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ABSTRACT: 23 

Dietary lignans are phytoestrogens that are mostly found in plant-based foods, especially 24 

whole grains, seeds, nuts, legumes and vegetables. An accurate assessment of lignan 25 

exposure is crucial to evaluate their potential health benefits and to establish future 26 

recommendations and dietary guidelines. This narrative review aimed to: (i) summarize the 27 

pros and the cons of the current main assessment methods for lignan exposure ─i.e., dietary 28 

questionnaires, food composition tables and biomarkers─, (ii) describe the individual 29 

lignans more consumed from a worldwide perspective, as well as their main food sources, 30 

(iii) determine the lignans concentrations in both urine and blood, and explore their 31 

heterogeneity among countries, and finally (iv) discuss the main determinants of lignan 32 

exposure.   33 
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INTRODUCTION 34 

Chemistry and bioavailability 35 

Lignans are secondary plant metabolites widely distributed in many plant-derived foods, 36 

such as whole grains, seeds, nuts, legumes, vegetables, and drinks (e.g., tea, coffee, or 37 

wine) [1]. Lignans are bioactive compounds well-known by their ability to mimic or 38 

modulate the action of endogenous estrogens [2]. Thus, they have been suggested to play a 39 

role in the prevention of several chronic and hormone-related diseases such as 40 

cardiovascular disease [1, 3], breast cancer [4, 5], osteoporosis [6], and menopausal 41 

symptoms [7, 8]. Lignans are chemically polyphenolic compounds derived from two β-β’-42 

linked phenylpropane (C6-C3) units. Based on the way in which oxygen is incorporated 43 

into the skeleton and cyclization patterns, they can be classified into 8 subgroups: furans, 44 

furofurans, dibenzylbutanes, dibenzylbutyrolactones, dibenzocyclooctadienes, 45 

dibenzylbutyrolactols, aryltetralins, and arylnaphthalenes. The most common lignans 46 

consumed and for which the evidence has shown the most compelling benefits for health 47 

are secoisolariciresinol (SECO), lariciresinol (LARI), pinoresinol (PINO), matairesinol 48 

(MATA); although other lignans are also frequently consumed [e.g., sesamolin, sesamin, 49 

syringaresinol (SYRI) and medioresinol (MEDI)] [9]. 50 

In nature, lignans are generally linked to other molecules, mainly as glycosylated 51 

derivatives [10]. Lignan glycosides are absorbed in the gastrointestinal tract after being 52 

metabolized by gut mucosa and/or colonic microbiota into lignan aglycones and further 53 

converted into enterolignans [i.e., enterolactone (ENL) and enterodiol (END)] [1, 11]. The 54 

efficacy of this conversion depends on several factors, especially on the microbiota 55 
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composition and function, and differs considerably among individuals. In an in vitro fecal 56 

microbiota metabolism system, 100% of LARI, 72% of SECO and 55% of PINO were 57 

converted to END; while approximately half of END and 62% of MATA were transformed 58 

to ENL [12]. Enterolignans, also called mammalian lignans, are efficiently absorbed and 59 

conjugated to glucuronide and/or sulfates by enterocytes. Finally, enterolignans are 60 

detected in blood (8-10h half-life) and excreted 30% through urine (residence time 61 

approximately 24h) and 50% via enterohepatic circulation and feces [11]. Only small 62 

amounts of LARI, MATA, PINO, SECO, and SYRI have been found in blood and urine 63 

[13] (Figure 1).  64 

In plant-derived foods, the richest sources of lignans are sesame seed oil (1,294 mg/100g), 65 

flaxseed meal (867 mg/100g), and sesame seed meal (776 mg/100g), followed to a lesser 66 

extent by whole grains and virgin olive oil (< 5mg/100g). The lignan content of other or 67 

plant-derived foods is generally minimal with concentrations lower than 1 mg/100g [14]. 68 

Similarly, only negligible amounts of enterolignans have been detected in specific animal 69 

foods (i.e., milk, eggs, and derived products), which are produced by the intestinal bacterial 70 

metabolism in the animals' guts after eating a diet rich in lignans [15]. A list of the top 25 71 

richest foods of the main 6 individual lignans is shown in the Supplementary table 1. 72 

Exposure assessment 73 

In nutritional studies, lignan exposure has been assessed using either dietary questionnaires 74 

or nutritional biomarkers. Both methodologies have advantages and disadvantages. On one 75 

hand, dietary questionnaires [e.g., food frequency questionnaires (FFQ), 24-h dietary 76 

recalls (24-HDR), and food diaries] are inexpensive, easy to administer and can estimate a 77 
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lot of dietary data simultaneously, including dietary patterns, foods, nutrients and non-78 

nutrients [16]. On the other hand, dietary questionnaires are susceptible to random and 79 

systematic reporting errors since they are based on subjects’ memory and their ability to 80 

estimate food portion sizes. Moreover, a food composition database is needed to convert 81 

food consumption into lignan intake. Phenol-Explorer [17] is the most comprehensive 82 

database on polyphenols that include all individual lignans (n~30) present in habitual foods. 83 

Other studies have used other food composition databases from Canada [18], the 84 

Netherlands [19], UK [20-22] and Finland [23]; although these only usually include the 85 

four main individual lignans. The main limitations of using these databases are the large 86 

amount of unknown values, the limited quantity of food items included, and the absence of 87 

composition data on cooked foods. Thus, the estimation of lignan intake may be inaccurate 88 

and tends to be underestimated. To improve accuracy of self-reported dietary estimates, 89 

researchers are using new technologies, which are practical, have lower costs and burden 90 

for both researchers and participants (e.g., mobile phone applications) [24]. Moreover, they 91 

are using databases that are regularly updated, allowing to increase the number of available 92 

foods and individual lignans.  93 

Nutritional biomarkers have become an alternative or complementary method for 94 

estimating dietary intake. An ideal dietary biomarker would accurately reflect its dietary 95 

intake and be specific, sensitive, and applicable to many populations. Their main advantage 96 

is that they are objective, take into account bioavailability, and offer more accurate 97 

assessment since they do not rely on subject’s memory. In contrast, their disadvantages 98 

include the requirement of biological samples, the complexity of the analytical 99 

methodology, and the elevated cost [25]. During the last two decades, lignans and 100 



7 
 

especially enterolignans have been measured in blood and urine samples as potential 101 

biomarkers of dietary lignans. Currently, the analytical method generally used is liquid 102 

chromatography coupled to a tandem mass spectrometer (LC-MS/MS); although gas 103 

chromatography GC-MS and time-resolved fluorescence immunoassay have also been 104 

successfully used. These analytical methodologies allow us to have limits of detections 105 

below 0.1 mg/L [26]. 106 

Concentrations of enterolignans in plasma and urine have been extensively investigated as 107 

potential biomarkers of dietary lignan intakes. In a pooled analysis, urinary ENL levels 108 

have been highly correlated with MATA and SECO intake (r=0.78), but not urinary END 109 

(r=-0.14) [27]. However, in individual studies, correlations between lignan intake (sum of 110 

MATA and SECO) and urinary enterolignans (sum of ENL and END) were moderate 111 

(r=0.40-0.46) in 26 Canadian women [28] and low (r=0.16-0.25) in 195 adults from the 112 

California Teachers Study [29]. Weak associations between lignan intake and plasma END 113 

