaries

As we have already mentioned, one of the central workflows in TDA is to start
with data point cloud and compute a topological summary of this to provide use-
ful information about its structure and geometry. Therefore, as stated in [27], one
of the worst dangers would be to ignore the fundamental aspect of classical data
analysis such as expectations, variances and conditional probabilities. In 4.4.2, we
ended by asserting that persistence diagrams sometimes tend to be challenging
for achieving certain statistical goals; in fact, they do not have a unique mean. In
order to deal with the latter many functional summaries have appeared. Then, the
persistence diagram’s analysis becomes a statistical function analysis.

6.1 Introduction to functional summaries

At this point, suppose that we have D1,Dn persistence diagrams generated
from the same population. From [27], we can suppose a probability distribution
P on the probability space (Dp,B(Dp),P) and suppose D1,Dn as random vari-
ables independently and identically distributed on the latter space. Let F be a
collection of functions. Then, a functional summary F(D) is a map

F : D → F .

Then, Fi = F(Di) can be understood as a random variable too. In fact, since
{Di}1≤i≤n are independent and identically distributed random variables,

F1, ...Fn ∼i.i.d PF .

We could think of obtaining a sample mean functional summary to serve us as

30

6.1 Introduction to functional summaries 31

an estimator of the population mean. In fact, we can define the mean functional
summary as

F̄(t) = EPF [Fi(t)].

Moreover, we can define the pointwise estimator as

F̂(t) =
1
n

n

∑
i=1

Fi(t).

Let denote BF by the set of all possible functions given a functional summary
and let T be the compact where we want to compute F̄(t). Suppose that F(t) = 0
for all t /∈ T for all F ∈ BF. Moreover, assume that there exists Ū < ∞ and that

sup
F∈BF

sup
t∈T

| F(t) |≤ Ū. (6.1)

With the above construction, the following two propositions are stated and proven
in [3].

Proposition 6.1 (Pointwise Convergence). Assume 6.1 holds. If BF is an equicontin-
ious set, then

sup
t∈T

| F̂(t)− F̄(t) |−→
a.s

0. (6.2)

In fact, if there exists L constant such that any F ∈ BF is L-Lipschitz, 6.2 holds too.

We need to introduce the following notations to state the next proposition;
however, we will not delve into them. The main result for our discussion, in
both propositions, is regarding the implication of functional summaries being L-
Lipschitz.

Let W = {Ft : t ∈ T} such that Ft(Di) = Fi(t) for 1 ≤ i ≤ n. Let Q be a

probability measure over BF and ‖ f − g ‖Q,2=
√∫
| f (t)− g(t) |2 dQ(t) be the

L2(Q) norm for functions and let N (W , L2(Q), ε) the ε-covering number ofW .

Proposition 6.2. Let σ2(t) = Var(Fi(t)) and σ2 =
∫

σ(t)dt. Assume 6.1 holds, then

√
n(F̂(t)− F̄(t)) D−→ N(0, σ2(t))

√
n(
∫

(F̂(t)− F̄(t))dt D−→ N(0, σ2).

Moreover, if ∫ 1

0

√
log sup

Q
N (W , L2(Q), ε)dε < ∞, (6.3)

32 Persistence Diagrams Functional Summaries

where Ū is the upper bound of the functional summary and the supremum is taken over all
finitely discrete probability measures on the space of persistence diagrams, then

√
n(F̂− F̄)

converges in distribution to B, where B(t) is a Gaussian process over t ∈ T with a
covariance function

C[B(t), B(s)] = E[Fi(t)Fi(s)]− F̄(t)F̄(s),

for t, s ∈ T. Furthermore, if there exists a constant L > 0 such that any F ∈ BF is
L-Lipschitz, then the above three convergences hold.

In other words, if the functional summary is L-Lipschitz, then 6.3 holds, and
therefore

√
n(F̂− F̄) converges to a Gaussian process.

Observe that at this point, we have presented a framework for generating con-
venient functional representations of persistence diagrams for statistical inference.

6.2 Persistence Landscapes and Silhouettes

In this section, first, we will define one of the most extended and used func-
tional summaries, persistence landscapes, which will be an essential tool for de-
veloping our work. Persistence landscapes were introduced in [5] and followed by
[6] as a well-behaviour summary for persistence diagrams. More precisely, they
are functional summaries mapping persistence diagrams into elements of usually
Banach, or Hilbert spaces.

Recall that a Banach space is a complete normed space, i.e., a pair (X, ‖ · ‖)
where X is a vector space over a field K, and ‖ · ‖ is a norm inducing a distance
d(x, y) =‖ y − x ‖ under which X equipped with d is a complete metric space.
Moreover, recall that an space H is called a Hibert space if it is an inner product
space such that it is a complete metric space with respect to the distance function
induced by the inner product.

In order to define persistence landscapes, we need to introduce the following
triangle function.

Given an N-persistence module of finitely generated type over a field F, and its
corresponding persistent diagram D = {pi(bi, di)i∈I}, let us define the following
associated function:

Λp(t) =

t− b t ∈ [b, b+d

2]

d− t t ∈ [b+d
2 , d]

0 otherwise

6.2 Persistence Landscapes and Silhouettes 33

We define a persistence landscape as the following sequence of functions:

Fk(D; t) = η(k, t) : N×R : // [0,+∞]

(k, t) � // kmax{Λpi(t), i = 1, ..., m}

Figure 6.1: Peristence landscapes construction from a persistence diagram

Remark 6.3. These properties follow directly from the definition:

1. If k > m, then η(k, t) := 0.

2. η(k, t) ≥ 0, for all k, t.

3. η(k, t) ≥ η(k + 1, t), for all k, t.

Remark 6.4. Observe that Λp(t) are one-Lipschitz functions, since|Λp(t2)−Λp(t1)|
≤ |t2 − t1| for all t2, t1 ∈ R. Hence, persistence landscpaes η(k, ·) are, by construc-
tion, one-Lipschitz too.

Persistence landscapes satisfy some very interesting properties such as in-
vertibility [4]. Moreover, they are stable too, in the sense that, given two persi-
tent diagrams, D1, D2 with their corresponding persistent landscapes η1 and η2,
|η(k, t)1 − η(k, t)2| ≤ dB(D1, D2), being dB the bottleneck distance. Furthermore,
they are parameter free, nonlinear and have good computational behaviour. Let us
refer the reader to [7] for an implementation of it. Moreover, let us refer the reader
to [Section 2.2][6] for a further exposition of persistent landscapes properties.

More concretely, we will sketch how we can assume persistence landscape be-
ing functional summaries mapping persistence diagrams to Banach spaces, follow-
ing the discussion in [6]. Moreover, we will define persistence landscapes norms
which will be an essential domain of definition for developing our further results,

34 Persistence Diagrams Functional Summaries

experiments and tools. Persistence landscapes norms have been used as the main
tool for analyzing topological time series via TDA, which will be our next topic.

Given a measure space (S ,A, µ), we can consider the set of functions f : S →
R defined µ-almost everywhere whose absolute value raised to the p-th power has
a finite integral for p ∈ [0, ∞), or equivalently,

‖ f ‖p= (
∫
| f |pdµ)

1
p < ∞.

By the Minkowski inequality, the following holds

‖ f + g ‖p≤‖ f ‖p + ‖ g ‖p,

with equality if and only if f = λg for some scalar , λ ≥ 0. Hence, the set of p-the
power integrable functions, together with ‖ · ‖p form a seminormed vector space
with the natural operations. We will denote the later as

Lp(S) = { f : S → R| ‖ f ‖p< ∞},

for 1 ≤ p < ∞.
In case p = ∞, L∞(S) is the set of functions bounded almost everywhere, with

the essential supremum of its absolute value as a norm. Then, we can define a its
corresponding normed space as follows:

Lp(S) = Lp(S)/Ker(‖ · ‖p).

By Riesz-Fischer theorem it can be proved that Lp(S) are complete too, and hence
Lp(S) is Banach. Persistence landscapes are stable with respect the Lp-norm for
1 ≤ p < ∞ [5].

Definition 6.5. Given a persistence landscape function η(k, t) = ηk(t) : N×R → R,

we define the persitence landscape norm as ‖ η ‖p= (
∞

∑
k=1
‖ ηk ‖

p
p)

1
p with the product

of the counting measure and the Lebesgue measure defined on N×R.

The set of persistence landscapes endowed with the norm defined above lies
in Lp(N×R), and hence, it is a Banach space. Thus, we can apply results from
probability in Banach spaces [25]. The latter will allow us to understand persis-
tence lanscapes as random Borel variables with values in Lp(N×R) , Λ(ω) :=
η(X(ω)) : Ω→ Lp(N×R) with ||Λ|| being a real-valued random variable.

Apart from results discussed in 6.1, the pointwise convergence of persistence
landscapes is proven in [5]. Moreover, in [10] previous results where extended,
proving the uniform convergence of the average landscape. In fact, it is shown,
that the empirical process

√
n(1

n ∑n
i=1 ηi(t) − E[η]) for t ∈ [0, T], converges to a

6.3 Persistent Entropy 35

Gaussian process on [0, T], as we have seen. Furthermore, a rate of convergence is
established.

Additionally to persistence landscapes, and taking profit of the paragraph
above, we introduce persistence silhouettes, introduced in [10].

Definition 6.6. Consider a persistence diagram D\∆ such that |D\∆| = m, a weighted
silhouette is defined as

F(D; t) = φ(t) :=
∑m

j=1 wjΛj(t)

∑m
j=1 wj

.

Moreover, for every p ∈ (0, ∞] we define the power-weighted silhouette as

F(D; t) = φ(p)(t) :=
∑m

j=1 |dj − bj|pΛj(t)

∑m
j=1 |dj − bj|p

.

Intuitively speaking, when p is small, φ(p)(t) is dominated by the effect of low
persistence pairs. Conversely, when p is large, φ(p)(t) it is dominated by the most
persistent pair. Observe that the persistence silhouette functional summary maps
persistence diagrams to R-valued functions.

As stated in [10], the power-weighted silhouette preserves the condition of
being one-Lipschitz. In fact, this is true for any choice of non-negative weights.
Hence, the convergence results mentioned in the previous article and sections
hold.

For more detail, let refer the reader to [10], as specified above.

6.3 Persistent Entropy

In addition, we introduce persistent entropy, defined in its current form in [36],
and introduced first in [11], a concept based on Shannon’s entropy [38] which
summarizes the persistence diagrams’ topological information in a single number,
which sometimes may be convenient. We will present two functions appearing
first in [2], as an adaptation of this concept. Moreover, we will propose a functional
summary based on persistence entropy satisfying the L-Lipschitz condition.

Definition 6.7. Let X be a discrete random variable on a probabilty space (Ω,F , P)with
its corresponding probability mass function pX, the entropy H is defined as

H(X) = E[− log(pX)].

In fact, let supp(X) = {x1, ..., xn}, the entropy can be explicitly written as

36 Persistence Diagrams Functional Summaries

n

∑
i=1

pX(xi) logb(pX(xi)),

where b is the base of the logarithm. Usually b = 2, and its corresponding unit its called
bit.

The previous concept is adapted as follows.

Definition 6.8. Given a persistence diagram D = {[bi, di)}1≤i≤n with D ∈ DF , DF =

{D ∈ D : such that di < ∞ for all [bi, di) ∈ D}, the persistent entropy of D, denoted
by E(D) is defined as:

E(D) = −
n

∑
i=1

li
L

log(
li
L
)

where li is the length of each interval [bi, di) and log will refer to the log-base-2 function.

