
GRAU DE MATEMÀTIQUES

Treball final de grau

Quantum algorithms for function
optimization

Autor: Gerard Ortega Ballesteros

Director: Dra. Joana Cirici
Realitzat a: Departament

de Matemàtiques i Informàtica

Barcelona, January 23, 2021

Abstract

Quantum computing has started to become a reality, as many big and small companies
are building state of the art quantum computers, with some even offering quantum ser-
vices to the public, as quantum computers have been proved to offer a significant compu-
tational advantage in comparison to classical computers. Often, though, mathematicians
and computer scientists have difficulties getting into the field of quantum computing be-
cause of their lack of knowledge about quantum physics. In this work, we take on the
more applied side of quantum computing using an abstracted mathematical framework -
the gate-based quantum computing model, completely separated from the physics behind.

We first introduce the intuition behind quantum computing and present the mathe-
matical basis of the aforementioned gate-based model. We review and implement some
elemental quantum algorithms and after that then dive into the topic of function opti-
mization. For discrete function optimization, we review Grover Adaptive Search, devise
an efficient implementation of the algorithm, run it on a simulator and analyze its compu-
tational cost. For continuous function optimization, we summarize the most relevant work
regarding the topic and pave the way for others that want to implement the algorithms
described.

Resum

La computació quàntica és ara part de la realitat, en la qual diverses empreses estan
construint les seves computadores quàntiques i oferint serveis de computació quàntica,
motivats per la supremacia quàntica respecte la computació clàssica. Malauradament, els
matemàtics i científics de la computació que volen entrar dins d’aquest món sovint es
troben obstaculitzats pel fet de no saber de física quàntica. En aquest treball, ens cen-
trem en la part aplicada de la computació quàntica fent servir una abstracció matemàtica
totalment separada de la part física - la computació quàntica basada en portes quàntiques.

Primer ens introduïm en les nocions bàsiques de la computació quàntica de manera
intuïtiva i presentem la base matemàtica del model de portes quàntiques mencionat. Ex-
pliquem i implementem alguns algorismes quàntics fonamentals i després ens llencem
de cap al tema d’optimització de funcions. Per funcions discretes, detallem el candidat
Grover Adaptive Search, ideem una implementació eficient de l’algorisme, l’executem en
un simulador i analitzem el seu cost computacional. Per funcions contínues, resumim els
articles més relevants que tracten el tema i fem una anàlisi general del contingut i la possi-
ble implementació per a facilitar la feina a qui en el futur vulgui realitzar implementacions
dels algorismes.

2020 Mathematics Subject Classification. 81P68, 68Q12

Acknowledgements

Before anything else, I would like to thank my advisor Dr. Joana Cirici for her patience,
her trust, and her help in correcting the contents of the project, significantly improving its
quality.

Furthermore, I would like to thank my father for inspiring me to get into quantum
computing, my mother for emotional support throughout the entire degree, and any of
my friends that endured my rambles about the topic during the project.

Contents

1 Introduction 1

2 Gate-based quantum computing 6
2.1 Dirac notation and n-qubit systems . 6
2.2 Geometric interpretation of qubits . 8
2.3 Entangled qubits . 10
2.4 n-qubit quantum gates . 11
2.5 Von Neumann and projective measurements 14
2.6 Pure states and mixed states . 16
2.7 Universal set of quantum gates . 19

3 Basic quantum algorithms 21
3.1 The Phase Estimation algorithm . 21
3.2 Grover’s Quantum Search algorithm . 25
3.3 The Eigenvalue Estimation algorithm and Quantum Counting 31

4 Function optimization - Discrete version 35
4.1 Problem statement . 35
4.2 Grover Adaptive Search . 36

4.2.1 Computational cost analysis . 36
4.2.2 Quantum circuit construction . 41

5 Function optimization - Continuous version 46
5.1 Problem statement . 46
5.2 Numerical Gradient Estimation . 46
5.3 Gradient Descent and Newton’s Method on homogenous polynomials 47
5.4 Gradient Descent for quadratic functions . 49

A Additional examples 51
A.1 Density matrix partial trace . 51
A.2 Homogenous polynomial decomposition . 53

References 56

1 Introduction

In quantum computing, a qubit (quantum bit) is the equivalent to the usual classical
computation bit. It is the minimal unit of data that we can work with. In a classical bit we
can store and read the values 0 and 1, and this is achieved physically, for instance, by mag-
netizing a film of ferromagnetic material in a HDD or by storing electric pulses in memory
cells of a SSD. Usually, the value 1 corresponds to the presence of the magnetization or
the electric pulse, while the value 0 is associated with its absence.

A qubit stores the state of a two-level quantum system, which can be in one of two
different elemental states by which we refer to |0〉 and |1〉, similar to the classical bit. We
will not get into quantum systems and will strictly talk about qubits. The key difference
lies in the fact that a qubit does not need to be just in one state or the other, but can be
in a superposition of these two states, a kind of mixture of these. This is mathematically
modeled as a complex linear combination of the two basic states.

A pure qubit state is described by an expression of the form:

|ψ〉 = α0 |0〉+ α1 |1〉 =
(

α0
α1

)
; α0, α1 ∈ C; |α0|2 + |α1|2 = 1,

where |α| = α · ᾱ denotes the modulus of α.

The complex numbers α0 and α1 are called the amplitudes of the states |0〉 and |1〉.
When both α0, α1 6= 0, the qubit is said to be in a superposition of the states |0〉 and
|1〉, and the values |α0|2 and |α1|2 reflect how much each elemental state contributes to
the superposition. A qubit then stores these two amplitudes α0 and α1. The concept of
superposition is exemplified in section 1.6 of [KLM07].

In contrast to the classical bit, a qubit holds a greater quantity of data and allows
for special techniques that can be used to execute algorithms in exponentially less steps
compared to a classical computer (see for instance section 3.2 of [NC00] and section 1.2
of [KLM07]). This, though, does not mean that qubits do not have their limitations. For
example, the basic operations of copy and read that can be applied to classical bits cannot
be applied to qubits, meaning that we cannot copy a state of one qubit to another nor we
can directly read the values α0 and α1 stored. On the other hand, current classical memory
storage lasts for an indefinite amount of time, can be quickly read and written repeatedly,
is error-proof and considerably cheap, while qubits, unless kept isolated and in extreme
physical conditions, such as near absolute zero temperatures, are incredibly volatile and
hold information for only ephemeral quantities of time, as phenomena like quantum
decoherence and dissipation come into play, processes by which a the information stored
in a qubit becomes corrupted and therefore lost (see for instance section 8 of [NC00]).

Different physical implementations of qubits are, for instance, electron spins (states
encoded into spins of electrons), ion traps (states encoded into energy levels of electrons),
and superconducting structures (very small electrical circuits at low temperatures). Some
physical implementations are outlined in [Zyg18]. This matter is currently an active re-
search field.

The previous facts are reasons for which, compared to bits, qubits are harder to handle
and work with. While we can read the value stored in a bit, we cannot simply read the

1

amplitudes α0, α1 stored in a qubit. What is done instead is a measurement of the qubit.
Because of how quantum measurements work, when measuring the qubit, we will either
read the state |0〉 or the state |1〉 at random with probabilities |α0|2 and |α1|2 respectively
(hence it makes sense that |α0|2 + |α1|2 = 1). After the quantum measurement, the qubit
will collapse onto the state |0〉 if we read |0〉, or onto the state |1〉 otherwise, meaning that
if we then repeat the measurement we will read the same state we read the first time over
and over, having destroyed the information it held.

Conceptually, we can understand a classical bit as a light bulb that is either turned off
(state 0) or turned on (state 1). In this fashion, a qubit would be understood as a light
bulb rapidly shifting between off (state |0〉) and on (state |1〉). When we try to take a
picture of the light bulb (we measure the qubit), we will capture an image of the bulb
either turned on or off, and after that, the bulb will stop blinking and will remain turned
on or off depending on how the bulb appeared on the picture. This last fact rules out the
possibility of measuring a qubit, say, 1000 times, and approximating α0, α1 by counting
how many times we read |0〉 and |1〉. This is more formally explained in Box 2.4 on
[NC00]

Another idea one could devise would be to copy the state of a qubit onto another
qubit (to then measure the copy), but on the framework of quantum mechanics, the No-
cloning theorem (see Box 12.1 of [NC00]) states that perfect copies of qubit states cannot
be created; only imperfect or dependent copies from the original state can be made, so
cloning the qubit state on 1000 other qubits and measuring all of them is not possible as
well.

Harnessing the advantages that qubits and quantum computing provide relies on per-
forming special calculations or manipulations that would not be possible with bits on
classical computers. There exist many models of quantum computing that define and
study manipulations over qubits in different ways, but the most physics-free and natu-
ral for mathematicians and computer scientists is the gate model. Amongst other more
physics-centered models lies the adiabatic model, which we do not discuss but is actually
equivalent to the gate model [Aha+08]. Quantum algorithms are often easier to devise or
explain in some quantum computing models more than others.

In the gate model, the counterpart to logic gates that act on classical bits (AND, OR,
NOT, ...) are quantum gates, which act on qubits. A 1-qubit quantum gate is an atomic
process that operates on a single qubit and modifies its state. Mathematically, a quantum
gate is modeled as a unitary matrix U ∈ M2(C).

Some basic and well-known gates are the Pauli gates X, Y, Z, the Hadamard gate H
and the π/4 gate T:

X :=
(

0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
, H :=

1√
2

(
1 1
1 −1

)
, T :=

(
e−i π

8 0
0 ei π

8

)
Applying a quantum gate U to a qubit |ψ〉 will leave the qubit in the state U |ψ〉. For

example, applying the Hadamard gate H to a qubit |ψ〉 in the state |1〉 would leave the
qubit in the state:

H |ψ〉 = H |1〉 = 1√
2

(
1 1
1 −1

)(
0
1

)
=

(1√
2

− 1√
2

)
=
|0〉 − |1〉√

2
,

2

and then, measuring this qubit would yield one of the elemental states |0〉 and |1〉
with equal probability, thus creating a superposition of states. The reason behind this
unitarity constraint on these matrices is that if the amplitudes α0, α1 of a pure state |ψ〉
satisfy |α0|2 + |α1|2 = 1, then the same condition will hold for the amplitudes of the result
state U |ψ〉. Just like with classical gates, there are quantum gates that act on more than
one qubit, but they will be addressed in section 2.

The X gate is often called the NOT gate, because its action on qubits is |0〉 7−→ |1〉 and
|1〉 7−→ |0〉, just like what a classical NOT gate would do.

The T gate is often called the π/4 gate because, up to an unimportant global phase
factor of ei π

8 , the T gate is equivalent to:

ei π
8 T = ei π

8

(
e−i π

8 0
0 ei π

8

)
=

(
1 0
0 ei π

4

)

The reason for this fact will be explained later in section 2.2.
Physical implementations of quantum gates depend on the chosen physical implemen-

tation of qubits. Currently, applying quantum gates is not a perfect process and errors may
arise. Precision of quantum gates is measured by their error (formally defined in section
2.7), which quantifies how much the result of applying the gate differs from the expected
result.

With the basic elements of quantum computing: qubits and quantum gates, we can
start designing quantum circuits to perform operations and execute algorithms, which
are just like classical logical circuits, but with quantum gates and qubits instead of logical
gates and bits.

Each qubit is drawn as a wire, and to perform operations on them we set the de-
sired gates on the wires in succession. After the calculations, qubits may be measured
or discarded. The following example depicts two qubits q0, q1, both on initial state |0〉,
undergoing quantum gates H and X, in order. At the end, q0 is measured, obtaining a
classical result, and q1 is not measured and therefore discarded.

q0 : |0〉 H X

q1 : |0〉 H X

Here is a very simple example of a circuit that uses a 4-qubit register (4 qubits) and
outputs a random integer ranging from 0 to 15 in the form of a 4-bit string, provided by
the measured qubits in the state 1/

√
2 |0〉+ 1/

√
2 |1〉:

3

|0〉 H

|0〉 H

|0〉 H

|0〉 H

The Hadamard gate performs the following transformation:

|0〉 7−→ H |0〉 = 1√
2

(
1 1
1 −1

)(
1
0

)
=

(
1/
√

2
1/
√

2

)
=
|0〉+ |1〉√

2

If we initialize all qubits to |0〉, after the Hadamard gates they will be in an equal
superposition of the states |0〉 and |1〉, and measuring each of them will yield one of those
elemental states with equal probability, effectively outputting 4 random bits. This is a
simple example to illustrate quantum circuits, but with this we barely scratch the surface
of how deep the techniques for designing them really are, as most quantum algorithms
rely on superposition and entanglement (which will be formally defined in section 2,
often requiring a purely algebraic analysis to use effectively. In the succeeding sections
we may see these techniques and algebraic analysis when reviewing or designing certain
quantum algorithms, where we will use other quantum gates other than the five basic
gates presented before.

Quantum computing is based on quantum mechanics, which is a relatively modern
field of physics. Though the term "quantum mechanics" has been around since 1920, the
term "quantum computing" did not appear until 1982, which was when the theoretical
physicist Richard Feynman observed that simulations of quantum systems took exponen-
tial time in classical computers. Other physicists took interest on the topic a few years
before 1982, though, and studied the possibility of quantum computers.

Still, quantum computing did not begin sparking interest until 1994, when Peter Shor
developed the famous Shor’s algorithm, a quantum algorithm capable of factoring large
primes exponentially faster than classical computers. The steep computational cost of
large prime factorization is precisely what makes cryptosystems safe, meaning that Shor’s
algorithm could theoretically break many cryptography protocols currently in use, hence
the sudden interest on quantum computing.

Quantum algorithms are executed in quantum computers, which permit physical re-
alizations of quantum circuits. There exist some quantum computers built by big compa-
nies such as Google, IBM or Amazon, as well as some other small companies. But because
quantum computing has existed outside of the theoretical frame for so short, quantum
computers are still in an experimental phase, and are not available to the general public
like classical computers.

Some companies, more notably IBM, offer public usage of some of their quantum com-
puters, but the number of qubits available is very low, and one has to account for quantum

4

noise and errors caused by physical imperfections. Therefore, to test that quantum algo-
rithms work in ideal conditions, they are executed in simulators that model qubits and
quantum gates instead.

Simulators can help in designing and empirically testing quantum algorithms, but
simulations become very expensive computationally as the number of qubits n increases.
Simulating the state of a qubit requires storage of 2 complex scalars, and quantum gates
require 2× 2 complex scalars. This scales exponentially for n qubits, as we will see in
the next section that simulating the state of n qubits requires 2n complex scalars, and
quantum gates gates can take as much as 2n × 2n complex scalars to simulate. Quantum
gate application simulations require matrix products, and with these sizes, they will take
O(23n) operations to simulate, an absurdly high computational cost.

Therefore, running quantum computer simulators locally on personal computers even-
tually becomes too much for classical computers as the number of qubits increase. This is
why the simulations and tests on [Ort21] use at maximum 16 qubits, otherwise, they take
too much time to perform.

There exist open-source quantum computing frameworks that include simulators that
can be run locally in classical computers. The most prominent one is Qiskit [Abr+19;
21a], founded by IBM, but another instance is Grove [SCZ16; 21b], founded by Rigetti
Computing. Still, one can implement their own quantum computer simulator based on the
mathematical abstraction of gate-based quantum computing presented along this section,
if they wish to do so. An example, along with some executions and source code, can be
found in [Fin19].

We next briefly summarize the contents of this thesis.
In section 2 we summarise and review the mathematical framework of gate-based

quantum computing. After that, in section 3 we present some of the most basic and
relevant quantum algorithms, and provide custom implementations and interactive test
runs of Phase Estimation and Grover Search to showcase how they work.