(r=0.09) and ENL (r=0.18) were observed in a Dutch study [30]. Similarly, correlations 114 

between lignan intake and sum of plasma/serum enterolignans were low (r=0.1-0.22) [31]. 115 

These low correlations could be due to the constrains to accurately assess dietary lignan 116 

intake (such as the aforementioned limitations of dietary questionnaires and food 117 

composition databases) or to difficulties to analyze the lignan content in foods, particularly 118 

in the extraction since they are usually bounded to dietary fiber [32]. It is also probable that 119 

a low correlation may exist due to the high inter- and intra-individuality in the absorption, 120 

metabolism and excretion of lignans or in the average lifetime of enterolignans in 121 

biospecimens (plasma and urine) [11]. Despite of these results, concentrations of 122 
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enterolignans, especially in urine, are considered suitable and reliable alternative 123 

measurements of lignan exposure.  124 

WORLDWIDE DIETARY LIGNAN INTAKE 125 

Geographical differences in the intake of lignans and their food sources 126 

Due to differences in dietary patterns worldwide, lignan intakes vary considerably by 127 

geographical region, with mean intakes mostly ranging from 0.2 to 6.4 mg/d in adults 128 

(Table 1, Figure 2) [9, 33]. It is important to highlight that comparing results and estimates 129 

across studies presents several challenges due to differences in the amount of individual 130 

lignans included, and both the composition database and the dietary assessment method 131 

used. However, some studies used similar methodologies that allow us to compare results 132 

more easily. 133 

Europe 134 

Europe is the continent with more studies estimating the intake of lignans (Table 1). In 135 

adults, the mean intake ranged from 0.2 mg/d to 5.2 in France [34] and Latvia [35], 136 

respectively. Unsurprisingly, the highest intake of lignans (9.1 mg/d) was reached in a 137 

vegetarian/vegan UK population, since lignan is almost exclusively found in plant-based 138 

foods [9]. Despite the differences between studies, the existence of large multi-center 139 

studies such as the European Prospective Investigation into Cancer and Nutrition (EPIC) 140 

and the Healthy Lifestyle in Europe by Nutrition in Adolescents (HELENA) allows to 141 

compare lignan intakes across Europe using the same methodology [9, 36, 37]. Data from 142 

the EPIC study, that used Phenol-Explorer database, indicates that Mediterranean countries 143 
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have a higher intake than the non-Mediterranean ones [9, 36]. However, the HELENA 144 

study, which used the Dutch database, showed a small decreasing north-to-south gradient 145 

[37].  146 

Data from studies using different methodology and databases indicates that the highest 147 

lignan intake in Europe usually occurs in northern countries, including Scandinavian and 148 

Baltic countries (Table 1). Considering the assessment of at least 6 individual lignans 149 

(LARI, MATA, PINO, SECO, SYRI, and MEDI), the average of overall lignan intake 150 

ranged between 2.3 mg/d and 5.2 mg/d. Intake estimates were lower (0.9-1.8 mg/d) if only 151 

LARI, MATA, PINO, and SECO were considered. LARI, PINO and SECO were usually 152 

the individual lignans more consumed, although SYRI was also common. The main food 153 

sources of lignans in this region were whole grain cereals (especially rye, oat, and wheat), 154 

bread, flaxseeds, and berries. 155 

The mean intake of lignans in Central European countries, such as UK, Poland, Germany, 156 

and the Netherlands, ranged between 0.6 [38] and 2.3 mg/d [9]. Most of the studies in this 157 

region only assessed LARI, MATA, PINO, and SECO, and therefore, the intakes may be 158 

slightly underestimated. In a Polish study [39] the mean intake of lignans was extremely 159 

high (12.1 mg/day) due to a Phenol-Explorer error in the lignans content of some specific 160 

vegetables [17] that were the main food sources in this Polish study (such as cucumber). In 161 

Central European countries, LARI, PINO and SECO were the main individual lignans 162 

consumed. Bread, seeds, and vegetables were the most common food sources of lignans in 163 

this region.  164 
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Lastly, southern European countries, also referred as Mediterranean countries, had a highly 165 

variable intake, ranging from 0.2 mg/day in France [36] to 4.3 mg/day in Greece [9]. 166 

France and Spain had relatively low intakes (0.2-2.1 mg/d), while Italy and Greece 167 

generally had a high consumption (0.7-4.3 mg/d) [9, 36]. In an Italian study [40] the mean 168 

intake was extremely high (80 mg/d). Although the authors did not provide any rationale 169 

for such results, it is possible that this could be due to a processing error in the Eurofir-170 

eBASIS food composition database [41]. LARI, PINO and SECO were also the most 171 

consumed individual lignans in this region; although depending on the study, the 172 

proportions largely vary. These countries typically follow a Mediterranean dietary pattern, 173 

where the main food sources of lignans are derived from olive oil, vegetables, fruits (mostly 174 

citrus fruit), wine (predominantly red wine) and in a minor percentage bread and cereal 175 

products. 176 

Americas 177 

In the US, there is also a great quantity of studies describing the lignan intake (Table 1). 178 

Most of these studies used the Canadian database [18] which only contains data on the four 179 

traditional individual lignans: LARI, MATA, PINO, and SECO. The mean intake of total 180 

lignans ranged between 0.1 and 6.4 mg/d [42, 43] although in the majority of these studies, 181 

their intake was <1mg/d. In this region the main food sources were tea and coffee, probably 182 

due to a lower consumption of fruits, vegetables and whole grains compared to Europe. In 183 

the US, SECO was clearly the most consumed individual lignan, followed by far by LARI 184 

and PINO. In two Canadian studies, the intake of total lignans was slightly lower than in 185 

the US, ranging from 0.2 to 0.4 mg/d [44, 45] and the main food sources were legumes, 186 
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seeds, cereals and grains, and berries. To date, only SECO and MATA were assessed in 187 

Canada, which clearly underestimate total lignan intake. 188 

To our knowledge, the existing data in Latin-American countries is limited to Mexico [33, 189 

46] and Brazil [47-49]. The mean intake of total lignans was similar in both countries, 190 

varying from 0.1 to 2.3 mg/d. A Brazilian study [47] was not included in the current 191 

review, since its mean intake was exceptionally high 13.6 mg/d, possibly due to an error in 192 

data calculation. As in Europe, SECO, LARI and PINO were the main contributors to total 193 

lignans in this region. Main food sources were generally vegetables, fruits, nuts, seeds and 194 

vegetable oils. However, there is a potential underestimation of lignan intakes in Latin 195 

American countries due to the limited food composition data on some tropical foods [33], 196 

such as mamey, zapote, papaya, sweet potato, nopal, guava, jicama, and prickly pears. 197 

Those are frequently consumed in this region, but their lignan content is not available in 198 

any food composition database yet. 199 

Other continents 200 

In Australia, two studies estimated the intake of total lignans in women only [50, 51]. Their 201 

mean intake ranged from 0.7 to 2.7 mg/d. SECO was the major individual lignan consumed 202 

and the main food sources were soy and linseed [51].  203 

In Asian countries, lignan intake was estimated only in two Iranian-based [52, 53] and one 204 

Korean-based [54] studies. In Iran, the mean intake of total lignans, including all individual 205 

lignans, varied between 0.2 mg/d and 2.4 mg/d; whereas in Korea, including only MAT and 206 

SECO, the mean intake was 1.5-1.8 mg/d. Data on main food sources was not available in 207 

this region.  208 
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Determinants of lignan intake 209 