Persistent entropy stability is proven in [11]. To do so, they adapt Shannon’s
entropy stability results to the metric space of persistent diagrams, and combine
them with stability results of persistent homology . They generalized the results
to the set persistence diagrams D.

In [2] they introduce two functions based on persistence entropy to introduce
new uses of this concept, the entropy summary function and the normalized en-
tropy summary function.

Figure 6.2: Example of two persistence barcodes with their corresponding persis-
tence entropy and their corresponding entropy summary function

Definition 6.9. The entropy summary function (ES-function) of a persistence diagram
D = {[bi, di)}1≤i≤n, with D ∈ DF , DF = {D ∈ D : such that di < ∞ for all
[bi, di) ∈ D} is the real-valued piecewise constant function defined as

SD(t) = −
n

∑
i=1

wi(t)
li
L

log(
li
L
)

where wi(t) = 1 if bi ≤ t ≤ di and wi(t) = 0 otherwise.

6.3 Persistent Entropy 37

Note that the entropy summary function maps a persistence diagram and an
instant t with the corresponding entropy of the intervals that are "alive" at t. Let
us refer the reader to [Theorem 4.2][2] to check the stability of the ES-function.

In addition to the previous function, a scale-invariant function is presented.

Definition 6.10. The normalized entropy summary function (NES-function) of a
persistence diagram D = {[bi, di)}1≤i≤n, with D ∈ DF , DF = {D ∈ D : such that
di < ∞ for all [bi, di) ∈ D} is the real-valued piecewise constant function defined as

NESD(t) =
SD(t)
‖ SD ‖1

Let us refer the reader to [Theorem 4.4][2] to check the stability of the NES-
function.

Additionally, we would like to introduce a new candidate to functional sum-
mary, satisfying the property of being L-Lipschitz. The main idea was to introduce
a functional summary based on persistence entropy, that, in contrast to NES and
ES functions, could satisfy the latter. Intuitively, the following summary intends
to provide information regarding the quantity of persistence of persistent entropy
values along t, together with the corresponding persistent entropy value generated
from generators that have been born at time t or before.

Let D = {[bi, di)}1≤i≤n be a persistence diagram, and lets denote NE(·) be the
persistence entropy function but this time normalized. Moreover, lets define

NE(t) = E(D\{pi = (bi, di) ∈ D : bi > t})

Lets denote f : [0, 1]→ [0, 1] as monotonous increasing function.
Without loss of generality, given the total order on R2 given by (bi, di) < (bj, dj)

if and only if (bi < bj) or (bi = bj) and di < dj, suppose that point indexes in D
are reorganized in ascending order leading into D = {(bi, di)}1≤i≤n satisfying that
for all (bi, di), (bi−1, di−1) < (bi, di) < (bi+1, di+1).

Then, we define

Λpi ,pj(t) =

(t− bi) t ∈ [bi,

bi+bj
2], j = i + 1

(bj − t) t ∈ [
bi+bj

2 , bj], j = i + 1

0 otherwise

Remark 6.11. Observe that for all points in the diagram with non-consecutive birth
indexes Λpi ,pj(t) = 0. The same holds for points in the diagram with same birth
value.

Finally we define our persistence entropy based functional summary candidate
as

PEFSC(t) = ∑
i,j

√
f (E(t))Λpi ,pj(t)

38 Persistence Diagrams Functional Summaries

Remark 6.12. Observe that PEFSC(t) is 1-Lipschitz. In fact, it is maxt(
√

f (E(t)))-
Lipschitz. Hence, results given in 6.1 hold.

Intuitively, the function f serves us to weigh how much we want normalized
persistence entropy values to affect the function in a certain time t.

We propose the latter function for further study of its properties, stability and
uses.

Chapter 7

Introduction to TDA for Financial
Time Series

In a few articles such as [17][18][32][33][35], TDA has been used or discussed as
a tool for studying financial time series. Two primary methodologies have arisen
to embed time series into a convenient space where to be treated as point clouds
(or a series of point clouds) to later compute persistence homology. In [17], M.
Guidea and Y. Katz apply the sliding window method to a 4-dimensional signal
consisting of four 1-dimensional time series of stock indexes. However, the latter
requires multiple signals.

When the analysis has to be performed over a single time series, the standard
approach [31][35][32] relies on a combination of Takens’ embedding [43] (embed-
ding process to point cloud) and the sliding window methodology (obtain a par-
tition or sequence of point clouds). Hence, in this chapter, we will introduce both.

To understand the financial time series’s fundamental behaviour, we will present
some empirical results regarding financial time series, which are commonly as-
sumed to be accurate. Those empirical results are called stylized facts.

In the previously mentioned articles, [35][32][17], persistence landscapes are
used as the main persistence diagram functional summaries to perform financial
time series analysis. Leaving aside the possible discussion that would be rea-
sonable to have, so as to wonder why Lp norms of persistence landscapes are so
widely used in TDA for financial time series, once this point has been reached,
we will introduce the main algorithm used to compute them. Moreover, we will
present a program, together with the main library’s data and methodologies used
to develop it, which may serve the reader as a tool to perform empirical analyses
of stocks and compare TDA results with classical statistical ones.

Later on, our work focuses on an article provided by Josep Vives, [1], that
can be considered as a continuation of [17]. In fact, we prove that the results re-

39

40 Introduction to TDA for Financial Time Series

flected on the dependency relationship between persistence landscapes functional
norms and variance-covariance in multivariate time series embedded via the slid-
ing window method are valid for time series understanding them as a realization
of a weakly stationary stochastic process, and assuming that the point clouds are
obtained through the time-delay embedding. Moreover, using Proposition 6.1, we
will observe that, by construction, silhouettes satisfy the same results. Afterwards,
we will introduce the AR(1) model. The ease of setting the autocorrelation func-
tion, the variance, and the expectation that this method provides, will help us plot
the previous results.

Finally, we introduce another program that has been coded to provide a use-
ful framework to generate time series coming from standard distributions and
time series models such as ARCH(1), GARCH(1,1), and the previously mentioned
AR(1). Moreover, we will propose the further study of specific properties and
dependencies that will be easily intuited with certain simulations that will be pro-
vided.

7.1 Takens’ embedding: From time series to point clouds

We will aim to subtract topological information from time series through per-
sistence homology. To do so, Takens’ embedding, usually known as time delay
embedding, has become one of the most popular and useful computational tools.
It serves us as a methodology to transform time series into point clouds. The main
sources followed have been [29][43]

Briefly speaking, a discrete dynamical system (M, φ) consists of a compact
manifold M containing the states of the system and a diffeomorphism φ : M→ M
which determines the evolution of the state over time. We call M the state space,
and φ the dynamical map. If a system (M, φ) is in state x ∈ M at some time t,
then φ(x) is the state at time t + 1. Hence, the trajectory of the space is determined
by φ. A time series can be assumed to be a series of observations of a dynamical
system trajectory, and therefore, a common goal is to reconstruct the main rules of
the dynamical system from these observations. We call f : M → R an observable.
Takens’ theorem, provides certain conditions under which a smooth attractor (a set
of numerical values towards which a system tends to involve) can be reconstructed
from a set of observed values. The latter is formalized as follows in [43].

Theorem 7.1. Let M be a manifold of dimension d. For pairs (φ, f), where φ : M→ M is
a smooth diffeomorphism and f : M→ R, it is a generic property that the (2d + 1) delay
observation map given by Φ : M → R2d+1 given by Φ(φ, f)(x) = (f (x), f ◦ φ(x), ..., f ◦
φ2d(x)) is an embedding.

7.2 Sliding window of time series 41

In practice, φ can be assumed to depend on a fixed τ which will be called
the delay parameter, in the sense that, if x is the state at time t, then φτ(x) is the
state x at time τ. Takens proved that the if m > 2d then φ is generally a faithful
embedding.

Hence, suppose we have a time series X = {x1, ..., xN} , according to Takens’
embedding theorem [43], the pair (m, τ), characterizes the entire transformation,
leading into a trajectory matrix f (X) ∈ R(N−(m−1)τ)×m defined as

f (X) =

X(m−1)τ

X1+(m−1)τ

.

.

.
XN

=

x0 xτ . . . x(m−1)τ

xτ x1+τ . . . x1+(m−1)τ

.

.

.
xN−(m−1)τ xN−(m−2)τ . . . xN

In fact, we are generating the m most recent equally spaced points up to time t
with a predefined gap τ. Notice that the choice of parameters m and τ will be
crucial.

In [31], they combined the time delay embedding with the sliding window
method to obtain set of point clouds from a single time series. In our initial prac-
tical implementation, we will use such methodology, following the first algorithm
proposed in [18].

7.2 Sliding window of time series

It will be necessary for time series analysis to decide whether or not the analy-
sis has to be done over the whole time series, or segment by segment. The sliding
window method is defined as follows:

Suppose we have a time series X = {x1, ..., xn}, then, the sliding window meth-
ods divides the time series into partitions SWv,g(t) = {xt, xt+g..., xt+vg} where v
denotes the size of the window and g denotes the time gap. In our work, we will
suppose g = 1 in this particular method. Hence, in this case, the value v will be
the crucial parameter.

Notably, in article [17], M. Guidea and Y. Katz, applied the sliding window
method on a 4-dimensional time series composed of four US stock indexes, to
later perform a functional norms persistence landscapes analysis.

42 Introduction to TDA for Financial Time Series

7.3 Financial Time Series and Stylized Facts

In this section, we briefly introduce some statistical properties that financial
time series tend to share to better understand the subject of matter. Those em-
pirical findings, consistent across markets, are called stylized facts. We refer the
reader to [37] for further information and discussion. Let us suppose that the
financial time series follows a stochastic process {Xt, t ∈N}.

• Non-stationarity: Financial time series tend to be non-stationary. In fact,
E[Xt] usually follows a non-linear trend. One common approach is to trans-
form our time series into {Rt, t ∈ N} where Rt = log(Xt

Xt−1
) = log(Xt) −

log(Xt−1) and assume stationarity.

• Dependence: The autocorrelation function of the returns process {Rt, t ∈N}
is largely insignificant, i.e, ρ(l) ≈ 0 for all l > 0 except from very small
intraday time scales. However, C[R2

t , R2
t+l] and C[|Rt| , |Rt+l |] do not need

exhibit the same property.

• Distribution: The empirirical kurtosis is greater than 3, which is the kurto-
sis associated to the standard normal Gaussian distribution. This implies a
bigger density of return values near the mean, and in the tails, leaving inter-
mediate values with less density, compared to the standard normal Gaussian
distribution. In fact, it is observed and increasingly positive kurtosis as the
time interval decreases.

• Intermittency/Volatility clustering: Periods of big movements are followed
by periods of downward movements and vice versa. The latter is known as
conditional heteroskedasticity.

7.4 Practical implementation on Financial Time Series

As we have mentioned, one of the most extended financial time series analy-
sis using TDA methodologies, is based on computing persistence landscapes Lp

norms on point clouds obtained through a combination of Takens’ embedding and
the sliding window approach.

To illustrate this point, in [35], they developed a TDA-portfolio method for
cryptocurrencies. Moreover, in [18], they intended to develop a TDA based en-
hanced indexing algorithm.

First, in this section we introduce the latter algorithm. Afterwards, we will
give some explanatory comments regarding the code that we have developed to
perform such computations. Moreover, we will provide some empirical results.

7.4 Practical implementation on Financial Time Series 43

Algorithm 1: Generating persistence landscapes Lp norm time series

1. Transform the in-sample index data into log returns
xi = log(Pt)− log(Pt−1) with Pt corresponding to price at time t.

2. Apply Takens’ embedding to obtain a ((N − (m− 1)τ)×m) matrix

f (X) =

X(m−1)τ

X1+(m−1)τ

.

