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Abstract

The 3-body problem is one of the most celebrated problems in mathematics. In this
work we aim to find the equilibrium points of one of the three masses, which is consid-
ered infinitesimal, and study their stability in two different phase spaces. The question
of stability is addressed using both analytical and numerical methods. Whereas the
Lyapunov and KAM theories provide us with analytical proofs of the stable or unstable
behaviour in the first phase space, analytical methods motivated by the Nekhoroshev
theory allow us to compute practical bounds of the time until which the infinitesimal
mass remains near the equilibria in the second. Finally, these bounds are applied to the
case of a well known system: the Sun-Jupiter-Trojan system.

Resum

El problema dels 3 cossos és un dels problemes matemàtics més debatuts al llarg
de la història. Aquest treball s’enfoca a trobar els punts d’equilibri d’una de les tres
masses, la qual considerarem infinitessimal, i a estudiar-ne la seva estabilitat en dos
espais de fase diferents. L’estudi de l’estabilitat d’aquests punts es tracta analíticament
i numèrica, en funció de l’espai. D’una banda, les teories de Lyapunov i de KAM ens
permeten donar demostracions analítiques del caràcter estable o inestable d’aquests
punts en el primer cas. D’altra banda, mètodes numèrics motivats per la teoria de
Nekhoroshev ens permeten estimar el temps en què la massa infinitessimal romandrà
a prop dels punts d’equilibri en el segon. Finalment, aquestes darreres estimacions
s’apliquen al cas particular d’un sistema ben conegut: el sistema Sol-Júpiter-Trojà.
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Chapter 1

Introduction

The so-called N-body problem has been subject of study of many mathematicians
and physicists in the recent centuries. Indeed, though the first contributions attributed
to Isaac Newton date back to the early 17th century and countless outstanding scientists
have faced the problem, little is known still nowadays.

After Newton’s formulation of the laws of movement and the universal theory of
gravity, the need to predict the motion of two massive objects (the Sun and the Earth,
for instance) within their gravitational field arose, in the context of celestial mechanics.
Naturally, if we call x1 and x2 the positions of the two bodies and consider only their
gravitational interaction, the equations of movement read

F12(x1, x2) = m1 ẍ1, F21(x1, x2) = m2 ẍ2 (1.1)

where mi is the mass of the body i and Fij is the force on the mass i due to the presence of
the mass j. The addition of the equations shown above results in an equation describing
the center of mass, whereas the subtraction of them results in an equation that describes
the movement of r = x1− x2 (or r = x2− x1). In both cases, the new equations describe
the motion of a body of mass M = m1 + m2 and one of mass µ = m1m2

m1+m2
respectively,

giving us two independent problems of a mass within a central field, which of course,
can be solved analytically. From here it yields the solution of the 2-body problem (see
H. Pollard [18] for more details).

The next intuitive step was to study the movement of the Moon under the influence
of the Earth and the Sun. However, neither Newton nor subsequent mathematicians
until Poincaré1 succeeded in finding an analytical solution, which turned the 3-body
problem into the most celebrated problem in mathematics.

In this work, we focus on a particular case of the 3-body problem, called the restricted
circular approach. Specifically, we aim to study the stability of those points where the
third mass (which is taken infinitesimal) is in equilibrium. These points are often called
Lagrangian points or Libration points.

The rest of this chapter is devoted to introducing some topics that are crucial for
the understanding of the subsequent parts. Finally, the contents of each chapter are
outlined.

1Henri Poincaré proved in fact that analytical solutions did not exist (see J. Barrow [3]).
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2 Introduction

The restricted circular approach

Consider a Newtonian reference system in R3 to describe the motion of N massive
bodies (point particles) influenced only by their gravitational field. Analogously as we
did in the case of two bodies, the relation between the force acting on each mass and its
acceleration can be written. If we consider explicitly the expression of the force due to
the gravity and let xi ∈ R3 be the position of the mass mi, we have that

mi ẍi =
N

∑
j=1,j 6=i

Gmimj(xj − xi)

‖xi − xj‖3 , 1 ≤ i ≤ N (1.2)

being G the universal gravitational constant. Notice that (1.2) defines a system of N
ordinary differential not independent equations of second order, being the solution not
trivial in general.

As stated above, the problem given by (1.2) and a complete set of boundary condi-
tions is faced using a classical2 vectorial mechanics approach, since forces, accelerations,
and positions are of a vectorial nature. However, it is convenient for the ongoing work,
to be developed on the frame of analytical mechanics. Even though a basic knowledge
of analytical mechanics is assumed in this dissertation, the reader might find a clear but
still exhaustive introduction in H. Goldstein et al. [10].

Now, let us fix N = 3. Furthermore, as a consequence of the analytical complexity of
the 3-body problem, a special case can be considered. Here, we assume that one mass is
infinitesimal, meaning that the presence of this mass (let us refer to it as the infinitesimal
particle) in the system does not contribute to the gravitational field affecting the other
two (which we call the primaries). This can be done since in the equation (1.2) it is
noticeable that the acceleration of the third mass does not depend on its mass. Hence,
we can vanish this mass and still have a non trivial acceleration. This approximation
leads us to the restricted 3-body problem.

From this, it is clear that the trajectories of the primaries are given by the 2-body
problem, which may have any conic section as a solution, depending on their initial
conditions. In particular, we consider the case in which they describe circular orbits
around the center of mass, which leads us to the restricted circular approach.

In this thesis we focus on the 3-body problem under the hypothesis described above.
For a thorough description see V. Szebehely [20].

Hamiltonian systems

A Hamiltonian system is a dynamical system (a system that evolves along the vari-
ation of one variable, usually the time) that can be described by Hamilton’s equations.
More precisely, if we let Ω ⊂ Rn × Rn be a phase space of a system having n de-
grees of freedom and q, p ∈ Rn the generalised coordinates and conjugated moments
respectively, a Hamiltonian system is defined as follows:

2Classical in the sense that the effects of general relativity are not considered.
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Definition 1.1. A system is Hamiltonian if it exists a smooth function H : I ×Ω→ R where
I ⊂ R called the Hamiltonian function such that

q̇i =
∂H
∂pi

(t, q, p), ṗi = −
∂H
∂qi

(t, q, p), 1 ≤ i ≤ n. (1.3)

Let us assume for simplicity that I = R henceforth in this dissertation. This means
that the solutions are well defined for all time, which excludes the cases of collisions
between masses.

Let now H be the Hamiltonian of a given system. Then, if we define

z =

(
q
p

)
, J =

(
0 In
−In 0

)
, ∇H =


∂H
∂z1
...

∂H
∂z2n

 (1.4)

the differential equations defining the dynamics of the system can be written in a com-
pact manner as

ż = J∇H(t, z). (1.5)

Given a complete set of initial conditions (t0, z0) with z0 ∈ Rn, a solution of this
system is understood as a parameterised curve φ(t, t0, z0) : R → Ω of parameter t.
Indeed, since it yields from the existence and uniqueness theorem of differential equa-
tions that φ(t, t0, z0) = φ(t− t0, 0, z0), we can denote as φ(t, z0) the solution satisfying
φ(0, z0) = z0.

First integrals of movement

A relevant characteristic of every dynamical system is whether or not it admits first
integrals. Given a system in a phase space Ω, a first integral is a smooth function
I : R×Ω→ R which is constant along the solutions of the system. Besides, we say that
a first integral is non-degenerated if it is not constant in R×Ω.

From the Hamilton’s equations it is not hard to see that

dH
dt

(q, p, t) =
∂H
∂t

(q, p, t).

Then, if the Hamiltonian does not depend on time, (we say that the system is au-
tonomous) the function H is itself a first integral. In the following chapters we manage
to remove the dependence on time from our Hamiltonian by using an ingenious change
of variables. In turn, the Hamiltonian will be a non-degenerated first integral thereafter.

A useful way to characterise the first integrals is by using the Poisson bracket bilin-
ear operator, which we denote by {·, ·} and define:

Definition 1.2. Let Ω ⊂ Rn × Rn be a phase space having n degrees of freedom and let
G, F : R×Ω→ R be two smooth functions. Then, we define

{G, F} =
n

∑
i=1

(
∂G
∂qi

∂F
∂pi
− ∂G

∂pi

∂F
∂qi

)
. (1.6)
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Notice that {G, F} is clearly a smooth function defined in R×Ω. Now, if we let
I(q, p) be a first integral independent of time, by applying the chain rule it holds

dI
dt
(q, p) =

n

∑
i=1

(
∂I
∂qi

q̇i +
∂I
∂pi

ṗi

)
= 0

and recalling the Hamilton’s equations to write the time derivatives of qi and pi in terms
of the Hamiltonian H we have that

{I, H} = 0. (1.7)

Therefore, the constants of movement independent of time together with the Hamilto-
nian vanish the Poisson bracket. Reciprocally, a time-independent function F defined in
R×Ω that vanishes the linear operator {·, H} for every point in R×Ω is a first integral
of the movement.

Contents of this work

As mentioned in the beginning of this chapter, the main goal is to study the sta-
bility of the equilibrium points of the restricted circular 3-body problem. For a better
understanding, we first describe the problem introducing these equilibrium points. Af-
terwards, the problem of stability is considered in two different cases. The summarised
contents of each chapter are:

Chapter 2. Here we introduce the Hamiltonian of the planar case and present its
equilibrium points in a rotating frame of reference, following the steps made by K.
Meyer et al. [15]. It includes a brief discussion concerning the possible regions of
motion of the infinitesimal particle depending on its energy level, and it ends with
a couple of comments about the linear stability, very useful afterwards. However,
the results about the linear stability presented in this work are not proven for
conciseness.

Chapter 3. This is a description of the stability of the equilibrium points in the
planar case3. Some of them are proven to be unstable by using the Lyapunov
stability theory, while the others are stable in some cases as yields from the KAM
theory. Again, the results are presented in a similar scheme than in K. Meyer et
al. [15], but here we include a developed idea of the invariant curve theorem’s
proof given by J. Moser [16]. Furthermore, we introduce concepts such as the
Birkhoff normal form and the Arnold-Liouville theorem to emphasize on how the
invariant curve theorem leads to the result of stability.

Chapter 4. This chapter is devoted to the study of the stability of the Lagrangian
points as well, but now in the spatial case. By contrast to the previous chapter, the
methods used in here are rather numerical, as analytical and concluding results
regarding the stability in this case have not been found yet. We follow the scheme
of A. Celletti et al. [5], motivated by the Nekhoroshev theory, in order to give
a lower bound of the time until which some equilibrium points are stable. An
explanation of the cited paper is completed with detailed proofs and an original

3The definition of this case is given in the next chapter.
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implementation of the computation of the escape time lower bound for the Sun-
Jupiter system using C++. This implementation is not only based on the results
obtained in [5], but also on the work done by À. Jorba [11], which allowed a
notable enhancement.

Chapter 5. The conclusions of the work and its main results are displayed here.
Furthermore, we comment in this chapter how this work could be complemented.



Chapter 2

Description

This chapter is aimed to introduce the Hamiltonian system of our interest, working
under the conditions mentioned in the introduction. Moreover, we also consider that
the infinitesimal particle is initially placed in the plane containing the orbits of the
two primaries. Then, since there is no force pushing the infinitesimal particle away
from this plane, all the movement is restricted to this, which leads us to the planar
restricted circular approach. Since we have 2 degrees of freedom, the phase space will
be 4-dimensional.

In the sections that follow, we deduce the Hamiltonian and find its equilibrium
points, the so-called Lagrangian points. Afterwards, we analyse the possible regions of
motion of the infinitesimal particle for a given energy level, complementing the reason-
ings with a numerical computation of the zero-velocity curves, which are introduced
later on. Finally, we make some comments about the linear stability of the equilibrium
points, without giving details of their proofs.

2.1 Deduction of the Hamiltonian

First, we establish a units system in order to nondimensionalise the problem. Let
us take the unit of mass the sum of the masses of the primaries, the unit of length
the distance between the primaries and the unit of time such that the period of the
orbits described by the primaries is 2π. It turns that with these units the universal
gravitational constant is G = 1, which comes from the Kepler’s third law for a general
elliptic orbit of the two masses.