Lignans were positively correlated to total energy intake [55]; therefore, participants 210 

consuming more energy were more likely to be those with a higher intake of total lignans. 211 

Although a Latvian study [35] showed a greater consumption of total lignans in men 212 

compared to women; data from EPIC showed that women had a higher intake of lignans 213 

after adjusting for total energy consumption (3.6 mg/d in women vs. 2.5 mg/d in men) [9]. 214 

Interestingly, one Korean study [54] observed slight differences between menopausal 215 

statuses in women (1.8 mg/d in postmenopausal women vs. 1.5 mg/d in premenopausal 216 

women). In the EPIC study [9], results indicated that lignan intake also increased with age. 217 

For instance, young adults (35-44 years) had a lower intake of total lignans (2.8 mg/d) than 218 

older adults (65-74 years; 3.5mg/d) [9]. In children and adolescents, the two available 219 

European studies [36, 56] found that the mean intake was higher in adolescents (15-18 220 

years) than in children (2-15 years), 0.98 - 1.10 mg/d vs. 0.61 - 1.00 mg/d, respectively.  221 

The results by lifestyle factors and other sociodemographic variables are controversial. For 222 

example, some studies showed that subjects with obesity had a higher intake of lignans [9, 223 

36, 45, 57, 58-60] than individuals with normal weight; whereas in other studies occurred 224 

the opposite [9, 35, 61-63]. Discrepancies were also observed comparing lignan intake by 225 

educational level, smoking status, physical activity, and alcohol consumption.  226 

WORLDWIDE ENTEROLIGNANS CONCENTRATIONS  227 

Geographical differences in total enterolignans concentrations 228 
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Concentrations of lignan metabolites (END and ENL) in biospecimens, as potential 229 

biomarkers of lignan intake, are useful indicators of lignan exposures across populations. In 230 

order to straightforwardly compare concentrations of enterolignans, all estimates have been 231 

converted into the same units (nmol/L) in Tables 2 and 3. These summarize the most 232 

representative studies assessing urinary and blood (i.e., serum or plasma) enterolignan 233 

concentrations, respectively. Levels of urinary entrolignans were usually 100-fold higher 234 

than those found in blood (serum or plasma). The mean urinary END concentrations 235 

worldwide ranged from 38 [64] to 763 nmol/L [65] and for ENL from 148 [66] to 3,651 236 

nmol/L [67] (Table 2, Figure 3). In the case of plasma and serum, END concentrations 237 

varied between 0.2 nmol/L [68] and 7.0 nmol/L [69] while ENL levels ranged from 4.9 238 

nmol/L [68] to 39.2 nmol/L [69]. Levels of enterolignans in plasma and serum were similar 239 

(Table 3, Figure 3). Mean concentrations of END were between 2 to 13 times lower than 240 

ENL in both urine and blood.  241 

Europe 242 

Few studies (n=8) have measured urinary enterolignans in Europe (Table 2). Northern 243 

European countries tend to have the highest levels of enterolignans (ENL=768-3,267 244 

nmol/L) [65, 70] followed by Central European countries (END= 204-288 and ENL= 245 

2,414-3,333 nmol/L nmol/L) [71-75]. Data for Mediterranean countries were limited. There 246 

is only one study from Italy, that reported a high urinary concentration (END=763 and 247 

ENL=1,577 nmol/L) (76).  248 

Most of the studies measuring enterolignan concentrations in blood specimens, of which 20 249 

were conducted in plasma and 10 in serum, were performed in Central and Northern 250 
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European countries (Table 3). The lowest concentrations of END and ENL were 0.2 251 

nmol/L and 4.9 nmol/L, respectively, in a UK-based study [68]; while the highest levels 252 

were derived from a Dutch population: 7.0 nmol/L for END and 39.2 nmol/L for ENL [69]. 253 

Comparing studies that used the same analytical methodology, in general, concentrations in 254 

Central European countries (e.g., the Netherlands, Germany, UK) were slightly lower than 255 

in Scandinavian countries [68, 77]. However, when all studies were considered 256 

independently of lignan assessments, levels of enterolignans in central European countries 257 

were very heterogeneous [68, 69]. The lowest mean enterolignan concentrations were 258 

found in Mediterranean countries: 0.3 nmol/L for END and 6.7-7.8 nmol/L for ENL [77]. 259 

Italy was the Mediterranean country with the highest END (1.3 nmol/L) and ENL (9.1 260 

nmol/L) concentrations in plasma [77], which is similar to intake estimations. 261 

Americas 262 

To our knowledge, only US data was available from both North and South American 263 

continents, with the exception of a Jamaican study. In the US, several studies assessed 264 

enterolignan concentrations in urine (n=15) (Table 2), plasma (n=2), and serum (n=2) 265 

(Table 3). Both urinary END and ENL excretions varied considerably among US studies 266 

from 38 [64] to 609 nmol/L [67] for END, and from 285 [64] to 3,651 nmol/L [67] for 267 

ENL. Indeed, US populations included the worldwide minimum mean of END levels (285 268 

nmol/L) and the worldwide maximum mean of ENL excretions (609 nmol/L). In the 269 

Jamaican study, the mean intake of END was in the upper side of the interval of the US 270 

studies (2,671 nmol/L) [78]. 271 



15 
 

Similarly, a high variability in blood END levels was observed among US studies, ranging 272 

between 1.5 nmol/L [79] and 6.0 nmol/L [80] while the range of mean levels for ENL was 273 

narrower from 11.5 nmol/L [81] to 22.5 nmol/L [79]. 274 

Asia 275 

To date, urinary concentrations of enterolignans in Asia were measured in Singapore [82], 276 

Japan [66, 83], Vietnam [83], Cambodia [83] and India [83]. The mean of urinary END 277 

concentrations varied from 60 nmol/L in Cambodia [83] to 245 nmol/L [83] in Vietnam. 278 

For ENL, the highest mean value was found in Vietnam (1,678 nmol/L) [83] while the 279 

lowest excretion was identified in a Japanese study (148 nmol/L) [66].  280 

Several studies in East Asia (such as Japan, China, Korea and Vietnam) assessed 281 

enterolignans in plasma and showed a relatively low variation in their mean concentrations 282 

(~3-fold variation). Thus, END concentration means ranged from 2.0 nmol/L [84] to 5.6 283 

[85] in the two Chinese studies. Mean ENL concentrations in blood samples were between 284 

10.2 nmol/L [86] and 32.7 nmol/L [87] in Vietnam and Japan, respectively. In the study of 285 

Liu et al. [84] median plasma concentrations of ENL (2.0 nmol/L) and END (16.4 nmol/L) 286 

seem to be exchanged. Mean ENL concentrations in Korea were extremely high (177.8 287 

nmol/L in women and 249.3 nmol/L in men), around 10-fold higher than values found in 288 

any other study from other continents.  289 

Determinants of the total enterolignans concentrations 290 

Data from studies that analysed separately men and women showed that urinary 291 

concentrations of enterolignans were slightly higher in women than in men [67, 70, 83], 292 
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with one exception [64]. Urinary ENL and END excretions were the highest in adults (20-293 

60 years), followed by the elderly (>60 years) and, finally, by adolescents (12-19 years) 294 