In section 4 we present the discrete version of the optimization problem that we want
to solve, and thoroughly analyze Grover Adaptive Search as a candidate. In particular,
we analyze the computational cost of Quantum Counting usage and the trial and error
method, which we end up discarding. Using the analysis made, we ultimately devise a
novel methodology for Grover Adaptive Search and demonstrate empirically that it pre-
serves more than half of Grover Search’s quantum advantage when using a large number
of qubits. At the end, we provide a custom implementation of Grover Adaptive Search
using the devised methodology with the source code and interactive test runs. The cus-
tom implementation is a general, unconstrained version of Grover Adaptive Search that
the one Qiskit offers under the name of Grover Optimizer [Qisb]. It is a prerequisite to go
over sections 2 and 3 before reading section 4.

Finally, in section 5, we present the continuous version of the optimization problem,
and review some other works that propose quantum versions of classical algorithms such
as Gradient Descent and Newton’s Method. The section’s purpose is to mention the most
notable and interesting works on continuous function optimization to help whoever is
interested on the topic and wants to implement any of the algorithms.

5

2 Gate-based quantum computing

This section explains the basic mathematical background behind gate-based quantum
computing, and is mostly based on [KLM07]. Other basic references for quantum com-
puting include [NC00] and [Zyg18].

We first review n-qubit systems as well as their geometric interpretation. Then we
formally define entanglement and explain what n-qubit quantum gates and controlled
gates are. After that, we expand on measurements, introduce the notion of mixed states
and overview universality for quantum gates.

2.1 Dirac notation and n-qubit systems

We will begin by explaining this notation |·〉 used in the previous chapter.
Let ψ = (α0, . . . , αn−1) be a point on the complex vector space Cn. The ket |ψ〉 and the

bra 〈ψ| represent ψ and its adjoint ψ as a column and row vector, respectively:

|ψ〉 =

 α0
...

αn−1

 , 〈ψ| =
(
α0, . . . , αn−1

)
.

Thogether with another point ϕ = (β0, . . . , βn−1), the bra-ket then is the inner product
of the two vectors:

〈ψ|ϕ〉 = (α0, . . . , αn−1)

 β0
...

βn−1

 = α0β0 + · · ·+ αn−1βn−1.

This notation is called the Dirac notation, and is the standard notation for describing
qubit states. In the previous chapter, we used it as a model for pure states of one qubit,
but the general definition is for any number of qubits.

Remark 2.1. The vector space Cn together with the inner product 〈 · | · 〉 forms a Hilbert
space, which is an Euclidean space that is also a complete metric space with respect to the
distance induced by the inner product.

Definition 2.2. A pure n-qubit state is described by a ket |ψ〉 ∈ CN such that 〈ψ|ψ〉 = 1,
where N = 2n.

Remark 2.3. Note that the previous condition is equivalent to

〈ψ|ψ〉 = (α0, . . . , αN−1)

 α0
...

αN−1

 = α0α0 + · · ·+ αN−1αN−1 = |α0|2 + · · ·+ |αN−1|2 = 1.

These values |α0|2, . . . , |αN−1|2 correspond to the probabilities of reading each elemen-
tary state of the system after a measurement. We describe each of the elemental states

6

using the vectors of the canonical basis of CN , which are denoted as

|0〉 , |1〉 , . . . , |N − 1〉 =


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1

 .

Quantum computing makes use of multiple qubits (not just one) to implement algo-
rithms. As each qubit can be on 2 different elemental states (|0〉 or |1〉), two qubits together
can be in 4 different combinations of elemental states (|0〉 |0〉, |0〉 |1〉, |1〉 |0〉 or |1〉 |1〉). It
follows naturally that n qubits can form a total of N combinations of the elemental states.

This is suitably described by the tensor product.

Definition 2.4. Let H1,H2 be two vector spaces with bases

{|ψi〉 ; i=1, ..., n}, {|ϕ1〉 ; j=1, ..., m},

respectively. The tensor product H1 ⊗H2 is another vector space with basis

{|ψi〉 ⊗
∣∣ϕj
〉

; i=1, ..., n; j=1, ..., m}.

Remark 2.5. The map ⊗ : H1 ×H2 −→ H1 ⊗H2 is bilinear. It is special because any
other bilinear map B : H1 × H2 −→ H3 factors through it via a unique linear map L :
H1 ⊗ H2 −→ H3 (that is, for every bilinear map B there exists a unique linear map L such
that B = L ◦ ⊗).

Between all the possible concrete choices for the tensor product, the one that reflects
the probabilistic nature of states and measurements is the Kronecker product.

Definition 2.6. Let M1,M2 be two matrix spaces. The Kronecker product ⊗ : M1 ×
M2 −→M1 ⊗M2 is defined by:

A⊗ B =

 a1,1 · B . . . a1,n · B
...

. . .
...

am,1 · B . . . am,n · B

 .

From now on, the symbol ⊗ will refer to the Kronecker product and not just any tensor
product, however, most of the time it is omitted and |ψ1〉 ⊗ |ψ2〉 is just written as |ψ1ψ2〉
for simplicity. The definition of Kronecker product for vector spaces is the same if we see
vectors as 1× n matrices.

Example 2.7. Let |ψ1〉 =
√

3/11 |0〉+
√

8/11 |1〉 , |ψ2〉 =
√

7/13 |0〉 −
√

6/13 |1〉. Then:

|ψ1ψ2〉 = |ψ1〉 ⊗ |ψ2〉 =
(√

3/11√
8/11

)
⊗
(√

7/13

−
√

6/13

)
=


√

3/11
√

7/13

−
√

3/11
√

6/13√
8/11
√

7/13

−
√

8/11
√

6/13

 =


√

21/143

−
√

18/143√
56/143

−
√

48/431

 .

We can see that when measuring the qubits, in order to read the state |00〉 both qubits
must output |0〉 when measured. The chances of this happening are 3/11 · 7/13 = 21/143,
which is precisely the modulus of the first element of |ψ1ψ2〉 squared. The same is true
for the other states |01〉 , |10〉 and |11〉.

7

The state |ψ1ψ2〉 is called the joint state of the two qubits.
During the rest of this work we will only consider the qubit as our minimal data unit

for computations, which recall store the states of 2-level quantum systems. It is worth
noting that in quantum physics not only particles that form 2-level quantum systems
exist. Some others form 3-level quantum systems for instance, and can store amplitudes
for three elemental states |0〉 , |1〉 and |2〉. In this case, they are called qutrits, instead
of qubits. The generalized notion for this are qudits, which can be in d elemental states
|0〉 , . . . , |d− 1〉.

While the vast majority of quantum algorithms are designed only with qubit usage in
mind, the mathematical framework for quantum computing is entirely compatible with
qudits.

2.2 Geometric interpretation of qubits

Geometrically, a qubit can be visualized as a single point on the surface of a sphere
known as the Bloch Sphere. This representation can help understand their algebraic
expression, how measurements work and what quantum gates do to them.

Consider the pure state |ψ〉 of a qubit:

|ψ〉 = α0 |0〉+ α1 |1〉 ; α0, α1 ∈ C; |α0|2 + |α1|2 = 1.

If we write α0, α1 in polar form, we get:

|ψ〉 = r0eiγ0 |0〉+ r1eiγ1 |1〉 ; r2
0 + r2

1 = 1; γ0, γ1 ∈ [0, 2π].

Now consider the state eiϕ |ψ〉, where ϕ ∈ [0, 2π]. We can say that both states |ψ〉 and
eiϕ |ψ〉 are equivalent, because:

• Measuring |ψ〉 or eiϕ |ψ〉 will yield the same results, because the values r0, r1 are not
modified by the factor eiϕ.

• The result of applying a quantum gate U to |ψ〉 or eiϕ |ψ〉 will not be affected by the
constant eiϕ, as U(eiϕ |ψ〉) = eiϕ(U |ψ〉).

Even though |ψ〉 and eiϕ |ψ〉 are not exactly the same, they behave in the same way,
both when measuring or manipulating them. We refer to this by saying that |ψ〉 and
eiϕ |ψ〉 are equivalent and differ from a global phase factor of eiϕ. This is known as global
phase invariance and this fact allows us to simplify |ψ〉 by multiplying by e−iγ0 . For
convenience, we define ϕ = γ1 − γ0 and so we get:

|ψ〉 = r0 |0〉+ r1eiϕ |1〉 ; r2
0 + r2

1 = 1; ϕ ∈ [0, 2π].

By defining θ such that r0 = cos(θ/2) (and so r1 = sin(θ/2)) we obtain:

|ψ〉 = cos
(

θ

2

)
|0〉+ sin

(
θ

2

)
eiϕ |1〉 ; θ ∈ [0, π]; ϕ ∈ [0, 2π].

8

With this, we reach the conclusion that a state has these 2 degrees of freedom θ and ϕ.
If we assign it to a point on the surface of a sphere with the map

|ψ〉 = cos
(

θ

2

)
|0〉+ sin

(
θ

2

)
eiϕ |1〉 7−→ (x, y, z) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)),

we get the picture on Figure 1.

Figure 1. A pure state mapped to a point on the surface of a sphere - The Bloch sphere

With this model in mind, we can understand a measurement as placing two magnets
on the north and south pole of the Bloch sphere with our eyes closed. The nearer the point
is to the north magnet, the higher the chance it gets attracted to it, and the same can be
said about the south magnet. When the point reaches one of the two magnets, we will feel
it on our hands without having to look. Any successive measurements will yield the same
result, because after the first measurement, we left the point on the pole of the magnet it
got attracted to.

Applying quantum gates to a state can be seen as rotating the Bloch sphere. For
example, applying the NOT gate X would be equivalent to a rotation of π radians on the
y-axis, moving the point from one pole to another.

This fact of global phase invariance seen in the previous process explains why the T
gate introduced in section 1 is also called the π/4 gate even though the rotations depicted
in it are of π/8 radians. Just like the states |ψ〉 and eiϕ |ψ〉 are equivalent, the quantum
gates U and eiϕU are equivalent as well because of the linearity of matrices. As shown
before, the T gate has its name due to the fact that it introduces a relative phase factor
of π

4 , which in contrary to global phase factors, is indeed very relevant to computations,
though not to measurements.

Although the Bloch Sphere is a useful visualization of pure states, the 3D restriction
that it implies makes it difficult to generalize to n-qubit states. This is easily solved if we

9

view the Bloch sphere as the complex projective line.
Recall that the complex projective space PN−1 is the set of lines in the complex space

CN passing through the origin. It may be described as the quotient

PN−1 :=
CN − {0}

z ∼ λz
, λ ∈ C∗.

A point z ∈ PN−1 will be denoted by its homogeneous coordinates z = [z0 : · · · : zN−1]

where, by definition, there is always at least an integer i such that zi 6= 0, and for any
λ ∈ C∗ we have

[z0 : · · · : zN−1] = [λz0 : · · · : λzN−1].

One can see that there is a one-to-one correspondence between pure states of n qubits
and points on the space PN−1. For any n-qubit state with amplitudes α0, . . . , αN−1, we
can associate it to the point with homogeneous coordinates [α0 : · · · : αN−1]. On the other
hand, for any point with homogeneous coordinates [z0 : · · · : zN−1], we can associate it to
the state with amplitudes

z0√
∑N−1

k=0 |zk|2
, . . . ,

zN−1√
∑N−1

k=0 |zk|2
.

The intuition behind this correspondence is that the relation z ∼ λz that defines PN−1

is the equivalent to global phase invariance between pure states.
We refer to [Bal+19] for a deep exploration of the geometry behind quantum states and

quantum physics in general.

2.3 Entangled qubits

Quantum entanglement is at the heart of quantum physics, with crucial roles in quan-
tum information theory, superdense coding and quantum teleportation among others. We
next review its main features. We refer to the exhaustive reviews [Hor+09; GT09; PV07]
for the basic aspects of entanglement including its history, characterization, measurement,
classification and applications.

Let us consider the case of 2 qubits. We can easily calculate the joint state if we know
the states of both qubits, but can we do the inverse process?

Given a joint state |ϕ〉 = (a, b, c, d) ∈ C4, we want to find |ψ1〉 = α0 |0〉 + α1 |1〉 and
|ψ2〉 = β0 |0〉+ β1 |1〉 such that |ψ1ψ2〉 = |ϕ〉. This is equivalent to solving the system

(
α0
α1

)
⊗
(

β0
β1

)
=


a
b
c
d

 ⇐⇒


α0β0 = a

α0β1 = b

α1β0 = c

α1β1 = d

(1)

for α0, α1, β0 and β1, which does not always have a solution (when (a, b, c, d) =

(1/
√

2, 0, 0, 1/
√

2), for instance). When this happens, the joint state of the qubits cannot
be expressed as a single product of the states of each qubit as separate systems, as they
are codependent. This phenomenon is called entanglement.

10

Definition 2.8. Let |ϕ〉 be the joint state of n qubits. The system they form is said to be
k-separable when we can group the qubits into k groups with joint states |ψ1〉 , . . . , |ψk〉
such that

|ϕ〉 = |ψ1〉 ⊗ · · · ⊗ |ψk〉 .

When a joint state of some qubits is 1-separable (meaning it cannot be decomposed
into independent states of each system), they are said to be entangled, or that they form
an entangled state.

Non-entangled qubits can be measured separately, and the output result of each qubit
will not affect the other. If two qubits are entangled, though, measuring one of them will
force the other to collapse onto a new state depending on the obtained result.

Example 2.9. Consider the previous non-separable joint state

(1/
√

2, 0, 0, 1/
√

2) = 1/
√

2 |00〉+ 1/
√

2 |11〉 .

If we measure the first qubit and we read the state |0〉, the other qubit will collapse
onto the state |0〉 as well, because the probability of the joint state being in the state |01〉
is 0. The same analysis can be made if we read a |1〉 to predict that the other qubit will
collapse onto the state |1〉.

This would be an example of a partial measurement, which is when we measure only
some of the qubits from an entangled system.

One of the main differences between classical and quantum computing is actually
the fact that qubits can become entangled, while bits cannot. After two qubits become
entangled, no matter the physical distance between them, they will still be entangled
(assuming they are kept in stable conditions). For instance, if we have two qubits in the
joint state (1/

√
2, 0, 0, 1/

√
2) and one of them is taken to the Moon, as long as they are kept

isolated and stable, by measuring the one on Earth we will know the state of the qubit in
the Moon without measuring it, as entanglement does not break over great distances.

This can indeed be used for quantum communication (see Superdense Coding and
Quantum Teleportation in section 5 of [KLM07]) or just for local use in our algorithms.

Remark 2.10. Two qubits in the joint state |Φ+〉 = (1/
√

2, 0, 0, 1/
√

2) of example 2.9 are
called an EPR pair, which corresponds to a joint state of two qubits with maximum en-
tanglement.

2.4 n-qubit quantum gates

Recall that a quantum gate acting on a 1-qubit state is modeled as a unitary matrix
U ∈ M2(C).

Definition 2.11. A unitary matrix U is a matrix with elements in C that satisfies UU† =

U†U = I, where U† is the Hermitean conjugate of U, which is sometimes written as UH

or U∗.

Some useful properties of unitary matrices that we will use are:

11

• U is a unitary matrix ⇐⇒ All eigenvalues λ of U satisfy |λ| = 1.

• U is a unitary matrix =⇒ U is diagonalizable.

• U is a unitary matrix ⇐⇒ All eigenvectors of different eigenvalues are orthonor-
mal.

When two qubits are entangled, we can no longer express the joint state as two separate
states. We can still apply quantum gates to each of them independently, but because they
are entangled, both states will evolve together. Just like joint states are described by the
tensor product of separated states, the action of quantum gates on a joint state is also
described by it as well.

Suppose we have a joint state |ψ1〉 ⊗ |ψ2〉 and we apply a quantum gate U to the first
qubit. Implicitly, we are applying the identity gate I to the second qubit, so the joint state
gets mapped to

(U |ψ1〉)⊗ (I |ψ2〉) = (U ⊗ I)(|ψ1〉 ⊗ |ψ2〉) = (U ⊗ I) |ψ1ψ2〉 .