Let us put the origin in the center of mass of the system. From this point the primary
having mass 0 < µ ≤ 1

2 is always at a distance of 1 − µ and initially at (1 − µ, 0),
whereas the primary having mass 1− µ > 0 is always at a distance of µ and initially
at (−µ, 0). Since they both describe a 2π-period circular trajectory around the origin,
these trajectories can be written as follows

(X11, X12) = (1− µ)(cos t, sin t), (X21, X22) = −µ(cos t, sin t) (2.1)

where the first sub indexes refer to each one of the primaries and the seconds to each
one of the planar coordinates. Let now XT = (X1, X2) be the coordinates of the in-

6



2.1 Deduction of the Hamiltonian 7

finitesimal particle. Then, the square of the distances from this to the primaries are

d2
1 = (X1− (1− µ) cos t)2 +(X2− (1− µ) sin t)2, d2

2 = (X1 + µ cos t)2 +(X2 + µ sin t)2.
(2.2)

Now, the kinetic and potential energies can be easily obtained and therefore, the
Lagrangian of the system1:

L = T −U =
1
2
(Ẋ1

2
+ Ẋ2

2
) +

µ

d1
+

1− µ

d2
. (2.3)

Note that this Lagrangian is time dependent as the distances d1 and d2 depend
explicitly on time. However, a time-independent system can be obtained whether we
consider a rotating frame of reference in which the primaries are still. Let xT = (x1, x2)
be the coordinates of the infinitesimal particle in this new frame of reference. The
relation between the coordinates in both frames is a canonical transformation given by
a rotation:

X = A(t) · x, A(t) =
(

cos t − sin t
sin t cos t

)
. (2.4)

Using (2.4) it is easy to obtain that d2
1 = (x1 − 1 + µ)2 + x2

2 and d2 = (x1 + µ)2 + x2
2.

Along with the computation of Ẋ in terms of x, the Lagrangian can be expressed in the
new frame of reference as follows

L =
1
2
(
(ẋ1 − x2)

2 + (ẋ2 + x1)
2)+ µ

d1
+

1− µ

d2
(2.5)

where now the distances d1 and d2 do not depend explicitly on time, so the system is
not time dependent in the new frame of reference. After that, the Hamiltonian can be
found as defined in H. Goldstein [10]:

H =
2

∑
i=1

ẋiyi − L

where yT = (y1, y2) is the conjugated canonical momentum defined as yi =
∂L
∂ẋi

. Hence,
a simple calculation work leads us to

H =
1
2
‖ẋ‖2 − 1

2
‖x‖2 + U, U = − µ

d1
− 1− µ

d2
(2.6)

which can also be written in terms of x and y as presented in K. Meyer et al. [15]

H =
1
2
‖y‖2 − xTKy + U, K =

(
0 1
−1 0

)
. (2.7)

The equations (2.6, 2.7) are different expressions of the Hamiltonian governing the
dynamics of the infinitesimal particle. Since we are following the analytical mechanics’
approach, the forces acting on the infinitesimal particle did not have to be considered,
but only its kinetic and potential energies. However, one may notice that the term xTKy
rises from the rotating coordinate system and is due to the Coriolis fictional forces.

1Note that the potential U is taken to be negative because of the attractive behaviour of the gravitational
force.
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2.2 The equilibrium points

Here we attempt to find the equilibrium points (the Lagrangian or Libration points)
of the infinitesimal particle in the Cartesian plane using the expression of the Hamilto-
nian found in the previous section. It is well known that the equations of motion can
be deducted from the Hamilton’s equations, which in our case are

ẋ =
∂H
∂y

= y + Kx, ẏ = −∂H
∂x

= Ky− ∂U
∂x

. (2.8)

The equilibrium condition will be achieved whenever the position and the momentum
of the infinitesimal particle are constant. Imposing this on the equations (2.8) we can ob-
tain that y = −Kx from the first one. Substituting it in the second one and considering
that K2 = −I we reach the following condition

x− ∂U
∂x

= 0. (2.9)

In terms of the so-called amended potential V = ‖x‖2 − 2U + µ(1− µ), the equation
(2.9) can be rewritten in a compact manner as

∂V
∂x

= 0. (2.10)

On the other hand, it is easy to see that from the expressions of d2
i for i = 1, 2 it

follows
‖x‖2 = µd2

1 + (1− µ)d2
2 − µ(1− µ). (2.11)

Substituting now the expression of ‖x‖2 found above and recalling the definition of U,
the amended potential reads

V(d1, d2) = µd2
1 + (1− µ)d2

2 + 2
µ

d1
+ 2

1− µ

d2
. (2.12)

Now, using the chain rule, the condition ∂
∂x V(d1, d2) = 0 can be expressed as ∂V

∂x1

∂V
∂x2

 =


∂d1
∂x1

∂d2
∂x1

∂d1
∂x2

∂d2
∂x2


 ∂V

∂d1

∂V
∂d2

 = 0. (2.13)

The equation (2.13) defines a homogeneous system. Hence, whether the rank of the
matrix is proven to be maximum the condition ∂

∂x V = 0 reads ∂
∂d V = 0.

After a simple calculation, the determinant of the matrix can be computed to obtain∣∣∣∣∣∣∣
∂d1
∂x1

∂d2
∂x1

∂d1
∂x2

∂d2
∂x2

∣∣∣∣∣∣∣ =
−x2

[(x1 − 1 + µ)2 + x2
2]

1
2 [(x1 + µ)2 + x2

2]
1
2

which clearly vanishes if and only if x2 = 0. Therefore, for x2 6= 0 the rank is maximum
and the equilibrium condition is ∂

∂d V = 0, which leads us to the following conditions:
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2µ

(
d1 −

1
d2

1

)
= 0, 2(1− µ)

(
d2 −

1
d2

2

)
= 0. (2.14)

Recalling that 0 < µ ≤ 1
2 , the only possible solution is that d1 = d2 = 1. This means

that an equilibrium state is located in each point of the Cartesian plane that is one unit
away from each of the primaries. The geometrical place described here is actually the
set of elements of R2 that together with the two primaries form an equilateral triangle.
For historical reasons, let us call these two points L4 and L5. These points are often
called equilateral points.

Let us now consider the case where x2 = 0. Combining the equations (2.11, 2.12)
the amended potential takes the form

V = x2
1 ± 2

µ

x1 − (1− µ)
± 2

1− µ

x1 + µ
+ µ(1− µ) (2.15)

where the plus-minus signs comes from the square root of d2
i for i = 1, 2. However, as

di are distances, all the terms of the amended potential must be positive. Hence, the
signs are chosen depending on the value of x1 ∈ R in order to fulfil that restriction.

Therefore, one notices that V → ∞ when x → ±∞, x → −µ and x → 1 − µ.
This, together with the fact that V is a continuous real map in the intervals (−∞,−µ),
(−µ, 1− µ), and (1− µ, ∞) show us that V contains at least one critical point in each
one of these intervals.

Furthermore, a the second derivative can be performed to study the convexity of V:

d2V
dx2

1
= 2± 2µ

(x1 − 1 + µ)3 ±
2(1− µ)

(x1 + µ)3 . (2.16)

It is clear that V is a convex function for all x1 ∈ R, since the signs are taken so that
each term is positive. Hence, the convexity does not change, which implies that V has
precisely one critical point in each interval. Recalling that the critical points of V are
equilibrium points, we have proved that there are exactly 3 equilibrium points that are
collinear to the primaries (since we are still in the case where x2 = 0), which will be
denoted L1, L2 and L3 and called collinear points for obvious reasons. Although the
position of these points can not be obtained analytically, since the condition ∂V

∂x = 0 with
x2 = 0 results in the well known Euler’s quintic equation, a suitable implementation
of the Newton’s method enables us to obtain a numerical approximation. However, for
conciseness, this is not discussed in here.

2.3 Hill’s regions

As it has been revealed previously, the Hamiltonian is independent of time in a
suitable reference frame. Besides, as seen in the introduction, it is known that dH

dt = ∂H
∂t ,

so in our case the Hamiltonian is a conserved magnitude. Then, it is clear that the
Jacobi constant C = −2H + µ(1− µ) is also conserved in every trajectory. In terms of
the amended potential, this constant can be written as follows

C = V − ‖ẋ‖. (2.17)
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Since ‖ẋ‖ ≥ 0, we get that V ≥ C, which automatically gives us a restriction on
the generalised coordinates of the infinitesimal particle in the configuration space. This
naturally leads us to the following definition:

Definition 2.1. Given a mass parameter µ and a Jacobi constant C, the Hill’s region is the set
defined by H(C, µ) = {x : V(x) ≥ C}. Its boundary where the equality holds is a finite set of
images of closed curves called zero-velocity curves.

The study of the zero-velocity curves for a given µ and C, allows us to determine the
regions of movement of the infinitesimal particle for a given energy level (equivalently,
for a given Jacobi constant). Let us consider that C � 1. Recalling the equation (2.12),
this implies that d1 → 0, d2 → 0, or d1, d2 → ∞. In all three cases there is a dominant
term in the amended potential, so the trajectory can be deducted easily. For example,
consider the case where d1 → 0 (which automatically implies that d2 → 1). Then, we
can approximate the amended potential as follows

V ≈ 2
µ

d1
. (2.18)

Imposing now V = C to obtain the zero-velocity curve, we get that d1 ≈ 2 µ
C , which de-

fines a circular trajectory around the first primary. Similarly, considering the remaining
two cases one can approach the zero-velocity curves for big values of C.

A thorough description for all the possible values of C involves considering all
the terms of the potential nevertheless, which is algebraically demanding for smaller
values of C, where many terms are dominant at the same time. Hence, the zero-velocity
curves have been obtained numerically instead. With that aim, an implementation of
the numerical continuation method has been developed to find the path described by a
zero-velocity curve (see Appendix A). Figure 2.1 shows some curves of a system with
µ = 0.3 for several values of the Jacobi constant.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x
2

x1

Figure 2.1: The zero-velocity curves for a system with µ = 0.3. From bright to dark, the Jacobi constants
represented are C = 5, C2, 3.9 and 3.7 where C2 = V(L2, µ = 0.3) = 4.130149. It also appears the
position of the two primaries black dotted.
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The discussion made before about the curves for big values of C, together with
the results shown in Figure 2.1, enables us to determine the allowed regions for the
infinitesimal particle. For C = 5, the Hill’s region is defined by the inner part of the two
small circle-like curve and the outer part of the big one. According to the discussion
for big values of C, for higher values the area of the inner circles decreases, whereas the
outer circles increases its radius. Therefore, for big values of C we have that

H(C1, µ) ⊂ H(C2, µ), C1 > C2 > 5. (2.19)

On the other hand, when the Jacobi constant decreases, the inner circles come closer
until all the positions in the x1 axis between the primaries are confined within the Hill’s
region, for C = C2. By further decreasing C the transition of the curves is shown in the
figure. For smaller values of C than C = 3.7, although not represented, the curves tend
to encircle the equilateral Libration points L4 and L5 in a rather ellipse-like shape.

2.4 On the linear stability

Since the discussion of the linear stability involves only elemental calculation rou-
tines, it is not treated in here, but only the main results are outlined. For a review of
this analysis see À. Jorba [12].

Let ξ0 be a Libration point. In order to study the motion near this point, we translate
to new symplectic coordinates (ui, vi) so ξ0 is placed in the origin. Expanding the
Hamiltonian in terms of the new variables we obtain

H = H2 + H3 + H4 + . . . (2.20)

where Hj ∈ R[ui, vi] is a j-degree polynomial. Note that the constant H0 is irrelevant so
it has been omitted and that there are no linear terms because an equilibrium point has
been taken as the origin. Hence, the linear behaviour of the system is given by the H2
term. Actually, the linearization of the Hamiltonian system ż = J∇H is ż = JHess(H2)z,
so computing the eigenvalues of JHess(H2) leads us to the following result:

Lemma 2.2. For ξ0 = Lj, j = 1, 2, 3 the matrix JHess(H2) has two real eigenvalues having
opposite sign and two purely imaginary eigenvalues. For ξ0 = Lj, j = 4, 5 all the eigenvalues

are purely imaginary for 0 < µ < µR where µR = 1
2

(
1−

√
69
9

)
.

From this lemma it follows that the collinear points are of the form center × saddle
so they are linearly unstable. Hence, they are unstable, since higher order terms cannot
make a linearly unstable point stable. On the other hand, the equilateral points are of
the form center × center, so they are linearly stable. Then, to discuss the stability in
these cases it is required to take into account also the non linear terms.