[67]. This pattern according to age and sex is consistent with findings from dietary lignans 295 

adjusted for energy intake. A Danish study suggested that smoking and higher BMI were 296 

associated with lower concentrations of ENL [88]. No other information was found for 297 

concentrations of entrolignans (in both urine and blood) and other determinants, such as 298 

educational level and physical activity. 299 

STRENGHTS & LIMITATIONS 300 

Dietary data 301 

The main limitation of this review was that each study used a different methodology to 302 

estimate the lignan intake. Firstly, differences in both the type of dietary questionnaire 303 

(FFQ, 24h dietary recall, history of diet) and the amount of food items included in the 304 

questionnaire could complicate comparisons in the habitual estimation of individual foods, 305 

particularly lignan-rich products. Although, the vast majority of studies used validated 306 

FFQs; very few of these questionnaires were specifically validated for lignans. Secondly, 307 

available food composition tables/databases were not complete. They have missing data on 308 

several foods and, especially, on some individual lignans. Only Phenol-Explorer [17] 309 

contains data on all commonly consumed lignans; while others only have data on two 310 

(MATA and SECO) or four individual lignans (MATA, SECO, LARI, and PINO). These 311 

four lignans are the most abundant ones accounting for at least 50% of total lignan intake in 312 

Europe [9]. Thirdly, most of the presented studies were not representative of the entire 313 

population, so the results may not be totally generalizable. However, the inclusion of 314 
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several medium-to-large size studies from the same geographical area enhances 315 

generalizability. Fourth, studies evaluating reliability of enterolignans as biomarkers of 316 

lignan intake are limited; especially those investigating all individual lignans, and 317 

correlations were moderate for urinary concentrations [27-29] and low for plasma/serum 318 

concentrations [31]. Therefore, inconsistent results have been observed comparing results 319 

using dietary conventional dietary questionnaires and biomarkers. For example, a recent 320 

meta-analysis showed no associations between dietary lignan intake and cancer outcomes; 321 

while a higher concentration of serum/plasma ENL was inversely associated with overall 322 

cancer survival [89].  323 

Biomarker data 324 

Variability in results due to differences in procedures and methods in the analysis of 325 

concentrations of enterolignans in blood and urine were relatively minor, since all 326 

analytical methodologies were validated. The main limitation was that the studies only 327 

analyzed one sample per subject. It is well-known that enterolignans are relatively short-328 

term nutritional biomarkers [11] and therefore multiple measurements would be 329 

recommended to estimate habitual exposure at individual level. However, the mean of a 330 

single punctual measure in a large quantity of subjects was a suitable way to reflect the 331 

habitual mean of lignan concentrations at population level. Another limitation was the 332 

relatively small size of all studies and therefore the limited generalizability of the results. 333 

CONCLUSIONS 334 

Overall, common mean intakes of total lignans worldwide ranged from 1 to 5 mg/d, with a 335 

higher intake in vegetarian populations (9.1 mg/d). There was a large heterogeneity in the 336 
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estimations of lignan intake across studies partially due to real differences among 337 

geographical areas and populations and to differences between dietary assessment methods 338 

used. Food sources also varied across regions, although the most typical ones were whole 339 

grain cereal products, seeds, vegetables, and fruits.  340 

As expected, similar trends and differences between regions were observed using dietary 341 

and biomarker data. END concentrations were usually 10-fold lower than ENL levels in 342 

both urine and blood. Results of enterolignans in plasma and serum were equivalent. END 343 

and ENL concentrations in urine were approximately 100 times higher than in blood. 344 

More food composition data is warranted in order to update current databases on lignans 345 

and improve dietary intake estimations. Data from some regions, particularly in low- and 346 

middle-income countries (Africa, Latin America, and some areas in Asia), was scarce or 347 

null; therefore, further studies combining both dietary and biomarker data in these regions 348 

are requested to improve data coverage globally.  349 

Finally, an accurate estimation of lignan exposure is essential to better understand 350 

associations between lignan intake and the risk of chronic diseases. In our opinion, 351 

although, current estimations of dietary lignan intake are getting more precise, they are 352 

often underestimated. Thus, concentrations of enterolignans in blood and urine are still 353 

preferable to estimate lignan exposure in epidemiological studies. This data will be crucial 354 

for setting and improving current dietary recommendations for populations. 355 
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FIGURE CAPTIONS 886 

Figure 1. Scheme of human bioavailability of dietary lignans. 887 

Figure 2. Mean of means/medians of total dietary lignan intake (mg/d) by country. 888 

Figure 3. Mean of means/medians of urinary and blood enterolignan concentrations 889 

(nmol/L) by country; A: urinary enterolactone, B: urinary enterodiol, C: blood 890 

enterolactone, D: blood enterodiol.  891 
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Table 1. Characteristics of the studies included in the review of dietary lignan intake. 902 

Author 

(Reference) 

Year Country Population Dietary 

survey 

FCDB TOTAL LIGNANS 

N Sex Age 

(y) 

Individual lignans Intake (mg/d) Food sources 

Wisnuwarda

-ni [36]  

 

2006-

2007 

MED 

countries 

915 F (53%) 12–18 2 x 24-

HDR 

Phenol 

Explorer 

All4 1.2 (0.0)1 Breads (71%), fruit (8%), 

vegetables (7%) 

non-MED 

countries 

1,513 0.9 (0.0)1 Breads (58%), fruit (12%), 

vegetables (7%) 

Zamora-Ros 

[9]  

1995-

2000 

MED 

countries 

11,285 F (64%) 35-74 24-HDR Phenol 

Explorer 

All4: SECO (18%), LARI 

(14%), Sesamolin (12%), 

Sesamin (12%) 

3.6 (0.1)1 Vegetable oils (26%), cakes & 

biscuits (20%), breads (12%) 

non-MED 

countries 

24,443 2.3 (0.1)1 Breads (22%), spices (16%), seeds 

(16%), vegetable oils (11%) 

UK healthy 309 9.1 (0.9)1 Seeds (48%), vegetable oils (10%), 

vegetables (9%) 

Tetens [37]  2000-

2002 

Denmark 2,463 F (53%) 25-64 7-DR Dutch 

DB 

LARI (43%), PINO (32%), 

SECO (22%), MATA (3%)  

1.52 Cereals (27-30%), fruit & berries 

(18-25%), coffee & tea (21%), 

vegetables (19-20%)  

2002 Finland 2,007 F (55%) 25-64 48-HDR LARI (43%), PINO (37%), 

SECO (17%), MATA (2%) 

1.12 Cereals (27-36%), fruit & berries 

(22-31%), vegetables (16-20%), 

coffee & tea (17%) 

1994-

1996 

Italy 1,268 F (54%) 25-64 7-DR LARI (45%), PINO (42%), 

SECO (13%), MATA (1%)  

1.12 Fruit & berries (42-46%), 

vegetables (26-28%), cereals (17%) 

1987-

1990 

Sweden 83,760 F (45%) 45-79 FFQ PINO (44%), LARI (41%), 

SECO (13%), MATA (2%)  

1.82 Cereals (26-42%), vegetables (18-

30%), fruit & berries (15-23%), 

coffee & tea (18-19%) 

2000-

2001 

UK 1,724 F (56%) 19-64 7-DR LARI (43%), PINO (39%), 

SECO (16%), MATA (2%) 

1.22 Coffee & tea (30-32%), vegetables 

(23-25%), fruit & berries (15-20%), 
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cereals (15-17%) 

Kilkkinen 

[57]  