This transformation can be written as a circuit in the two following equivalent manners
(but the first one is obviously much simpler than the second, and therefore better overall):

|ψ1〉 U

|ψ2〉
=

|ψ1〉
U ⊗ I

|ψ2〉

Example 2.12. Following from example 2.9, consider again the joint state |ψ1ψ2〉 =
1/
√

2 |00〉 + 1/
√

2 |11〉. Applying the Hadamard gate H to the first qubit will leave the
system in the joint state

(H |ψ1〉)⊗ (I |ψ2〉) = (H ⊗ I) |ψ1ψ2〉 =
(

1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

))
1/
√

2

0
0

1/
√

2

 =

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1/
√

2

0
0

1/
√

2

 =


1/2
1/2
1/2

−1/2

 .

It can easily be checked that after the Hadamard gate, the qubits are still entangled.

When a quantum gate transforms the states of non-entangled qubits into a joint entan-
gled state, the quantum gate is said to be an entangling gate.

Definition 2.13. Let q1, ..., qn be n qubits. An n-qubit quantum gate U is an entangling
gate when there exists an n-separable joint state |ψ〉 of the qubits such that U |ψ〉 is not
n-separable.

12

When a quantum gate U is an entangling gate, it cannot be decomposed into single-
qubit quantum gates A1, . . . , An such that U = A1 ⊗ · · · ⊗ An, meaning that its action on
the states of the qubits cannot be separated into independent transformations, one for each
qubit. This does not mean that it entangles all qubits. Suppose U is a 4-qubit entangling
gate. The gate could be 3-separable but only entangle two of the four qubits. It would still
be an entangling gate, but at least we could rewrite it as U = A1 ⊗ A2 ⊗ A3 where one of
these three is a 2-qubit entangling gate.

One such notable example of 2−qubit entangling gate is the Controlled-Not gate
CNOT, with matrix form

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


and circuit representation

c :

t :
.

This gate performs the following transformation on a 2-qubit joint state:

|00〉 7−→ |00〉 , |01〉 7−→ |01〉 , |10〉 7−→ |11〉 , |11〉 7−→ |10〉

We see that if the first qubit is in the state |0〉, nothing happens, but if the first qubit is
in the state |1〉, the result is the same state but with the second qubit flipped. Flipping
a qubit is the same as applying the NOT gate X, so the CNOT applies the X gate to the
second qubit whenever the first qubit is in the state |0〉 (hence the name "Controlled Not").
This first qubit that decides if the X gate is applied is called the control qubit, and the
second qubit, the one to apply the gate X to, is called the target qubit (labelled c and t on
the circuit representation from above).

The CNOT gate belongs to an important family of gates - the controlled gates. Given
a quantum gate U, the controlled U gate c−U is the gate that performs the following map:

|00〉 7−→ |00〉 , |01〉 7−→ |01〉 , |10〉 7−→ (I ⊗U) |10〉 , |11〉 7−→ (I ⊗U) |11〉 ,

that is, it applies a U gate onto the target qubit if the control qubit is in state |1〉, and does

nothing if the control qubit is in state |0〉. The matrix form of the gate is c−U =

(
I 0
0 U

)
,

and its circuit representation is:

|c〉

|t〉 U
.

A controlled gate may have more than one control and target qubits. Constructing its
matrix form follows an analogous process to the one for one control and target qubits.
The resulting matrix will have I2×2 blocks for the control qubits and a big block with the
quantum gate to apply to the target qubits.

13

Example 2.14. The Controlled H gate c−H has matrix form


1 0 0 0
0 1 0 0
0 0 1/

√
2 1/

√
2

0 0 1/
√

2 −1/
√

2


Remark 2.15. When the qubits that we are working with have labels to distinguish them
(for example, suppose the control qubit is called c and the target qubit t), instead of "apply
the gate c−U with control qubit c and target qubit t", we will write "apply gate U on t
controlled on c" or "apply the gate Uc→t".

Remark 2.16. The fact that quantum gates are modeled as unitary matrices allows us to
use properties of unitary matrices for designing circuits. A few notable properties are:

• Both the matrix and tensor products of unitary matrices return unitary matrices.
Therefore, every quantum circuit can be summarized into a single quantum gate (to
be reused for other quantum circuits).

• Unitary matrices are invertible, so for every quantum gate there exists another quan-
tum gate that reverses its performed operations.

• Roots of unitary matrices (the n-th root of a matrix B is another matrix A such that
An = B) are unitary matrices. That means that for each quantum gate, there exist
quantum gates that perform a fraction of the operation it performs.

2.5 Von Neumann and projective measurements

In the previous chapter, the notion of measurement was explained conceptually as a
probabilistic reading of a state with possible results |0〉 and |1〉. In the same way, multiple
qubits can be measured at the same time to read a joint state consisting of multiple single
|0〉 and |1〉 states. This is the standard version of measurement, but it is not the only
version that can be implemented. In fact, it is a specific case of a generalized notion of
measurement, the Von Neumann measurement.

Definition 2.17. Let |ψ〉 be an n-qubit state. A Von Neumann measurement of |ψ〉 with
respect to an orthonormal basis B = {|ϕ1〉 , ..., |ϕN〉} of CN reads the state |i〉 with proba-
bility p(i) = |〈ϕi|ψ〉|2 and collapses the system onto the state |ϕi〉.

If we write the state as a linear combination of the basis B we get |ψ〉 = ∑N
j=1 αj

∣∣ϕj
〉

with αj ∈ C. Recall that because B is an orthonormal basis, then:

〈ϕi|ϕi〉 = 1 ∀ 1 ≤ i ≤ N;
〈

ϕi
∣∣ϕj
〉
= 0 ∀ 1 ≤ i 6= j ≤ N

and so, when we calculate p(i) we find that:

p(i) = |〈ϕi|ψ〉|2 =

∣∣∣∣∣〈ϕi|
N

∑
j=1

αj
∣∣ϕj
〉∣∣∣∣∣

2

=

∣∣∣∣∣ N

∑
j=1

αj
〈

ϕi
∣∣ϕj
〉∣∣∣∣∣

2

= |αi|2.

Remark 2.18. The standard version of measurement mentioned before is called measure-
ment in the computational basis or standard measurement, because it is the specific case

14

in which B = {|0〉 , ..., |N − 1〉}, that is, when B is the computational basis. Note that when
measuring a single qubit in the state |ψ〉 = α0 |0〉+ α1 |1〉, then

p(0) = |〈0|ψ〉|2 = |〈0| (α0 |0〉+ α1 |1〉)|2 = |α0 〈0|0〉+ α1 〈0|1〉|2 = |α0|2,

p(1) = |〈1|ψ〉|2 = |〈1| (α0 |0〉+ α1 |1〉)|2 = |α0 〈1|0〉+ α1 〈1|1〉|2 = |α1|2.

which coincides with the previous definition. Recall that {|0〉 , |1〉} is an orthonormal
basis, so

〈0|0〉 = 〈1|1〉 = 1,

〈0|1〉 = 〈1|0〉 = 0.

Von Neumann measurements can be implemented using a device that performs stan-
dard measurements and a quantum gate PB that performs a basis change to the basis B.
Such quantum gate (and its inverse) can be implemented because the matrix form of PB is
unitary, as both the computational basis and B are orthonormal.

Let |ψ〉 = ∑N
j=1 αj

∣∣ϕj
〉
. Applying P−1

B to the state before the standard measurement
maps the state to

|ψ〉 7−→ P−1
B |ψ〉 = P−1

B

N

∑
j=1

αj
∣∣ϕj
〉
=

N

∑
j=1

αjP−1
B

∣∣ϕj
〉
=

N

∑
j=1

αj |j〉 .

Measuring this state will output |i〉 with probability |αi|2, which is associated with the
state |ϕi〉 on the basis B, meaning that we have indeed performed a measurement on the
basis B. The following circuit implements such measurement:

|ψ〉 PB
−1

After the measurement, the state will collapse onto |i〉. We can then optionally apply
PB to map the collapsed state to:

|i〉 7−→ PB |i〉 = PB |i〉 = |ϕi〉

for extra computations if desired. Most of the time this step is skipped because after a
measurement, those qubits are seldom used as the measurement is often the last operation
performed on quantum algorithms.

The concept of measurement can be generalized even further to a more general version
of measurements - projective measurements.

Definition 2.19. Let |ψ〉 be an n-qubit state. Let P1, ..., Pm ∈ MN(C) with m ≤ N be
orthogonal projectors such that I = ∑m

i=1 Pi. A projective measurement of |ψ〉with respect
to P1, ..., Pm reads the state |i〉 with probability p(i) = 〈ψ| Pi |ψ〉 and collapses the system
onto the state

Pi |ψ〉√
p(i)

.

15

Recall that the condition of P1, ..., Pm being orthogonal projectors translates to P2
i = Pi

(projector) and P†
i = Pi, PiPj = 0 ∀ 1 ≤ i 6= j ≤ m (orthogonal). Also, the condition

I = ∑m
i=1 Pi ensures that ∑m

i=1 p(i) = 1, because

m

∑
i=1

p(i) =
m

∑
i=1
〈ψ| Pi |ψ〉 = 〈ψ|

(
m

∑
i=1

Pi

)
|ψ〉 = 〈ψ| I |ψ〉 = 〈ψ|ψ〉 = 1.

Remark 2.20. The Von Neumann measurement is a special case of projective measurement
where Pi = |ϕi〉〈ϕi|. This fact is seen through the following equalities:

p(i) = 〈ψ| Pi |ψ〉 = 〈ψ|ϕi〉 〈ϕi|ψ〉 = 〈ϕi|ψ〉∗ 〈ϕi|ψ〉 = |〈ϕi|ψ〉|2,

which coincide with the previous definition of Von Neumann measurements. In this
case, we have (for n qubits) N projectors with rank(Pi) = 1, one for each vector of the
orthonormal basis.

A projective measurement is more general in the way that there is no need to have
as many orthogonal projectors as different elemental states and provide one of the N
possible readings. As long as the condition I = ∑m

i=1 Pi is satisfied, and our projectors are
orthogonal, we can choose as many as we want and however we want, even with different
ranks.

Physically implementing specific projective measurements is not a trivial matter and
requires proper analysis. The notion of projective measurements is more interesting on a
theoretical/simulation level rather than physical/implementation.

2.6 Pure states and mixed states

Until now we have referred to the states of qubits as pure states, and this particular
distinction hints to the existence of some kind of non-pure - mixed states.

Definition 2.21. An n-qubit mixed state is an ensemble

|ψ〉 = {(|ψ1〉 , p1), . . . , (|ψr〉 , pr)},

where |ψ1〉 , . . . , |ψr〉 are n-qubit pure states and p1, . . . , pr ∈ [0, 1] are probabilities such
that ∑r

j=1 pj = 1.

Indeed, qubits can sometimes be in what are called mixed states, which is a proba-
bilistic mix of pure states. Mixed states are a tool that we can use to analyze entangled
qubits separately.

Example 2.22. Consider two qubits with joint state

|ψ1ψ2〉 = (1/
√

2, 0, 1/2, 1/2) =
1√
2
|00〉+ 1

2
|10〉+ 1

2
|11〉 .

Measuring them together will output:
|00〉with probability 1/2

|10〉with probability 1/4

|11〉with probability 1/4

.

16

If we only only measured the first qubit, we would read |0〉 or |1〉with a 50/50 chance. If
we read |0〉 on the first qubit, the second would collapse onto the state |0〉, and if we read
|1〉 instead, the second would collapse onto state 1/

√
2 |0〉+ 1/

√
2 |1〉. Without measuring

the first qubit, we have no idea of which of the two options is the correct for the second
qubit, but we know the probabilities of each option.

We can therefore think of the second qubit being in the mixed state

|ψ2〉 =
{(
|0〉 ,

1
2

)
,
(
|0〉+ |1〉√

2
,

1
2

)}
.

Remark 2.23. 1-qubit mixed states can be geometrically interpreted as points on the inte-
rior of the Block Sphere.

Mixed states give us a way of working separately with sub-systems of an entangled
system, as we can perform unitary operations and measurements on the ensembles. If we
consider the mixed state |ψ〉 = {(|ψ1〉 , p1), . . . , (|ψr〉 , pr)}:

• Applying a quantum gate to the mixed state amounts to applying the gate to each
pure state of the ensemble, so

U |ψ〉 = {(U |ψ1〉 , p1), . . . , (U |ψr〉 , pr)}.

• Recall in subsection 2.5 that a standard measurement of a pure state |ϕ〉 reads |i〉
with probability p(i) = |〈i|ϕ〉|2 for i = 0, . . . , n− 1. To factor all pure states in the
ensemble, we calculate the weighted sum of all these probabilities:

p(i) = p1|〈i|ψ1〉|2 + · · ·+ pr|〈i|ψr〉|2.

While it is a valid solution, if the system that we are studying is entangled to many
other different systems, (when r is large), we will have a lot of pure states and probabilities
in our ensemble and calculations will become cumbersome. For this reason, an alternative
is used.

Definition 2.24. Let |ψ〉 = {(|ψ1〉 , p1), . . . , (|ψr〉 , pr)} be an n-qubit mixed state. We define
its density operator is:

ρ =
r

∑
j=1

pj
∣∣ψj
〉〈

ψj
∣∣ .

For n-qubit mixed states, the density operator ρ will be an N × N matrix, so we will
refer to it as the density matrix.

Example 2.25. In example 2.22, the density matrix of |ψ2〉 would be:

ρ =
1
2

(
1
0

) (
1 0

)
+

1
2

(
1/
√

2
1/
√

2

) (
1/
√

2 1/
√

2
)
=

1
2

(
1 0
0 0

)
+

1
2

(
1/2 1/2
1/2 1/2

)
=

(
3/4 1/4
1/4 1/4

)
.

Instead of working with the ensemble of pure states, the density matrix is calculated
and used to compute transformations with quantum gates and measurements, as the
computations are far simpler.

17

• After a quantum gate U, the density matrix of the mixed state will be

r

∑
i=1

pi(U |ψi〉)(〈ψi|U†) =
r

∑
i=1

piU |ψi〉〈ψi|U† = U

(
r

∑
i=1

pi |ψi〉〈ψi|
)

U† = UρU†.

• The previous formula for p(i) when measuring the mixed state can be restated as:

p(i) =

p1|〈i|ψ1〉|2 + · · ·+ pr|〈i|ψr〉|2 =

p1 〈i|ψ1〉 〈i|ψ1〉∗ + · · ·+ pr 〈i|ψr〉 〈i|ψr〉∗ =
p1 〈i|ψ1〉 〈ψ1|i〉+ · · ·+ pr 〈i|ψr〉 〈ψr|i〉 =

|i〉 (p1 |ψ1〉〈ψ1|) 〈i|+ · · ·+ |i〉 (pr |ψr〉〈ψr|) 〈i| =
|i〉 (p1 |ψ1〉〈ψ1|+ · · ·+ pr |ψr〉〈ψr|) 〈i| =

|i〉 ρ 〈i| .

Example 2.26. Let us finish example 2.25 by performing a standard measurement with
the density matrix:

p(0) =
(
1 0

) (3/4 1/4
1/4 1/4

)(
1
0

)
=

3
4

,

p(1) =
(
0 1

) (3/4 1/4
1/4 1/4

)(
0
1

)
=

1
4

.

Remark 2.27. Note that |i〉 ρ 〈i| is a real number, so we can restate it as Tr (|i〉 ρ 〈i|), where
Tr denotes the trace of a matrix. From there, using the properties of the matrix trace we
get:

Tr (|i〉 ρ 〈i|) = Tr (|i〉〈i| ρ) .