.

.
XN

=

x0 xτ . . . x(m−1)τ

xτ x1+τ . . . x1+(m−1)τ

.

.

.
xN−(m−1)τ xN−(m−2)τ . . . xN

3. Apply sliding window method with time window size v in order to obtain

N − (v + 1) point clouds {PCi}1≤i≤N−(v+1)of the form

PCi =

xi xi+τ . . . xi+(m−1)τ

xi+1 x(i+1)+τ . . . x(i+1)+(m−1)τ

.

.

.
x(i+v)−(m−1)τ x(i+v)−(m−2)τ . . . x(i+v)

4. Compute persistence diagram from Vietoris-Rips reconstruction and its

corresponding persistence landscape and norm.

7.4.1 Developed tools, Methodology and Data

In FinTDA.ipybn A.1, we have developed a class (IndexTDA) with which sev-
eral empirical results can be easily computed from stock indexes in a selectable
date range. First of all, as we have mentioned, for a given v, referring to the win-
dow size of the sliding window method, and parameters τ (Takens’ Embedding
time delay parameter) and m (Takens’ Embedding dimension parameter) one can
obtain the persistence landscape Lp norm time series from the corresponding gen-
erated point clouds mentioned in the algorithm above. Moreover, persistence en-
tropy can be computed by means of the persim python’s package. In fact, for that
given v, the user can easily compute/plot the standard deviation, the kurtosis, the
autocorrelation for l = 1, the value at risk (VaR computed by bootstrapping) and
the expected shortfall (ES) for the whole generated point clouds, and obviously

44 Introduction to TDA for Financial Time Series

the index values and their corresponding logarithmic returns. We urge the reader
to use those tools to understand and empirically test the behaviour of persistence
landscapes Lp norm.

To compute Vietoris-Rips complexes from point cloud data together with their
corresponding persistence diagrams, we have used the ripser.py package [44]. We
decided using ripser, since, as it is specified, it outperforms other well-known
packages such as GUDHI by a factor of more than 40 in computation time and a
factor of more than 15 in memory efficiency. On the other hand, persistence land-
scapes have been computed employing the Landscape class from GUDHI package.
In the same way, to compute the Takens’ Embedding, we relied on its GUDHI
class TimeDelayEmbedding. Moreover, we compute the Lp norms utilizing skfda
python’s package. Furthermore, to compute the fourth empirical moment, the
standard deviation and the autocorrelation we relied on the scipy.stats package,
NumPy package and statsmodels.tsa.API respectively.

On the other hand, data and dates are managed via pandas, and DateTime
packages, respectively. Stock indexes data has been extracted from Yahoo Finance.
In fact, in /Code, we provide historical data from SP500, SP100, NASDAQ and VIX
that can be easily used in our IndexTDA class. Moreover, we have developed the
rolling window strategy introduced in [18] in order to perform a more decoupled
analysis of the stock indexes.

Let us refer the reader to A.2 to check some results obtained from the previous
implementations.

Comments regarding the selection of the embedding parameter

As mentioned in 7.1, parameters (τ, m) fully characterize the embedding. Hence,
we will provide some intuition for parameter fitting.

First of all, several methods regarding the choice of parameter τ have been de-
veloped. For instance, one of the most extended methods relies on the autocorrela-
tion function, setting τ = l being l the smallest lag value where the autocorrelation
function becomes insignificant [32][23]. As mentioned in 7.3, the autocorrelation
function for returns time series remains proper to 0 for lags l > 0. Hence, under
this context, τ is commonly set to 1, τ = 1 [32][35][18].

Secondly, regarding parameter m, in [32] they used the false nearest neighbour
and defined m as the smallest integer such that the nearest neighbours of each
point in dimension m remain nearest neighbours in dimension d + 1. However,
some author assume m to be equal to two or three [18].

Another crucial parameter about which there is not much literature is the pa-
rameter v. In fact, in [35] and [18] they simply assume it to be 30 or 21 for index
analysis.

7.4 Practical implementation on Financial Time Series 45

7.4.2 A computed example

Here we introduce the result of computing Algorithm 1 on the SP500 index.
As previously mentioned, we will set τ = 1, and assume m = 2. We will choose
the window size value v = 63 [18], meaning that 63 different trading days will be
considered in each point cloud.

First, we plot the index and its corresponding logarithmic returns:

Figure 7.1: SP500 index from 01-2000 to 10-2020

Figure 7.2: SP500 logarithmic returns from 01-2000 to 10-2020

Spearman coefficient between the standard deviation and the L1persistence
landscapes norms for v = 21 : ρ = 0.806.

Standard deviation and L1 time series present a highly significant Spearman
coefficient. This will motivate us to adapt the results given in [1] to our context,
demonstrating a dependence on the variance and the autocorrelation function.
As previously discussed in 7.3, the autocorrelation at any lag greater than 0 of a

46 Introduction to TDA for Financial Time Series

Figure 7.3: SP500 L1 Noms, d = 2,v = 63 from 01-2000 to 10-2020

Figure 7.4: SP500 L1 Noms, d = 2,v = 63 from 01-2000 to 10-2020

financial time series is near to 0. Therefore, as we will show, it will not affect the L1

norm series. We refer the reader to A.2 for checking the window’s size influence
v on the obtained Spearman coefficient. We will observe that larger windows
reflect a greater correlation, meaning that the autocorrelation’s nullity becomes
more significant.

7.5 Adapting theoretical dependency results, equivalences
and further work proposals

In this section we adapt the theoretical results given in [1] in order to prove
their validity under construction given in Algorithm 1, assuming that our time
series is a realization of a weakly stationary stochastic process.

7.5 Adapting theoretical dependency results, equivalences and further work
proposals 47

Proposition 7.2. Suppose that we have an R-valued well-defined second order stochastic
process {Xt, t ∈ N}. Then, for a certain t ≥ 0,τ ≥ 1 ,m > 1 we define the following
random vectors X1 = (Xt, Xt+τ, ..., Xt+(m−1)τ) , X2 = (Xt+τ, X(t+1)+τ, ..., Xt+(m−1)τ),
...,XN = (X(t+N)−(m−1)τ, X(t+N)−(m−2)τ, ..., Xt+N) such that X = (X1, ..., XN) de-
scribes an N point data set in Rm. Lets denote Xi

j to the random variable allocated in
the j-th component of the i-th random vector, then

E[‖ η ‖p] ≤ C(N) ·
N

∑
i=1

(
m

∑
i=1

V[Xi
j])

p+1
2p < ∞ (7.1)

where ‖ η ‖p denotes the p-norm of the persistence landscape η, and C(N) is the number
of non zero k-persistence landscapes for any k.

Proof. Since {Xt, t ∈ N} is a well-defined second-order stochastic process, from
5.4, we have that E[Xt], V[Xt] < ∞ for all t ∈N. Therefore, the proof is analogous
to [Proposition 4][1].

Corollary 7.3. Let {Xt, t ∈N} be a well-defined second order weakly stationary stochas-
tic process and suppose that X = (X1, ..., XN) is constructed as in Proposition 7.2 then,
under the same notation

E[‖ η ‖p] ≤ C(N) · N · (m ·V[Xt])
p+1
2p < ∞. (7.2)

Proof. Suppose that we have the same construction as in Proposition 7.2. Let
{Xt, t ∈N} be second order weakly stochastic process, then it satisfies that V[Xk]

is constant for all k ∈ N. Hence, without loss of generality, we can denote V[Xt]

to be the variance for each random value in the process. Therefore, from Equa-
tion (7.1) we obtain Equation (7.2).

Remark 7.4. Let {Xt, t ∈ N} be a well-defined second order weakly stationary
stochastic process, and let X = (X1, ..., XN) be constructed as in Proposition 7.2.
Then, implications of [Proposition 5][Theorem 6] from [1] hold.

Proof. Let {Xt, t ∈ N} be covariance stationary. Then, for a fixed τ, following
the construction given in Proposition 7.2, expectations and variance-covariance
matrices remain equal for all X1, ..., XN . Hence, [Proposition 5][Theorem 6] from
[1] can be applied.

48 Introduction to TDA for Financial Time Series

Theorem 7.5. {Xt, t ∈ N} be a well-defined second order weakly stationary stochas-
tic process. For m = 2 and fixed N and τ, consider the associated point cloud X =

(X1, ..., XN) and the corresponding lanscape η. Then we have

E[‖ η ‖1] ≤ C(N) · L1(N) ·N ·V[Xt](1− |ρ(τ)|) ≤ 4N ·N ·V[Xt](1− |ρ(τ)|). (7.3)

where C(N) is the number of non zero k-persistence landscapes for any k and L1(N)

denotes the number of 1D loops described by an N point data set.

Proof. The proof is analogous to [Theorem 7][1]. The main difference lies in the 2x2
variance covariance matrix Σ. Under our construction and assuming covariance
stationarity, we have that, for each {Xi}1≤i≤N Σ can be described as follows.

Σ =

[
V[Xt] ρ(τ)V[Xt]

ρ(τ)V[Xt] V[Xt]

]

Therefore, if we diagonalize Σ, under the notation of [1] we obtain the following
eigenvalues:

θ1 = V[Xt](1 + |ρ(τ)|)

θ2 = V[Xt](1− |ρ(τ)|)

Remark 7.6. We use the absolute value of the autocorrelation to ensure that θ2 ≤
θ1.

Remark 7.7. As it appears in [Remark 8][1], observe that if |ρ(τ)| → 1, then
E[‖ η ‖1] → 0. Contrariwise, if p(τ) = 0, then 7.3 is only characterized from the
effect of V[Xt].

7.5.1 Validity of the results for Silhouettes

Let D = {pi(bi, di)i∈I} be a persistence diagram and let Λp(t) be the triangle
functions defined in 6.6. Moreover, recall from 6.6 that a persistence silhouette is
the functional summary F : D → F1 defined as follows:

F(D; t) = φ(t) :=
∑|D|j=1 wjΛj(t)

∑|D|j=1 wj

Since persistence silhouettes are defined as a weighed average of Λp(t), one can
make the following two observations:

1. Silhouettes are one-Lipschitz functions. Thus, Proposition 6.1 holds.

7.5 Adapting theoretical dependency results, equivalences and further work
proposals 49

2. φ(t) ≤ η(1, t). Then ‖ φ(t) ‖p
p≤‖ η(1, t) ‖p

p

Therefore, all the results given above and in [1] hold.
In particular, for E[‖ φ ‖]p the boundaries given in [Proposition 4][1], Proposi-

tion 7.2 and in Corollary 7.3 would remain equal but suppressing the term C(N).
The same difference would appear for the boundary of E[‖ φ ‖1] given in [The-
orem 7][1] and in 7.5. In fact, notice that any collection of L-Lipschitz functional
summaries bounded by η(1, t) would satisfy all the results provided in [1].

7.5.2 Further work and intuition

Results given in [1], and their analogous previously presented, assume a fixed
number of points N in the point cloud X = (X1, ..., XN) ∈ Rd. However, one might
observe that this parameter is crucial for the meaning of our analysis, as it is men-
tioned in 7.2. Observe that under our construction, N = v . As one may notice,
it will not be the same to perform the analysis on a point cloud of cardinality 10,
100, 1000 or in any arbitrary window size. At the cardinality of the point cloud
increases, the density of the point cloud will increase which might lead into less
persistent features. Therefore, we propose further study of the persistence homol-
ogy dependence with respect to the cardinality of the point cloud to be analyzed.
In particular, we propose studying the second, third, and fourth moments effect
on the evolution of the latter dependency.