Chapter 3

Non-linear stability of the
Lagrangian points in the plane

In the last section we have already seen that an analysis on the linear stability is not
enough to draw general conclusions about the stability. For that reason, in this chapter
we present alternative methods to discuss the stability of both the collinear and the
equilateral points. Hereafter in this chapter, consider a phase space with two degrees
of freedom (the infinitesimal particle is still in the orbit’s plane).

On the one hand, in what follows the collinear points are proven to be unstable
using the Lyapunov stability theory, which we introduce in the next section.

On the other hand, the equilateral points are proven to be stable under a certain
assumption on the mass parameter by finding invariant objects that confine the trajec-
tories near the equilibrium in its interior. To this end, we will introduce the well known
invariant curve theorem.

3.1 Lyapunov stability theory

Here we present some parts of the classical Lyapunov stability theory that will be
used later on to discuss the stability of the collinear points. Let us start introducing a
couple of definitions that we use after on this chapter. To do so, consider the differential
equation ż = f (z) and let φ(t, ξ) be a solution. Recall that we say that ξ0 is an equilib-
rium point if φ(t, ξ0) = ξ0, for all t ∈ R. For such a point, its exponents are defined as
follows

Definition 3.1. The exponents of an equilibrium point ξ0 of ż = f (z) are defined as the
eigenvalues of ∂ f

∂z (ξ0). Moreover, we say that an equilibrium point is elementary if all the
exponents are nonzero (equivalently, if ∂ f

∂z (ξ0) is nonsingular).

Considering this definition it is quite straightforward to prove that the elementary
equilibrium points are isolated. This result yields from the fact that ∂ f

∂z (ξ0) is nonsingu-
lar, so applying the implicit function theorem we obtain a neighbourhood of ξ0 with no
zeros.

Now, let us define the concept of stability in the sense of Lyapunov.

Definition 3.2. ξ0 is said to be positively (negatively) stable in the sense of Lyapunov if for all

12
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ε > 0, it exists δ > 0 such that ‖φ(t, ξ)− ξ0‖ < ε, ∀t ≥ 0 (∀t ≤ 0) when ‖ξ − ξ0‖ < δ.
Moreover, ξ0 is said to be stable in the sense of Lyapunov if it is both positively and negatively
stable.

Definition 3.3. ξ0 is said to be asymptotically stable if it is positively stable in the sense
of Lyapunov and it exists η > 0 such that for all ξ ∈ R satisfying ‖ξ − ξ0‖ < η, then
limt→∞ φ(t, ξ) = ξ0.

Remember that the dynamical system of our interest is Hamiltonian. Thus, the set
of differential equations defining the system is given by the equation (1.5). In such a
system let us prove the necessary condition for stability that follows:

Theorem 3.4. (Dirichlet’s stability theorem). Whether ξ0 is a strict local minimum or
maximum of H, then ξ0 is stable.

Proof. Let us prove the stated result for the case of a minimum (the other case is analo-
gous). Without loss of generality, let us assume that ξ0 = 0 and H(0) = 0. As the origin
is a local minimum, it exists η > 0 such that H(ξ) > 0 for all 0 < ‖ξ‖ ≤ η. Now, given
ε > 0, we define κ = min(ε, η) and M = min{H(ξ) : ‖ξ‖ = κ}. As H is a continuous
map and H(0) = 0, it exists δ > 0 such that for all ‖z‖ < δ, then H(z) < M.

Recalling the existence and uniqueness theorem, it exists a solution φ with initial
condition z ∈ Rn. Moreover, as H is an integral, it holds that H(z) = H(φ(t, z)),
∀t ∈ R. Let us assume that ‖φ(t, z)‖ ≥ κ for some t. Then, as φ(t, z) is a continuous
map in t it exists t′ such that ‖φ(t′, z)‖ = κ, which implies that H(z) = H(φ(t′, z)) ≥ M,
and it is a contradiction with the fact that H(z) < M seen above, so ‖φ(t, z)‖ < κ < ε.

Hence, we have seen that for a given ε > 0, it exists a δ > 0 such that for all ‖z‖ < δ,
then ‖φ(t, z)‖ < κ, ∀t ∈ R. Finally, recalling that κ < ε by definition, the origin is
proven to be stable.

Above, it has been used that the Hamiltonian is a conserved magnitude along all
the trajectories. The next theorem asserts that a system that admits a non degenerated
first integral cannot have an asymptotically stable point, since it would imply that there
is an open set where the first integral is constant, which is contradictory.

Theorem 3.5. Let ξ0 be an equilibrium point of the system ż = f (z). Let C be a non degenerated
integral of the system. Then, ξ0 cannot be asymptotically stable.

Proof. Let ξ0 be an equilibrium point asymptotically stable. Then, it exists a neighbour-
hood N of ξ0 such that if ξ ∈ N, then limt→∞ φ(t, ξ) = ξ0.

However, since C is an integral we have that C(ξ) = C(φ(t, ξ)) = C(ξ0) for all ξ ∈ N.
Therefore, C turns to be constant in an open set, which is contradictory with the fact
that it is non degenerated.

Now, we aim to prove the Lyapunov stability theorem. To this end, let ξ0 ∈ Rn be an
equilibrium point of ż = f (z) and O ⊂ Rn be an open neighbourhood of ξ0 henceforth
in this section. Then, a previous definition and the theorem follows:
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Definition 3.6. Let V : O → R be a smooth map. Then, V is said to be positive defined (with
respect to ξ0) if it exists an open neighbourhood Q ⊂ O of ξ0 such that V(ξ0) < V(ξ) for
all ξ ∈ Q \ {ξ0}. That is, ξ0 is a local minimum of V. Moreover, we define V̇ : O → R as
V̇(ξ) = ∇V(ξ) · f (ξ).

Theorem 3.7. (Lyapunov’s stability theorem). Suppose that it exists a smooth function
V : O → R positively defined such that V̇ ≤ 0 in a neighbourhood of ξ0. Then, ξ0 is positively
stable in the sense of Lyapunov.

Proof. Without loss of generality, let us assume that ξ0 = 0 and V(0) = 0. By definition,
V(0) = 0 is a local minimum, so it exists η > 0 such that V(ξ) > 0 for all 0 < ‖ξ‖ < η.
Given ε > 0, taking η even smaller if necessary, can be ensured that V̇(ξ) ≤ 0 for
‖ξ‖ < η (by hypothesis) and η < ε.

Let M = min{V(ξ) : ‖ξ‖ = η}. Recalling that V is smooth and V(0) = 0, it exists
δ > 0 such that δ < η and V(ξ) < M for all ‖ξ‖ < δ. To prove stability for positive time
we need to see that whether ‖ξ‖ < δ, then ‖φ(t, ξ)‖ < ε, ∀t > 0.

Take now ξ such that ‖ξ‖ < δ < η. Since ‖φ(0, ξ)‖ = ‖ξ‖ < η and φ is continuous
in time, it exists t′ > 0 such that ‖φ(t, ξ)‖ < η for 0 ≤ t < t′. Let t∗ be the biggest t′

fulfilling that condition. Assume now that t∗ is finite, which implies that ‖φ(t∗, ξ)‖ = η.
Let us define v(t) = V(φ(t, ξ)). It is clear that v(0) = V(φ(0, ξ)) = V(ξ) < M because
‖ξ‖ < δ < η and v̇(t) ≤ 0 for 0 ≤ t ≤ t∗ by hypothesis. Thus, as v decreases, v(t∗) < M.

On the other hand, by definition: v(t∗) = V(φ(t∗, ξ)) ≥ M because ‖φ(t∗, ξ)‖ = η,
which is a contradiction. Therefore, t∗ is not finite and the theorem holds.

As shown in Chapter 13 of K. Meyer et al. [15], a corollary that yields from this
theorem is the Dirichlet’s stability theorem 3.4 that we proved above.

The last two theorems we prove in this section are essential for the understanding
of the analysis of the collinear points in the next section. Let us start with the Chetaev’s
theorem, which gives us a criteria of instability.

Theorem 3.8. (Chetaev’s theorem). Suppose that exists a smooth function V : O → R and
an open set Ω ⊂ O such that:

1. ξ0 ∈ ∂Ω.

2. V(ξ) > 0 for all ξ ∈ Ω.

3. V(ξ) = 0 for all ξ ∈ ∂Ω.

4. V̇(ξ) = ∇V(ξ) · f (ξ) > 0 for all ξ ∈ Ω.

Then, ξ0 is unstable. In particular, it exists a neighbourhood Q of ξ0 such that all the solutions
having initial condition in Q∩Ω leave Q in positive time.

Proof. Once again, let us assume that ξ0 = 0. Let ε > 0 be small enough so the adher-
ence of the open ball centered in the origin of radius ε fits in O, that is: B(0, ε) ⊂ O.
Let us define Q = Ω∩ {‖ξ‖ < ε}. We claim that there are trajectories starting at a point
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arbitrarily close to the origin that reach a distance ε from the equilibrium in a finite
time.

As Q clearly contains points arbitrarily close to the origin, for all δ > 0 it exists
p ∈ Q such that ‖p‖ < δ. Let us now define v(t) = V(φ(t, p)). There are only two
possible options: φ(t, p) ∈ Q for t ≥ 0, or else φ(t, p) crosses the boundary of Q for the
first time t∗ instead.

If φ(t, p) remains in Q for all t ≥ 0, then the trajectory restricts to the compact set
Q for all positive time. However, by hypothesis (4) v(t) increases, since Q ⊂ Ω. Then,
it exists some κ > 0 such that v̇(t) ≥ κ. Integrating, we get that v(t) ≥ κt + v(0). Thus,
it turns that limt→∞ v(t) = ∞, which is a contradiction because v is a continuous map
defined in a compact set.

Hence, let us say that φ(t, p) crosses the boundary of Q for the first time at a time
t∗ > 0. Again, by hypothesis we have that v(t∗) ≥ v(0) > 0. As φ(t∗, p) ∈ ∂Q, we have
that φ(t∗, p) ∈ ∂Ω or alternatively ‖φ(t∗, p)‖ = ε (by definition of Q). However, the
first case implies that v(t∗) = 0 by hypothesis (3), which is a contradiction. Therefore,
‖φ(t∗, p)‖ = ε and this proves the claim.

From now on, let us refer to the function defined in this theorem as a Chetaev
function.

Lastly, the following theorem gives us a well-known result concerning the existence
of periodic orbits near the collinear points. Consider still the differential equation ż =
f (z) and let φ(t, ξ0) be a T-periodic solution. Then, the multipliers of this solution are
defined as follows:

Definition 3.9. The multipliers of φ(t, ξ0) are the eigenvalues of ∂φ
∂z (T, ξ0).

We now claim that at least one of the multipliers is +1. To prove this claim, we take
the relation φ(τ, φ(t, ξ0)) = φ(t + τ, ξ0) which yields from the uniqueness theorem of
solutions. Differentiating it with respect to the time and setting t = 0 and τ = T we
obtain

∂z
∂z

(T, ξ0)φ̇(0, ξ0) = φ̇(T, ξ0) (3.1)

Recalling that the solution φ is T-periodic we have that

∂φ

∂z
(T, ξ0) f (ξ0) = f (ξ0) (3.2)

and hence +1 is an eigenvalue with eigenvector f (ξ0), which proves the claim.

Finally, let us announce the Lyapunov center theorem.

Theorem 3.10. Consider a system ż = f (z) that admits a non-degenerated integral and has
an equilibrium point with exponents ±iω, λ3, . . . , λn where ω ∈ R \ 0. Then, if λj

iω is not
an integer for j = 3, . . . , n, it exists a family of periodic orbits emanating from the equilibrium
point. Furthermore, when approaching the equilibrium point its period tends to 2π

ω and its

multipliers tend to exp( 2πλj
ω ) for j = 3, . . . , n.
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The existence of the family of periodic orbits emanating from the equilibrium point
can be seen as follows: without loosing generality we can assume that the equilibrium
point is ξ0 = 0. Besides, we can write f (z) = Az + g(z) where g(0) = ∂g

∂z (0) = 0. If we
now scale x → εx, we obtain a system with the parameter ε given by

ż = Az + O(ε). (3.3)

It is clear that for ε = 0 we get a linear system having exponents ±iω. Moreover,
the solution is z0eAt where z0 in a non-zero vector.