The density matrix also gives us a way to compute measurements on some of the
qubits from an entangled system. This is known as performing a partial measurement.
From the entire system’s density matrix, we obtain a smaller density matrix of the qubits
we want to measure, and then use said smaller density matrix for measurements. The
smaller density matrix is obtained through the partial trace.

Definition 2.28. Let ρ be the density matrix of the composite system consisting of system
A in state |a〉 and system B in state |b〉, that is, ρ = |a〉〈a| ⊗ |b〉〈b|. The partial trace over
system A is defined by:

TrA (ρ) = |b〉〈b|Tr (|a〉〈a|) ,

which is the density matrix of the qubits from system B isolated from the qubits from
system A. The partial trace over system B is defined analogously.

We provide an example of this procedure in appendix A.1.
Calculating the density matrix of a mixed state is a direct process, but going back to

recover the ensemble is not a trivial matter. For any density matrix, the existence of a
corresponding mixed state is guaranteed, but it does not necessarily have to be unique.
Computation and measurement-wise, those correspondent mixed states will be indistin-
guishable.

18

2.7 Universal set of quantum gates

In classical computation, most of the circuits that perform operations on many bits
are not manufactured from scratch and are instead created using smaller circuits or gates
(take for instance multiplexors, which are implemented using AND gates). A set of logic
gates with which all the other logic gates (and therefore any other bigger circuit) can be
implemented is called a universal set of logic gates.

It is of much interest to find small and simple universal sets of logic gates because
understanding them allows us to minimize the number of gates that will have to be phys-
ically implemented in order to build any logic circuit. In quantum computing this interest
is emphasized when we consider the fact that for any given number of qubits in a quan-
tum system there exist an infinite number of unitary operators, way more than the finite
number of logic gates.

But can these unitary operators be physically implemented with perfect accuracy?
Until now, we have made this assumption without giving it much thought, but the infinite
number of them puts it on doubt. Indeed, in real life, physical implementations of unitary
operators carry a small accuracy error.

Definition 2.29. Let U be a desired unitary transformation, V be an approximation. The
error in the approximation is defined as:

E(U, V) = max
|ψ〉
‖(U −V) |ψ〉‖ .

If in classical computation the requirement for a universal set of logic gates was to
simply implement any other gate, in quantum computing, the requirement will be to
implement any unitary operation with bounded error or desired accuracy.

Definition 2.30. A universal set of quantum gates is a set of quantum gates with which
any unitary transformation can be approximated with error bounded by ε ≥ 1 for any
arbitrary small value of ε.

For 1-qubit unitary operations, we have the following:

Theorem 2.31. The set {H, T} is universal for 1-qubit gates.

Example 2.32. The Pauli gates X, Y, Z have the following decomposition, up to a global
phase factor:

X = HT4H, Y = HT4HT4, Z = T4.

And for n-qubit unitary operations, by using the following universality:

Theorem 2.33. A set composed of any 2-qubit entangling gate, together with all 1-qubit gates, is
universal.

We can finally deduce that:

Theorem 2.34. The set G = {H, T, CNOT} is universal for n-qubit gates.

Example 2.35. The Toffoli gates are the n-qubit generalization of CNOT gates. An n-qubit
Toffoli gate has n− 1 control qubits and 1 target qubit. If all the control qubits are in state
|1〉, the Toffoli gate flips the state of the target qubit, and does nothing otherwise. In page
182 of [NC00] we can see how it can be implemented using only H, T and CNOT gates.

19

So this means only accurate implementations of these 3 gates are necessary to build
any quantum circuit with any desired precision, though this does not mean that only
using these gates is the most efficient procedure. Using pre-made and more accurate
combinations of H, T and CNOT as extra gates in G (as long as they can be physically
implemented) can reduce the total number of used gates for approximation, which is
interesting due to the fact that there is a small error chance with each use of a quantum
gate.

It is very important to be assured that any quantum circuit that we theoretically devise
can be brought to reality through an indefinitely accurate physical implementation, but it
is also important to somehow quantify how expensive this implementation will be (and by
expensive we mean how many gates we will need). For 1-qubit gates, the Solovay-Kitaev
Theorem quantifies this cost, provided a specific condition is satisfied.

Theorem 2.36 (Solovay-Kitaev Theorem). If G is a universal set of 1-qubit quantum gates and
for any gate g ∈ G its inverse g−1 can be exactly implemented with a finite number of gates from G,
then it is assured that any 1-qubit gate can be implemented with error at most ε with O(logc(1/ε))

gates from G, where c is a positive constant.

Remark 2.37. Most of the time the constant c lies in the interval [2, 4], depending on the
implementation, but it has been proven that with an optimal gate set, it can get as low as
1. More information about the Solovay-Kitaev Theorem can be found in Appendix 3 of
[NC00].

It is easy to check that
H−1 = H; T−1 = T7,

so our universal set from before satisfies the theorem’s condition and therefore we can
use this asymptotic quantification to gauge the trade-off between number of gates and
accuracy.

Having made this analysis for quantum gates, we now turn to quantum circuits. To
implement quantum circuits designed on paper, for each gate we will use an approxima-
tion of error lower or equal than ε. To calculate the total error of the circuit, we will use
the following fact:

E(Um · · ·U1, Vm · · ·V1) ≤ E(U1, V1) + · · ·+ E(Um, Vm),

deduced from definition 2.29, which tells us that if a quantum circuit requires m quan-
tum gates and we use approximations of error bounded by ε, then the error of the circuit
will be bounded by m · ε.

20

3 Basic quantum algorithms

In this section we will focus on a few basic quantum algorithms that will be needed for
the next section. These are the Phase Estimation, Eigenvalue Estimation and Grover Search
algorithms. For each algorithm, we will give a detailed explanation of the algorithm,
a construction of the quantum circuit, analyze their output, and then showcase a few
executions with custom implementations running on Qiskit’s QASM Simulator.

We will assume that we have absolutely accurate implementations of all the quan-
tum gates used, so no errors associated to physical imperfections can occur, and that the
quantum computer that the algorithms will run on is ideal and has no noise.

Also, until now the following notation was used to describe the elemental states from
the computational basis:

|0〉 , |1〉 , . . . , |n− 1〉 =


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1

 .

From now on, this notation will be used to describe the decimal representation of the
n-bit string states. For instance, if n = 8, we will refer to the state

|00001101〉 = |0〉 |0〉 |0〉 |0〉 |1〉 |1〉 |0〉 |1〉

as |13〉, and vice versa.

3.1 The Phase Estimation algorithm

The Phase Estimation algorithm is a quantum algorithm that outputs an estimation
of the phase of a quantum register. It is a fundamental and crucial algorithm as it is used
as a subroutine in many other quantum algorithms that work with phases (for instance,
the famous Shor’s algorithm). To begin, let us detail more what we refer to as the "phase
of a quantum register".

Recall that the 1-qubit Hadamard gate H performs the following transformation:

|0〉 7−→ |0〉+ |1〉√
2

, |1〉 7−→ |0〉 − |1〉√
2

,

which can be abbreviated as:

|x〉 7−→ |0〉+ (−1)x |1〉√
2

.

What it does is essentially encode the value x as the phase of the qubit, which is the
value ω ∈ [0, 1) in the expression:

|0〉+ e2πiω |1〉√
2

.

21

If x = 0, the value ω = 0 will be encoded, and if x = 1, the value ω = 1/2 will be
encoded instead. To go back and recover the original value x we can just apply H again,
as the gate satisfies H−1 = H.

We can take two qubits instead of one and apply an H gate to each of them, which will
result in the following map:

|x1x2〉 7−→ H |x1〉 ⊗ H |x2〉 =
|0〉+ (−1)x1 |1〉√

2
⊗ |0〉+ (−1)x2 |1〉√

2
=

|00〉+ (−1)x2 |01〉+ (−1)x1 |10〉+ (−1)x1·x2 |11〉
2

=

(−1)(0 0)·
(x1

x2

)
|00〉+ (−1)(0 1)·

(x1
x2

)
|01〉+ (−1)(1 0)·

(x1
x2

)
|10〉+ (−1)(1 1)·

(x1
x2

)
|11〉

2
,

where the symbol · denotes the usual scalar product. By defining x :=
(

x1
x2

)
, the result

can be elegantly expressed as:

∑
y∈{0,1}2

(−1)y·x |y〉 .

By similar calculations it can be shown that n Hadamard gates perform the following
map on the joint state of n qubits:

|x1x2 . . . xn〉 = |x〉 7−→ H⊗n |x〉 = ∑
y∈{0,1}n

(−1)y·x |y〉 ; x =

x1
...

xn

 .

The phases y · x are a specific subset of phases, but in general, an encoded phase ω

will produce a state of the form

2n−1

∑
y=0

e2πiωy |y〉 ; ω ∈ [0, 1),

which coincides with the 1-qubit case. When the register is on this state, we say that
is has the phase ω encoded. The problem of retrieving an estimation of ω is called the
Phase Estimation problem, the solution of which is the Quantum Fourier Transform,
abbreviated as the QFT. By giving the solution to the problem we will construct the QFT.

The algorithm makes use of an n-qubit quantum register with labelled qubits q1, . . . , qn,
starting with the phase encoded and from which we will measure an estimation of the
phase at the end.

Note that ω can be expressed in binary form as ω = 0.x1x2 . . . with an indefinite
number of digits x1, x2, · · · ∈ {0, 1}. It can be shown that:

22

∑
y∈{0,1}n

e2πi(0.x1x2 ...)y |y〉 =

|0〉+ e2πi2n−1(0.x1x2 ...) |1〉√
2

⊗ |0〉+ e2πi2n−2(0.x1x2 ...) |1〉√
2

⊗ · · · ⊗ |0〉+ e2πi(0.x1x2 ...) |1〉√
2

=

|0〉+ e2πi(0.xnxn+1 ...) |1〉√
2

⊗ |0〉+ e2πi(0.xn−1xn ...) |1〉√
2

⊗ · · · ⊗ |0〉+ e2πi(0.x1x2 ...) |1〉√
2

Now suppose that the phase ω could be expressed exactly with n digits, meaning
ω = 0.x1x2 . . . xn. If that were the case, then the previous expression would amount to:

|0〉+ e2πi(0.xn) |1〉√
2

⊗ |0〉+ e2πi(0.xn−1xn) |1〉√
2

⊗ · · · ⊗ |0〉+ e2πi(0.x1x2 ...xn) |1〉√
2

By applying an H gate on the first qubit, we would obtain xn. To obtain xn−1, we
would have to eliminate xn from the second qubit before applying an H gate. To achieve
this, consider the following gate:

Rk =

(
1 0

0 e
2πi
2k

)
=

(
1 0
0 e2πi(0.0...1)

)
,

where this number 0.0 . . . 1 with a 1 on the k-th digit is just 1/2k expressed in binary
form. We are interested in its inverse, which is:

R−1
k =

(
1 0

0 e−
2πi
2k

)
=

(
1 0
0 e2πi(−0.0...1)

)
.

If xn = 0, then we do not need to eliminate xn, as 0.xn−1xn = 0.xn−1. But if xn = 1, by
applying the gate R−1

2 , we would get:

R−1
2
|0〉+ e2πi(0.xn−11) |1〉√

2
=
|0〉+ e2πi(0.xn−11−0.01) |1〉√

2
=
|0〉+ e2πi(0.xn−1) |1〉√

2
,

from which we can now retrieve xn−1 by applying an H gate. Basically, we want to
apply R−1

2 when the first qubit is |1〉, and do nothing otherwise. To do that, we can apply
the controlled gate R−1

2 1→2.
Retrieving xn−2 from the third qubit after xn and xn−1 have been retrieved from the

two first qubits would follow an analogous procedure: apply R−1
3 1→3 and R−1

2 2→3, and so
on for the rest of the qubits. We show the associated quantum circuit in Figure 2.

The circuit that performs the phase encoding process is the QFT. The phase decoding
circuit, the one that solves this problem, is the inverse of the QFT (QFT−1). After applying
the QFT−1, we can simply measure the qubits in the computational basis to obtain the
digits x1, x2, . . . , xn from the phase ω = 0.x1x2 . . . xn.

23

. . .

. . .

...

. . .

. . .

q0 H xn

q1 R−1
2 H xn−1

qn−2 R−1
n−1 R−1

n−2 H x2

qn−1 R−1
n R−1

n−1 R−1
2 H x1

Figure 2. The solution circuit to the Phase Estimation problem: the QFT−1

Most of the time, the phase ω will not exactly be 0.x1x2 . . . xn. What we will obtain
then is a superposition of n-digit binary approximations of ω, with increasing amplitude
the closer the approximation is to ω. After the measurement, we will obtain one of them
at random. One can visualize such probabilities in Figure 3.

Lemma 3.1. The probability of obtaining each of the n-digit binary approximations x for the phase
ω after running the QFT−1 and performing a measurement in the computational basis is:

p(x) =

 1
22n

sin2(π(2nω−x))
sin2(π(ω−x/2n))

, if x 6= 2nω

1, if x = 2nω
.

Figure 3. Some examples of measurement probabilities of the QFT−1

Theorem 3.2. Let ω ∈ [0, 1) be the phase to estimate and x the closest n-digit binary approx-
imation of ω. After applying the Phase Estimation algorithm, the probability of measuring x is
lower-bounded by 4/π2 ≈ 0.405284.

Theorem 3.3. Let ω ∈ [0, 1) be the phase to estimate and x, x′ the two closest n-digit binary
approximations of ω. After applying the Phase Estimation algorithm, the probability of measuring
x or x′ is lower-bounded by 8/π2 ≈ 0.810569.

24

Two possible workarounds to ensure a better approximation of the phase are:

• Increasing the number of qubits n, which will sometimes not be possible for physical
reasons.

• Running the QFT−1 more than once to sample many approximations, which may
be non-viable when preparing the state that we want to read the phase from is an
expensive process.

In summary, for the elemental states |x〉 = |0〉 , . . . , |2n − 1〉, we can summarise the
action of the QFT and the QFT−1 as:

|x〉 QFT7−−→ 1√
2n

2n−1

∑
y=0

e2πiy x
2n |y〉 QFT−1

7−−−→ |x〉

Encoding and decoding states as phases into qubits can prove very useful for many
algorithms, in particular for those that rely on some classical arithmetic operations, like
additions, substractions or multiplications.

The QFT uses the same register q in state |x〉 as control and target of the rotation gates
Rk and R−1

k to encode the phase ω = x/2n. With two different registers a and b on states
|xa〉 , |xb〉, respectively, by using one of them for control and the other as the target, the
phase ωa ± ωb = xa±xb/2n can be encoded. Using the QFT−1 on the target register will
then yield the state |xa ± xb〉.

This can be used to devise circuits that can perform arithmetic operations. This is
explored in more depth on [Şah20]. In section 4, we will see a very similar technique used
on the Grover Adaptive Search algorithm for cost function computation.

Also, one can see that the rotation gates Rk used for the QFT have very small angles.
This poses the question: Can these gates be actually implemented physically? Not only
in the construction of the QFT, but in many other quantum circuits, the availability of
these precise rotational gates is crucial and a necessity. One can refer to [McK+16] where
implementations of these rotational gates are studied.

The Phase Estimation algorithm with a custom version of the QFT can be tested on
PE_Tester.ipynb, hosted on the GitHub repository at [Ort21].

3.2 Grover’s Quantum Search algorithm

To begin, let f : {0, 1}n −→ {0, 1} be an unknown function and consider the problem
of finding a string x ∈ {0, 1}n such that f (x) = 1. Suppose we cannot abuse the structure
of f . If this is the case, a classical computer has no option but to try all the different n-bit
strings one by one until one of them gives out a 1. The computational cost of this problem
scales exponentially as n grows large enough (in terms of the times f has to be evaluated).

Grover Search is a quantum algorithm that can solve this problem evaluating f a
reduced number of times. It works by setting all the n-bit string states in superposition
on a register, evaluating f on all of them at the same time, and then amplifying the
amplitude of the string states that give out a 1 to maximize the probability of reading

25

them when measuring the register. In this section we will thoroughly explain and analyze
this algorithm.