We plot, under our construction, different embedded time series, coming from
known distributions with different kurtosis values, to show that possible depen-
dence.

Figure 7.5: Laplace i.i.d noise with µ = 0, σ = 1, κ = 3 for N = 10000000.

We refer the reader to B.2 to visualize the same results for a larger set of dis-
tributions.

50 Introduction to TDA for Financial Time Series

Figure 7.6: Normal i.i.d noise with µ = 0, σ = 1, κ = 0 for N = 10000000.

Figure 7.7: Uniform i.i.d noise with µ = 0, σ = 1, κ = −1.2 for N = 10000000.

7.5.3 The AR(1) model

The intention in this subsection is to introduce the AR(1) model, the simplest
model of the AR(p) model family, a subfamily of the family of ARMA(p,q) models
(autoregressive and moving average models) [jsa]. It will provide us with enor-
mous ease when it comes to fit expectation, variance and autocorrelation function
parameters of the model. Thus, that will serve us to plot an exemplification of
the above results. This model’s main intuition is that the observed time series de-
pends on a weighted linear sum of the p past values (in AR(1), p=1), and a random
shock. Thus the name "autoregressive" derives from this idea.

Definition 7.8. Let Z = {Zj, j ∈ Z} be a centered white noise with variance σ2 > 0.

Z ∼WN(0, σ2)

We say that Y = {Yj, j ∈ Z} is an AR(1) process if it is a stationary process and satisfies
the equation

Yj = φYj−1 + Zj, j ∈ Z, φ ∈ (−1, 1) (7.4)

7.5 Adapting theoretical dependency results, equivalences and further work
proposals 51

From the previous definition, we can observe the following by iteration.

Yj = φ(φYj−2 + Zj−1) + Zj

= φ2Yj−2 + φZj−1 + Zj

= ...

= Zj + φZj−1 + φ2Zj−2 + ... + φkZj−k + φk+1Yj−k−1

=
k

∑
i=0

φiZj−i + φk+1Yj−k−1

Since φiZj−i are centered and pairwise uncorrelated square integrable random
variables, applying [Corollary 2.4][45] we have that

∞

∑
i=0

φiZj−1 < ∞(L2) ⇐⇒
∞

∑
i=0

V[φiZj−1] =
∞

∑
i=0

φ2iσ2 =
σ2

1− φ2 < ∞. (7.5)

Hence, if |φ| < 1 we can conclude that

Yj =
∞

∑
i=0

φiZj−1 (L2) (7.6)

Notice that

E|Yj −
∞

∑
i=0

φiZj−1|2 = φ2(k+1)E[Y2
j−k−1]

k→∞−−→ 0 (7.7)

Observe that stationarity implies E[Y2
j−k−1] to be constant and |φ|2(k+1) to 0 when

k→ ∞.
Hence, for any j ∈ Z we have

1. E[Yj] = 0

2. V[Yj] =
σ2

1−φ2 > 0

3. C[Yj, Yj+l] =
σ2φl

1−σ2

4. ρ(l) = φl

Remark 7.9. Observe Yj = c + φYj−1 + Z with Z ∼WN(0, σ2) is an AR(1) process
too. In this particular case, E[Yj] =

c
1−φ

52 Introduction to TDA for Financial Time Series

Therefore, we can force an AR(1) process to have a certain µ, σ, ρ(1) by defining
it as:

Yj = µ · (1− ρ(1)) + ρ(1)Yj−1 + Zj, Z ∼WN
(

0,
√

σ2 · (1− ρ(1)2)
)

(7.8)

We use 7.8 to generate multiple time series simulations of length N for a range
of fixed values of variance and autocorrelation to compute the sampled mean of
the corresponding persistence landscape L1 norms for each of the pairs variance-
autocorrelation. We aim to visualize variance and autocorrelation’s dependency
effects on functional persistence landscapes L1 norms to provide an snapshot of
the results presented above. To generate the following plot, we have used the code
presented in B.1. Particularly we have used the method

std_corr_persistence_landscape_lp_norm_sur f ace.

Figure 7.8: We have used the AR (1) model to generate 750 time series, with 200
values each, for fixed equidistant values of standard deviation and autocorrelation
within a given range. In particular, we have used the default values that appear
in the provided code. Computing the L1 norm of the associated persistence land-
scape with each of these 750 simulations, we obtain an estimated value. In this
graph, we can see show the effect of the results previously presented. We can see
that, as the autocorrelation value increases from 0 to 1, the value of the norm L1 is
nullified. The opposite occurs with the deviation’s value.

7.5.4 Developed tools

In EmpTDA.ipynb B.1, we have developed a set of python tools that can be
very useful to extract topological information from simulated time series. On the
one hand, we provide a bunch of methods to simulate time series using some of
the most popular stochastic models, such as AR(1), ARCH(1) and GARCH(1,1).

7.5 Adapting theoretical dependency results, equivalences and further work
proposals 53

We provide methods to simulate time series from the Laplace, logistic, normal,
semicircular and uniform distributions. Moreover, we provide the necessary tools
to plot the simulated time series together with their autocorrelation and partial au-
tocorrelation functions. On the other hand, relying on the same python packages
mentioned in 7.4.1, we provide the following TDA methods in the class TDATime-
Series. First, we dispense the tools to compute Takens’ embedding and plot the
embedded time series. Second, we give the methods to compute and plot persis-
tence diagrams and their corresponding density. Moreover, we provide the tools
to compute and plot the simulated time series’s persistence landscape, together
with its corresponding norm. Furthermore, power weighted silhouettes, power
weighted silhouettes Lp norms, persistence entropy, ES and NES functions, are
implemented. We encourage the reader to use the presented tools in order to
perform his experiments.

Chapter 8

Conclusions

The early motivation for this work arose after hypothesizing that the data’s
topological structure could be relevant when it comes to providing alternative
information to the more classical methods. It did not take long to discover a
branch dedicated to this topic, a point of confluence between Algebraic Topology,
Statistics and Computation Theory, Topological Data Analysis.

In this work, as the reader must have verified, we provide the necessary theo-
retical bases for a first approach to one of the main tools of topological data anal-
ysis, persistent homology, which will allow us to elucidate the most significant
topological characteristics of data’s underlying topological space. Later, we pro-
vide a framework to understand homological persistence from a statistical point
of view. This framework is made up of a set of maps that, under certain assump-
tions, will allow us to obtain a more conductive stable and reliable representation
for data analysis.

Under this same framework, we present the persistence landscapes and sil-
houettes. In addition, we present a new function that could serve as a descriptor,
based on persistence entropy. As future work, we propose a more detailed study
of this function, as well as its possible uses (if any), behaviour and stability.

Finally, we focus on the topological analysis of time series, with particular em-
phasis on financial time series, for which we can find a series of articles [17][35][18][32]
among others.

As is well known by now, in the articles cited above, two types of methods are
discerned to obtain point clouds, where persistent homology and its correspond-
ing descriptors can be calculated.

Taking advantage of an article provided by Josep Vives [1], we demonstrate
the equivalence of his results, especially thought as a continuation of [17], for
univariate time series conceived as realizations of weakly stationary stochastic
processes. In addition, we affirm the validity of the same for silhouettes, and

54

55

we empirically show the dependency results obtained through simulations AR (1)
model.

In this same work, we developed a series of Python tools, which can be highly
useful for anyone who wants to work with TDA for time series. These tools will
allow us to calculate, simulate and visualize different results, both related to TDA
tools and classic data analysis.

In conclusion, we would like to add that there is much work to be done in
this field. In particular, we propose the study of the dependence of homological
persistence with respect to the cardinality of the set of points to be analyzed under
the construction of [1] and the one provided in this work. Furthermore, we urge to
study the effect of third and fourth-order moments under this type of construction
and its possible influence on the effect produced by the change of cardinality in
the set of points.

Appendix A

TDA Financial Time Series

A.1 Code

Listing A.1: Insert code directly in your document

import pandas as pd
import numpy as np
import gudhi as gd
import s tatsmodels . api as sm
import gudhi . r e p r e s e n t a t i o n s
from gudhi . point_cloud . timedelay import TimeDelayEmbedding
from gudhi . r e p r e s e n t a t i o n s . vector_methods import Landscape
import m a t p l o t l i b . pyplot as p l t
from r i p s e r import r i p s e r
from persim import plot_diagrams
from numpy import l i n a l g as LA
import datetime as dt
import skfda . misc . metr i cs as mt
import skfda
from mpl_too lk i t s . mplot3d import Axes3D
from sc ipy . s t a t s import spearmanr , kur tos i s , norm
import random
import persim . p e r s i s t e n t _ e n t r o p y as pe
import s tatsmodels . t s a . api as smt

nasdaq = ’NASDAQ1971+. csv ’
sp500 = ’ S&P500 . csv ’
sp100Global = ’ S&PGLOBAL100 . csv ’
vix = ’ VIX . csv ’

c l a s s IndexTDA () :

56

A.1 Code 57

’ ’ ’
f i l e n a m e := [s t r i n g] F i l en a m e o f t h e c s v we want t o p e r f o r m t h e a n a l y s i s
s t a r t D a t e := [(year , month , day)] The s t a r t i n g d a t e from which we want t o
p e r f o r m our a n a l y s i s
d := [i n t] Taken ’ s Embedding d imens i on p a r a m e t e r
tau := [i n t] Time d e l a y p a r a m e t e r
v := [i n t] Number o f days t o t a k e i n t o c o n s i d e r a t i o n f o r e a c h p o i n t c l o u d
d1_d1 := [Array [(i n t , i n t)] Array o f t u p l e s wi th r o l l i n g windows d i m e n s i o n s
’ ’ ’
def _ _ i n i t _ _ (s e l f , f i lename , s t a r t D a t e =None , endDate=None , d=2 , tau =1 , skip =1
, v=21 , d1_d2 = [(1 2 6 , 6 3) , (1 2 6 , 4 2) , (1 2 6 , 2 1) , (6 3 , 2 1)] , p = 1 ,
kinConsiderat ion = 1000 , r es = 1 0 0 0) :

s e l f . f i lename = fi lename
s e l f . data = pd . read_csv (s e l f . f i lename)
s e l f . data [’ Date ’] = pd . to_datet ime (s e l f . data [’ Date ’])
s e l f . data . se t_ index (’ Date ’ , i n p l a c e = True)
s e l f . data [’ Close ’] = [f l o a t (c) for c in s e l f . data . Close]
s e l f . data [’ LogRet ’] = np . log (s e l f . data . Close) − np . log (s e l f . data . Close . s h i f t (1))
s e l f . d1_d2 = d1_d2
aux = s e l f . data . index [1]
f i r s t d a y = (aux . year , aux . month , aux . day)
s e l f . s t a r t D a t e = f i r s t d a y i f (not s t a r t D a t e) e lse s t a r t D a t e
s e l f . s t a r t I n d e x = s e l f . getIndex (s e l f . s t a r t D a t e)
aux = s e l f . data . index [−1]
las tday = (aux . year , aux . month , aux . day)
s e l f . endDate = las tday i f (not endDate) e lse endDate
s e l f . f i n a l I n d e x = s e l f . getIndex (s e l f . endDate)
s e l f . v = v
s e l f . numberOfPoints = (v − (d − 1) * tau)
TD = TimeDelayEmbedding (dim = d , delay = tau , skip= skip)
#ROLLING WINDOW STRATEGY POINT CLOUDS
#====================================
s e l f . numberOfAnalyses = len (s e l f . d1_d2)
s e l f . f i n a l I n d e x e s = [((s e l f . f i n a l I n d e x − s e l f . s t a r t I n d e x − pai r [0])
//pai r [1]) * pa i r [1] + pai r [0] for pai r in d1_d2]
s e l f . analyses = [[s e l f . data . LogRet [s e l f . s t a r t I n d e x +
i * pa i r [1] : s e l f . s t a r t I n d e x + i * pa i r [1] + pai r [0]]
for i in range (0 , (s e l f . f i n a l I n d e x − s e l f . s t a r t I n d e x − pai r [0]) / / pai r [1])]
for pai r in d1_d2]
s e l f . TDEmbAnalyses = [[TD. _ _ c a l l _ _ (window) for window in a n a l y s i s]
for a n a l y s i s in s e l f . analyses]
s e l f . rollingwindowLogRets = [[[window[i : s e l f . v+ i]

for i in range (0 , len (window) − (s e l f . v + 1))]
for window in a n a l y s i s]

for a n a l y s i s in s e l f . analyses]
s e l f . rollingWindowPointClouds = [[[window[i : s e l f . numberOfPoints+ i]

for i in range (0 , len (window) − (s e l f . numberOfPoints + 1))]