Recalling now the continuity of the solutions of an ordinary differential equation
(ODE) with respect to the parameters, for ε 6= 0 we have that z0eAt +O(ε) is a solution.
For a complete proof of this theorem, see K. Meyer et al. [15]

This theorem can be applied to the collinear points, as seen in lemma 2.2. Hence,
there is a one-parameter family of periodic solutions emanating from these equilibrium
points.

3.2 Stability of the collinear points

It has already been stated (without being proven) in section 2.4 that the collinear
equilibrium points are unstable, as they are linearly unstable. In this section we will fo-
cus on the same statement applying the main results of the Lyapunov’s stability theory
developed in the previous section.

First, let us obtain a normal form of the 2-degree term of the Hamiltonian centered
in a collinear equilibrium point. Recalling the equation (2.20), an expansion of the
Hamiltonian can be considered. Therefore, we can write H = H2((x, y)) + H†(x, y),
being real analytic in a neighbourhood of the origin in R4 and H† having at least degree
3.

To obtain a normal form of H2, we remind the reader that in section 2.4 it has been
pointed out that the collinear points are of the type center × saddle. Besides, as it is
shown in the review by À. Jorba [12], the eigenvalues of H2 are ±iω and ±λ with some
ω, λ ∈ R.

It is well known that the elliptic matrix coming from the center behaviour of the
Hamiltonian Hc can be reduced to A = ω J2. Considering now that the linearized equa-
tions are given by ż = Az where z = (x1, y1)

T and recalling the Hamilton’s equations,
we obtain that

ẋ1 = ωy1 =
∂Hc

∂y1
, ẏ1 = −ωx1 = −∂Hc

∂x1
. (3.4)

An integration of the equations (3.4) leads us to the normal form of the center part,
which can be written as Hc =

1
2 ω(x2

1 + y2
1).

Analogously, the part coming from the saddle is Hs = λI2, so the linearized equa-
tions in this case are

ẋ2 =
∂Hs

∂y2
= λx2, ẏ2 = −∂Hs

∂x2
= −λy2 (3.5)
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which implies that Hs = λx2y2. On the whole, we have found a normal form for H2, so
the Hamiltonian can be written as follows

H = Hc + Hs + H† =
ω

2
(x2

1 + y2
1) + λx2y2 + H†(x, y). (3.6)

Once having the normal form computed, we are ready to prove the following theo-
rem.

Theorem 3.11. The equilibrium located in the origin for a system with the Hamiltonian (3.6) is
unstable. In fact, there is a neighbourhoodQ of the origin such that any solution which begins off
the Lyapunov center leaves the neighbourhood in both positive and negative time. That means,
that the small periodic solutions given on the Lyapunov center are unstable.

Proof. Without loosing generality, λ can be assumed positive. The equations of the
movement can be easily obtained:

ẋ1 =
∂H
∂y1

= ωy1 +
∂H†

∂y1
, ẏ1 = − ∂H

∂x1
= −ωx1 −

∂H†

∂x1
,

ẋ2 =
∂H
∂y2

= λx2 +
∂H†

∂y2
, ẏ2 = − ∂H

∂x2
= −λy2 −

∂H†

∂x2
.

Applying the Lyapunov’s center theorem to the elliptic part of the Hamiltonian, we
may assume that the Lyapunov center is in the coordinate plane x2 = y2 = 0. Hence,
there is a parametric family of periodic orbits within the plane, so these solutions also
hold that ẋ2 = ẏ2 = 0 (since both x2 and y2 are constants).

Regarding the equations of movement, this implies that ∂
∂x2

H†(x2 = 0, y2 = 0) =
∂

∂y2
H†(x2 = 0, y2 = 0) = 0, which means that H† does not contain any term of the form

x2(xn
1 ym

1 ) or y2(xn
1 ym

1 ), for n, m ∈ Z.

Let us now define the Chetaev function that follows: V(x1, x2, y1, y2) =
1
2 (x2

2 − y2
2).

Our aim is to apply the Chetaev’s theorem in order to prove the instability of the origin.

First, we claim that V̇ is positive in a neighbourhood Q of the origin. By definition,
V̇ = ∇V · f where f = J · ∇H. An elemental procedure shows us that

J · ∇H = (ωy1 +
∂

∂y1
H†, λx2 +

∂

∂y2
H†,−ωx1 −

∂

∂x1
H†,−λy2 −

∂

∂x2
H†)T,

∇V = (0, x2, 0,−y2)
T.

(3.7)

Thus, we obtain that V̇ = λ(x2
2 + y2

2) + x2
∂

∂y2
H† + y2

∂
∂x2

H† = λ(x2
2 + y2

2) + W(x, y),

where we defined W(x, y) = x2
∂

∂y2
H† + y2

∂
∂x2

H†. Let us see that in fact ‖W(x, y)‖ ≤
λ
2 (x2

2 + y2
2) in a neighbourhood Q.

Consider the decomposition H† = H†
0 + H†

2 + H†
3 where

1. H†
0 does not depend on x2, y2.

2. H†
2 depends on x2, y2 quadratically.

3. H†
3 depends on x2, y2 at least cubically.
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Note that there is no linear term, following the hypothesis made above. Let us see how
does each term H†

j contributes to W for a sufficiently small neighbourhood. It is clear
that H†

0 is irrelevant, since both partials derivatives involved in W vanish for this term.
Hence, we focus on the two remaining terms of H†.

On the one hand, it is clear that x2, y2 ∼ O((x2
2 + y2

2)
1
2 ). On the other hand, both

∂
∂x2

H†
2 and ∂

∂y2
H†

2 depends on x2, y2 at most linearly, and as H†
j has at least degree 3, the

previous derivatives also depend at least linearly on x1, y1 when they do not vanish.
Similarly, for ∂

∂x2
H†

3 and ∂
∂y2

H†
3 we can ensure at least quadratic dependence in x2, y2

when they do not vanish. This little discussion brings us to

x2
∂H†

2
∂y2

+ y2
∂H†

2
∂x2
∼ O((x2

2 + y2
2)) ·O((x2

1 + y2
1)

1
2 ),

x2
∂H†

3
∂y2

+ y2
∂H†

3
∂x2
∼ O((x2

2 + y2
2)

3
2 ).

(3.8)

In both cases, the growing rate near the origin is given by O((x2
1 + y2

1 + x2
2 + y2

2)
3
2 ), while

λ
2 (x2

2 + y2
2) ∼ O(x2

2 + y2
2). Then, ‖W(x, y)‖ ≤ λ

2 (x2
2 + y2

2) in a neighbourhood Q, and this
proves the claim, since λ is assumed positive.

Now, let us define Ω = {x2
2 > y2

2} ∩Q ⊂ R4. It is clear that all the conditions of the
Chetaev’s theorem are hold (the only one being non-trivial is the condition (4), which
is hold due to the claim we already proved). Likewise, reversing the time and taking
the domain Ω′ = {x2

2 < y2
2} ∩ Q ⊂ R4 we can see that all the solutions starting in Ω′

leave from Q in negative time. Therefore, all solutions which starts in Ω (Ω′) leaves Q
in positive (negative) time and the origin is proven to be unstable.

All in all, we defined a Chetaev’s function in a suitable domain to see that the
Chetaev’s theorem applies there, resulting it in the instability of the collinear points.

It can be noticed that in the previous proof the linear behaviour have been consid-
ered only to write the Hamiltonian in the form of (3.6).

3.3 Stability of the equilateral points

The stability of the equilateral points is far more complex than for the collinear
points. We focus on the case where 0 < µ < µR, since for µR < µ < 1

2 the linear insta-
bility concludes the general case already as they are again unstable (see K. Meyer et al.
[15]). However, in the case of our interest the points L4 and L5 are linearly stable, so it
is not enough to discuss stability keeping only linear terms. Now, non linear terms may
not change the stability or break it instead. For that reason, more complex theorems
within the frame of the so-called KAM theory, called after Kolmogorov, Arnold, and
Moser, are introduced.

First, let us momentarily move away from our Hamiltonian system of differential
equations to focus on the fixed points of a diffeomorphism. Indeed, a close rela-
tion between flows and maps can be settled via the Poincare’s map, which maps an
(m − 1)-dimensional manifold into itself, being m the dimension of the phase space.
Furthermore, since we will fix an energy level in our 4-dimensional phase space, the
dimensions will decrease in 1. Thus, a transversal region in this space is 2-dimensional,
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so we will be considering maps from R2 to R2 which are area-preserving, that is, maps
F : R2 → R2 such that det(DF(ξ)) = 1 for all ξ ∈ R2.

Next, we introduce the invariant curve theorem in order to see that many of the
invariant curves of a particular map having particular frequencies persist under small
perturbations. Afterwards, using this theorem invariant curves will be constructed in
a cross section of our energy-fixed phase space, which will translate into invariant tori
in the phase space with the fixed energy. Finally these tori will be used to prove the
stability.

Although the pipeline presented in here distinguish two main theorems, they are
often considered as a whole after the name of KAM theorem.

3.3.1 Moser’s invariant curve theorem

There are countless ways to announce and prove the theorem that is the center of
this section. We follow the scheme of J. Moser in [16] but omitting some details in
the proof, as a detailed explanation of this theorem is itself an entire dissertation. A
similar version of the theorem is presented in K. Meyer et al. [15] but working with
action-angle variables instead of polar coordinates and skipping the proof. Finally, see
J. Moser [17] for a different approach.

Let (θ, r) be the polar coordinates in R2 and let us define a particular map:

Tφ : R2 → R2

(θ, r) 7→ (θ + φ, r)
(3.9)

which we call φ-twist map (since it twists every point an argument of φ). We will work
with a slightly perturbed twist map:

M : A→ A
(θ, r) 7→ (θ + α(r) + f (θ, r), r + g(θ, r))

(3.10)

where A = {(r, θ) : 0 ≤ a0 ≤ r ≤ b0, 0 ≤ θ ≤ 2π} ⊂ R2 is an annulus. Moreover, we
ask the functions involved in the definition of M to fulfil several conditions:

1. α is a real analytic monotone increasing function.

2. f and g are real analytic functions 2π-periodic in θ.

3. M has the following property: All curve Γ = {r = Φ(θ) = Φ(θ + 2π)} intersects
its image MΓ.

Note that taking f ≡ g ≡ 0 in M we get the map Tα(r). Hence, M is indeed
a deformation of the twist map. Our aim is to construct M-invariant curves for a
sufficiently "small" perturbation.

Remark: The condition (3) is considered in order to avoid the case in which M is an
homotopy. For instance, for f = 0 and g = ε > 0 sufficiently small, M is already a small
perturbation of a twist map, yet it is clear that there are no M-invariant curves. To fulfil
the condition (3), it is sufficient that M is an area-preserving map that preserves the
inner boundary of A.
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For simplicity, we will restrict ourselves to the case where α(r) = r. After a change
of variables the map M now reads:

M : A→ A
(x, y) 7→ (x + y + f (x, y), y + g(x, y)).

(3.11)

Furthermore, as f and g are assumed to be analytical, can be extended in a complex
domain D ⊂ C where |Imx| < r0 and y ∈ D′, being 0 < r0 < 1 and D′ a complex
neighbourhood of the interval [a0, b0]. Considering all this notation, the invariant curve
theorem can be stated:

Theorem 3.12. (Moser’s invariant curve theorem). For all ε > 0 it exists δ > 0 depending
on ε and D such that if | f |+ |g| < δ in D, then M admits an invariant curve of the form

x = ξ + u(ξ), y = v(ξ) (3.12)

where u and v are real analytic functions in |Imξ| < 1
2 r0 having period 2π.

Furthermore, the parametrization is chosen so that the induced mapping on the curve (3.12)
is given by ξ1 = ξ + ω with ω a constant incommeasurable with 2π, and the functions u and
v satisfying:

|u|+ |v−ω| < ε. (3.13)

As it has been mentioned in the beginning of this section, we only give a rough idea
of the proof, because it is quite technical. Actually, it starts introducing some conditions
to set the framework for the incoming lemma, which is used later on.