The algorithm makes use of two quantum registers:

• An n-qubit register of labelled qubits q1, . . . , qn initially set in the state |0〉n, that can
store the superposition of all the n-bit string states |0〉n , |1〉n , . . . , |2n − 1〉n.

• An ancillary 1-qubit register with label a set in the state |−〉 := 1/
√

2 |0〉 − 1/
√

2 |1〉)
throughout the entire algorithm. This can easily be achieved with initial state |0〉
and X and H gates:

|0〉 X7−→ |1〉 H7−→ |0〉 − |1〉√
2

= |−〉

The algorithm also requires the construction of the following gates:

• A state preparation operator A that produces an equal superposition of all possi-
ble n-bit string states. Note that this does not necessarily mean that we want all
the string states in superposition, as some of them may be unneeded due to some
problem specific reasons.

Let I ⊆ {0, 1, ..., 2n − 1} be all the possible states. The action of operator A must be:

A : |0〉n 7−→
1√
|I| ∑

x∈I
|x〉n .

Note that when I = {0, 1, ..., 2n − 1}, which is when we want all the states, we can
simply choose A = H⊗n. H⊗n is often chosen for simplicity. We recall the action of
H⊗n :

H⊗n : |0〉n 7−→
1√
2n

2n−1

∑
x=0
|x〉n .

We will study this concrete case, as we will make some assumptions that require
that I = {0, 1, ..., 2n − 1}, so from now on, A = H⊗n, which has the particularity that
H⊗n†

= H⊗n.

• An oracle U f that applies the function f from the problem. The action of U f must
be:

U f : |x〉n |b〉 7→ |x〉n |b⊕ f (x)〉 .

The construction of this operator is not trivial and depends on the concrete problem
at hand. Note that this operator acts on both registers. The reason the ancillary
register is set to state |−〉 is because of the action performed by U f :

U f : |x〉n |−〉 7−→ U f |x〉n |−〉 = U f |x〉n
|0〉 − |1〉√

2
= |x〉n

| f (x)〉 − |1⊕ f (x)〉√
2

=|x〉n
|0〉−|1〉√

2
= |x〉n |−〉 if f (x) = 0

|x〉n
|1〉−|0〉√

2
= − |x〉n |−〉 if f (x) = 1

.

26

If f (x) = 0, it does nothing, and if f (x) = 1, it performs a phase shift of −1 on the
state.

• A phase shift operator D, the action of which is:

D :

{
|x〉n 7→ − |x〉n if x 6= 0

|0〉n 7→ |0〉n
,

performing a phase shift of −1 on all states except |0〉n. This is equivalent to shifting
the phase of only the |0〉n state and leaving the rest untouched. This operator is
often called the Grover diffusion operator or the Grover diffuser. The matrix cor-
responding to this n-qubit operator is a 2n × 2n diagonal matrix where all elements
are 1s except the first, which has value −1. One can refer to [SBM04] to see how
these operators can be implemented without the usage of n-qubit gates.

With these, we construct the Grover Iterate G = ADA†U f . Starting with initial state

(A⊗ HX) |0〉n |0〉 =
1√
2n ∑

x∈I
|x〉n |−〉 ,

we repeatedly apply G a number of times. After that, by measuring the first register
on the computational basis, we will read one of the strings x that satisfies f (x) = 1 with
high probability (a "good" string), if there is any. The following analysis will show why
that is true.

When applying the Grover Iterate, first U f is applied. Let Ig, Ib ("g" for "good", "b" for
"bad") be a partition of the possible states I, where:

Ig = {x ∈ I | f (x) = 1}, Ib = {x ∈ I | f (x) = 0}.

For convenience, we denote tg, tb :=
∣∣Ig
∣∣, |Ib|, respectively. We can separate the super-

position of all possible states into two superpositions of good and bad states:

1√
2n ∑

x∈I
|x〉n |−〉 =

1√
2n ∑

x∈Ib

|x〉n |−〉+
1√
2n ∑

x∈Ig

|x〉n |−〉 .

U f will only affect the superposition of good states:

1√
2n ∑

x∈Ib

|x〉n |−〉+
1√
2n ∑

x∈Ig

|x〉n |−〉
U f7−→ 1√

2n ∑
x∈Ib

|x〉n |−〉 −
1√
2n ∑

x∈Ig

|x〉n |−〉 .

From now on we will ignore the ancilla register on state |−〉 as the remaining operators
do not act on such register, so the previous result reduces to:

1√
2n ∑

x∈Ib

|x〉n −
1√
2n ∑

x∈Ig

|x〉n = ∑
x∈I

αx |x〉n ,

αx = 1√
2n if f (x) = 0

αx = − 1√
2n if f (x) = 1

Now out of all 2n different states we have tg good states with amplitude −1/
√

2n and
tb bad states with amplitude 1/

√
2n. On this state, the operators ADA† perform a special

kind of symmetry operation over the amplitudes of the states about their mean, given by
the following lemma:

27

Lemma 3.4. Let
µ =

1
t ∑

x∈I
αx

be the mean of all amplitudes of the state

∑
x∈I

αx |x〉n .

The operators ADA† act on the amplitudes αx performing the following map:

αx 7−→ 2µ− αx.

Lemma 3.4 can be visualized in Figure 4. The red line marks the mean of the am-
plitudes of the states after applying the oracle U f , which is the value through which the
symmetry has been performed.

Figure 4. Amplitudes during the process of one G application (n = 5, tg = 2, tb = 30)

Contrary to what one might intuitively think, as this it what happens with most clas-
sical iterative numerical methods, it is not true that the more times we apply G then the
higher the chances of reading a good string x. For each problem, there is an optimal num-
ber of times G must be applied. If that number is surpassed or not reached, the probability
of reading a good string will be reduced.

28

The number of times the Grover Iterate G must be applied depends on tg, the number
of good strings. Further analysis shows that:

Theorem 3.5. Let

sin2 (θ) =
tg

2n =⇒ θ = arcsin

(√
tg

2n

)
.

Then the probability of reading a good string after k applications of the Grover Iterate G is:

P(k) = sin2 ((2k + 1)θ).

It is very important to point out that theorem 3.5 requires the assumption I =

{0, ..., 2n − 1}.
To maximize our success chances, we must choose k such that sin2 ((2k + 1)θ) is closest

to 1, which is the same as (2k + 1)θ being close to π/2, 3π/2, If we choose to get close
to π/2, then:

(2k + 1)θ ≈ π

2
=⇒ k ≈ π

4θ
− 1

2
,

so we can simply round to the nearest integer and choose:

k =

⌊
π

4θ
− 1

2

⌉
=
⌊ π

4θ

⌋
=

⌊
π

4
1

arcsin
(√

tg/2n
)⌋

Example 3.6. In our previous visualization, with n = 5 and tg = 2, the number of times
to apply G would be:

k =

⌊
π

4
1

arcsin
(√

2/32
)⌋ = b3.108269c = 3.

In Figure 5 we can see how the amplitudes of the bad strings are very close to 0.

Figure 5. Amplitudes after 3 G applications (n = 5, tg = 2, tb = 30)

One key problem about the algorithm though is that sometimes we might not know
which is the number of good strings tg. The problem of calculating tg beforehand is known
as the Quantum Counting problem, which we will see in section 3.3. There also are some
modified versions of the algorithm that output a good string with lower probability and

29

that must be executed more than once, but which do not require prior knowledge of the
value tg. In the standard case when tg = 1, then the best number of Grover iterations is:

k =

⌊
π

4
1

arcsin (1/
√

2n)

⌋
.

We present in Figures 6 and 7 the complete quantum circuit of Grover Search and the
construction of the iterator G.

. . .

. . .

q : |0〉n A

G G
a : |0〉 X H

Figure 6. The solution circuit to the search problem

q

G
a

=

q

U f

A† D A

a

Figure 7. The Grover iterate G = ADA†U f

When measuring the result, we might not always obtain an optimal answer, but as n
grows, it has been proved that the probability of a bad read decreases exponentially.

Theorem 3.7. Let f : {0, 1}n −→ {0, 1} with only one string x ∈ {0, 1}n such that f (x) = 1,
and I chosen to be {0, 1, . . . , 2n− 1}. Then the probability of obtaining x after applying the Grover
Search algorithm is lower bounded by 1−O(1/2n).

The Grover Search algorithm achieves a polynomial improvement on the number of
times the function to optimize has to be evaluated. Suppose, on the worst case, that only
one of the 2n possible strings is an optimal string. We have seen that the number of
quantum applications of f (that is, the number of applications of the Grover iterator G) is:

π

4
1

arcsin (1/
√

2n)
− 1

2
.

On the other hand, a classical computer has to try them all. On average, it will have
to evaluate half the possible strings until it finds the optimal one, meaning the number of
classical applications of f is

2n−1 ∈ O(2n),

where O(·) is the big-O notation.
When studying the asymptotic growth of the number of quantum applications, when

x is close to 0, we can simply substitute arcsin(x) by the first term of its Taylor series x. It
is clear that limn→∞ 1/

√
2n = 0, and therefore under these conditions:

π

4
1

arcsin (1/
√

2n)
− 1

2
≈ π

4

√
2n − 1

2
∈ O(2n/2).

30

The Grover Search algorithm with a custom implementation can be tested on
GS_Tester.ipynb, hosted on the GitHub repository at [Ort21].

3.3 The Eigenvalue Estimation algorithm and Quantum Counting

The Eigenvalue Estimation algorithm makes use of the Phase Estimation algorithm
explained previously to output an estimate of the eigenvalue associated with a specific
eigenvector of a unitary matrix. We will review this algorithm and how it can be used to
solve the Quantum Counting problem mentioned in section 3.2.

Recall from section 2.4 that unitary matrices have eigenvalues and eigenvectors of
modulus 1. This means that its eigenvalues have form e2πiω with ω ∈ [0, 1], and that its
eigenvectors can be represented as pure states on a quantum register. This allows us to
work with the unitary matrix, the eigenvalues and the eigenvectors on a quantum circuit.
A primordial requisite of the algorithm then is that we have the unitary matrix encoded
as a quantum gate to be used in the algorithm.

Let U denote both the unitary matrix and the n-qubit quantum gate with such unitary
matrix encoded, and let |ψ〉 be an eigenstate (the eigenvector encoded as a pure state) of
U with eigenvalue e2πiω. Consider the action of U over the eigenstate controlled on one
extra qubit:

|0〉 |ψ〉 c−U7−→ |0〉 |ψ〉

|1〉 |ψ〉 c−U7−→ |1〉U |ψ〉 = |1〉 e2πiω |ψ〉 = e2πiω |1〉 |ψ〉

When the control qubit is in state |0〉, then nothing happens to the system, but when
the control qubit is state |1〉, then the eigenvalue adds to the global phase factor of the
state. If we superpose both |0〉 and |1〉 states on the control, applying c−U will result in:

|0〉+ |1〉√
2
|ψ〉 = 1√

2
|0〉 |ψ〉+ 1√

2
|1〉 |ψ〉 c−U7−→ 1√

2
|0〉 |ψ〉+ e2πiω 1√

2
|1〉 |ψ〉 =

|0〉+ e2πiω |1〉√
2

|ψ〉 ,

so the phase of the eigenvalue will get encoded on the control qubit. From there we
could apply the QFT−1 as in Phase Estimation to obtain the first digit x1 of the decimal
expression 0.x1x2 . . . of the phase ω. If we want more digits x2, x3, . . . , xm, we will have to
generate the states

|0〉+ e2πi(2ω) |1〉√
2

|ψ〉 ,
|0〉+ e2πi(22ω) |1〉√

2
|ψ〉 , . . . ,

|0〉+ e2πi(2m−1ω) |1〉√
2

|ψ〉 .

This can be easily achieved by applying c−U a total of k times (abbreviated as applying
c−Uk). The action of such application on the state |1〉 |ψ〉 is:

|1〉 |ψ〉 c−Uk
7−→ |1〉Uk |ψ〉 = |1〉

(
e2πiω

)k
|ψ〉 = e2πikω |1〉 |ψ〉 ,

therefore, to obtain digits x1, x2, . . . , xm, we apply c−U, c−U2, c−U4, . . . , c−U2m−1
, each

controlled on a qubit in the state 1/
√

2 |0〉+ 1/
√

2 |1〉, apply the QFT−1 on the control qubits

31

and then measure the result. This process is summarized in the circuit on Figure 8. The
output returned by the Phase Estimation algorithm (the QFT−1) is already analyzed in
section 3.1.

. . .

...

. . .

. . .

. . .

. . .

ctrl : |0〉m

H

QFT−1

xm

H x3

H x2

H x1

trgt : |ψ〉 U U2 U4 U2m−1

Figure 8. Circuit of Eigenvalue Estimation

We have made the assumption that the target register already begins in an eigenstate
|ψ〉. When this is not the case (for instance, when we do not know the eigenstates of U)
and the register starts on some other state |ϕ〉, what will be the output after the algorithm?

Recall from section 2.4 again that unitary matrices are always diagonalizable, meaning
that for our unitary U, there exists an eigenstate basis {|ψ1〉 , . . . , |ψ2n〉} formed by all
eigenstates of U. Furthermore, the eigenstates of different eigenvalues are orthonormal,
so an orthonormal basis can be chosen. This means that whatever the initial state |ϕ〉 was,
we can decompose it as:

|ϕ〉 = µ1 |ψ1〉+ · · ·+ µ2n |ψ2n〉 , |µ1|2 + · · ·+ |µ2n |2 = 1,

so any state |ϕ〉 can be understood as a superposition of all the eigenstates of U. Let
e2πiω1 , . . . , e2πiω2m be all the eigenvalues of the aforementioned eigenstates. The output
will be the m-digit estimation of ωj given by the QFT−1 with probability

∣∣µj
∣∣2.

The Eigenvalue Estimation algorithm is of interest because it can help us solve the
Quantum Counting problem. By estimating the eigenvalues of the Grover iterator G we
can obtain approximations for tg. Using the same notation as in section 3.2, consider the
state preparation operator H⊗n and its action:

|0〉n
H⊗n
7−→ 1√

2n

2n−1

∑
x=0
|x〉n =

1√
2n ∑

x∈Ig

|x〉n +
1√
2n ∑

x∈Ib

|x〉n .

By defining

32

∣∣ψg
〉
=

1√
tg

∑
x∈Ig

|x〉n ,

∣∣ψg
〉
=

1√
tb

∑
x∈Ib

|x〉n =
1√

2n − tg
∑

x∈Ib

|x〉n ,

we can rewrite the previous expression as:

1√
2n ∑

x∈Ig

|x〉n +
1√
2n ∑

x∈Ib

|x〉n =

√
tg

2n

∣∣ψg
〉
+

√
2n − tg

2n |ψb〉 = sin(θ)
∣∣ψg
〉
+ cos(θ) |ψb〉 .

As the action of the Grover iterator G over the previous state is:

sin(θ)
∣∣ψg
〉
+ cos(θ) |ψb〉

Gk
7−→ sin((2k + 1)θ)

∣∣ψg
〉
+ cos((2k + 1)θ) |ψb〉 ,

then it can be understood as a rotation matrix of angle 2θ on the basis B = {|ψb〉 ,
∣∣ψg
〉
},

which has matrix: (
cos (2θ) − sin (2θ)

sin (2θ) cos (2θ)

)
.