58 TDA Financial Time Series

for window in a n a l y s i s]
for a n a l y s i s in s e l f . TDEmbAnalyses]

#=======================================
#NON ROLLING WINDOW STRATEGY
#===========================
embeddedData = TD. _ _ c a l l _ _ (s e l f . data . LogRet [s e l f . s t a r t I n d e x :
s e l f . f i n a l I n d e x + 1])
s e l f . pointClouds = [embeddedData [i : s e l f . numberOfPoints+ i] f
or i in range (0 , len (embeddedData) − (s e l f . numberOfPoints + 1))]
#===========================
s e l f . LpTS = pd . DataFrame (data = [])
s e l f .RWLpTS = None
s e l f . STDTS = pd . DataFrame (data = [])
s e l f .RWSTDTS = None
s e l f . ACFTS = pd . DataFrame (data = [])
s e l f .RWACFTS = None
s e l f .KURTS = pd . DataFrame (data = [])
s e l f .RWKURTS = None
s e l f . PETS = pd . DataFrame (data = [])
s e l f . VaRTS = pd . DataFrame (data = [])
s e l f . ExpShtf l lTS = pd . DataFrame (data = [])

def getIndex (s e l f , dateTuple) :
return s e l f . data . index . g e t _ l o c (dt . datetime (dateTuple [0] , dateTuple [1] ,
dateTuple [2]))

def g e t C l o s e P r i c e (s e l f) :
return pd . S e r i e s (data = s e l f . data . Close [s e l f . s t a r t I n d e x + s e l f . v : s e l f . f i n a l I n d e x])

def getLogRet (s e l f) :
return pd . S e r i e s (data = s e l f . data . LogRet [s e l f . s t a r t I n d e x + s e l f . v : s e l f . f i n a l I n d e x])

def getSTDTimeSeries (s e l f) :
i f s e l f . STDTS . empty :

s e l f . STDTS = pd . DataFrame (data = [(s e l f . data . LogRet [i : s e l f . v+ i] . values) . s td ()
for i in range (s e l f . s t a r t Ind ex , s e l f . f i n a l I n d e x − s e l f . v)] ,
index = s e l f . data . index [s e l f . s t a r t I n d e x : s e l f . f i n a l I n d e x − s e l f . v])

return s e l f . STDTS

def getACFTimeSeries (s e l f) :
i f s e l f . ACFTS . empty :

s e l f . ACFTS = pd . DataFrame (data = [smt . a c f (
s e l f . data . LogRet [i : s e l f . v+ i] . values) [1]
for i in range (s e l f . s t a r t Ind ex , s e l f . f i n a l I n d e x − s e l f . v)] ,
index = s e l f . data . index [s e l f . s t a r t I n d e x : s e l f . f i n a l I n d e x − s e l f . v])

return s e l f . ACFTS

def getKurtos i sT imeSer ies (s e l f) :

A.1 Code 59

i f s e l f .KURTS. empty :
s e l f .KURTS = pd . DataFrame (data =
[k u r t o s i s (s e l f . data . LogRet [i : s e l f . v+ i] . values)
for i in range (s e l f . s ta r t Ind ex , s e l f . f i n a l I n d e x − s e l f . v)] ,
index = s e l f . data . index [s e l f . s t a r t I n d e x : s e l f . f i n a l I n d e x − s e l f . v])

return s e l f .KURTS

def getlandscapesLpNormTimeSeries (s e l f) :
i f s e l f . LpTS . empty :

s e l f . landscapesLpNormTimeSeries ()
return s e l f . LpTS

def getpers i s tenceEntropyTimeSer ies (s e l f) :
i f s e l f . PETS . empty :

s e l f . pers is tenceEntropyTimeSer ies ()
return s e l f . PETS

def getVaRTimeSeries (s e l f) :
i f s e l f . VaRTS . empty :

s e l f . VaRTS = s e l f . VaRTimeSeries ()
return s e l f . VaRTS

def getESTimeSeries (s e l f) :
i f s e l f . ExpShtf l lTS . empty :

s e l f . ExpShtf l lTS = s e l f . ESTimeSeries ()
return s e l f . ExpShtf l lTS

def getrollingWindowLandscapesLpNormTimeSeries (s e l f) :
i f s e l f .RWLpTS i s None :

s e l f . rollingWindowPersistenceLandscapesLpNormTimeSeries ()
return s e l f .RWLpTS

def getrollingWindowSTDTimeSeries (s e l f) :
i f s e l f .RWSTDTS i s None :

s e l f .RWSTDTS = [[[l r e t s . values . s td () for l r e t s in window]
for window in a n a l y s i s]
for a n a l y s i s in s e l f . rollingwindowLogRets]

return s e l f .RWSTDTS

def getrollingWindowACFTimeSeries (s e l f) :
i f s e l f .RWACFTS i s None :

s e l f .RWACFTS = [[[smt . a c f (l r e t s . values) [1] for l r e t s in window]
for window in a n a l y s i s]
for a n a l y s i s in s e l f . rollingwindowLogRets]

return s e l f .RWACFTS

def getrol l ingWindowKurtosisTimeSeries (s e l f) :
i f s e l f .RWKURTS i s None :

60 TDA Financial Time Series

s e l f .RWKURTS = [[[k u r t o s i s (l r e t s . values) for l r e t s in window]
for window in a n a l y s i s] for a n a l y s i s
in s e l f . rollingwindowLogRets]

return s e l f .RWKURTS

def rollingWindowPersistenceLandscapesLpNormTimeSeries (s e l f , p=1 ,
kinConsiderat ion = 5 , re s = 1 0 0 0) :

rollingWindowPLLpN = []
for a n a l y s i s in s e l f . rollingWindowPointClouds :

wsPLLpN = []
for window in a n a l y s i s :

wPLLpN = []
for pc in window :

LS = gd . r e p r e s e n t a t i o n s . Landscape (r e s o l u t i o n =res ,
num_landscapes = kinConsiderat ion)
t r y :

diagram = r i p s e r (pc) [’dgms ’]
landscape = LS . f i t _ t r a n s f o r m ([diagram [1]]) [0]
sample_range = LS . sample_range
i f p == 1 :

wPLLpN. append (s e l f . L1 (landscape ,
sample_range , kinConsiderat ion , re s))

e lse :
wPLLpN. append (s e l f . Lp (l
andscape , p , sample_range , kinConsiderat ion , re s))

except :
wPLLpN. append (0)

wsPLLpN . append (np . array (wPLLpN))
rollingWindowPLLpN . append (np . array (wsPLLpN))

s e l f .RWLpTS = rollingWindowPLLpN
return s e l f .RWLpTS

’ ’ ’
Computes p e r s i s t e n c e l a n d s c a p e s l p norm t ime s e r i e s
p : [i n t] Lp norm v a l u e
k i n c o n s i d e r a t i o n : [i n t] Number o f l a n d s c a p e s i n t o c o n s i d e r a t i o n
r e s : [i n t] Number o f p e r s i s t e n c e l a n d s c a p e f u n c t i o n p o i n t s i n t o c o n s i d e r a t i o n
’ ’ ’
def landscapesLpNormTimeSeries (s e l f , p = 1 , kinConsiderat ion = 5 , r es = 1 0 0 0) :

i f p < 1 :
return ’p must be g r e a t e r or equal than 1 ’

LS = gd . r e p r e s e n t a t i o n s . Landscape
(r e s o l u t i o n =res ,
num_landscapes = kinConsiderat ion)
Lp = []
for pc in s e l f . pointClouds :

t r y :
diagram = r i p s e r (pc) [’dgms ’]

A.1 Code 61

landscape = LS . f i t _ t r a n s f o r m ([diagram [1]]) [0]
sample_range = LS . sample_range
i f p == 1 :

Lp . append (s e l f . L1 (landscape , sample_range ,
kinConsiderat ion , re s))

e lse :
Lp . append (s e l f . Lp (landscape , p , sample_range ,
kinConsiderat ion , re s))

except :
Lp . append (0)

s e l f . LpTS = pd . DataFrame (data = np . array (Lp) ,
index = s e l f . data . index [s e l f . s t a r t I n d e x :
s e l f . f i n a l I n d e x − s e l f . v])
return s e l f . LpTS

def pers is tenceEntropyTimeSer ies (s e l f , d = 1) :
PETS = []
for pc in s e l f . pointClouds :

t r y :
diagram = r i p s e r (pc) [’dgms ’]
i f d == 0 :

diagram = diagram [d] [: − 1]
e lse :

diagram = diagram [d]
PETS . append (pe . p e r s i s t e n t _ e n t r o p y (diagram , normalize=True))

except :
PETS . append (0)

s e l f . PETS = pd . DataFrame (data = np . array (PETS) , index =
s e l f . data . index [s e l f . s t a r t I n d e x : s e l f . f i n a l I n d e x − s e l f . v])
return s e l f . PETS

def VaRTimeSeries (s e l f , b s s i z e = 1 0 0) :
bs_vars = np . array ([[np . p e r c e n t i l e (
np . random . choice (s e l f . data . LogRet [i : s e l f . v+ i] , l
en (s e l f . data . LogRet [i : s e l f . v+ i])) , 5 , i n t e r p o l a t i o n =" lower ")
for j in range (0 , b s s i z e)] for i in
range (s e l f . s t a r t Ind ex , s e l f . f i n a l I n d e x − s e l f . v)])
VaR = pd . DataFrame (data = np . array ([np . mean(s_var)
for s_var in bs_vars]) ,
index = s e l f . data . index
[s e l f . s t a r t I n d e x : s e l f . f i n a l I n d e x − s e l f . v])
return VaR

def ESTimeSeries (s e l f , b s s i z e = 1 0 0) :
b s _ r e t = np . array ([[np . random . choice (s e l f . data . LogRet [i : s e l f . v+ i] ,
len (s e l f . data . LogRet [i : s e l f . v+ i])) for j in range (0 , b s s i z e)]
for i in range (s e l f . s t a r t Ind ex , s e l f . f i n a l I n d e x − s e l f . v)])