For 0 < s0 < 1
4 , let us choose ω such that a0 + s0 < ω < b0 − s0, which also satisfies

the diophantic condition ∣∣∣ ω

2π
q− p

∣∣∣ ≥ c0

qµ
, p, q = 1, 2 . . . (3.14)

where c0 is a constant. The existence of such ω for µ ≥ 2 is proven in J. Moser [16] and
can be justified with the following reasoning:

First, dividing by q, the diophantic condition reads∣∣∣∣ ω

2π
− p

q

∣∣∣∣ ≥ c0

qµ+1 . (3.15)

We claim that the set of values ω̃ = ω
2π not satisfying (3.15) has measure zero for a

suitable c0. It is clear that this set contains those points that are closer than δ(q) := c0
qµ+1

to p
q . If we arbitrarily take p

q ∈ [0, 1], then for each q from 1 to ∞, p takes the values
p = 0, 1, . . . , q. Hence, for each q there are q + 1 intervals of measure 2δ(q), and an
upper bound of the measure of the set given by the intersection of the negation of the
condition (3.15) with the interval [0, 1] is

∞

∑
q=1

2δ(q)(q + 1) =
∞

∑
q=1

2
c0

qµ+1 (q + 1) = 2c0

(
∞

∑
q=1

1
qµ

+
∞

∑
q=1

1
qµ+1

)
. (3.16)

The first series converge if µ ≥ 2, while the second does if µ ≥ 1. Hence, both converge
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for µ ≥ 2, proving that the measure of the set of ω̃ not satisfying (3.15) is 0 for a suitable
c0 and for µ ≥ 2. Therefore, let us fix c0 and ω hereafter.

In the complex plane, consider now the domain U defined by |Imx| < r and |y−
ω| < s and let us assume that | f | + |g| < d, where r, s and d are positive constants.
Consider also B ⊂ U given by |Imx| < ρ and |y − ω| < σ, where 0 < ρ < r and
0 < σ < s, and intermediate domains U ν for ν = 1, 2, 3 defined by |Imx| < r− r−ρ

4 ν and
|y−ω| < s− s−σ

4 ν such that B ⊂ U 3 ⊂ U 2 ⊂ U 1 ⊂ U .

Let us assume that the previously defined constants satisfy:

0 < r ≤ 1, 0 < 3σ < s <
r− ρ

4
, d <

s
6

. (3.17)

Moreover, we also impose that

ζ := c3(r− ρ)−2(µ+1) d
s
<

1
7

, (3.18)

being c3 a positive constant to determine later on. Under these conditions, we can state
the following lemma:

Lemma 3.13. Under the assumptions made above, it exists a transformation U of the form

x = ξ + u(ξ, η), y = η + v(ξ, η) (3.19)

where u and v are real analytic in U 1 of period 2π in ξ such that the mapping U−1MU takes
the form

ξ1 = ξ + η + φ(ξ, η), η1 = η + ϕ(ξ, η) (3.20)

with φ and ϕ real analytic defined in B and satisfying:

|φ|+ |ϕ| < c6

{
(r− ρ)−2µ−3

(
d2

s
+ sd

)
+
(σ

s

)2
d
}

. (3.21)

for a certain c6. Besides, in U 1 the inequality |u|+ |v| < ζ · s is hold.

The proof of this lemma will be omitted (see J. Moser [16], where a whole section is
devoted to this). Note that this lemma gives us a mapping U−1MU that has the same
form than M but giving also an upper bound of the error1. Then, the proof proceeds as
follows: we will apply iteratively this lemma in order to get a map defined each time
in a smaller complex domain and closer to the twist map so the initial domain shrinks
down to the pursued invariant curve.

Let us denote M0 = M and U0 be defined by |Imx| < r0 and |y−ω| < s0. We assume
that it exists δ > 0 such that | f |+ |g| < δ (in terms of the notation introduced before
the lemma, δ = d0). Applying the lemma, we get that it exists a transformation U0 such
that M1 = U−1

0 M0U0 is defined in U1 ⊂ U0 given by |Imx| < r1 and |y−ω| < s1 (being
r1 and s1 the parameters ρ and σ of the lemma respectively). Applying this lemma
iteratively with r = rn, s = sn, d = dn, ρ = rn+1 and σ = sn+1, we obtain the map
Mn+1 = U−1

n MnUn defined in Un ⊂ . . . ⊂ U0 given by |Imx| < rn and |y− ω| < sn. In

1The functions φ and ϕ are called the error functions as whether they vanish, then U−1 MU is the twist
map.
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particular, let us set the parameters rn, sn and dn of each iteration as follows

rn =
r0

2

(
1 +

1
2n

)
, sn = d

2
3
n , dn+1 = r−2µ−3

0 cn+1
7 d

4
3
n (3.22)

where c7 is again a suitable constant.

Now, we would need to prove that Mn is well defined (which can be done by in-
duction) and that Mn tends to the twist mapping when n → ∞. Let us focus on the
second.

It is clear that Uk maps Uk+1 into Uk. Hence, the transformation Vn = U0U1 . . . Un is
well defined and it enables us to write Mn+1 = V−1

n M0Vn. Moreover, we can write Vn
as

x = ξ + pn(ξ, η), y = η + qn(ξ, η) (3.23)

where pn and qn are analytic in Un+1, since they are the composition of analytic func-
tions. We claim now that pn and qn converge to analytic functions. By its definition, it
is easy to see that Vn = Vn−1Un, where the right sided transformation follows: Un is
given by x = ξ + un and y = η + vn, so the composition Vn−1Un reads

x = ξ + un + pn−1(ξ + un, η + vn), y = η + vn + qn−1(ξ + un, η + vn) (3.24)

where un and vn correspond to Un. Then, from Vn = Vn−1Un it turns that

pn(ξ, η) = un + pn−1(ξ + un, η + vn), qn(ξ, η) = vn + qn−1(ξ + un, η + vn). (3.25)

Applying this process recursively and dismissing some arguments that are not needed
afterwards, we finally obtain

pn = un + un−1 + . . . + u0, qn = vn + vn−1 + . . . + v0 (3.26)

and from the lemma we know |u|+ |v| < ζnsn < 1
7 sn, since ζn < 1

7 .

It is not difficult to see that dn converges to zero, so sn converges uniformly. Then,
from (3.26) together with the convergence of sn, we get that pn and qn converge uni-
formly in the set given by |Imξ| < r0

2 and η = ω (since by (3.22) rn → r0
2 and sn → 0)

so we proved the claim. Hence, let pn → u(ξ) and qn → v(ξ)−ω when n → ∞, where
u(ξ) and v(ξ) are real analytic 2π-periodic functions.

Now, it can be proved that |pn| + |qn| < s0, so choosing d0 (and hence s0) small
enough such that s0 < ε, we have that for all ε > 0 exists δ > 0 such that if |pn|+ |qn| <
s0, then |u|+ |v− ω| < ε, as u and v− ω are the limit of pn and qn respectively. Thus,
whether we manage to see that the curve given by (3.12) is M0-invariant the proof will
be concluded.

Remark: Notice that since dn → 0 when n → ∞ and | f |+ |g| < dn, the mapping Mn
approaches to the twist mapping for increasing n, as asserted.

From Mn+1 = V−1
n M0Vn we have that Vn Mn+1 = M0Vn. Now, let us take this

equality to the limit when n→ ∞. On the one hand, we already discussed that Mn+1 →
Tω when n → ∞, so considering that η = ω, the composition Vn Mn+1 when n → ∞ is
given by

ξ1 = ξ + ω + u(ξ + ω), η1 = v(ξ + ω). (3.27)
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On the other hand, using once again that Vn is known when n → ∞ because the
limits of pn and qn are u(ξ) and v(ξ)− ω respectively, we have that in this limit M0Vn
is given by

ξ1 = ξ + u(ξ) + v(ξ) + f (ξ + u, v), η1 = v(ξ) + g(ξ + u, v). (3.28)

Now, from (3.27) and (3.28) we finally obtain

ξ + ω + u(ξ + ω) = ξ + u(ξ) + v(ξ) + f (ξ + u, v),
v(ξ + ω) = v(ξ) + g(ξ + u, v).

(3.29)

Lastly, we claim that the conditions (3.29) imply that the curve (3.12), which will be
denoted γ(ξ), is M-invariant. Clearly, considering the relations (3.29) the curve Mγ(ξ)
can be written as

ξ1 = ξ + ω + u(ξ + ω), η1 = v(ξ + ω) (3.30)

which is the curve γ(ξ + ω), that has the same image that γ(ξ) as u and v are 2π-
periodic. This proves the claim and therefore the theorem.

So far, this theorem leads us to the existence of an M-invariant curve. However,
there is no impediment in applying the theorem for each sub interval of [a0, b0], which
eventually gives us an infinite number of invariant curves, all of them having particular
frequencies.

It might be noticed that the condition (3) made on the map M has not been used
so far, as it is required in the proof of the lemma, which we skipped. Nonetheless, it
has been remarked that it is a necessary condition to avoid having an homotopy as a
deformation.

The diophantic condition (3.14) asked on ω is used in the lemma as well. We are
basically imposing ω

2π to be irrationally enough so the image of the map M is dense.
Indeed, whether one tries to prove the theorem by expressing f and g as power series
to seek the expansion of the curve (3.12) in the Fourier space, it turns that they converge
if the term eikω − 1 for k = ±1,±2, . . . do not approach zero too rapidly (see J. Moser
[16]). This fact illustrates the need of ω

2π being irrational but fails to prove the result
using these series since their convergence cannot be guaranteed.

3.3.2 Birkhoff normal form

Let us move momentarily apart from the Invariant curve theorem to focus on finding
a normal form of the Hamiltonian centered in one of the equilateral equilibrium points.
Afterwards, the statement of stability is proven using this normal form. Consider firstly,
the following proposition:

Proposition 3.14. Let G(x, y) be a Hamiltonian function and (x0(t), y0(t)) a solution of the
system. Then, for each smooth function f = f (x, y) we have that

d
dt

f (x0(t), y0(t)) = { f , G}(x0(t), y0(t)). (3.31)

Proof. We only have to apply the chain rule and then recall the relations given by the
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Hamilton’s equations:

d
dt

f (x, y) =
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

=
∂ f
∂x

∂G
∂y
− ∂ f

∂y
∂G
∂x

= { f , G}(x, y).

After this preliminary result, consider our Hamiltonian H in the 4-dimensional
phase space and a transformation H̃ given by a Taylor expansion around the origin
(an equilateral point) evaluated in t = 1

H̃ = H + H′ +
1
2

H′′ +
1
3!

H′′′ + . . . (3.32)

Applying now the property given by proposition 3.14 the equation (3.32) reads

H̃ = H + {H, G}+ 1
2
{{H, G}, G}+ 1

3!
{{{H, G}, G}, G}+ . . . (3.33)

where G is a generating function not determined yet and H can be written as in the
equation (2.20) where Hj is a monomial of degree j. Besides, if we impose G1 = G2 = 0,
where Gj is a j-degree monomial and recall that whether P and Q have degree r and s
respectively, then {P, Q} has degree r + s− 2, it follows that the 3-degree monomial of
H̃ is

H̃3 = H3 + {H2, G3}. (3.34)

Now we aim to simplify the form of H̃ by choosing G3 in a manner that makes
H̃3 vanishes. In that direction, we use the known expression H2 = iω1y1x1 + iω2y2x2
where ω = (ω1, ω2) is assumed to have its components independent over the rationals.
This expression is deducted in the same way we obtained the term H2 for the collinear
points, and now a further transformation is applied to consider complex variables.

Let us denote xkx = x
kx1
1 x

kx2
2 and similarly for yky , where kx, ky ∈ Z2. Then, it is clear

that considering some coefficients hkx ,ky and gkx ,ky we can write

H3(x, y) = ∑
|kx |+|ky|=3

hkx ,ky xkx yky , G3(x, y) = ∑
|kx |+|ky|=3

gkx ,ky xkx yky (3.35)

where |kx| = kx1 + kx2 and analogously for |ky|. Recalling now the definition of the
Poisson brackets, after a simple calculation we obtain that

{H2, xkx yky} = i〈ky − kx, ω〉xkx yky

where ky− kx = (ky1 − kx1 , ky2 − kx2) and 〈·, ·〉 : R2×R2 → R denotes the scalar product.
This, along with the equation (3.34) an the expressions (3.35) implies that

∑
|kx |+|ky|=3

hkx ,ky xkx yky + ∑
|kx |+|ky|=3

gkx ,ky i〈ky − kx, ω〉xkx yky = 0

which can be expressed using a single summation as

∑
|kx |+|ky|=3

(
hkx ,ky xkx yky + gkx ,ky i〈ky − kx, ω〉xkx yky

)
= 0.
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Now, vanishing each term of the summation, we obtain

gkx ,ky =
−hkx ,ky

i〈ky − kx, ω〉 . (3.36)

Note that ky− kx 6= 0, since |kx|+ |ky| = 3. Moreover, this together with the fact that
ω1 and ω2 are linearly independent over the rationals, ensure us that 〈ky − kx, ω〉 6= 0.
Therefore, the coefficients gkx ,ky are well defined. So far, we have seen that G can be
chosen such that H̃3 = 0. Likewise, the same scheme can be applied for d ∈ N, by
choosing suitable Gj to vanish H̃2d+1.