Some analysis shows that the eigenvalues and eigenvectors of this matrix are

e2iθ , e−2iθ ,

and

|ψ+〉 :=

(i√
2

1√
2

)
B
=

i√
2
|ψb〉+

1√
2

∣∣ψg
〉

,

|ψ−〉 :=

(−i√
2

1√
2

)
B
=
−i√

2
|ψb〉+

1√
2

∣∣ψg
〉

,

respectively. We can isolate the states |ψb〉 and
∣∣ψg
〉

to obtain the change of basis

|ψb〉 =
−i√

2
|ψ+〉+

i√
2
|ψ−〉 ,

∣∣ψg
〉
=

1√
2
|ψ+〉+

1√
2
|ψ−〉 ,

which we can use to follow up on the previous expression:

sin(θ)
∣∣ψg
〉
+ cos(θ) |ψb〉 =

sin(θ)
(

1√
2
|ψ+〉+

1√
2
|ψ−〉

)
+ cos(θ)

(
−i√

2
|ψ+〉+

i√
2
|ψ−〉

)
=

(sin(θ)− i cos(θ))
1√
2
|ψ+〉+ (sin(θ) + i cos(θ))

1√
2
|ψ−〉 =

e−iθ 1√
2
|ψ+〉+ eiθ 1√

2
|ψ−〉 .

33

To summarize, we have seen that

H⊗n |0〉n = e−iθ 1√
2
|ψ+〉+ eiθ 1√

2
|ψ−〉 ,

which is a superposition of the two eigenvectors of the Grover iterator G. Running the
Eigenvalue Estimation algorithm with H⊗n |0〉n on the target state will then yield 2θ or

−2θ with probabilities
∣∣e±iθ1/

√
2
∣∣2 = 1/2. The following circuit in Figure 9 showcases the

process.

. . .

...

. . .

. . .

. . .

. . .

ctrl : |0〉m

H

QFT−1

xm

H x3

H x2

H x1

trgt : |0〉n H⊗n G G2 G4 G2m−1

Figure 9. Circuit for Quantum Counting in Grover Search

Although this algorithm can be useful when the optimal number of G applications is
not known, one has to note that running this algorithm requires 2m − 1 applications of
G. To obtain accurate enough estimates of tg, we need to set m ≈ n, and this means that
the number of G applications for this algorithm lies in O(2n), which is as expensive as an
exhaustive search.

There exist alternative versions of Quantum Counting that manage to reduce the num-
ber of qubits m and the number of G applications in exchange for multiple runs and lower
accuracy, some of which are detailed in section 8.3 of [KLM07].

34

4 Function optimization - Discrete version

In this section we computationally analyze Grover Adaptive Search [GWG20] as a
candidate algorithm for discrete function optimization. This is based on Grover Search,
an algorithm that, as we have seen, provides quantum advantage.

Grover Adaptive Search is already implemented in IBM’s Qiskit, but restricted to QU-
BOs - Quadratic Unconstrained Binary Optimization (problems). A QUBO is a quadratic,
discrete function over the bits of a string that can be turned into a general cost function
through the process in [Qisa]. We implement it for any binary cost function. To test
the results and analysis, we provide a custom implementation for general discrete cost
functions.

4.1 Problem statement

Let C : {0, 1}n → R be a function, often called the cost function (binary cost function
in our case, as the input is a binary string), that takes an n-bit string x = x1 . . . xn and
outputs a real number C(x). The goal of this optimization problem version is to find the
optimal string xopt that gives out the highest (or lowest) value of copt = C(xopt). Any cost
function can be decomposed in the following manner:

C = ∑
S∈{0,1,X}n

ωSCS, CS : {0, 1}n → {0, 1}.

The functions CS are called clauses, which are equality conditions on some of the bits
of the input string that return 1 or 0 whether they are all satisfied or not. A 0 or a 1

denotes a bit that must equal 0 or 1, respectively, and a X denotes a free bit with irrelevant
value to the clause. That is, they are functions of the form:

CS(x) = ∏
i | si=1

xi ∏
j | sj=0

(1− xj).

When the input string x produces the result 1, we say that x satisfies clause CS. For
example, the string 0010 satisfies clause CX0X0, but not clause CX1X1. The clause CXXXX is
satisfied by any 4-bit string. The values ωS ∈ R are the weights of the clauses, which
indicate how important each clause is. We will use the notation CωS ,S to denote clause CS
with value ωS.

A simpler but more well-known version of this problem is when ωS = 1 or 0 for all
S, called the MAX-SAT problem. In this case, finding the maximum of C is equivalent of
finding the maximum number of simultaneously satisfiable clauses from the cost function
(together with the optimal string).

Algorithms that run on classical computers try to make use of the specific problem’s
structure to devise faster methods with less steep computational costs. In some cases, an
approximation close to the optimal solution is given instead to reduce computation time.

35

4.2 Grover Adaptive Search

Grover Adaptive Search is an algorithm that uses a special version of Grover Search
multiple times iteratively to optimize a cost function. We will focus on finding the min-
imum of the cost function because with a few changes on the cost function, any other
optimization problem can be transformed into a minimization problem.

Given a cost function C : {0, 1}n −→ Z, the idea is to codify the function fy :
{0, 1}n −→ {0, 1} defined by:

fy(x) =

{
1 if C(x) < y

0 if C(x) ≥ y
,

where y ∈ Z is a chosen threshold and then run the Grover Search algorithm. Sup-
pose we have previously evaluated f on a string x(0), obtaining f (x(0)) = y(0). Now, by
choosing the threshold y = y(0) and codifying fy(0) on a quantum circuit, if we run the

Grover Search algorithm we will obtain with high probability a string x(1) such that:

fy(0)(x(1)) = 1 ⇐⇒ C(x(1)) < y(0) ⇐⇒ y(1) < y(0).

If we change the threshold by choosing y = y(1) and run Grover Search again, we
will read with high probability a better string x(2), so by repeating the process iteratively,
provided we apply the Grover iterator G the adequate number of times for each Grover
Search execution, we will read better and better solutions x(3), x(4), . . . , until we eventually
find an optimal solution. In some cases though, after running Grover Search, we will not
read a better string than the previous one. The cause may be one of the following:

• The Grover Search algorithm failed, as it gives out good strings with probability
close to 1, but not exactly 1. In this case, we do not update the threshold and re-run
the iteration.

• There are no strings x such that fy(x) = 1 because we already have an optimal
solution. In this case, we want to stop the algorithm and return said solution.

To discern between these two cases, we need a way to count how many good strings
there are for an arbitrary threshold y. This problem is known as the Quantum Counting
problem, which has an algorithm to solve it that involves controlled applications of the
Grover iterator G.

When Quantum Counting is not available, we will have no way of distinguishing
between the two cases, nor a way to determine how many times to apply the Grover
iterator G and maximize the probability of a good read. An alternative to circumvent this
obstacle is through a process of trial and error by running Grover Search with 1, 2, 3, . . .
applications of the Grover iterator G until a better string is read or until we give up and
eventually stop the algorithm.

4.2.1 Computational cost analysis

Recall the Quantum Counting algorithm from section 3.3. We can use this algorithm
to obtain an estimate for tg and choose an optimal number of G applications. The process

36

would be, before each run of Grover Search, to run Quantum Counting, read the result
and compute with it the optimal number of G applications. If the read result is the string
0 . . . 0, denoting θ = 0 or 2π and therefore tg = 0, we stop the algorithm.

With the Counting algorithm, each iteration will require an extra 2m applications of G,
on top of the applications required for running Grover Search. Provided Grover Search
does not fail, as with large values of n the chances of failure are minuscule, after every
iteration we will read a better string at random out of all the good strings. On average,
the read string will be better than half the good strings, so after updating the threshold,
only half of them will still be good on the next iteration.

he first threshold is computed by choosing a string x(0) at random and evaluating
it. On average, we will start with a threshold y(0) = f (x(0)) better than half the 2n

possible strings, meaning that there will initially be 2n−1 good strings. As each run of
Grover Search halves this number, we will have to run Grover Search n times with tg ≈
2n−1, 2n−2, . . . , 1. We know that the optimal number of applications of G in Grover Search
is: ⌊

π

4
1

arcsin
(√

tg/2n
)⌋ ≈ π

4
1

arcsin
(√

tg/2n
) − 1

2
/

π

4

√
2n

tg
− 1

2
,

so an estimate of the total number of applications of G in the Grover Search runs will
be:

n

∑
k=1

(
π

4

√
2n

2k −
1
2

)
=

π

4

√
2n

n

∑
k=1

1√
2k
−

n

∑
k=1

1
2
=

π

4

√
2n 1√

2

1− 1√
2n

1− 1√
2

− n
2
=

π

4

√
2n − 1√
2− 1

− n
2

.

This added to the n + 1 Quantum Counting runs (one for each Grover Search run and
one extra run at the end to confirm that tg = 0), gives us a total of

π

4

√
2n − 1√
2− 1

− n
2
+ (n + 1)2m

G iterator applications. Keep in mind that as n increases, we must also increase the
precision of 2θ (or 2π− 2θ) returned by Quantum Counting, and therefore raise the num-
ber of qubits m, as the range of values that tg lies on gets wider and wider. What can be
deduced from the previous analysis is that if m ≥ n/2, then the term that grows the fastest
is (n + 1)2m, which is very likely to happen, as the fact that tg ∈ [0, 2n] forces m ≈ n for
enough output accuracy.

We see then that Quantum Counting introduces an overhead in Grover Adaptive
Search on top of the cost of Grover Search that can be toggled by changing m. If we
cannot use the algorithm to estimate the number of optimal G applications, a possible
solution would be to try them all sequentially until a good string is read, and otherwise
stop the algorithm.

One can see that at maximum, this number will be:

rmax :=
2n

max
tg=1

⌊
π

4
1

arcsin
(√

tg/2n
)⌋ =

⌊
π

4
1

arcsin (1/
√

2n)

⌋
,

37

so if we try r = 1, 2, . . . , rmax applications and no good string has been read, we can stop
as we can be sure we already have an optimal string, as when n is sufficiently large, with
the optimal number of G applications Grover Search is almost sure to succeed. Another
way we can shave off more G applications is by considering the fact that the number of
applications increases as tg decreases, as shown in the graph from Figure 10.

Figure 10. Number of optimal G applications for each number tg of remaining good
strings (n = 10)

In a Grover Search run, we know that if we choose the optimal number of G applica-
tions, we will almost surely obtain a better solution. In turn, if we obtain a better solution,
it may be because we chose such optimal number or because we chose a lower number
but had a stroke of luck. In either case, our chosen number will be equal or lower than
the optimal number.

Now, obtaining a better solution will lower the number of remaining good strings,
meaning that the new optimal number will be greater or equal than the actual optimal
number, and so, greater or equal than our chosen number. Therefore, we do not need to
start again from 1, 2, 3, . . . G iterations when obtaining a better solution, we just need to
re-run Grover Search with the same number we chose.

Regarding the total number of G applications, let us consider again the average case
when the remaining number of good strings is tg ≈ 2n−1, 2n−2, . . . , 1. Suppose, in the
worst case, that if the optimal number of G applications is not chosen, Grover Search
fails, and when such number is chosen, Grover Search succeeds. This means that we will
run Grover Search with 1, 2, 3, . . . , rmax G applications, but we will have to repeat runs for
tg = 2n−1, 2n−2, . . . , 1. The total number of G applications amounts to:

n

∑
k=1

(
π

4

√
2n

2k −
1
2

)
+

rmax

∑
r=1

r =
π

4

√
2n − 1√
2− 1

− n
2
+

(rmax + 1)rmax

2
.

38

We can consider rmax to be:

rmax =

⌊
π

4
1

arcsin (1/
√

2n)

⌋
≈ π

4
1

arcsin (1/
√

2n)
− 1

2
/

π

4

√
2n − 1

2
,

and by substituting in the previous expression, we get:

π

4

√
2n − 1√
2− 1

− n
2
+

(
π
4

√
2n + 1

2

) (
π
4

√
2n − 1

2

)
2

=

π

4

√
2n − 1√
2− 1

− n
2
+

π2

8
2n − 1

2
∈ O(2n).

This iterative rule, though it does not require usage of Quantum Counting, is no better
than an exhaustive search, as the number of G applications scales in O(2n), just like
in a classical computer, so the overhead it introduces is too expensive and negates any
quantum advantage.

This methodology, though, can be improved even more, as there are some shortcuts
that can be used to reduce the number of G applications. Consider again Figure 10, and
note that when tg gets close to 1, the number of G applications ends up increasing by
more than one unit as tg decreases. Specifically, for n = 10, we have:

Remaining good strings (tg) 5 4 3 2 1
Number of G applications 11 12 14 17 25

We could theoretically skip the Grover Search runs with 13, 15, 16, 18, 19, 20, 21, 22, 23
and 24 applications, which account for 191 out of the 325 added G applications in the
overhead. The only requisite for this would be to have the list of number of G applications
precalculated, which only needs to be done once. For n = 10, the iterations are reduced
by 58.77%, and the reduction percentage increases even more as n grows, asymptotically
getting close to 100%. The reduction percentage can be visualized in Figure 11, and the
comparison between the original and reduced numbers of G applications is plotted on
Figure 12.

Proper formal quantitative analysis should be made to determine how much exactly
this shortcut reduces the number of G applications, but we can make some empirical
analysis alternatively.

On the graph in Figure 12 we can appreciate some linear pattern in both the original
and reduced G applications, so we will assume that both grow linearly in the graph. The
y-axis is scaled logarithmically, so these growths are actually exponential. If we plot the
ratio of their logarithms, we can see in Figure 13 that it slowly decreases as n grows.

We assume that this ratio eventually converges to an unknown value. When n = 64,
the ratio is approximately 0.6974469780, just slightly under 0.7, so we can think of it
converging to some value r < 0.7. Finally, let G(n), G(n) be the original and reduced
numbers of G applications, respectively. The following equivalence is true:

log
(
G(n)

)
log (G(n))

= r ⇐⇒ G(n) = G(n)r.

39

Figure 11. Reduction percentage of G applications (up to n = 64)

Figure 12. Original and reduced G applications (up to n = 64)

So if all the assumptions made were valid, as we had G(n) ∈ O(2n), then we would
have G(n) ∈ O(2rn) with r < 0.7, and therefore, as r < 1, some of Grover Search’s
quantum advantage with respect to the classical exhaustive search would be preserved.
Ideally for very large values of n, if it were true that r ≤ 0.5, then the overhead would not
waste any of Grover’s Search quantum advantage.

40

Figure 13. Ratio of logarithms of original and reduced G applications (up to n = 64)

4.2.2 Quantum circuit construction

Here we thoroughly explain the construction of the quantum circuit for the implemen-
tation of Grover Adaptive Search. The circuit used is an adaptation of Grover Search,
so we have an iterator G composed of a preparer A, a diffuser D and an oracle O. The
diffuser and oracle are fairly simple, and very similar to the ones used in Grover Search,
while the preparer is the most complex, as we now need to encode evaluations of the cost
function in the quantum circuit.

In Grover Search we made use of two registers: q, an n-qubit register to which the
preparer A is applied to hold a superposition of all strings in {0, 1}n, and a, an ancillary
1-qubit register. This version of Grover Search will use the registers s, an n-qubit register
with the same purpose as q, and v, an m-qubit register that will hold evaluations of the
cost function (s for "strings" and v for "values"). We will detail the value m further in the
construction.

Let us start constructing the preparer A. Let R(θ) be the phase gate with matrix form:

R(θ) =
(

e−iθ/2 0
0 eiθ/2

)
∼
(

1 0
0 eiθ

)
, θ ∈ [0, 2π).

Its action on a qubit in the state H |0〉 = 1/
√

2 |0〉+ 1/
√

2 |1〉 is:

|0〉+ |1〉√
2

R(θ)7−→ |0〉+ eiθ |1〉√
2

.

Using this gate, we define the m-qubit gate UG(θ) = R(2m−1θ)⊗ · · · ⊗ R(θ), which can
be visualized in Figure 14.