1997 Finland 1,359 M 25-63 24-HDR Finish DB MATA (73%), SECO 

(27%) 

0.22 Cereals (49%), fruits (25%), 

vegetables (12%) 

1,493 F 25-64 MATA (80%), SECO 

(20%) 

0.22 Fruits (39%), cereals (35%), 

vegetables (13%) 

Nurmi [90]  1995 Finland 100 M 58(6)1 4-DR Dutch DB LARI (40%), PINO (38%), 

SECO (14%), MATA (7%) 

1.2 (0.5)3 Rye products, berries, coffee, tea, 

vegetable roots 

Hedelin [63]  1991-

1992 

Sweden 48,268 F 30-49 FFQ Finish  

DB II 

LARI, MATA, PINO, 

SECO, SYRI, MEDI 

2.3 (1.8-2.8)3 Rye bread (57%), wheat bread 

(27%), cereals (8%) 

Hedelin [62]  1991-

1992 

Sweden 46,977 F 30-49 FFQ Finish  

DB II 

LARI, MATA, PINO, 

SECO, SYRI, MEDI 

2.3 (1.0–4.0)3 Rye bread, wheat bread, cereals, 

berries 

Suzuki [55]  1987-

1990 

Sweden 51,823 F 40-76 FFQ Own  

DB 

LARI, MATA, PINO, 

SECO 

0.9 (0.7-1.0)3 ꟷ 

Hedelin [91]  2001-

2002 

Sweden 1,130 M 35-79 FFQ Finish  

 DB II 

SECO (38%), SYRI (30%), 

PINO (15%), LARI (13%), 

MEDI (12%), MATA (1%) 

4.92 Flaxseed (36%), Rye bread (39%), 

wheat bread (15%) 

Meija [35]  2009-

2011 

Latvia 172 M 40-75 FFQ Canadian 

DB 

SECO (58%), SYRI (22%), 

PINO (11%), LARI (6%), 

MATA (1%), MEDI (1%) 

5.2 (6.4)1 Seed & rye bread (86%), flaxseed 

(7%); 

97 F 3.3 (4.4)1 Seed & rye bread (57%), flaxseed 

(35%) 

Bhakta [92]  1995-

1999 

UK 108 F 25-75 ≥9 x 

24HDR 

Finish  

DB II 

SECO (93%), MATA (7%) 0.1 (0.1)1 Breads (75%), vegetables (9%), 

fruit & fruit juices (7%) 

Bhakta [93]  1995-

1999 

UK (Asian) 221 F <75 ≥4 x 

24HDR 

Own  

DB 

SECO (93%), MATA (7%)  0.1 (0.1)1 Breads (70%), vegetables (12%) 

UK (British) 49 SECO (93%), MATA (7%) 0.2 (0.1)1 Breads (60%), fruit & fruit juices 

(21%) 

Mulligan 

[94]  

1993-

1997 

UK 9,680 M 40-75 7d DR Own  

DB 

MATA, SECO, Shonanin 0.3 (0.2)1 Tea & coffee (33%), beer (12%), 

vegetables (9%) 

10,757 F 0.3 (0.1)1 Tea & coffee (37 %), vegetables 
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(12%), fruits (9%) 

Grosso [38]  1993-

1997 

Poland 10,477 F (50%) 45-69 FFQ Phenol 

Explorer 

All4 0.6 (12)1 Seeds (51%) tea (27%), dark bread 

(8%) 

Witkowska 

[95]  

2003-

2014 

Poland 1,683 F >20 24-HDR Dutch DB SECO (45%), LARI (26%), 

PINO (26%), MATA (3%) 

1.1 (4.4)1 Vegetables (38%), flaxseed (22%), 

tea (12%) 

Witkowska 

[39]  

2003-

2005 

Poland 6,661 F (53%) 20-74 24-HDR Phenol 

Explorer 

All4 12.12 Cucumber (41%), red cabbage 

(22%) 

Linseisen 

[96]  

1992-

1995 

Germany 666 F 43(6)1 FFQ Own DB SECO (94%), MATA (6%)  0.6 (0.3–1.3)3 Nuts & seeds (75%), vegetables 

(7%), coffee (6%) 

Boker [97]  1993-

1997 

Netherlands 17,140 F 50-69 FFQ Dutch 

DB 

SECO (93%), MATA (7%) 1.02 Breads (41%), coffee & tea (23%), 

fruits (14%) 

Milder [61]  1997-

1998 

Netherlands 4,661 F (55%) ≥19 2-DR Dutch 

DB 

LARI (43%), PINO (32%), 

SECO(24%), MATA(0.6%) 

1.2 (2.1)1 Tea & coffee (37%), nuts & seeds 

(14%), 

Milder [30]  1997-

2002 

Netherlands 306 F (56%) 19-75 FFQ Dutch 

DB 

LARI (47%), PINO (35%), 

SECO (18%), MATA (1%)  

1.1 (0.4)1 Vegetables & black tea (>20%), 

whole-grain bread, fruits, wine. 

Milder [98]  1985-

1995 

Netherlands 570 M 64-84 DH Dutch  

DB 

LARI (48%), PINO (36%), 

SECO (15%), MATA (1%) 

1.0 (0.8-1.0)3 Tea (28%), vegetables (27%), bread 

(14%) 

Pérez-

Jiménez 

[99]  

1994-

2001 

France 4,942 F (47%) 35–60 6 x 24-

HDR 

Phenol 

Explorer 

All4 0.4 (0.2)1 Coffee (21%), refined wheat 

products (18%), whole-grain wheat 

products (16%) 

Lefèvre-

Arbogast 

[100] 

1999-

2000 

France 1,329 F (62%) ≥65 24-HDR Phenol 

Explorer 

All4 0.4 (0.3)1 Wine (65%), olive oil (12%), tea & 

infusion (9%), soy products (8%) 

Adriouch 

[34]  

1994-

1996 

France 3,903 F (47%) 35–60 ≥6 x24-

HDR 

Phenol 

Explorer 

All4 0.2 (0.1)1 Bread (30%), red wine (29%), olive 

oil (15%), tea (9%) 

Pellegrini 

[101]  

2002-

2003 

Italy 242 F (38%) 60(8)1 3D-WR Dutch  

DB 

SECO (52%), LARI (27%), 

PINO (17%), MATA (3%) 

0.7 (0.3)1 Red wine, fruits & vegetables 

(80%) 

Pounis [58]  2005- Italy 14,029 F (50%) 352 FFQ Eurofir- ꟷ 80 (60-106)3 Seasonal fruits (41%), grain & pod 
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2010 eBASIS vegetables (11%) 

Godos 

[102]  

2014–

2015 

Italy 1,947 F (33%) >18 FFQ Phenol 

Explorer 

All4 2.8 (2.6)1 Citrus fruits (44%), red orange 

(32%), garlic (11%) 

Godos [103]  2014-

2015 

Italy 1,936 F (28%) >18 FFQ Phenol 

Explorer 

All4 1.4 (1.1-2.0)1 Citrus fruits, garlic, olive oil, bread 

Russo [40]  2015-

2016 

Italy 340 M >18 FFQ Phenol 

Explorer 

LARI (54%), PINO (34%), 

SECO (4%), MATA (1%) 

3.1 (2.7)1 Cereals, fruits, vegetables, grains, 

nuts 

González 

[104]  