On the other hand, notice that for |kx|+ |ky| = 2d, where d ∈ N, the vector ky − kx
may vanish, so H̃2d can not generally be removed for d ∈N.

Thus, after this discussion we can reach the following normal form:

H = H2 + H4 + . . . + H2N + H†. (3.37)

3.3.3 Invariant tori

Here we introduce a topological concept that will be a key point for incoming re-
sults. To this end, let us consider a system having n degrees of freedom to introduce
the concept of integrable system, in which given a complete set of boundary conditions,
the solution can be found analytically through the conserved quantities.

As we have seen, a first integral enables us to decrease the degrees of freedom of a
system. However, the presence of two constants of movement not always reduces the
degrees of freedom by a factor of two. Instead, it happens only if the two integrals are
in involution.

Definition 3.15. Being Ω a phase space, we say that n functions F1, . . . , Fn : R×Ω → R are
in involution if it is hold

{Fi, Fj} = 0, 1 ≤ i, j ≤ n. (3.38)

From the usually called Arnold-Liouville theorem (see V. Arnold [2]), we know
that a system with n degrees of freedom is integrable if it admits n first integrals in
involution. Also, this theorem proves that in such a case it exists a set of symplectic
action-angle coordinates.

Now, supposing that our Hamiltonian system is integrable with an added perturba-
tion and considering action-angle coordinates (Ii, φi), the Hamiltonian having n degrees
of freedom can be written as H = H(Ii) + εH1(Ii, φi), with i = 1, . . . , n where the sec-
ond term is the perturbation. For now, consider only the part depending exclusively on
the actions. Then, the equations of movement that yield from the Hamilton’s equations
read

İi = 0, φ̇i =
∂H
∂Ii

= ωj(Ii). (3.39)

The integration of these equations leads us to Ii(t) = Ii(0) and φ(t) = ωj(Ii(0))t+ φi(0).

Notice that the image of each couple of solutions Ii(t) and φi(t) is S1 ⊂ R2. Hence,
the movement in the phase space is defined by an n-dimensional torus

Tn = S1 × . . .× S1. (3.40)



26 Non-linear stability of the Lagrangian points in the plane

having frequencies ωj and depending on the action variables. On the whole, we have
seen that the integrable part of the Hamiltonian make the phase space to be filled by
solutions defining different tori. As we will see later in this chapter for a 4-dimensional
phase space, the Moser’s theorem ensures that the majority of these tori are deformed
but not destroyed (those having sufficiently irrational frequencies) when considering
the perturbative part.

Taking into account what we have just discussed in this section, the Hamiltonian
(3.37) fulfils the following conditions:

1. H is real analytic in a domain containing the origin in R4.

2. H2k is a homogeneous polynomial of degree k in I1, I2 for 1 ≤ k ≤ N.

3. H† admits a series expansion of terms having at least degree N + 1.

4. H2 = ω1 I1 −ω2 I2, with ωi nonzero constants.

The last condition comes from the linearization of the Hamiltonian and from consider-
ing action-angle coordinates.

3.3.4 Arnold’s stability theorem

The theorem that is stated and proved in this section, along with the normal form
of our 2-degrees of freedom Hamiltonian obtained in section 3.3.2, enable us to prove
that the Libration points L4 and L5 are stable when µ < µR.

To this end, we fix an energy level in our phase space Ω ⊂ R4 (restricting ourselves
to a 3-dimensional subspace) and consider there the Poincare’s map, mapping a cross
section Σ ⊂ R2 into itself. For this map get an invariant curve in Σ via the Moser’s
theorem, which results in an invariant torus on the phase space with the fixed level.

The solutions with initial conditions within these invariant tori are confined there for
all positive and negative time, proving stability. In the proof of the following theorem
this idea is formalized further.

Theorem 3.16. (Arnold’s stability theorem). Consider a Hamiltonian of the form (3.37)
such that for some 1 ≤ k ≤ N it holds D2k = H2k(ω1, ω2) 6= 0 or, equivalently, H2 does not
divide H2k. Then, the equilibrium point at the origin is stable. Moreover, arbitrarily close to the
origin in R4 there are invariant tori and the flow on these invariant tori is the linear flow with
irrational slope.

Proof. Let us assume that D2 = . . . = D2N−2 = 0 and D2N 6= 0. Then, since H2 divides
H2k for k = 2, . . . , N − 1, there are homogeneous polynomials F2k for these values of k
having degree 2k such that H2k = H2F2k−2. Therefore, the Hamiltonian (3.37) can be
rewritten as

H = H2(1 + F2 + . . . + F2N−4) + H2N + H†. (3.41)

Let us introduce action-angle coordinates in the phase space (which corresponds to a
symplectic transformation). The actions and angles read respectively Ii =

1
2 (x2

i + y2
i )

and φi = arctan( yi
xi
) for i = 1, 2. Moreover, consider a scaling in the action coordinates

such that Ii = ε2 Ji, being ε the scaling parameter.
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Notice that as H2k is a homogeneous polynomial of degree k in I1, I2, then it is also
a homogeneous polynomial of degree k in J1, J2 accompanied by the term ε2k and by
the multiplier of the transformation ε−2. In addition, H reads:

H = H2 + ε2H4 + . . . + ε2N−2H2N + O(ε2N−1) =

= H2(1 + ε2F2 + . . . + ε2N−4F2N−4) + ε2N−2H2N + O(ε2N−1).
(3.42)

Let us focus on a bounded neighbourhood of the origin O given by |Ji| ≤ 4 for
i = 1, 2. In O, we claim that the following equality holds:

H − ε2N−1 · h = KF (3.43)

where K = H2 + ε2N−2H2N + O(ε2N−1), F = 1 + ε2F2 + . . . + ε2N−4F2N−4, and h ∈
[−1, 1]. For the left-sided part, it is clear that −ε2N−1 · h can be included in O(ε2N−1),
so this part is equal to H. On the other hand, the right-sided part reads

KF = H2F + ε2N−2H2N F + O(ε2N−1)F = H2F + ε2N−2H2N + O(ε2N−1)

which again equals to H. Thus, we proved the claim.

Consider now that ε is sufficiently small to let F be positive. Then, imposing K = 0
in (3.43) we obtain H = ε2N−1 · h, so H is in a fixed level characterized by K = 0. Let us
denote z = (Ji, φi) where i = 1, 2 and ∇ = ∇z the gradient operator in these variables.
Recalling that H = KF and elemental properties of the nabla operator, the equations of
movement are given by

ż = J∇H = J∇(KF) = J[(∇K)F + K(∇F)] = (J∇K)F + K(J∇F). (3.44)

Thus, for K = 0 the equations read ż = (J∇K)F. Considering the reparametrization
dτ = Fdt we get:

dz
dτ

= z′ = J∇K. (3.45)

Notice that we proved that for a sufficiently small ε the system given by H in the level
H = ε2N−1h can be reparametrized by K in O. Under these conditions, recalling the
explicit form H2 = ω1 J1 −ω2 J2, Hamilton’s equations read

J′1 =
∂K
∂φ1

= O(ε2N−1) = J′2,

φ′1 = − ∂K
∂J1

= −ω1 − ε2N−2 ∂H2N

∂J1
+ O(ε2N−1),

φ′2 = − ∂K
∂J2

= ω2 − ε2N−2 ∂H2N

∂J2
+ O(ε2N−1).

(3.46)

We now want to find the Poincare’s map in the cross section Σ ⊂ R2 given by
φ2 = 0 (mod 2π) in the energy level K = 0. Integrating the last equation in (3.46) taking
φ2(0) = 0 we obtain that

φ2 =

[
ω2

(
1− ε2N−2

ω2

∂H2N

∂J2

)
+ O(ε2N−1)

]
τ.
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Hence, the time that it takes for φ2 to reach 2π for the first time is

T =
2π

ω2

(
1− ε2N−2

ω2

∂H2N

∂J2

)−1

+ O(ε2N−1) =
2π

ω2

(
1 +

ε2N−2

ω2

∂H2N

∂J2

)
+ O(ε2N−1)

(3.47)
where in the last equality it has been used that 1

1−x = 1 + x + O(x2) for x small.

Now, integrating the second equation in (3.46) from τ = 0 to τ = T:

φ1 = φ0 −
(

ω1 + ε2N−2 ∂H2N

∂J1

)
T + O(ε2N−1).

Substituting the expression of T found in (3.47) we finally obtain

φ1 = φ0 − 2π

(
ω1

ω2

)
− ε2N−2 2π

ω2
2

(
ω2

∂H2N

∂J1
+ ω1

∂H2N

∂J2

)
+ O(ε2N−1). (3.48)

On the other hand, as we confined ourselves in the level K = 0, it follows that H2 +
ε2N−2H2N +O(ε2N−1) = 0. Recalling once again the explicit form of H2 and considering
only the linear terms in ε, we get the relation

J2 =
ω1

ω2
J1 + O(ε2). (3.49)

Finally, mixing the equations (3.48, 3.49) and applying Euler’s theorem on homoge-
neous polynomials we reach that

φ1 = φ0 + α + ε2N−2βJN−1
1 + O(ε2N−1) (3.50)

where α = −2π
(

ω1
ω2

)
and β = −2π

(
N

ωN+1
2

)
H2N(ω1, ω2). Note that β 6= 0, since D2N =

H2N(ω1, ω2) 6= 0 by hypothesis.

Observe, that the equation (3.50) enables us to define the Poincare’s map M given
by

φ′1 = φ0 + α + ε2N−2βJN−1
1 + O(ε2N−1), J′1 = J1 + O(ε2N−1) (3.51)

which is area-preserving and can be defined in the annulus given by 1
2 ≤ J1 ≤ 3 for

a sufficiently small ε. Hence, since this map M fulfils the conditions mentioned in the
Moser’s invariant curve theorem, it exists ε0 > 0 such that for all 0 ≤ ε ≤ ε0 it exists
an M-invariant curve taking the form J1 = ρ(φ1, ε) where ρ is continuous, 2π-periodic,
and fulfilling that 1

2 ≤ ρ(φ1, ε) ≤ 3, ∀φ1.

Until now, we have found an invariant curve of the Poincare’s map in the cross
section Σ ⊂ R2. Since this map is given by the intersection of the solutions of (3.46)
with the cross section Σ, recalling that an invariant manifold cannot be crossed by
any solution (which yields from the existence and uniqueness theorem of ordinary
differential equations) it is clear that for K = 0, a solution with initial condition J1(0) <
1
2 will satisfy J1(τ) < 3, ∀τ, still in Σ. Moreover, since for K = 0 we have already seen
the relation (3.49), a bound of J1 gives us a bound of J2.

Therefore, there are constants C1 and C2 such that if J1(τ) and J2(τ) are solutions
of (3.46) for K = 0 fulfilling |Ji(0)| ≤ C1 for i = 1, 2 then |Ji(τ)| ≤ C2 ∀τ, h ∈ [−1, 1],
0 ≤ ε ≤ ε0.
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Now, going back to the original action-angle coordinates (Ii, φi) for i = 1, 2 and
to the original Hamiltonian, what we have seen so far is that given the fixed level
H = ε2N−1 · h and initial conditions such that |Ii(0)| ≤ ε2C1 for i = 1, 2 the solutions
Ii(t) satisfy that |Ii(t)| ≤ ε2C2 for i = 1, 2, ∀t, h ∈ [−1, 1], 0 ≤ ε ≤ ε0. This concludes
that the origin is stable. Furthermore, it can be noticed that any of the invariant curves
on Σ is a transversal section of an invariant 2-dimensional torus in the phase space
restricted to the level given by K = 0.

Remark: It is important to note that the torus is not necessarily T2 = S1 × S1 ⊂ R3,
but something diffeomorphic, as the image of the invariant curve given by the Moser’s
theorem is in general a deformation of S1.