41

...

v0

UG(θ)

v1

vm−1

=

...

v1 R(2m−1θ)

v2 R(2m−2θ)

vm−1 R(θ)

Figure 14. Implementation of gate UG(θ)

When the v register is in state H⊗m |0〉m, the action of UG(θ) is:

H⊗m |0〉m =
1√
2m

2m−1

∑
y=0
|y〉 = |0〉+ |1〉√

2
⊗ · · · ⊗ |0〉+ |1〉√

2
UG(θ)7−−−→

|0〉+ ei2m−1θ |1〉√
2

⊗ · · · ⊗ |0〉+ eiθ |1〉√
2

=
1√
2m

2m−1

∑
y=0

eiyθ |y〉 .

Now recall that the action of the QFT−1 is:

1√
2m

2m−1

∑
y=0

e2πiy x
2m |y〉 QFT−1

7−−−→ |x〉 .

Given an integer x ∈ [0, 2m − 1], we can choose

θ = 2π
x

2m =
πx

2m−1 ,

and then if we apply UG(θ), followed by QFT−1, we will end up with state |x〉 on the
v register. Multiple applications of different gates UG(θ1), . . . , UG(θl), with θi = πxi/2m−1,
will yield:

H⊗m |0〉m
UG(θl)···UG(θ1)7−−−−−−−−−→ 1√

2m

2m−1

∑
y=0

eiy(θ1+···+θl) |y〉 QFT−1
7−−−→ |x1 + · · ·+ xl (mod 2m)〉 .

In a way, the gate UG(θi) adds xi to the resulting state after applying QFT−1. If the
integers x1, . . . , xl add up to more than 2m, then overflow will occur. A solution is to
simply increase the number m of qubits on register v.

This only accounts for addition of positive integers, so if we want to enable substraction
and signed integers, then we need to work in Two’s Complement representation, which
uses the last bit to store the sign of the integer. For this, we only need to restrict the
integers x to the interval [−2m−1, 2m−1 − 1].

Using the n-qubit register s that stores the strings in {0, 1}n, this gives us a way to
evaluate the cost function: For each clause Cα with weight ωα, add a UG(πωα/2m−1) gate

42

controlled on the qubits from register s corresponding to the bits of Cα. If a bit has to be 1
to satisfy the clause, we will control the gate on its corresponding qubit. If it has to be 0,
then we will add an X before and after the control, as in Figure 15. If the bit is free, then
we do not place a control on the corresponding qubit.

ctrl

trgt
=

ctrl X X

trgt

Figure 15. Implementation of a quantum gate controlled on |0〉

An example is depicted on Figure 16 showing how the 7-bit clause C6,XX00X11 would be
encoded.

s0

s1

s2

s3

s4

s5

s6

v UG(
6π

2m−1)

=
s

C6,XX00X11

v

Figure 16. Clause gate C6,XX00X11

Now we have a way to evaluate the cost function. What we want now is to identify
strings x that output values C(x) < y. Consider the fact that C(x) < y ⇐⇒ C(x)− y < 0.

We will check the second condition instead of the first. Identifying a negative or
positive output in the Two’s Complement notation is very simple, as we just need to check
the sign bit. Moreover, implementing the cost function C − y is easily done by adding the
free clause gate C−y,X···X to the clause gates of C.

With all this, then we can construct the preparer A. We begin in states |0〉n and |0〉m on
both registers. First, like in Grover Search, we set all strings from {0, 1}n in superposition
on register s by applying H⊗n to it. We also apply H⊗m to register v in order to store
the phases encoded by the clause gates. After that, we apply all the clause gates on v
controlled by s, and at the end, we apply the QFT−1 to register v to retrieve the cost
function evaluation from its phase. The result will be a superposition of all strings in s
and a superposition of all evaluations in v.

The preparer A is visualized in the circuit depicted on Figure 17.
The oracle U f is very easy to implement. It will suffice to place a Z gate on the last

qubit of register v, qubit qm−1. Given a string x, if C(x) ≥ y, the qubit will be in state |0〉
and the Z gate will do nothing. On the other hand, if C(x) < y, then the qubit will be in

43

. . .

. . .

s : |0〉n H⊗n

v : |0〉m H⊗m CωS1
,S1 CωSl

,Sl Cω−y ,X···X QFT−1

Figure 17. Circuit for preparer A

state |1〉 and the Z gate will add a phase factor of −1 that will carry on to the circuit’s
global phase, effectively distinguishing between positive and negative evaluations.

And finally, the diffuser D does not change and will be the same as in Grover Search,
a diagonal gate with all 1s except the first element, which will have a −1. This gate is to
be applied to register s.

For preparer A we also have to construct its inverse, as the Grover iterator is G =

ADA†U f . Luckily, all gates that form the preparer are easily invertible:

• H is its own inverse, and so are H⊗n and H⊗m.

• QFT can be constructed by placing all gates forming QFT−1 in reversed order and
using Rk gates instead of R−1

k (see section 3.1).

• The inverse of the clause gate CωS ,S is the clause gate C−ωS ,S, easily achieved substi-
tuting gate UG (ωSπ/2m−1) by UG (−ωSπ/2m−1).

The inverse preparer A† is visualized in the circuit depicted on Figure 18.

. . .

. . .

s : |0〉n H⊗n

v : |0〉m QFT C−ωS1
,S1 C−ωSl

,Sl Cωy ,X···X H⊗m

Figure 18. Circuit for the inverse preparer A†

Remark 4.1. All the clause gates are commute between each other, so they can be placed
in any order.

Lastly, we formalize the steps to take in order to perform the Grover Adaptive Search.
As prerequisites, the states of both s, v registers must be |0〉⊗n , |0〉⊗m respectively.

44

Grover Adaptive Search algorithm
Result: Binary string xopt and value yopt such that

C(xopt) = yopt = minx∈{0,1}n C(x)
Precalculate optimal numbers of G applications r1, r2, . . . , rjmax

Set index j← 1
Set number of Grover Search iterations r ← rj

Choose x(0) ∈ {0, 1}n randomly
Update best string xopt ← x(0)

Calculate y(0) ← C(x(0))
Update threshold yopt ← y(0)

Encode threshold yopt as the clause gate C−yopt ,X···X
Set f inish← FALSE

while f inish = FALSE do
Run Grover Search with r iterations to obtain x(k+1), y(k+1)

if y(k+1) < yopt then
Update best string xopt ← x(k+1)

Update threshold yopt ← y(k+1)

Encode threshold yopt as the clause gate C−yopt ,X···X
else if j 6= jmax then

Increment index j← j + 1
Set number of Grover Search iterations r ← rj

else
Set f inish← TRUE

end
Output best string and threshold xopt, yopt

The Grover Adaptive Search algorithm with a custom implementation can be tested
on GAS_Tester_1.ipynb, hosted on the GitHub repository at [Ort21].

As the algorithm has a probabilistic nature, where it can take many different paths with
a different success chance on each one, extensive tests can help give us an overall view
on the performance of the algorithm and provide initial insight on the cases in which the
algorithm fails. Extensive tests can be run and viewed on GAS_Tester_2.ipynb, hosted on
the GitHub repository at [Ort21].

45

5 Function optimization - Continuous version

In this section we analyze existing algorithms for continuous function optimization
([Reb+16], [KP17], [Jor04]) and evaluate the possibility, and if possible, the difficulty of
gate-based implementations for testing. These and more are mentioned in [Bia+16], which
serves as a compilation of quantum versions of algorithms needed for machine learning.

One must note that in these works the proposed algorithms are explained, and the
results of some tests are analyzed and visualized, but no gate-based implementation nor
quantum circuit diagrams are included.

5.1 Problem statement

Let C : X → R be a continuous function where X ⊆ R is a compact set. The goal of
this optimization problem version is to find the optimal point xopt ∈ X that gives out the
optimal (highest or lowest) value of copt = C(xopt). Most classical methods that solve this
problem perform an iterative operation that sequentially outputs points x(1), x(2), x(3), . . .
with increasingly optimal evaluations C(x(1)), C(x(2)), C(x(3)), Contrary to the dis-
crete version, there is no exhaustive procedure to solve this problem, as there are infinite
possible points in X to try out.

The most famous iterative algorithms for this kind of problem are Gradient Descent
and Newton’s Method, which take as input a starting point x(0) close to the optimal point
and make use of the first and second derivatives of C to output points closer and closer to
said optimal point. These derivatives are calculated numerically most of the time, as we
may not always have a formal expression for C.

The methods assume the function has a global optimum to converge to. The goal is
to output the global optimum, but when there are multiple local optima, the methods
will converge to one of them, often the closest to the starting point x(0). A simple but
expensive way to avoid converging to local optima is to run the methods many times with
different starting points and return the best optima found.

Function optimization plays a key role in fields such as artificial intelligence, machine
learning and computer vision, to name a few, which in turn have a myriad of real-world
applications in data science, economics, psychology, medicine... Quantum algorithms that
achieve any kind of speedup, whether polynomial or exponential, can have a massive
impact in any of these areas.

5.2 Numerical Gradient Estimation

In [Jor04], the author proposes an algorithm to estimate the gradient of a continu-
ous function. He details the algorithm for numerical estimation of the first order partial
derivatives of f through pages 1 and 2, and then in the subsequent pages he analyzes
the accuracy of the algorithm given the number of qubits used for the registers, and also
comments how to numerically estimate partial derivatives of higher order.

We will detail a few very important prerequisites that the author lightly comments at
the beginning of page 1 that will help understanding the algorithm he proposes.

46

We begin with a continuous function f : Rd −→ R that we want to estimate the
gradient of. The method estimates the gradient at point 0, so if we want to estimate the
gradient of f at point a ∈ Rd, we redefine f through the rule f (x)→ f (x− a).

Once we have f redefined, we need to make a few changes to it for use in the algorithm.
In order to adapt f , the domain is restricted to a chosen compact set X ⊆ Rd. We also
select a closed interval Y ⊆ R such that f (X) ⊆ Y. Then we scale X to [0, 1]d and Y to [0, 1].
The result of these restrictions is a scaled version of f , a new function f̃ : [0, 1]d −→ [0, 1].

Using the adapted function f̃ , we define an approximation f̄ : Zd
2n −→ Z2no defined

by

f̄ (x1, . . . , xd) =
⌊

2no f̃
(x1

2n , . . . ,
xd
2n

)⌉
.

The algorithm makes use of a quantum gate (referred to "black box" by the author) to
evaluate f̄ that we will denote by U f̄ . This gate must perform the following operation:

|x1〉 · · · |xd〉 |a〉
U f̄7−→ |x1〉 · · · |xd〉

∣∣a + f̄ (x1, . . . , xd) (mod 2no)
〉

.

In the previous definitions, n and n0 are the number of qubits of the input registers
in states |x1〉 , . . . , |xd〉 and the output register that begins in state |a〉, respectively. The
number of qubits for the input and the output can be tuned at will. The more qubits
assigned to the registers, the higher the accuracy of the results. The total number of
qubits used will be nd + no.

The appeal of the algorithm is that it only requires one application of U f̄ to estimate
the gradient, whereas the classical numerical estimation of the gradient requires 2d appli-
cations of f , as it uses the the approximate formula

∂ f
∂xi

=
f (x1, . . . , xi + l/2, . . . , xd)− f (x1, . . . , xi − l/2, . . . , xd)

l
, l > 0,

which requires 2 f applications for each partial derivative.
Aside from the lack of prerequisite explanation, the procedure to perform algorithm

is detailed, along with the expected output after each set of steps, though there are no
formal proofs that verify the outputs included in the article. If analyzed with care, writing
an implementation of this algorithm is a feasible task.

5.3 Gradient Descent and Newton’s Method on homogenous polyno-
mials

In [Reb+16], a quantum algorithm is proposed for Gradient Descent and Newton’s
Method restricted to homogenous polynomials of even order, with only a few monomials.

Definition 5.1. An homogenous polynomial p of order d is a polynomial where all the
monomials have degree d.

Example 5.2. The polynomial x1x3
3 + x3

2x3 − x4
2 + 8x1x2x2

3 is homogenous of order 4.

The authors state this restriction because an homogenous polynomial of even order can
be as a tensor product, a natural and convenient translation to the quantum computing

47

framework. Let x, A be:

x :=

 x1
...

xN

 , A =


a1

1 · · · aN2d

1
...

. . .
...

a1
N2d · · · aN2d

N2d

 .

Then the expression
xT ⊗ · · · ⊗ xT ⊗ A⊗ x⊗ · · · ⊗ x

is a homogenous polynomial of degree 2d on variables x1, . . . , xN .

Example 5.3. The previous polynomial x1x3
3 + x3

2x3 − x4
2 + 8x1x2x2

3 corresponds to the
expression:

x1
x2
x3

T

⊗

x1
x2
x3

T

⊗



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2/3

0 0 0 0 0 2/3 0 2/3 1/4

0 0 0 0 0 0 0 0 2/3

0 0 0 0 −1 1/4 0 1/4 0
0 0 2/3 0 1/4 0 2/3 0 0
0 0 0 0 0 2/3 0 2/3 1/4

0 0 2/3 0 1/4 0 2/3 0 0
0 2/3 1/4 2/3 0 0 1/4 0 0


⊗

x1
x2
x3

⊗
x1

x2
x3

 .

Note that the matrix of coefficients A can be chosen symmetric. The matrix A can be
decomposed in the following manner:

A =
K

∑
α=1

Aα
1 ⊗ · · · ⊗ Aα

d ,

where Aα
i are symmetric matrices of size N × N. We provide the exact decomposition

of the polynomial from examples 5.2 and 5.3 in appendix A.2.
The authors rely on this decomposition to define operators D and H in pages 6 and

7, which correspond to the gradient and the hessian of the polynomial as an N-variable
function. Then they assume that these operators can be simulated with a Hamiltonian (in
the framework of adiabatic quantum computing) and explain the steps of their quantum
version of Gradient Descent and Newton’s Method in sections 3 and 4, respectively. The
quantum algorithms are pretty similar, just like their classical counterparts. In section 5
the authors consider the case where some monomials are not homogenous by adding a
linear term and slightly modifying their algorithms.

The authors claim that both algorithms output solutions (x1, . . . , xN) spherically con-
strained, which is another way of saying |x1|2 + . . . |xN |2 = 1. The solution ends up
encoded in a quantum register of n qubits (hence the spherical constraint), where 2n = N.

While the first sections can be understood without the need of physics knowledge,
no gates nor circuit diagrams are provided to the reader. The computations from the
algorithms can be translated to quantum gates, but the authors do not provide a way of
implementing the operators D and H as quantum gates, instead they just assume that
their simulations can be efficient from the adiabatic side of quantum computing.

48

Though the article gives some insight on how one could perform quantum Gradient
Descent and Newton’s Method, it is not enough to devise a gate-based implementation.

5.4 Gradient Descent for quadratic functions

In [KP17], the authors devise an iterative quantum method to perform Gradient De-
scent for quadratic functions.

Definition 5.4. A quadratic function f on variables x1, . . . , xn is a polynomial of degree 2
on x1, . . . , xn.

These kind of functions can be expressed in matrix form. Let x bex1
...

xn

 .

A quadratic form has matrix form xT Ax + xTb + c, with A ∈ Rn×n, b ∈ Rn, c ∈ R,
where a can be chosen symmetric.

Example 5.5. The quadratic function f (x1, x2, x3) = 3x1x2 − 4x2
3 + 6x1 − x2 − 3 has matrix

form x1
x2
x3

T  0 3/2 0
3/2 0 0
0 0 −4

x1
x2
x3

+

 6
−1
0

T x1
x2
x3

− 3.

When this is the function that we want to optimize, the gradient has matrix form
Ax + b.

Example 5.6. In the previous example, we have:

∇ f (x) =

 0 3/2 0
3/2 0 0
0 0 −4

x1
x2
x3

+

 6
−1
0

 .