ꟷ Spain 127 M 73(7)1 FFQ Phenol 

Explorer 

All4 0.5 (0.3)1 Olive oil, white bread, & red wine 

(93%) 
177 F 77(6)1 0.4 (0.2)1 

Peñalvo 

[56]  

1998-

2000 

Spain 3,438 F (57%) 2–24 24-HDR Alignia 

DB 

PINO (42%), SECO (17%), 

LARI (13%), MATA (1%)  

0.8 (0.5–1.3) 3 Olive oil (27%), refined wheat 

bread (17%), whole-grain wheat 

bread (8%) 

Zamora-Ros 

[105]  

1996-

1998 

Spain 401 M 65 

(12)1 

FFQ UK DB SECO, MATA, LARI, 

PINO 

0.7 (0.5–1.0)3 Fruit (32%), vegetables (31%), 

cereals products (10%) 

Tresserra-

Rimbau 

[106]  

2003-

2009 

Spain 7,200 M&F 55-80 FFQ Phenol 

Explorer 

All4 0.9 (0.4)1 Olive oil (47%), virgin olive oil 

(25%), whole-grain wheat-flour 

bread (6%) 

Mendonça 

[107]  

1999- Spain 17,065 F (61%) 20-89 FFQ Phenol 

Explorer 

All4 0.6 (0.4)1 Olive oil, dried fruits, gazpacho, 

bread 

Petrick 

[108]  

1997-

2000 

US 183 M&F 20-80 FFQ Canadian  

DB 

SECO, MATA 0.6 ( 0.1)1 Coffee (31), wine (12), & citrus 

juice (9%) 

Petrick 

[109]  

1993-

1995 

US 662 M&F 30-79 FFQ Canadian  

DB 

SECO, MATA 0.07 (0.03)1 Coffee (35%), citrus juice (13%), 

wine (10%) 

Williams 

[110]  

2003-

2008 

US 216 F 55 

(13)1 

FFQ Canadian  

DB 

SECO, MATA ,LARI, 

PINO 

0.1( 0.1-0.2)3 ꟷ 

Carmichael 

[4

1997-

2005 

US 3,118 F ~18-

40 

FFQ UK DB SECO (87%), MATA 

(13%) 

0.2 (0.05-0.3)3 Coffee & tea, alfalfa sprouts, 

flaxseed 
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2]  

Waetjen 

[111]  

2008 US 1,459 F 42-52 FFQ Own DB SECO, MATA, LARI, 

PINO 

0.22 ꟷ 

Bandera 

[112]  

2004-

2008 

US 391 F ˃21 FFQ Own DB SECO (89%), LARI (6%), 

PINO (4%), MATA (1%) 

1.01 ꟷ 

Chang [113]  1995-

2007 

US 110,215 F 20-84 FFQ Canadian  

DB 

SECO, MAT, LARI, PINO 0.8 (0.3-1.3)3 Vegetables, fruits, whole grains 

McCann 

[114]  

1996-

2001 

US 1,122 F 35-79 FFQ Canadian  

DB 

SECO (50%), PINO (21%) 

MATA (3%), LARI (3%)  

0.2 (0.1)1 Whole-grain bread, peaches , 

orange juice, coffee ,onions, string 

beans, tea 

Fink [43]  1996-

1997 

US 1,500 F <65 FFQ Own DB SECO, MATA 6.4 (4.7)1 Tea (99%), strawberries (0.5%), 

whole grain products(0.3%) 

Horn-Ross 

[59]  

1996-

1999 

US 470 F 35-79 FFQ Own DB SECO (77.9%), MATA 

(16.9%), 

0.2 (0.1-0.2)3 ꟷ 

Mervish 

[115]  

2004-

2014 

US 1,044 F 6-8 24-HDR Phenol 

Explorer 

All4 0.42 Orange juice (35%), strawberries 

(17%), broccoli (8%) 

van der 

Schouw 

[116]  

1994 US 468 M 47-83 FFQ US DB SECO (97%), MATA (3%) 0.7 (0.5-0.9)3 Tea & coffee (28%), alcoholic 

beverages (9%), cereals & grains 

(7%) 

Horn-Ross 

[117] 

1992-

1998 

US 558 F 20-74 FFQ Own DB SECO (71%), MATA 

(29%) 

0.1 (0.1-0.2)3 ꟷ 

McCann 

[118]  

1986-

1991 

US 696 F 40-85 FFQ US DB SECO, MATA 0.5 (0.3)1 Coffee, carrots, cucumbers, 

strawberries 

Schabath 

[61]  

1995-

2003 

US 1,735 F (49%) ꟷ FFQ US DB SECO, MATA 5.3 (3.4-9.7)3 Coffee 52%, tea 30%, flaxseed 

(6%) 

de Kleijn 

[119]  

1991-

1994 

US 964 F ꟷ FFQ US DB SECO (97%), MATA (3%) 0.6 (0.4-0.8)3 Other fruits (13%), cereals and 

grains (11%), berries (8%) 
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Cotterchio 

[44]  

2001 Canada 1,890 F (47%) 20-74 FFQ Own DB SECO, MATA 0.2 (0.1–0.3)3 Legumes, seeds, cereals/grains, 

berries, dried fruit, vegetables 

Morisset 

[45]  

 
Canada 115 F ≤70 FFQ Canadian  

DB 

SECO, MAT, LARI, PINO 0.4 (3.8)1 ꟷ 

Chávez-

Suárez 

[120]  

2012-

2017 

Mexico 100 F 25-80 FFQ, Own DB SECO (73%), END (18%), 

ENL (7%), MATA (2%) 

1.1 (1.6)1 ꟷ 

24-HDR SECO (75%), END (16%), 

ENL (5%), MATA (4%) 

0.4 (1.8)1 

Hernández-

Ramírez 

[46]  

2004-

2005 

Mexico 478 F (46%) >20 FFQ Own DB LARI (54%), PINO (26%), 

SECO (20%), MATA 

(0.1%) 

0.3 (0.2-0.5)3 Vegetables, fruits, legumes 

Zamora-Ros 

[33]  

2006-

2011 

Mexico 106,466 F ˃20 FFQ Phenol  

Explorer 

All4: LARI (46%), PINO 

(21%), SECO (18%) 

0.1 (0.03-0.2)3 Broccoli & cauliflower (11%), 

strawberries (9%), fruit-flavoured 

water (6%) 

Nascimento

‐Souza [47]  

2016 Brasil 620 F (70%) 60-98 24-HDR Phenol  

Explorer 

All4: LARI(50%) 13.6 (25.5)1 Orange (16%), broccoli (15%), 

flaxseed (15%) 

Miranda 

[48]  

2008 -

2009 

Brasil 550 F (65%) ˃12 24-HDR Phenol  

Explorer 

All4 0.1 (0.1-0.2)3 Sesame seed oil (71%), nuts (20%), 

sesame seeds (4%) 

Miranda 

[49]  

2008 Brasil 1,103 F (54%) ˃20 24-HDR Phenol  

Explorer 

All4 2.3(0.7)1 Cereals oil (71%), nuts (26%), olive 

oil (2%) 

Lahmann 

[50]  

2002-

2007 

Australia 2,078 F 18-79 FFQ Canadian 

& UK DB 

SECO (68%), LARI (12%), 

MATA (10%), PINO (8%) 

0.7 (0.3)1 ꟷ 

Hanna [51]  
 