62 TDA Financial Time Series

bs_vars = np . array ([np . p e r c e n t i l e (bs , 5 , i n t e r p o l a t i o n = ’ lower ’)
for bs in b s _ r e t])
wors t_re t = np . array ([b s _ r e t [i] [b s _ r e t [i] <= bs_vars [i]]
for i in range (len (b s _ r e t))])
ES = np . array ([np . mean(wr) for wr in worst_re t])
return pd . DataFrame (data = ES , index = s e l f . data . index
[s e l f . s t a r t I n d e x : s e l f . f i n a l I n d e x − s e l f . v])

def i n t e g r a t e S p l i n e s (s e l f , f , x_sample) :

t = [0 , 1]
c = 1
s = 0

r e s o l u t i o n = len (x_sample)

for i in range (2 , r e s o l u t i o n) :
i f c == 1 and f [i] < f [t [1]] :

c = −1
s += (x_sample [t [1]] − x_sample [t [0]]) * (f [t [1]] + f [t [0]])
t = [t [1] , i]

e l i f c == −1 and f [i] >= f [t [1]] :
c = 1 * (f [i] > f [t [1]])
s += (x_sample [t [1]] − x_sample [t [0]]) * (f [t [1]] + f [t [0]])
t = [t [1] , i]

e l i f c == 0 and f [i] > f [t [1]] :
c = 1
t = [t [1] , i]

e lse :
t [1] = i

return 0 . 5 * (s + (x_sample [t [1]] − x_sample [t [0]]) * (f [t [1]] + f [t [0]]))

def L1 (s e l f , landscape , sample_range , kinConsiderat ion = 5 , r e s o l u t i o n = 1 0 0 0) :
return sum ([s e l f . i n t e g r a t e S p l i n e s
(landscape [r e s o l u t i o n * i : r e s o l u t i o n * (i + 1)] , np . l i n s p a c e (sample_range [0] , sample_range [1] , r e s o l u t i o n))
for i in range (0 , k inConsiderat ion)])

def Lp (s e l f , landscape , p , sample_range , kinConsiderat ion = 5 , r e s o l u t i o n = 1 0 0 0) :
return sum ([mt . lp_norm (skfda . FDataGrid
([landscape [r e s o l u t i o n * i : r e s o l u t i o n * (i + 1)]] ,

np . l i n s p a c e (sample_range [0] , sample_range [1] , 1 0 0 0)) , p)
for i in range (0 , k inConsiderat ion)])

def plotIndex (s e l f , c o l = ’ b ’) :

A.1 Code 63

f i g = p l t . f i g u r e (f i g s i z e = (5 , 2 . 5))
p l t . p l o t (s e l f . g e t C l o s e P r i c e () , c o l o r = col , l inewidth = 0 . 5)
f i g . s u p t i t l e (s e l f . f i lename [: − 4] , f o n t s i z e =15)
p l t . x l a b e l (’ Date ’ , f o n t s i z e =10)
p l t . y l a b e l (’ Index Value ’ , f o n t s i z e =10)
p l t . gr id (True)
f i g . s a v e f i g (s e l f . f i lename [: −4]+ ’ . jpg ’)

def plo t logRet (s e l f , c o l = ’ b ’) :
f i g = p l t . f i g u r e (f i g s i z e = (5 , 2 . 5))
p l t . p l o t (s e l f . getLogRet () , c o l o r = col , l inewidth = 0 . 5)
f i g . s u p t i t l e (s e l f . f i lename [: − 4] , f o n t s i z e =15)
p l t . x l a b e l (’ Date ’ , f o n t s i z e =10)
p l t . y l a b e l (’ Logari tmic Returns ’ , f o n t s i z e =10)
p l t . gr id (True)
f i g . s a v e f i g (s e l f . f i lename [: −4]+ ’ . jpg ’)

def plotlandscapesLpNormTimeSeries (s e l f , p = 1 , c o l = ’ r ’) :
f i g = p l t . f i g u r e (f i g s i z e = (5 , 2 . 5))
f i g . s u p t i t l e (s e l f . f i lename [: − 4] + ’ L ’ + s t r (p) + ’ Norm ’ , f o n t s i z e =15)
n = s e l f . landscapesLpNormTimeSeries ()
p l t . p l o t (n , l a b e l = ’L ’+ s t r (p) , l inewidth = 0 . 5 , c o l o r = c o l)
p l t . gr id (True)
p l t . legend ()
p l t . x l a b e l (’ Date ’ , f o n t s i z e =10)
p l t . y l a b e l (’Norm Value ’ , f o n t s i z e =10)

def plotSTDTimeSeries (s e l f , c o l = ’ y ’) :
f i g = p l t . f i g u r e (f i g s i z e = (5 , 2 . 5))
f i g . s u p t i t l e (s e l f . f i lename [: − 4] + ’ STDs ’ , f o n t s i z e =15)
p l t . p l o t (s e l f . getSTDTimeSeries () , l a b e l = ’STDs ’ , l inewidth = 0 . 5 , c o l o r = c o l)
p l t . gr id (True)
p l t . legend ()
p l t . x l a b e l (’ Date ’ , f o n t s i z e =10)
p l t . y l a b e l (’STDs Value ’ , f o n t s i z e =10)

def plotACFTimeSeries (s e l f , c o l = ’ g ’) :
f i g = p l t . f i g u r e (f i g s i z e = (5 , 2 . 5))
f i g . s u p t i t l e (s e l f . f i lename [: − 4] + ’ ACF ’ , f o n t s i z e =15)
p l t . p l o t (s e l f . getACFTimeSeries () , l a b e l = ’ACF ’ , l inewidth = 0 . 5 ,
c o l o r = c o l)
p l t . gr id (True)
p l t . legend ()
p l t . x l a b e l (’ Date ’ , f o n t s i z e =10)
p l t . y l a b e l (’ACF Value ’ , f o n t s i z e =10)

def plo tKur tos i sT imeSer ies (s e l f , c o l = ’ g ’) :

64 TDA Financial Time Series

f i g = p l t . f i g u r e (f i g s i z e = (5 , 2 . 5))
f i g . s u p t i t l e (s e l f . f i lename [: − 4] + ’ Kurt ’ , f o n t s i z e =15)
p l t . p l o t (s e l f . ge tKurtos i sT imeSer ies () , l a b e l = ’ Kurt ’ , l inewidth = 0 . 5 ,
c o l o r = c o l)
p l t . gr id (True)
p l t . legend ()
p l t . x l a b e l (’ Date ’ , f o n t s i z e =10)
p l t . y l a b e l (’ Kurt Value ’ , f o n t s i z e =10)

def plotpers i s tenceEntropyTimeSer ies (s e l f , c o l = ’ r ’) :
f i g = p l t . f i g u r e (f i g s i z e = (5 , 2 . 5))
f i g . s u p t i t l e (s e l f . f i lename [: − 4] + ’ P e r s i t e n c e Entropy ’ , f o n t s i z e =15)
p l t . p l o t (s e l f . ge tpers i s tenceEntropyTimeSer ies () ,
l a b e l = ’ PEntr ’ , l inewidth = 0 . 5 , c o l o r = c o l)
p l t . gr id (True)
p l t . legend ()
p l t . x l a b e l (’ Date ’ , f o n t s i z e =10)
p l t . y l a b e l (’ PEntr Value ’ , f o n t s i z e =10)

def plotVaRTimeSeries (s e l f , c o l = ’ y ’) :
f i g = p l t . f i g u r e (f i g s i z e = (5 , 2 . 5))
f i g . s u p t i t l e (s e l f . f i lename [: − 4] + ’ VaR Bootstrap ’ , f o n t s i z e =15)
p l t . p l o t (s e l f . getVaRTimeSeries () , l a b e l = ’VaR ’ , l inewidth = 0 . 5 , c o l o r = c o l)
p l t . gr id (True)
p l t . legend ()
p l t . x l a b e l (’ Date ’ , f o n t s i z e =10)
p l t . y l a b e l (’VaR Value ’ , f o n t s i z e =10)

def plotESTimeSeries (s e l f , c o l = ’ o ’) :
f i g = p l t . f i g u r e (f i g s i z e = (5 , 2 . 5))
f i g . s u p t i t l e (s e l f . f i lename [: − 4] + ’ ES Bootstrap ’ , f o n t s i z e =15)
p l t . p l o t (s e l f . getESTimeSeries () , l a b e l = ’ ES ’ , l inewidth = 0 . 5 , c o l o r = c o l)
p l t . gr id (True)
p l t . legend ()
p l t . x l a b e l (’ Date ’ , f o n t s i z e =10)
p l t . y l a b e l (’VaR Value ’ , f o n t s i z e =10)

A.2 Plots

Spearman coefficient between std and L1 Norms for v = 21 : ρ = 0.473
Spearman coefficient between std and L1 Norms for v = 63 : ρ = 0.806
Spearman coefficient between std and L1 Norms for v = 126 : ρ = 0.866

A.2 Plots 65

Figure A.1: SP500 index from 01-2000 to 10-2020

Figure A.2: SP500 log returns from 01-2000 to 10-2020

Figure A.3: SP500 L1 Noms, d = 2,v = 21 from 01-2000 to 10-2020

66 TDA Financial Time Series

Figure A.4: SP500 L1 Noms, d = 2,v = 21 from 01-2000 to 10-2020

Figure A.5: SP500 L1 Noms, d = 2,v = 63 from 01-2000 to 10-2020

Figure A.6: SP500 L1 Noms, d = 2,v = 63 from 01-2000 to 10-2020

A.2 Plots 67

Figure A.7: SP500 L1 Noms, d = 2,v = 126 from 01-2000 to 10-2020

Figure A.8: SP500 L1 Noms, d = 2,v = 126 from 01-2000 to 10-2020

Appendix B

TDA Time Series Playground
Code

B.1 Code

Listing B.1: Insert code directly in your document

import numpy as np
import pandas as pd
import gudhi as gd
import math
import s tatsmodels . api as sm
import gudhi . r e p r e s e n t a t i o n s
from gudhi . point_cloud . timedelay import TimeDelayEmbedding
from gudhi . r e p r e s e n t a t i o n s . vector_methods import Landscape
from gudhi . r e p r e s e n t a t i o n s . vector_methods import S i l h o u e t t e
import m a t p l o t l i b . pyplot as p l t
from r i p s e r import r i p s e r
from persim import plot_diagrams
from numpy import l i n a l g as LA
from sk learn import l inear_model
import skfda . misc . metr i cs as mt
import skfda
from mpl_too lk i t s . mplot3d import Axes3D
from sc ipy . s t a t s import spearmanr , kur tos i s , norm
import seaborn as sns
import random
import gtda . mapper as gmp
import persim . p e r s i s t e n t _ e n t r o p y as pe
import s tatsmodels . t s a . api as smt
from persim import plot_diagrams
import seaborn as sns