Remark: The fact that D2N 6= 0 is crucial to prove the statement. If D2N is zero at
some point then β may vanishes. Paying attention at the map (3.51), this means that
the invariant curves given by the Moser’s theorem will have all the same frequency,
resulting in invariant tori of the same frequency. Hence, in resonant condition all the
invariant tori might be destroyed and stability can not be proved.

Now, this theorem can be used to prove the stability of the Lagrangian points L4
and L5. In our case, it can be seen, computing the normal form up to the fourth term
that

D4 = H4 =
1
2
(Aω2

2 + 2ω1ω2 + Cω2
1) (3.52)

where A, B and C are coefficients first calculated by Deprit and Deprit-Bartholome [6].
It turns that, D4 vanishes for 3 critical values of µ < µR (let us put µ1, µ2 and µc).
However, for µc it was proven in Meyer and Schmidt [14] that D6(µc) 6= 0. Thus, we
can ensure stability for all values of µ < µR but for µ1 and µ2. In fact, for these values
the Hamiltonian is unstable (see K. Meyer et al.[15] and A. Markeev [13]).



Chapter 4

On the non-linear stability of the
equilateral Lagrangian points in the
space

From now on we focus only on the stability of the Lagrangian points L4 and L5.
Since we consider now the problem in the space (meaning that the infinitesimal particle
is not anymore restricted to the plane containing the orbits of the primaries), we have
one more degree of freedom.

First, let us remark that the KAM theory developed in the previous chapter can be
applied in this case to prove the existence of invariant tori near the equilibrium as well.
However, we can easily see that these tori do not enclose a region in the phase space,
meaning that a trajectory starting near one of these tori may diverge in both positive
and negative time.

Since our new Hamiltonian has 3 degrees of freedom, by fixing an energy level we
obtain a 5-dimensional subspace of the 6-dimensional phase space Ω. Besides, the tori
given by the Moser’s and Arnold’s theorems are T3, as seen in section 3.3.3. Hence,
we have 3-dimensional invariant tori in R5, but since these tori are not 1-codimensional
with R5, they do not enclose a subregion of R5.

Moreover, although these points were thought to be stable until the mid-1960s, V.
Arnold conjectured in [1] that they are unstable instead. Actually, the phenomenon of
diffusion pushing the infinitesimal particle away from the equilibrium is named after
Arnold. However, it might take a long time (of the scale of the solar system’s age) for
a solution to move away from an invariant torus, so the term of effective stability is
introduced: an equilibrium point is said to be effectively stable if a particle remains
there for a long period of time.

In addition, this chapter is entirely devoted to obtaining a bound from bellow of the
time that it would take for a trajectory within a ball of radius ρ0 to leave from a ball
of radius ρ, being ρ > ρ0. The scheme followed in here is based on the Nekhoroshev
theory. An introduction to this new theory can be found in D. Benest et al. [4] and in
the references therein.

Bellow, the new Hamiltonian and the first integrals are introduced. Then, we an-
nounce and prove some technical lemmas that are useful to estimate some bounds of
the Hamiltonian and the first integrals afterwards, following the steps made by A. Cel-

30



4.1 Theoretical framework 31

letti et al. [5]. Finally, we manage to obtain an estimation of the stability time and we
implement a code in C++ to compute this bound for the Sun-Jupiter system, using here
a slightly different approach, enriched with the open software developed by À. Jorba
[11].

4.1 Theoretical framework

To start with, we introduce the Hamiltonian governing the dynamics of the problem.
In section 2.1 we already introduced in a deductive manner the Hamiltonian for the
same problem considering only two degrees of freedom.

Following our previous steps, consider the same units system and positions of the
primaries as in section 2.1. Let now XT = (X1, X2, X3) be the position of the infinitesimal
particle. The expression of the Lagrangian must include now the component Ẋ3 of the
velocity, so the equation (2.3) is rewritten as

L = T −U =
1
2
(Ẋ1

2
+ Ẋ2

2
+ Ẋ3

2
) +

µ

d′1
+

1− µ

d′2
(4.1)

being d′1 and d′2 the new distances from the infinitesimal particle to each of the pri-
maries.

We take now the rotational frame of reference introduced in section 2.1 as well,
which is now given by the generalised transformation(

X1
X2

)
=

(
cos t − sin t
sin t cos t

)(
x1
x2

)
, X3 = x3 (4.2)

where xT = (x1, x2, x3) are the coordinates of the infinitesimal particle in this new
frame of reference. Now, analogously to the planar case, the Lagrangian in this system
is written as follows

L =
1
2
(
(ẋ1 − x2)

2 + (ẋ2 + x1)
2 + ẋ3

2)+ µ

d′1
+

1− µ

d′2
(4.3)

with d′1
2 = (x1 − 1 + µ)2 + x2

2 + x2
3 and d′2

2 = (x1 + µ)2 + x2
2 + x2

3. Finally, from the
definition of the Hamiltonian and writing the velocities in terms of the generalised
moments, we reach that

H =
1
2
(y2

1 + y2
2 + y2

3) + x2y1 − x1y2 −
µ

d′1
− 1− µ

d′2
. (4.4)

However, for the treatment coming we are interested in the expression of the Hamil-
tonian centered in one of the equilateral Lagrangian points. It is quite straightforward
that even considering the spatial problem, the equilibrium points remain in the orbit’s
plane, so both L4 and L5 are in the plane x3 = 0 and fulfil the conditions d′1 = d′2 = 1.
From here, if we aim to set the new origin in L4, for instance, it is easy to see that its
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coordinates are L4 = ( 1
2 − µ,

√
3

2 , 0). Then, if we apply the following change of variables

x = x1 −
(

1
2
− µ

)
, px = y1 +

√
3

2
,

y = x2 −
√

3
2

, py = y2 −
(

1
2
− µ

)
,

z = x3, pz = y3

(4.5)

the positions and moments vanishes in L4. After a short but still tedious computation
and vanishing the constant terms by imposing a shift, the new Hamiltonian (which
again we call H to keep the notation clear) reads

H =
1
2
(p2

x + p2
y + p2

z) + ypx − xpy −
(

1
2
− µ

)
x−
√

3
2

y− µ

d′1
− 1− µ

d′2
(4.6)

where d′1 and d′2 can be written in terms of the new variables as

d
′2
1 = 1− x +

√
3y + x2 + y2 + z2, d

′2
2 = 1 + x +

√
3y + x2 + y2 + z2. (4.7)

Once we have the Hamiltonian centered in the desired point, we aim to find its series
expansion. It can be noticed that only the last two terms in the expression (4.6) have to
be expanded, indeed. To this end, we use the definition of the Legendre polynomials

1√
1− 2ξt + t2

=
∞

∑
n=0

Pn(ξ)tn (4.8)

and note that d
′2
1 = 1− x +

√
3y + r2 with r2 = x2 + y2 + z2, so by letting t = r and

ξ = x−
√

3y
2r we obtain

1
d′1

=
∞

∑
n=0

Pn

(
x−
√

3y
2r

)
rn (4.9)

and proceeding similarly for 1
d′2

we get that the terms Hk having order higher than 2 are

Hk = rkPk

(
x−
√

3y
2r

)
µ + rkPk

(
−x−

√
3y

2r

)
(1− µ), k > 2. (4.10)

One last change of variables is required: the one that turns H2 into its normal form.
It is proven in A. Celletti et al. [5] and in A. Giorgilli et al. [9], that in terms of a
new set of variables (x1, x2, x3, y1, y2, y3) given by a symplectic change (x, y, px, py)T =
M(x1, x2, y1, y2)T, z = x3, pz = y3 the term H2 reads

H2 =
1
2

3

∑
l=1

ωl(x2
l + y2

l )

being ωl the eigenvalues of H2. Moreover, the papers cited above show explicitly that
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the symplectic change is M = (e′1, e′2, f ′1, f ′2) where

e′j =
ej√

ωj

(
2ω4

j +
ω2

j
2 −

3
4

) , f ′j =
f j√

ωj

(
2ω4

j +
ω2

j
2 −

3
4

)

being ej =
(

a,− 3
4 −ω2

j , 3
4 −ω2

j , a
)T

, f j =
(

2ωj, 0, aωj, ( 5
4 −ω2

j )ωj

)T
and a = −(1 −

2µ) 3
√

3
4 . On its side, provided that 27µ(1− µ) < 1 (which is hold in the system Sun-

Jupiter, since µ = 9.5387536× 10−4), the eigenvalues of H2 are given by

ω2
1 =

1
2
+

1
2

√
1− 27

4
+ 4a2, ω2

2 =
1
2
− 1

2

√
1− 27

4
+ 4a2, ω2

3 = 1. (4.11)

From now on, despite the fact that the spatial case implies 3 degrees of freedom, let
us consider the general case of n degrees. Then, the term H2 reads

H2 =
1
2

n

∑
l=1

ωl(x2
l + y2

l ).

Furthermore, it admits the first integrals Φ(l)
2 = 1

2 (x2
l + y2

l ) for 1 ≤ l ≤ n. This can be

quickly proven by checking that {Φ(l)
2 , H2} = 0 for 1 ≤ l ≤ n. Also, if we consider all the

Hamiltonian H, we can define its first integrals Φ(l) through the condition {Φ(l), H} =
0, where Φ(l) can be expressed as a power series

Φ(l) = Φ(l)
2 + Φ(l)

3 + . . . (4.12)

being Φ(l)
s a homogeneous polynomial having all terms of degree s and depending in

general on xl , yl for 1 ≤ l ≤ n when s > 2. The fact that Φ(l) are first integrals leads us
to the following recursive system.

Lemma 4.1. Under the notation introduced above, it holds that

{H2, Φ(l)
s } = ϕ

(l)
s (4.13)

with

ϕ
(l)
3 = −{H3, Φ(l)

2 }, ϕ
(l)
s = −

s−3

∑
j=1
{Hs−j, Φ(l)

j+2} − {Hs, Φ(l)
2 }, s > 3. (4.14)

Proof. To prove this result we only need to consider the linearity of the Poisson bracket
operator and recall the following property used in previous chapters already: if f and
g are two monomials of degree r and s respectively, then { f , g} is a monomial of degree
r + s− 2.

Then, isolating {H2, Φ(l)
s } from the condition {Φ(l), H} = 0 and taking into account

that all the terms of {H2, Φ(l)
s } have degree s, many of the terms vanish remaining only

the ones having degree s. The lemma Follows from here.
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Besides, considering the relation (4.13) and a general form for ϕ
(l)
s , a concrete ex-

pression for Φ(l)
s can be stated. Consider first the complex change of variables given

by

xl =
1√
2
(ξl + iηl), yl =

i√
2
(ξl − iηl) (4.15)

for 1 ≤ l ≤ n. Hence, in complex variables H2 reads

H2 = i
n

∑
l=1

ωlξlηl .

Then, considering a polynomial expansion of ϕ
(l)
s in C[ξ, η] as follows

ϕ
(l)
s = ∑

|j+k|=s
cjkξ jηk,

with ξ jηk = ξ
j1
1 · . . . · ξ jn

n · ηk1
1 · . . . · ηkn

n and |j + k| = j1 + . . . + jn + k1 + . . . + kn, Φ(l)
s can

be given by the following proposition.

Proposition 4.2. Taking ϕ
(l)
s as defined above, Φ(l)

s takes the form

Φ(l)
s = −i ∑

|j+k|=s

cjk

(k− j)ω
ξ jηk. (4.16)

Proof. We only need to see if given the expression for Φ(l)
s , the relation (4.13) holds.

Computing the Poisson bracket, we obtain:

{H2, Φ(l)
s } =

n

∑
l=1

(
∂H2

∂ξl

∂Φ(l)
s

∂ηl
− ∂H2

∂ηl

∂Φ(l)
s

∂ξl

)
=

=
n

∑
l=1

iωlηl(−i) ∑
|j+k|=s

cjk

(k− j)ω
klξ

j ηk

ηl
− iωlξl(−i) ∑

|j+k|=s

cjk

(k− j)ω
jl

ξ j

ξl
ηk

 =

=
n

∑
l=1

ωl ∑
|j+k|=s

cjk

(k− j)ω
ξ jηk(kl − jl)

 .

Finally, if we sum for all the values of l we get:

{H2, Φ(l)
s } = ∑

|j+k|=s
cjkξ jηk.