Australia 511 F 40-80 FFQ AusNut 

DB 

 
2.7 (3.0)1 Soy, linseed 

Sohrab [52]  2006-

2008 

Iran 2,618 F (56%) 19-84 FFQ Phenol  

Explorer 

All4 0.2 (0.1-0.3)3 Nuts, whole grains 

Sohrab [53]  1999 Iran 1,265 F (56%) 19-74 FFQ Phenol  

Explorer 

All4 3.8 (2.4-5.7)3 ꟷ 
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Jang [54]  2004 Korea 48 F PreM 40-51 24-HDR US DB END (34%), ENL (33%), 

SECO (28%), MATA (5%) 

1.5 (0.3)1 ꟷ 

53 F PostM 41-57 END (36%), ENL (32%), 

SECO (25%), MATA (7%) 

1.8 (0.5)1 ꟷ 

Abbreviations: 24-HDR (24-hour dietary recall), DB (Database), DH (Dietary History), DR (Dietary record), F (Female), FCDB (Food 903 

Composition DataBase), FFQ (Food Frequency Questionnaire), LARI (lariciresinol), M (Male), MATA (matairesinol), MED 904 

(Mediterranean), MEDI (medioresinol), PINO (pinoresinol), PostM (Post-menopausal), PreM (Pre-menopausal), SECO 905 

(secoisolariciresinol), SYRI (syringaresinol) 906 

1-3Type of estimation: 1mean (SD), 2mean, 3median (p25-p75) 907 

4All lignans, including: 1-AcetoxyPINO, 7-HydroxyMATA, 7-HydroxySECO, 7-OxoMATA, Anhydro-SECO, Arctigenin, 908 

Conidendrin, CycloLARI, DimethylMATA, Episesamin, Episesaminol, IsohydroxyMATA, IsoLARI, LARI, LARI-sesquilignan, 909 

MATA, MEDI, Nortrachelogenin, PINO, SECO, SECO di-O-glucoside, SECO-sesquilignan, Sesamin, Sesaminol, Sesamol, 910 

Sesamolin, Sesamolinol, SYRI, Todolactol A, Trachelogenin  911 

 912 

  913 
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Table 2. Characteristics of the studies included in the review of urinary lignan excretions. 914 

Author (Reference) Data 

collection 

Country N Sex Age Type of 

study 

Urine Analytical 

method 

END  

(nmol/L) 

ENL  

(nmol/L) 

Zamora-Ros [71]  1995-1999 Europe4 475 F (58%) 33-77 Cohort 24h LC-MS/MS 2472 2,0802 

Uehar [65]  ꟷ Finland 126 F 24-65 C-S 24h TR-FIA ꟷ 3,2671 

Krogholm [70]  2002-2004 Denmark 84 M 38-63 Cohort 24h LC-MS ꟷ 7681 

Overnight ꟷ 6961 

107 F 24h ꟷ 1,0501 

Overnight ꟷ 9701 

Ward [72]  1993-1997 UK 828 M 45-75 NCC ꟷ GC-MS 2042 2,9532 

889 F (43%) 2102 3,3332 

Low [73]  1993-1997 UK 125 F 45-76 Cohort Spot LC-MS 2881 2,5611 

Grace [74]  1993-1997 UK 219 F 45-75 NCC Spot GC-MS 2741 2,7921 

Low [75]  1993-1997 UK 267 M 45-75 Cohort Spot GC-MS 2071 2,4141 

Durazzo [76]  ꟷ Italy 13 F 48-58 CT 24h LC-CEAD 7631 1,5771 

3481 1,0921 

Park [121]  2001-2006 US 404 M 45-75 NCC Spot LC-MS/MS ꟷ 1,3132 

Hu [122]  1997-2010 US 1,111 F 25-55 Cohort Spot LC-MS 1591 2,9381 

Reger [123]  1999-2010 US 6,009 F (52%) >40 C-S Spot LC-MS/MS 2481 2,0411 

Martínez Steele [124]  2009-2010 US 2,692 M/F >6 C-S Spot LC–MS/MS 1332 7282 

Adlercreutz [125]  ꟷ US 10 F 581 C-S 24h GC-MS 2673 2,1203 

10 2133 1,5333 

7 1403 6933 

Miles [126]  2006 US 80 F (50%) 18-45 CT 24h GC-MS 5331 3,0001 

2671 1,9331 

Rybak [64]  2003-2006 US 2,873 M ≥20 C-S Spot LC-MS/MS 411 3021 

F 381 2851 

Reger [127]  1999-2004 US 5,179 F (52%) >18 C-S Spot LC-MS 1332 1,1782 

Eichholzer [128]  1999-2004 US 2,028  F (49%) >18 C-S Spot LC-MS 1472 1,5072 

2005-2008 2,628 F (48%) LC-MS/MS 1642 1,6832 

Xu [67] 2001-2010 US 694 M 12-19 C-S Spot LC-MS 2781 2,2461 

600 F 4631 2,6181 

1,273 M 20-60 5521 2,9501 

1,226 F 6091 3,3191 
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578 M >60 5331 3,6511 

584 F 3861 2,9071 

Valentín-Blasini [129]  1999-2000 US 334 F (52%) 6-11 C-S Spot LC-MS 893 8023 

757 12-19 843 8523 

1,496 ≥20 933 7583 

Valentín-Blasini [80]  1988-1994 US 199 F (61%) 20-58 C-S Spot LC-MS/MS 2091 1,7181 

Sun [130]  1995-2001 US 452 F 53-79 NCC Spot LC-MS 1231 2,5061 

655 32-52 771 2,1721 

Kunisue [83]  2005-2009 US 10 M 24-63 C-S 24h LC-MS/MS 431 7381 

6 F 23-48 1291 8721 

Levine [131]  2005-2009 US 471 F 18-40 Cohort Spot LC-MS/MS 942 7542 

Simon [78]  ꟷ Jamaica 171 F 20-75 CC Spot TR-FIA ꟷ 2,6712 

Liu [66]  2000-2001 Japan 500 F 20-70 C-S Spot GC-MS 953 1483 

Uehar [65]  ꟷ Japan 111 F 24-65 C-S 24h TR-FIA ꟷ ND 

Kunisue [83]  2005 Japan 15 M 22-54    1261 1,3761 

11 F 21-35 801 1,0741 

2002 Vietnam 31 M 20-78 1331 7721 

32 F 21-73 2451 1,6781 

2006 Vietnam 14 M 21-74 801 5031 

14 F 33-74 1821 7051 

2000 Cambodia 13 M 21-48 601 5711 

24 F 21-46 861 6711 

2005 India 16 M 27-62 1791 1,1411 

23 F 20-70 1191 9401 

2006 India 18 M 26-55 2551 1,4431 

24 F 20-48 2051 1,3421 

Talaei [82]  1999-2004 Singapore 564 F (58%) 45-74 NCC Spot LC-MS/MS 2281 1,1401 

Abbreviations: CC (Case-Control), C-S (Cross-Sectional, CT (Clinical Trial), END (Enterodiol), ENL (Enterolactone), F (Female), 915 

HCC (Hospital-based Case-Control), GC-MS (Gas Chromatography–Mass Spectrometry), LC-CEAD (Liquid Chromatography- 916 

Coulometric Electrode Array Detector), LC-MS (Liquid Chromatography–Mass Spectrometry), M (Male), NCC (Nested Case-917 