68

B.1 Code 69

from sc ipy . s t a t s import kde

c l a s s TDATimeSeries () :

def _ _ i n i t _ _ (s e l f , d=2 , tau = 1) :
s e l f . LS = gd . r e p r e s e n t a t i o n s . Landscape (r e s o l u t i o n =1000 , num_landscapes = 5)
s e l f .TD = TimeDelayEmbedding (dim = d , delay = tau)

def plotEmbeddedTimeSeries (s e l f , t i m e S e r i e s) :
embedded = s e l f .TD. _ _ c a l l _ _ (t i m e S e r i e s)
x = [p [0] for p in embedded]
y = [p [1] for p in embedded]
f i g = p l t . f i g u r e (f i g s i z e = (5 , 5))
f i g . s u p t i t l e (’Embedded Time S e r i e s ’ , f o n t s i z e =15)
p l t . s c a t t e r (x , y , c o l o r = ’ b ’ , s = 0 . 2)
p l t . gr id (True)

def plotEmbeddedTimeSeriesDensity (s e l f , t i m e S e r i e s) :
embedded = s e l f .TD. _ _ c a l l _ _ (t i m e S e r i e s)
x = [p [0] for p in embedded]
y = [p [1] for p in embedded]

nbins =300
k = kde . gaussian_kde ([x , y])
xi , y i = np . mgrid [x . min () : x . max () : nbins *1 j , y . min () : y . max () : nbins *1 j]
z i = k (np . vstack ([x i . f l a t t e n () , y i . f l a t t e n ()]))

p l t . pcolormesh (xi , yi , z i . reshape (x i . shape))
p l t . show ()

p l t . pcolormesh (xi , yi , z i . reshape (x i . shape) , cmap= p l t . cm . Greens_r)
p l t . show ()

def persistenceDiagram (s e l f , t imeSer ies , maxdim = 2) :
embedded = s e l f .TD. _ _ c a l l _ _ (t i m e S e r i e s)
return r i p s e r (embedded , maxdim) [’dgms ’]

def plotPers is tenceDiagram (s e l f , t imeSer ies , maxdim = 2) :
plot_diagrams (s e l f . persistenceDiagram (t imeSer ies , maxdim) , show=True)

def plotPers is tenceDiagramDensi ty (s e l f , t imeSer ies , maxdim = 2) :
diagram = s e l f . persistenceDiagram (t i m e S e r i e s)

x = np . array ([x [0] for x in diagram [1]])
y = np . array ([x [1] for x in diagram [1]])

70 TDA Time Series Playground Code

nbins =300
k = kde . gaussian_kde ([x , y])
xi , y i = np . mgrid [x . min () : x . max () : nbins *1 j , y . min () : y . max () : nbins *1 j]
z i = k (np . vstack ([x i . f l a t t e n () , y i . f l a t t e n ()]))

p l t . pcolormesh (xi , yi , z i . reshape (x i . shape))
p l t . show ()

p l t . pcolormesh (xi , yi , z i . reshape (x i . shape) , cmap= p l t . cm . Greens_r)
p l t . show ()

def pers is tenceLandscapes (s e l f , t imeSer ies , p = 1) :
embedded = s e l f .TD. _ _ c a l l _ _ (t i m e S e r i e s)
t r y :

diagram = s e l f . persistenceDiagram (t i m e S e r i e s)
landscape = s e l f . LS . f i t _ t r a n s f o r m ([diagram [1]]) [0]

except :
landscape = None

return landscape

def persistenceLandscapesLpNorm (s e l f , t imeSer ies , p=1 ,
landscapesInConsiderat ion = 5 , samplePointsNumber = 1 0 0 0) :

landscape = s e l f . pers is tenceLandscapes (t imeSer ies , p)
i f landscape i s None :

return 0
sample_range = s e l f . LS . sample_range
return sum ([mt . lp_norm (skfda . FDataGrid (
[landscape [samplePointsNumber * i : samplePointsNumber * (i + 1)]] ,
np . l i n s p a c e (sample_range [0] , sample_range [1]
, samplePointsNumber)) , p) for i in range (0 , landscapesInConsiderat ion)])

def powerWeightedSilhouette (s e l f , t imeSer ies , p = 1) :
embedded = s e l f .TD. _ _ c a l l _ _ (t i m e S e r i e s)
acX = gd . AlphaComplex (points=embedded) . c r e a t e _ s i m p l e x _ t r e e ()
dgmX = acX . p e r s i s t e n c e ()
SH = gd . r e p r e s e n t a t i o n s . S i l h o u e t t e (r e s o l u t i o n =1000 , weight=lambda x : 1)
return SH. f i t _ t r a n s f o r m ([acX . p e r s i s t e n c e _ i n t e r v a l s _ i n _ d i m e n s i o n (1)]) [0]

def powerWeightedSilhouetteLpNorm (s e l f , t imeSer ies , Lp=1 ,p = 1) :
s i l h o u e t t e = s i l h o u e t t e (t imeSer ies , p)
return mt . lp_norm (skfda . FDataGrid (
s i l h o u e t t e [0] ,
np . l i n s p a c e (s i l h o u e t t e . sample_range [0] , s i l h o u e t t e . sample_range [1] , 1 0 0 0)) , p
)

B.1 Code 71

def pers is tenceEntropy (s e l f , t imeSer ies , d) :
embedded = s e l f .TD. _ _ c a l l _ _ (t i m e S e r i e s)
diagram = s e l f . persistenceDiagram (t imeSer ies , maxdim=1) [d]
return pe . p e r s i s t e n t _ e n t r o p y (diagram , normalize=True)

def ES (s e l f , t imeSer ies , d) :

diagram = s e l f . persistenceDiagram (t i m e S e r i e s)

i f d == 0 :
diagram = diagram [0] [: − 1]

e lse :
diagram = diagram [1]

l = [d [1] − d [0] for d in diagram]
L = sum(l)
xo = sorted (diagram , key = lambda x : x [0]) [0] [0]
xf = sorted (diagram , key = lambda x : x [1]) [− 1] [1]
i n s t a n t s = np . l i n s p a c e (xo , xf , 1 0 0 0)
diagrams = [[d for d in diagram i f d [0] <= t and t <= d [1]]
for t in i n s t a n t s]
d ls = [[i [1] − i [0] for i in di] for di in diagrams]
ES = np . array ([sum([− (l /L) * math . log (l /L) for l in l s]) for l s in dls])
return i n s t a n t s , ES

def NES(s e l f , t imeSer ies , d) :
i n s t a n t s , ES = s e l f . ES (t imeSer ies , d)
NES = ES/(mt . lp_norm (skfda . FDataGrid (ES , i n s t a n t s) , 1))
return i n s t a n t s , NES

import s tatsmodels . formula . api as smf
import s tatsmodels . t s a . api as smt
import s tatsmodels . api as sm
import sc ipy . s t a t s as s c s
from sc ipy . s t a t s import s e m i c i r c u l a r

def ar_1 (n_samples , corr , mu=0 , sigma = 1) :
a s s e r t 0 < corr < 1 , " Auto− c o r r e l a t i o n must be between 0 and 1 "

c = mu * (1 − corr)
sigma_e = np . s q r t ((sigma * * 2) * (1 − corr * * 2))

72 TDA Time Series Playground Code

s i g n a l = [c + np . random . normal (0 , sigma_e)]

for _ in range (1 , n_samples) :
s i g n a l . append (c + corr * s i g n a l [−1] + np . random . normal (0 , sigma_e))

return np . array (s i g n a l)

def arch_1 (n_samples , a0 , a1) :

w = np . random . normal (s i z e = n_samples)
eps = np . z e r o s _ l i k e (w)
s igsq = np . z e r o s _ l i k e (w)

for i in range (1 , n_samples) :
s igsq [i] = a0 + a1 * (eps [i − 1] * * 2)
eps [i] = w[i] * np . s q r t (s igsq [i])

return eps

def garch_1 (n_samples , a0 , a1 , b1) :

w = np . random . normal (s i z e = n_samples)
eps = np . z e r o s _ l i k e (w)
s igsq = np . z e r o s _ l i k e (w)

for i in range (1 , n_samples) :
s igsq [i] = a0 + a1 * (eps [i − 1] * * 2) + b1 * s igsq [i −1]
eps [i] = w[i] * np . s q r t (s igsq [i])

return eps

def laplaceTS (n_samples ,mu=0 , var iance = 1) :
return np . random . l a p l a c e (0 , math . s q r t (var iance /2) , n_samples)

def l o g i s t i c T S (n_samples ,mu=0 , var iance = 1) :
return np . random . l o g i s t i c (mu, math . s q r t (var iance *3)/ math . pi , n_samples)

def normalTS (n_samples ,mu=0 , var iance = 1) :
return np . random . normal (mu, variance , n_samples)

def semic i rcu larTS (n_samples ,mu=0 , var iance = 1) :
return s e m i c i r c u l a r . rvs (l o c = mu, s c a l e = 2* math . s q r t (var iance) , s i z e =n_samples)

def uniformTS (n_samples , var iance = 1) :
return np . random . uniform (0 , 2 * math . s q r t (var iance * 3) , n_samples)

B.1 Code 73

def t s p l o t (y , l ag s=None , f i g s i z e =(10 , 8) , s t y l e = ’bmh ’) :
i f not i s i n s t a n c e (y , pd . S e r i e s) :

y = pd . S e r i e s (y)
with p l t . s t y l e . contex t (s t y l e) :

f i g = p l t . f i g u r e (f i g s i z e = f i g s i z e)

layout = (3 , 2)
t s_ax = p l t . subplot2gr id (layout , (0 , 0) , colspan =2)
acf_ax = p l t . subplot2gr id (layout , (1 , 0))
pacf_ax = p l t . subplot2gr id (layout , (1 , 1))
qq_ax = p l t . subplot2gr id (layout , (2 , 0))
pp_ax = p l t . subplot2gr id (layout , (2 , 1))

y . p l o t (ax=ts_ax)
t s_ax . s e t _ t i t l e (’ Time S e r i e s Analysis P l o t s ’)
smt . graphics . p l o t _ a c f (y , l a g s=lags , ax=acf_ax , alpha = 0 . 5)
smt . graphics . p l o t_ p a c f (y , l a g s=lags , ax=pacf_ax , alpha = 0 . 5)
sm . qqplot (y , l i n e = ’ s ’ , ax=qq_ax)
qq_ax . s e t _ t i t l e (’QQ P l o t ’)
s c s . probplot (y , sparams =(y . mean () , y . s td ()) , p l o t=pp_ax)

p l t . t i g h t _ l a y o u t ()
return

def s td_corr_pers i s tence_ landscape_ lp_norm_surface (
n_samples , n_sim , corr0 =0 .00001 , corr1 =0 .99999 , n_corrs =10 ,
std0 =1 , std1 =10 , n_std = 1 0) :

tda = TDATimeSeries ()
a u t o c o r r e l a t i o n s = np . l i n s p a c e (corr0 , corr1 , n_corrs)
s tds = np . l i n s p a c e (std0 , std1 , n_std)
empir i ca lS tds = []
f ixed_autocorr_LpNormSeries = []

for corr in a u t o c o r r e l a t i o n s :
fixed_std_LpNormSeries = []
for std in s tds :

t i m e S e r i e s = ar_1 (n_samples , corr , sigma=std)
fixed_std_LpNormSeries . append (
np . mean(np . array (
[tda . persistenceLandscapesLpNorm (t i m e S e r i e s) for _ in range (0 , n_sim)])))

f ixed_autocorr_LpNormSeries . append (fixed_std_LpNormSeries)
f ixed_autocorr_LpNormSeries = np . array (fixed_autocorr_LpNormSeries)

x = [x for x in a u t o c o r r e l a t i o n s for i in range (len (s tds))]
y = [y for i in range (len (a u t o c o r r e l a t i o n s)) for y in s tds]
z = fixed_autocorr_LpNormSeries . r a v e l ()

74 TDA Time Series Playground Code

f i g = p l t . f i g u r e ()
ax = p l t . axes (p r o j e c t i o n = ’ 3d ’)
ax . sca t te r3D (x , y , z)

B.2 Plots

Figure B.1: Laplace i.i.d noise with µ = 0, σ = 1, κ = 3 for N = 10000000.

Figure B.2: Logistic i.i.d noise with µ = 0, σ = 1, κ = 1.2 for N = 10000000.

B.2 Plots 75

Figure B.3: Normal i.i.d noise with µ = 0, σ = 1, κ = 0 for N = 10000000.

Figure B.4: Semicircular i.i.d noise with µ = 0, σ = 1, κ = 3 for N = 10000000.

Figure B.5: Uniform i.i.d noise with µ = 0, σ = 1, κ = −1.2 for N = 10000000.