In page 7 the authors remind the reader the update rule of Gradient Descent and use
the previous properties to modify the rule to a more convenient expression. To summarize,
let r0 be an initial point with ‖r0‖ = 1. The resulting point θτ after τ iterations of Gradient
Descent is:

θτ = r0 + α
τ

∑
t=1

St−1 (L(r0)) ,

where S(x) = (I + αA)x, L(x) = Ax + b. Now define ri = St−i (L(r0)). Then the
previous expression can be rewritten as:

θτ = r0 + αr1 + · · ·+ rτ .

49

The goal is to calculate the sum of all these values r0, . . . , rτ , which is what the pro-
posed algorithm does. The authors define unitaries V, U on page 13, given by their actions:

V : |0〉 |r0〉 |0〉 7−→ |1〉
(
α
∥∥L̃(ro)

∥∥ ∣∣L̃(ro)
〉
|0〉+ |G1〉 |1〉

)
V : |t〉 ‖rt‖ |rt〉 |0〉 7−→ |t + 1〉

(
α
∥∥S̃(rt)

∥∥ ∣∣S̃(rt)
〉
|0〉+ |Gt+1〉 |1〉

)
U : |0〉 |0〉 |0〉 |r0〉 |0〉 7−→ |0〉 |0〉 |0〉 |r0〉 |0〉

U : |0〉 |0〉 |0〉 |r0〉 |0〉 7−→ |t〉 |0〉
(

α
∥∥∥S̃t−1(L̃(r0))

∥∥∥ |t〉 ∣∣∣S̃t−1(L̃(r0))
〉
|0〉+

∣∣G′t〉 |1〉)
where Gi, G′ i are uninteresting garbage states, and S̃, T̃ are approximations of S, T,

respectively.
Then, the authors detail the steps of the algorithm in section 3.2. They offer some

computational cost analysis in the following sections and introduce other algorithms for
linear algebra. The steps from section 3.2 are very detailed, but can be a bit hard to follow
as the authors swap the positions of registers on some steps, and also, no circuit diagram
is provided to the reader. Nevertheless, one can write a list of all the gates and register
swaps that must be applied and generate a quantum circuit. It only remains to implement
unitary U used in the process.

For an implementation of unitary U, the authors, the authors claim that given an
implementation for V, unitary U is simply V controlled on the first register (page 8).

The implementation of unitary V is explained in Proposition 4.9 (pages 25, 26). It uses
their Singular Value Estimation algorithm explained in section 4.2, which in turn depends
on efficient implementation of two other unitaries also named U, V specified in Theorem
4.2 (page 17), relying in a quantum data structure called the QRAM (Quantum Random
Access Memory). For more information about this data structure, see [GLM07].

Currently, Qiskit does not offer implementations of QRAM, so simulations of this al-
gorithm cannot theoretically be performed. A dirty but working alternative would be to
use the modules UnitaryGate or Initialize.

50

A Additional examples

A.1 Density matrix partial trace

To showcase how the partial trace (section 2.6) is applied, we will start with a 2-qubit
mixed state, calculate the joint density matrix and then we will extract the density matrix
of the first qubit. Let qA, qB be the first and second qubits of our system. Consider the
2-qubit mixed state given by the next ensemble:{(

3
4

, 1/
√

2 |00〉+ 1/2 |10〉+ 1/2 |11〉
)

,
(

1
4

, 1/
√

2 |00〉+ 1/
√

2 |11〉
)}

.

We calculate its density matrix:

3
4
(

1/
√

2 0 1/2 1/2
)

1/
√

2

0
1/2
1/2

+
1
4
(

1/
√

2 0 0 1/
√

2
)

1/
√

2

0
0

1/
√

2

 =

3
4


1/2 0 1/2

√
2 1/2

√
2

0 0 0 0
1/2
√

2 0 1/4 1/4
1/2
√

2 0 1/4 1/4

+
1
4


1/2 0 0 1/2

0 0 0 0
0 0 0 0

1/2 0 0 1/2

 =


1/2 0 3/8

√
2 3+

√
2/8
√

2

0 0 0 0
3/8
√

2 0 3/16 3/16
3+
√

2/8
√

2 0 3/16 5/16

 .

The density matrix can be expressed as a linear combination of one-element matrices
|00〉〈00| , . . . , |11〉〈11|. For our case, this linear combination is:

1/2 |00〉〈00|+ 3/8
√

2 |00〉〈10|+ 3+
√

2/8
√

2 |00〉〈11|+
3/8
√

2 |10〉〈00|+ 3/16 |10〉〈10|+ 3/16 |10〉〈11|+
3+
√

2/8
√

2 |11〉〈00|+ 3/16 |11〉〈10|+ 5/16 |11〉〈11| =

1/2 |0〉〈0| ⊗ |0〉〈0|+ 3/8
√

2 |0〉〈1| ⊗ |0〉〈0|+ 3+
√

2/8
√

2 |0〉〈1| ⊗ |0〉〈1|+
3/8
√

2 |1〉〈0| ⊗ |0〉〈0|+ 3/16 |1〉〈1| ⊗ |0〉〈0|+ 3/16 |1〉〈1| ⊗ |0〉〈1|+
3+
√

2/8
√

2 |1〉〈0| ⊗ |1〉〈0|+ 3/16 |1〉〈1| ⊗ |1〉〈0|+ 5/16 |1〉〈1| ⊗ |1〉〈1| .

To obtain the density matrix of qubit qA, we trace out the qubit qB (apply the partial

51

trace over the second qubit):

1/2 Tr (|0〉〈0| ⊗ |0〉〈0|)qB
+ 3/8

√
2 Tr (|0〉〈1| ⊗ |0〉〈0|)qB

+ 3+
√

2/8
√

2 Tr (|0〉〈1| ⊗ |0〉〈1|)qB
+

3/8
√

2 Tr (|1〉〈0| ⊗ |0〉〈0|)qB
+ 3/16 Tr (|1〉〈1| ⊗ |0〉〈0|)qB

+ 3/16 Tr (|1〉〈1| ⊗ |0〉〈1|)qB
+

3+
√

2/8
√

2 Tr (|1〉〈0| ⊗ |1〉〈0|)qB
+ 3/16 Tr (|1〉〈1| ⊗ |1〉〈0|)qB

+ 5/16 Tr (|1〉〈1| ⊗ |1〉〈1|)qB
=

1/2 |0〉〈0|Tr (|0〉〈0|) + 3/8
√

2 |0〉〈1|Tr (|0〉〈0|) + 3+
√

2/8
√

2 |0〉〈1|Tr (|0〉〈1|) +
3/8
√

2 |1〉〈0|Tr (|0〉〈0|) + 3/16 |1〉〈1|Tr (|0〉〈0|) + 3/16 |1〉〈1|Tr (|0〉〈1|) +
3+
√

2/8
√

2 |1〉〈0|Tr (|1〉〈0|) + 3/16 |1〉〈1|Tr (|1〉〈0|) + 5/16 |1〉〈1|Tr (|1〉〈1|) =

1/2 |0〉〈0|+ 3/8
√

2 |0〉〈1|+ 3/8
√

2 |1〉〈0|+ 3/16 |1〉〈1|+ 5/16 |1〉〈1| =

1/2

(
1 0
0 0

)
+ 3/8

√
2

(
0 1
0 0

)
+ 3/8

√
2

(
0 0
1 0

)
+ 3/16

(
0 0
0 1

)
+ 5/16

(
0 0
0 1

)
=

(
1/2 3/8

√
2

3/8
√

2 1/2

)
.

Now that we have the density matrix of the first qubit, we can compute the probabilities
of reading any state when measuring the qubit. We calculate the probabilities of reading
|0〉 and |1〉:

|0〉 :
(
1 0

) (1/2 3/8
√

2
3/8
√

2 1/2

)(
1
0

)
=

1
2

|1〉 :
(
0 1

) (1/2 3/8
√

2
3/8
√

2 1/2

)(
0
1

)
=

1
2

52

A.2 Homogenous polynomial decomposition

Recall the matrix from example 5.3:

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2/3

0 0 0 0 0 2/3 0 2/3 1/4

0 0 0 0 0 0 0 0 2/3

0 0 0 0 −1 1/4 0 1/4 0
0 0 2/3 0 1/4 0 2/3 0 0
0 0 0 0 0 2/3 0 2/3 1/4

0 0 2/3 0 1/4 0 2/3 0 0
0 2/3 1/4 2/3 0 0 1/4 0 0


We see that each of the following tensor products of symmetric matrices generate all

the elements when added together:

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 2/3 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 2/3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


=
√

2/3

0 1 0
1 0 0
0 0 0

⊗√2/3

0 0 0
0 0 0
0 0 1





0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


=

0 0 0
0 −1 0
0 0 0

⊗
0 0 0

0 1 0
0 0 0





0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1/4 0 0 0
0 0 0 0 1/4 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


= 1/2

0 0 0
0 1 0
0 0 0

⊗ 1/2

0 0 0
0 0 1
0 1 0



53



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2/3

0 0 0 0 0 0 0 2/3 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 2/3 0 0 0 0 0 0
0 2/3 0 0 0 0 0 0 0


=
√

2/3

0 0 1
0 0 0
1 0 0

⊗√2/3

0 0 0
0 0 1
0 1 0





0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1/4

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1/4 0 0 0 0 0 0


= 1/2

0 0 1
0 0 0
1 0 0

⊗ 1/2

0 0 0
0 0 0
0 0 1





0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1/4 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1/4 0 0 0 0
0 0 0 0 0 0 0 0 0


= 1/2

0 0 0
0 0 1
0 1 0

⊗ 1/2

0 0 0
0 1 0
0 0 0





0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2/3

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2/3 0 0
0 0 0 0 0 2/3 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2/3 0 0 0 0 0


=
√

2/3

0 0 0
0 0 1
0 1 0

⊗√2/3

0 0 1
0 0 0
1 0 0



54



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2/3 0
0 0 0 0 0 0 2/3 0 0
0 0 0 0 0 0 0 0 0


=
√

2/3

0 0 0
0 0 0
0 0 1

⊗√2/3

0 1 0
1 0 0
0 0 0





0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1/4

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1/4 0 0


= 1/2

0 0 0
0 0 0
0 0 1

⊗ 1/2

0 0 1
0 0 0
1 0 0



55

References

[21a] Qiskit/qiskit. https://github.com/Qiskit/qiskit. Accessed: 2021-01-23.
2021.

[21b] rigetti/grove. https://github.com/rigetti/grove. Accessed: 2021-01-23.
2021.

[Abr+19] Héctor Abraham et al. Qiskit: An Open-source Framework for Quantum Comput-
ing. 2019. doi: 10.5281/zenodo.2562110.

[Aha+08] D. Aharonov et al. “Adiabatic quantum computation is equivalent to standard
quantum computation”. In: SIAM Rev. 50.4 (2008), pp. 755–787.

[Bal+19] E. Ballico et al., eds. Quantum physics and geometry. Vol. 25. Lecture Notes of
the Unione Matematica Italiana. Springer, Cham, 2019, pp. vii+172.

[Bia+16] J. Biamonte et al. “Quantum Machine Learning”. In: (2016). arXiv: 1611.09347
[quant-ph].

[Fin19] M. G. Find. “Algorithms For Quantum Computers”. In: (2019).

[GLM07] V. Giovannetti, S. Lloyd, and L. Maccone. “Quantum random access memory”.
In: (2007). arXiv: 0708.1879 [quant-ph].

[GT09] Otfried Gühne and Géza Tóth. “Entanglement detection”. In: PhysRep 474.1-6
(Apr. 2009), pp. 1–75.

[GWG20] A. Gilliam, S. Woerner, and C. Gonciulea. “Grover Adaptive Search for Con-
strained Polynomial Binary Optimization”. In: (2020). arXiv: 1912 . 04088
[quant-ph].

[Hor+09] R. Horodecki et al. “Quantum entanglement”. In: Rev. Mod. Phys. 81 (2009),
pp. 865–942.

[Jor04] S. P. Jordan. “Fast quantum algorithm for numerical gradient estimation”. In:
(2004). arXiv: 0405146 [quant-ph].

[KLM07] P. Kaye, R. Laflamme, and M. Mosca. An introduction to quantum computing.
Oxford University Press, Oxford, 2007.

[KP17] I. Kerenidis and A. Prakash. “Quantum gradient descent for linear systems
and least squares”. In: (2017). arXiv: 1704.04992 [quant-ph].

[McK+16] D. C. McKay et al. “Efficient Z-Gates for Quantum Computing”. In: (June
2016). arXiv: 1612.00858 [quant-ph].

[NC00] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information.
Cambridge University Press, Cambridge, 2000, pp. xxvi+676.

[Ort21] G. Ortega. TFG-QuantumFunctionOptimization. https://github.com/RedRese
rvoir/TFG-QuantumFunctionOptimization. 2021.

[PV07] M. B. Plenio and Sh. Virmani. “An Introduction to entanglement measures”.
In: Quant. Inf. Comput. 7 (2007), pp. 1–51.

56

https://github.com/Qiskit/qiskit
https://github.com/rigetti/grove
https://doi.org/10.5281/zenodo.2562110
https://arxiv.org/abs/1611.09347
https://arxiv.org/abs/1611.09347
https://arxiv.org/abs/0708.1879
https://arxiv.org/abs/1912.04088
https://arxiv.org/abs/1912.04088
https://arxiv.org/abs/0405146
https://arxiv.org/abs/1704.04992
https://arxiv.org/abs/1612.00858
https://github.com/RedReservoir/TFG-QuantumFunctionOptimization
https://github.com/RedReservoir/TFG-QuantumFunctionOptimization

[Qisa] Qiskit. Converters for Quadratic Programs. https://qiskit.org/documentatio
n/tutorials/optimization/2_converters_for_quadratic_programs.html.
Accessed: 2021-01-23.

[Qisb] Qiskit. Grover Optimizer. https://qiskit.org/documentation/tutorials/o
ptimization/4_grover_optimizer.html. Accessed: 2021-01-20.

[Reb+16] P. Rebentrost et al. “Quantum gradient descent and Newton’s method for con-
strained polynomial optimization”. In: (2016). arXiv: 1612.01789 [quant-ph].

[Şah20] E. Şahin. “Quantum arithmetic operations based on quantum Fourier trans-
form on signed integers”. In: (2020). arXiv: 2005.00443.

[SBM04] V. V. Shende, S. S. Bullock, and I. L. Markov. “Synthesis of Quantum Logic
Circuits”. In: (2004). arXiv: 1912.04088 [quant-ph].

[SCZ16] Robert S Smith, Michael J Curtis, and William J Zeng. A Practical Quantum
Instruction Set Architecture. 2016.

[Zyg18] B. Zygelman. A first introduction to quantum computing and information.
Springer, Cham, 2018.

57

https://qiskit.org/documentation/tutorials/optimization/2_converters_for_quadratic_programs.html
https://qiskit.org/documentation/tutorials/optimization/2_converters_for_quadratic_programs.html
https://qiskit.org/documentation/tutorials/optimization/4_grover_optimizer.html
https://qiskit.org/documentation/tutorials/optimization/4_grover_optimizer.html
https://arxiv.org/abs/1612.01789
https://arxiv.org/abs/2005.00443
https://arxiv.org/abs/1912.04088

	Introduction
	Gate-based quantum computing
	Dirac notation and n-qubit systems
	Geometric interpretation of qubits
	Entangled qubits
	n-qubit quantum gates
	Von Neumann and projective measurements
	Pure states and mixed states
	Universal set of quantum gates

	Basic quantum algorithms
	The Phase Estimation algorithm
	Grover's Quantum Search algorithm
	The Eigenvalue Estimation algorithm and Quantum Counting

	Function optimization - Discrete version
	Problem statement
	Grover Adaptive Search
	Computational cost analysis
	Quantum circuit construction

	Function optimization - Continuous version
	Problem statement
	Numerical Gradient Estimation
	Gradient Descent and Newton's Method on homogenous polynomials
	Gradient Descent for quadratic functions

	Additional examples
	Density matrix partial trace
	Homogenous polynomial decomposition

	References