Control), ND (Non Detected), PCC (Population-based Case-Control), TR-FIA (Sensitive Time-Resolved Fluoroimmunoassay). 918 

1-3Type of estimation: 1mean, 2median, 3geometric mean  919 

4France, Italy, Greece, and Germany 920 
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ENL and END concentrations have been converted into nmol/L from the original studies. 921 

 922 

  923 
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Table 3. Characteristics of the studies included in the review of blood lignan concentrations. 924 

Reference Data 

collection 

Country N Sex Age Type of 

study 

Specimen Methods END 

(nmol/L) 

ENL 

(nmol/L) 

Travis [71]  1992-2000 Europe4 1,042 M/F 60.11 NCC Plasma LC-MS/MS 1.02 12.42 

Peeters [26]  1992-2012 Europe4 1,344 F (51%) 54-55 Cohort Plasma LC-MS 1.03 8.73 

UK healthy 70 F (49%) 3.63 17.83 

Pérez-Cornago [68]  1992-2000 Europe4 1,042 M 59.61 NCC Plasma LC-MS/MS 1.03 11.23 

1993-1997 UK 130 M 64.71 0.23 4.93 

1981-1991 Finland, Norway, 

Sweden 

2,209 M 46.51 TR-FIA ꟷ 5.83 

ꟷ Sweden 1,664 M 60.01 ꟷ 9.63 

1985-2017 Sweden 514 M 58.01 ꟷ 14.63 

Uehara [65]  ꟷ Finland 87 F 24-65 C-S Plasma TR-FIA ꟷ 25.01 

Stumpf [132]  1983 Finland 85 M/F 35-49 CT Plasma TR-FIA ꟷ 19.52 

Pietinen [133]  1990-1995 Finland 75 F PreM 25-75 PCC Serum TR-FIA ꟷ 20.71 

133 F PostM ꟷ 28.91 

Vanharanta [134]  2005 Finland 167 M 42-60 NCC Serum TR-FIA ꟷ 23.51 

Kilkkinen [135]  1986-1999 Finland 420 M 50-69 Case-Cohort Serum GC-MS ꟷ 18.11 

Vanharanta [136]  1995 Finland 100 M 58,61 CT Serum TR-FIA ꟷ 16.61 

Kilkkinen [137]  1997 Finland 1,168 M 25-64 C-S Serum TR-FIA ꟷ 13.82 

1,212 F ꟷ 16.62 

Vanharanta [138]  1998-2000 Finland 1,889 M 42-60 Cohort Serum TR-FIA ꟷ 17.11 
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Hedelin [91]  2002 Sweden 1,130 M 67.81 PCC Plasma TR-FIA ꟷ 24.01 

Sonestedt [139] 1991-1996 Sweden 728 F 56.31 NCC Plasma TR-FIA ꟷ 16.32 

Stattin [140]  2001 Sweden 525 M 59.91 NCC Plasma TR-FIA ꟷ 15.01 

Lin [141]  2003-2004 Sweden 135 F 55-75 Cohort Serum TR-FIA ꟷ 23.21 

Hultén [142]  1986-1994 Sweden 308 F 51.21 NCC Plasma TR-FIA ꟷ 22.91 

1995-2000 185  58.11 ꟷ 20.41 

Aarestrup [143]  1993- 1997 Denmark 149 F 50-64 Case-Cohort Plasma TR-FIA ꟷ 31.01 

Eriksen [144]  1993-1997 Denmark 850 F (40%) 50-64 Case-Cohort Plasma LC-MS/MS ꟷ 10.92 

 Johnsen [88] 1993-1997 Denmark 857 F 50-64 NCC Plasma TR-FIA  ꟷ 38,01 

Kuijsten [69]  ꟷ Netherlands 3 F (25%) 28-53 C-S Plasma LC-MS 7.01 39.21 

Milder [30]  1997-2002 Netherlands 637 F (55%) 19-75 PCC Plasma LC-MS/MS 1.41 11.31 

Verheus [145]  1993-1997 Netherlands 87 F PreM 51.61 NCC Plasma LC-MS 0.61 8.91 

296 F PostM 58.61 0.61 8.91 

Heald [146]  1998 2001 Scotland 483 M 50-74 PCC Serum GC-MS ꟷ 16.22 

Bhakta [92]  1995-1999 UK 58 F 25-75 PCC Plasma TR-FIA ꟷ 13.71 

Ward [72]  1993-1997 UK 815 M 45-75 NCC Serum LC-MS 0.72 18.12 

877 F (43%) 0.32 17.42 

Morton [85]  ꟷ UK  36 M 41–74 C-S Plasma GC-MS ꟷ 13.11 

ꟷ Portugal 50 35–71 1.21 13.11 

Low [73]  1993-1997 UK 109 F 45-76 NCC Serum GC-MS 1.31 12.41 

Grace [74]  1993-1997 UK 187 F 45-75 NCC Plasma LC-MS 1.31 12.81 

Low [75]  1993-1997 UK 267 M 45-75 Cohort Plasma LC-MS/MS 1.01 12.81 

Xie [81]  1996-1999 US 802 F 25-42 NCC Plasma LC-MS ꟷ 11.52 

Bhakta [93]  ꟷ UK 40 F 25-75 PCC Plasma TR-FIA ꟷ 28.51 

UK (Asian) 100 ꟷ 13.91 
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Piller [147]  1992-1995 Germany 237 F ≤50 PCC Plasma TR-FIA ꟷ 9.71 

Zeleniuch-Jacquotte [79]  1985-1991 US 60 F 34-65 Cohort Serum CG-MS 1,52 21,22 

Valentín-Blasini [80]  1988-1994 US 199 F (61%) 20-58 C-S Serum LC-MS 6.01 11.91 

Horner [148]  ꟷ US 78 M 20-40 C-S Plasma TR-FIA ꟷ 11.03 

115 F 13.33 

Uehar [65]  ꟷ Japan 111 F 40–60 C-S Plasma TR-FIA ꟷ 13.31 

Morton [87]  ꟷ Japan 102 M 40-85 C-S Plasma GC-MS ꟷ 32.71 

125 F 40-89 ꟷ 22.8 

Morton [85]  ꟷ China 53 M 31–85 C-S Plasma GC-MS 5.61 20.81 

Liu [84]  2010-2012 China 264 F (71%) 35-60 NCC Plasma LC-MS 16.42 2.02 

Ko [149]  1993-2004 Korea 206 F 60.41 HCC Plasma LC-MS ꟷ 249.31 

185 M ꟷ 177.81 

2003-2007 Vietnam 114 F 54.51 ꟷ 10.21 

92 M ꟷ 10.41 

Abbreviations: C-S (Cross-Sectional), CT (Clinical Trial), END (enterodiol), ENL (enterolactone), HCC (Hospital-based Case-925 

Control), GC-MS (Gas chromatography–mass spectrometry), LC-MS (Liquid Chromatography–Mass Spectrometry), NCC (Nested 926 

Case-Control), PCC (Population-based Case-Control), PostM (Post-menopausal), PreM (Pre-menopausal), TR-FIA (sensitive time-927 

resolved fluoroimmunoassay) 928 

1-3Type of estimation: 1mean, 2median, 3geometric mean  929 

4Europe: Denmark, France, Germany, Greece, Italy, Netherlands, Spain, Sweden, UK 930 

ENL and END concentrations have been converted into nmol/L from the original studies. 931 