Bibliography

[1] LLoyd Aromi, Yuri Katz, and Josep Vives. “Dependency of functional norms
of persistence landscapes on variance-covariance: application to multivariate
time series”. In: (2020).

[2] Nieves Atienza, Rocio Gonzalez-Díaz, and Manuel Soriano-Trigueros. “On
the stability of persistent entropy and new summary functions for topolog-
ical data analysis”. In: Pattern Recognition 107 (Nov. 2020), p. 107509. issn:
0031-3203. doi: 10.1016/j.patcog.2020.107509. url: http://dx.doi.org/
10.1016/j.patcog.2020.107509.

[3] Eric Berry et al. “Functional Summaries of Persistence Diagrams”. In: Journal
of Applied and Computational Topology 4 (June 2020). doi: 10.1007/s41468-
020-00048-w.

[4] Leo Betthauser, Peter Bubenik, and Parker B. Edwards. Graded persistence
diagrams and persistence landscapes. 2020. arXiv: 1904.12807 [math.AT].

[5] Peter Bubenik. “Statistical Topological Data Analysis Using Persistence Land-
scapes”. In: J. Mach. Learn. Res. 16.1 (Jan. 2015), pp. 77–102. issn: 1532-4435.

[6] Peter Bubenik. “The Persistence Landscape and Some of Its Properties”. In:
Abel Symposia (2020), pp. 97–117. issn: 2197-8549. doi: 10.1007/978-3-030-
43408-3_4. url: http://dx.doi.org/10.1007/978-3-030-43408-3_4.

[7] Peter Bubenik and Pawel Dlotko. “A persistence landscapes toolbox for
topological statistics”. In: Journal of Symbolic Computation 78 (Jan. 2017), 91â114.
issn: 0747-7171. doi: 10.1016/j.jsc.2016.03.009. url: http://dx.doi.
org/10.1016/j.jsc.2016.03.009.

[8] Gunnar Carlsson. “Topology and Data”. In: Bulletin of The American Mathe-
matical Society - BULL AMER MATH SOC 46 (Apr. 2009), pp. 255–308. doi:
10.1090/S0273-0979-09-01249-X.

[9] David Cohen-Steiner et al. “Lipschitz Functions Have Lp-Stable Persistence”.
In: Foundations of Computational Mathematics 10 (Feb. 2010), pp. 127–139. doi:
10.1007/s10208-010-9060-6.

76

BIBLIOGRAPHY 77

[10] Frédéric Chazal et al. “Stochastic Convergence of Persistence Landscapes
and Silhouettes”. In: Proceedings of the Thirtieth Annual Symposium on Com-
putational Geometry. SOCG’14. Kyoto, Japan: Association for Computing Ma-
chinery, 2014, 474â483. isbn: 9781450325943. doi: 10.1145/2582112.2582128.
url: https://doi.org/10.1145/2582112.2582128.

[11] Harish Chintakunta et al. “An entropy-based persistence barcode”. In: Pat-
tern Recognition 48 (Feb. 2015). doi: 10.1016/j.patcog.2014.06.023.

[12] Stefan Dantchev and Ioannis Ivrissimtzis. “Efficient construction of the Čech
complex.” In: Computers & graphics. 36.6 (Mar. 2012), pp. 708–713. url: http:
//dro.dur.ac.uk/28442/.

[13] Herbert Edelsbrunner and John Harer. Computational Topology - an Introduc-
tion. American Mathematical Society, 2010, pp. I–XII, 1–241. isbn: 978-0-8218-
4925-5.

[14] Edelsbrunner, Letscher, and Zomorodian. “Topological Persistence and Sim-
plification”. In: Discrete & Computational Geometry 28.4 (2002), pp. 511–533.
doi: 10.1007/s00454- 002- 2885- 2. url: https://doi.org/10.1007/
s00454-002-2885-2.

[15] Bernd Gärtner. “Fast and Robust Smallest Enclosing Balls”. In: Proceedings
of the 7th Annual European Symposium on Algorithms. ESA ’99. Berlin, Heidel-
berg: Springer-Verlag, 1999, pp. 325–338. isbn: 3540662510.

[16] Robert Ghrist. Barcodes: The persistent topology of data. Tech. rep. 2007.

[17] Marian Gidea and Yuri Katz. “Topological data analysis of financial time
series: Landscapes of crashes”. In: Physica A: Statistical Mechanics and its Ap-
plications 491 (Feb. 2018), 820â834. issn: 0378-4371. doi: 10.1016/j.physa.
2017.09.028. url: http://dx.doi.org/10.1016/j.physa.2017.09.028.

[18] Anubha Goel, Puneet Pasricha, and Aparna Mehra. “Topological data anal-
ysis in investment decisions”. In: Expert Systems with Applications 147 (2020),
p. 113222. issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2020.
113222. url: http://www.sciencedirect.com/science/article/pii/
S0957417420300488.

[19] Jan Grandell. Time Series Analysis. url: http://www.math.kth.se/matstat/
gru/5b1545/ts.pdf.

[20] Allen Hatcher. Algebraic topology. Cambridge: Cambridge Univ. Press, 2000.

[21] David Leroy Johnson. Topics in the Theory of Group Presentations. London
Mathematical Society Lecture Note Series. Cambridge University Press, 1980.
doi: 10.1017/CBO9780511629303.

78 BIBLIOGRAPHY

[22] Firas Khasawneh and Elizabeth Munch. “Chatter detection in turning using
persistent homology”. In: Mechanical Systems and Signal Processing 70 (Oct.
2015). doi: 10.1016/j.ymssp.2015.09.046.

[23] Firas Khasawneh and Elizabeth Munch. “Chatter detection in turning using
persistent homology”. In: Mechanical Systems and Signal Processing 70 (Oct.
2015). doi: 10.1016/j.ymssp.2015.09.046.

[24] Jisu Kim et al. Homotopy Reconstruction via the Cech Complex and the Vietoris-
Rips Complex. 2020. arXiv: 1903.06955 [math.AT].

[25] Michael Ledoux and Michael Talagrand. Probability in Banach Spaces: Isoperime-
try and Processes. A Series of Modern Surveys in Mathematics Series. Springer,
1991. isbn: 9783540520139.

[26] Tom Leinster. Basic Category Theory. 2016. arXiv: 1612.09375 [math.CT].

[27] Yuriy Mileyko, Sayan Mukherjee, and John Harer. “Probability measures on
the space of persistence diagrams”. In: Inverse Problems 27.12 (Nov. 2011),
p. 124007. doi: 10.1088/0266-5611/27/12/124007. url: https://doi.org/
10.1088/0266-5611/27/12/124007.

[28] Elizabeth Munch et al. “Probabilistic Fréchet means for time varying per-
sistence diagrams”. In: Electronic Journal of Statistics 9 (Jan. 2015), pp. 1173–
1204. doi: 10.1214/15-EJS1030.

[29] Raymundo Navarrete. “Embeddings and Prediction of Dynamical Time Se-
ries”. In: 2018.

[30] Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. “Topology based
data analysis identifies a subgroup of breast cancers with a unique muta-
tional profile and excellent survival”. In: Proceedings of the National Academy
of Sciences 108.17 (2011), pp. 7265–7270. issn: 0027-8424. doi: 10.1073/pnas.
1102826108. eprint: https://www.pnas.org/content/108/17/7265.full.
pdf. url: https://www.pnas.org/content/108/17/7265.

[31] Jose Perea and John Harer. “Sliding Windows and Persistence: An Applica-
tion of Topological Methods to Signal Analysis”. In: Foundations of Computa-
tional Mathematics 15 (July 2013). doi: 10.1007/s10208-014-9206-z.

[32] Nalini Ravishanker and Renjie Chen. An exploration of topological properties of
high-frequency one-dimensional financial time series data using TDA. 2017.

[33] Nalini Ravishanker and Renjie Chen. Topological Data Analysis (TDA) for Time
Series. 2019. arXiv: 1909.10604 [stat.AP].

BIBLIOGRAPHY 79

[34] Michael Kerber René Corbet. “The Representation Theorem of Persistence
Revisited and Generalized”. In: Journal of Applied and Computational Topology
(2018) (). doi: 10.1007/s41468-018-0015-3.

[35] Rodrigo Rivera-Castro, Polina Pilyugina, and Evgeny Burnaev. “Topological
Data Analysis for Portfolio Management of Cryptocurrencies”. In: 2019 In-
ternational Conference on Data Mining Workshops (ICDMW) (Nov. 2019). doi:
10.1109/icdmw.2019.00044. url: http://dx.doi.org/10.1109/ICDMW.
2019.00044.

[36] Matteo Rucco et al. “Characterisation of the idiotypic immune network through
persistent entropy”. In: (Jan. 2015).

[37] Martin Sewell. Characterization of Financial Time Series. 2011.

[38] Claude E. Shannon. “A mathematical theory of communication.” In: Bell
Syst. Tech. J. 27.3 (1948), pp. 379–423. url: http://dblp.uni-trier.de/db/
journals/bstj/bstj27.html#Shannon48.

[39] Vin de Silva and Robert Ghrist. “Coverage in sensor networks via persistent
homology”. In: Algebr. Geom. Topol. 7.1 (2007), pp. 339–358. doi: 10.2140/
agt.2007.7.339. url: https://doi.org/10.2140/agt.2007.7.339.

[40] Vin Silva and Robert Ghrist. “Coverage in sensor networks via persistent
homology”. In: Algebraic Geometric Topology 7 (Apr. 2007). doi: 10.2140/
agt.2007.7.339.

[41] Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. “Topological Meth-
ods for the Analysis of High Dimensional Data Sets and 3D Object Recogni-
tion”. In: Eurographics Symposium on Point-Based Graphics. Ed. by M. Botsch
et al. The Eurographics Association, 2007. isbn: 978-3-905673-51-7. doi: 10.
2312/SPBG/SPBG07/091-100.

[42] John Stillwell. Classical Topology and Combinatorial Group Theory. Graduate
Texts in Mathematics. Springer New York, 2012. isbn: 9781468401103. url:
https://books.google.es/books?id=oFTxBwAAQBAJ.

[43] Floris Takens. “Detecting strange attractors in turbulence”. In: Dynamical
Systems and Turbulence, Warwick 1980. Ed. by David Rand and Lai-Sang Young.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1981, pp. 366–381. isbn: 978-
3-540-38945-3.

[44] Christopher Tralie, Nathaniel Saul, and Rann Bar-On. “Ripser.py: A Lean
Persistent Homology Library for Python”. In: The Journal of Open Source
Software 3.29 (Sept. 2018), p. 925. doi: 10.21105/joss.00925. url: https:
//doi.org/10.21105/joss.00925.

80 BIBLIOGRAPHY

[45] Josep Vives. Lecture Notes on Time Series Analysis. 2020.

[46] Afra Zomorodian. “Fast construction of the Vietoris-Rips complex”. In: Com-
puters Graphics 34.3 (2010). Shape Modelling International (SMI) Conference
2010, pp. 263–271. issn: 0097-8493. doi: https://doi.org/10.1016/j.cag.
2010.03.007. url: http://www.sciencedirect.com/science/article/pii/
S0097849310000464.

[47] Afra Zomorodian and Gunnar. Carlsson. “Computing Persistent Homol-
ogy”. In: Discrete & Computational Geometry (2005). doi: 10.1007/s00454-
004-1146-y.

[48] Afra J. Zomorodian. Topology for Computing. Cambridge Monographs on Ap-
plied and Computational Mathematics. Cambridge University Press, 2005.
doi: 10.1017/CBO9780511546945.