It is important to remark that our goal is to obtain a computational bound. Thus,
working with infinite series is meaningless and therefore we will consider the first
integrals truncated up to a finite order. In addition, Φ(l,r) will stand for the first inte-
gral l up to order r. In the literature these truncated integrals are often called quasi-
first integrals, since they are not absolutely conserved in a trajectory in general, as
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{Φ(l,r), H} is not zero. Of course, when r gets bigger {Φ(l,r), H} becomes smaller since
limr→∞ Φ(l,r) = Φ(l).

Now, we introduce a norm that will enable us to establish bounds of the Hamilto-
nian and the first integrals. To this end, let us fix a vector R = (R1, . . . , Rn) ∈ Rn.

Definition 4.3. Let f (x, y) = ∑j,k f jkxjyk be a 2n-variables polynomial of arbitrary finite

degree, where xj = xj1
1 · . . . · xjn

n and similarly for yk. Then, we define the norm of f with respect
to R ∈ Rn as

‖ f ‖R = ∑
j,k
| f jk|Rj+k (4.17)

where Rj+k = Rj1+k1
1 · . . . · Rjn+kn

n .

To illustrate the choice of this norm, we start by defining a reference domain in the
phase space. Let ρ ∈ R and let R be the fixed vector defined above hereafter. Then, let
us consider

∆ρR = {(x, y) ∈ R2n : x2
l + y2

l ≤ ρ2R2
l , 1 ≤ l ≤ n} ⊂ Ω. (4.18)

Essentially, the set ∆ρR is a 2n-dimensional ellipsoid in Ω, since the components of
R ∈ Rn might be different in general. The following proposition provides us with a
simple bound of a polynomial defined in ∆ρR:

Proposition 4.4. Let f (x, y) be a homogeneous polynomial of degree s defined in (x, y) ∈
∆ρR ⊂ Ω. Then, one has

| f (x, y)| ≤ ρs‖ f ‖R. (4.19)

Proof. Let us denote f (x, y) = ∑j,k f jkxjyk. Then, it is clear that

| f (x, y)| ≤∑
j,k
| f jk||x|j|y|k.

Further, since (x, y) ∈ ∆ρR, we have that |x|,|y| ≤ ρR, so the last term can be bounded
as follows

∑
j,k
| f jk||x|j|y|k ≤∑

j,k
| f jk|ρj+kRj+k ≤ ρs‖ f ‖R

where in the last inequality we recalled both the definition of ‖ · ‖R and the fact that the
degree of f is s, so j + k ≤ s.

Notwithstanding it can be noticed that the bounds |x|,|y| ≤ ρR are hardly accurate,
the bound of | f (x, y)| given by proposition can still be saturated, (for instance, consider
the polynomial f (x, y) = xs

1 in (x, y) = (ρR1, 0, . . . , 0, 0, . . . , 0) ∈ ∂∆ρR). This fact makes
it difficult to find a better bound, which would barely increase the accuracy and would
be far less intuitive.

In the next section, it will be useful to obtain lower bounds of the norm of a Poisson
bracket. With that in mind, we announce and prove the following lemma, stated in A.
Giorgilli [8].
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Lemma 4.5. Let f and g be two homogeneous polynomials of degree s and r respectively. Then,
the following condition is fulfilled

‖{ f , g}‖R ≤ srΛ2‖ f ‖R‖g‖R (4.20)

where Λ = (minl Rl)
−1, for 1 ≤ l ≤ n.

Proof. Let us denote f = ∑j,k f jkxjyk and g = ∑j′,k′ gj′k′xj′yk′ . By definition, we have that

{ f , g} =
n

∑
l=1

(
∂ f
∂xl

∂g
∂yl
− ∂ f

∂yl

∂g
∂xl

)
=

=
n

∑
l=1

(
∑

j,k,j′,k′
f jkgj′k′xj+j′yk+k′ jlk′l

xlyl
− ∑

j,k,j′,k′
f jkgj′k′xj+j′yk+k′ j′lkl

xlyl

)
=

= ∑
j,k,j′,k′

f jkgj′k′xj+j′yk+k′
n

∑
l=1

jlk′l − j′lkl

xlyl
.

Then, applying its definition, the norm of { f , g} can be lower bounded by:

‖{ f , g}‖R ≤ ∑
j,k,j′,k′

| f jk||gj′k′ |Rj+j′+k+k′
n

∑
l=1

jlk′l + j′lkl

R2
l

= ‖ f ‖R‖g‖R

n

∑
l=1

jlk′l + j′lkl

R2
l

.

Now, since the degree of f and g are s and r respectively, we have that jl < s, kl < s and
j′l + k′l < r. Thus, we obtain:

n

∑
l=1

jlk′l + j′lkl

R2
l

≤ s
n

∑
l=1

k′l + j′l
R2

l
≤ sr

n

∑
l=1

1
R2

l
≤ srΛ2.

Combining these chains of inequalities the lemma follows.

A particular case of this lemma can be considered if g = Φ(l)
2 . From here, it yields

the following result:

Lemma 4.6. Let f be a homogeneous polynomial of degree s. Then, it is fulfilled

‖{ f , Φ(l)
2 }‖R ≤ s‖ f ‖R. (4.21)

Proof. Taking f as in the previous proof, it is simple to compute the Poisson bracket
involved in the claim

{Φ(l)
2 , f } = ∑

j,k
xl f jkxjyk kl

yl
−∑

j,k
yl f jkxjyk jl

xl
=

(
kl

xl

yl
− jl

yl

xl

)
∑
j,k

jjkxjyk.

Then, the norm can be bounded by

‖{ f , Φ(l)
2 }‖R = ‖{Φ(l)

2 , f }‖R ≤ (kl + jl)∑
j,k
| f jk|Rj+k ≤ s ∑

j,k
| f jk|Rj+k = s‖ f ‖R

where in the last inequality we used that the degree of f is s, by hypothesis.
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Now, we introduce a result that is useful when bounding the first integrals. Let the
absolute value of the terms (k − j) · ω of the equation (4.16) be bounded from bellow
by some real constants αs. Then, using the result seen in proposition 4.2, it is straight-
forward to prove that

‖Φ(l)
s ‖R ≤

1
αs
‖ϕ

(l)
s ‖R. (4.22)

It is clear that the use of this bound requires to determine computationally the constants
αs. Since k− j = (k1 − j1, . . . , kn − jn) ∈ Zn, we can redefine t = k− j and ask |t ·ωl | ≥
αs. Indeed, the constants

αs = min
t∈Ts
|t ·ωl | (4.23)

fulfil that condition, so if Ts is a finite set, αs can be found with a computer by testing
t ∈ Ts exhaustively. In addition, from |k + j| = k1 + . . . + kn + j1 + . . . + jn ≤ s and
k, j ∈Nn, it follows |t| < s. In turn, Ts = {t ∈ Zn, 0 < |t| ≤ s}, which is a finite set.

Finally, we need to introduce in a simple way the time derivative of the first integrals.
To do so, we recall that if f is an arbitrary function in a phase space Ω and H is a
Hamiltonian, then ḟ = ∂ f

∂t + { f , H}. Thus, it holds that

Φ̇(l,r) = {Φ(l,r), H} =
r−2

∑
j=0

∑
s>r
{Φ(l)

j+2, Hs−j}. (4.24)

One may notice that in the previous summations there are only terms having degree
bigger than r. In particular, the Poisson bracket can be decomposed as

{Φ(l,r), H} = {Φ(l,r), H2 + . . . + Hr}+ {Φ(l,r), Hr+1 . . .}

using its linearity. Then, since the first term clearly vanishes because of the definition of
first integral, all the terms in (4.24) come from the second Poisson bracket, which have
degree greater than r.

4.2 Estimations of the Hamiltonian and first integrals

As will be noticed in section 4.3, it is required to obtain lower bounds of the Hamil-
tonian and the first integrals to bound the escape time thereafter.

To this end, in this section several technical lemmas are introduced, giving us some
practical bounds. Whereas lemmas 4.7, 4.8 focus on bounding the Hamiltonian, lemma
4.9 and proposition 4.10 enable us to bound the first integrals and their time derivatives
respectively. To begin with, let us announce a lemma that bounds Hk for every k.

Since the expression (4.10) of the Hamiltonian is recalled bellow, let us redefine the
variables

r =
√

x2 + y2 + z2, γ =
x−
√

3y
2r

, δ =
−x−

√
3y

2r
, (4.25)

and the variables rt, γt and δt for the the same quantities in terms of the coordinates
x1, . . . , xn, y1, . . . , yn.
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Lemma 4.7. Assume that for some m ≥ 2 and some constants Sm−1 and Sm it holds that

(1− µ)‖rm−1
t Pm−1(γt)‖R + µ‖rm−1

t Pm−1(δt)‖R ≤ Sm−1,
(1− µ)‖rm

t Pm(γt)‖R + µ‖rm
t Pm(δt)‖R ≤ Sm.

(4.26)

Then, we have that ‖Hk‖R ≤ Sk, being {Sk}k>m recursively defined as follows:

Sk+1 =
2k + 1
k + 1

c1Sk +
k

k + 1
c2Sk−1 (4.27)

where c1 = max(‖γtrt‖R, ‖δtrt‖R) and c2 = ‖r2
t ‖R.

Proof. Considering the norm of Hk as written in (4.10) we get the first bound

‖Hk‖R ≤ (1− µ)‖rk
t Pk(γt)‖R + µ‖rk

t Pk(δt)‖R.

Recalling now the recursive property of the Legendre polynomials

Pk+1(x) =
(2k + 1)Pk(x)x− kPk−1(x)

k + 1
(4.28)

for x = γt and multiplying each side by rk+1
t we get

rk+1
t Pk+1(γt) =

2k + 1
k + 1

rk+1
t Pk(γt)γt −

k
k + 1

rk+1
t Pk−1(γt).

Now, using the definition of the constants c1 and c2 we obtain the bound

‖rk+1
t Pk+1(γt)‖R ≤

2k + 1
k + 1

c1‖rk
t Pk(γt)‖R +

k
k + 1

c2‖rk−1
t Pk−1(γt)‖R

and a similar one for the variable δt. Putting these bounds into the one of the Hamilto-
nian we have

‖Hk+1‖R ≤
2k + 1
k + 1

c1

[
(1− µ)‖rk

t Pk(γt)‖R + µ‖rk
t Pk(δt)‖R

]
+

+
k

k + 1
c2

[
(1− µ)‖rk−1

t Pk−1(γt)‖R + µ‖rk−1
t Pk−1(δt)‖R

]
.

(4.29)

If we now take k + 1 = m + 1 we can bound the two terms in [·] by Sm and Sm−1
respectively, by hypothesis. Doing so, we obtain that

‖Hm+1‖R ≤
2k + 1
k + 1

c1Sm +
k

k + 1
c2Sm−1 = Sm+1,

so the bound is proven for Hm+1 already. Furthermore, the inequality (4.29) is true in
general, so the bound can be proved for Hk for k > m inductively.

Notice that the bound given by this lemma depends on k, in a way that in order to
compute the bound for ‖Hk‖R, the same bounds for Hk−2 and Hk−1 are needed. For that
reason, we state the following lemma to find a more flexible bound, but less accurate.
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Lemma 4.8. Assume that for some m ≥ 2 and some constants Sm−1 and Sm it holds:

(1− µ)‖rm−1
t Pm−1(γt)‖R + µ‖rm−1

t Pm−1(δt)‖R ≤ Sm−1,
(1− µ)‖rm

t Pm(γt)‖R + µ‖rm
t Pm(δt)‖R ≤ Sm.

(4.30)

Then it is hold that ‖Hk‖R ≤ hk−m+1E for k > m where E = Sm−1, c1 and c2 are defined in

lemma (4.7) and h = max
(

Sm
Sm−1

, c1 +
√

c2
1 + c2

)
.

Proof. Taking the result of the previous lemma, we only need to prove that Sk ≤
hk−m+1E. Let us denote ak = 2k+1

k+1 c1 and bk = k
k+1 c2. We will consider an inductive

method, starting for k = m.

Note that h ≥ Sm
Sm−1

= Sm
E by the definition of h. Thus, Sm ≤ hE and the result holds

for k = m.

For k > m we assume that the result is true for k ≤ l and we aim to prove it for
k = l + 1. From the previous lemma we know

Sl+1 =
2l + 1
l + 1

c1Sl +
l

l + 1
c2Sl−1.

Applying now the definitions of al , bl and the lemma for k = l, l − 1 we obtain

Sl+1 ≤
(

alhl−m+1 + blhl−m
)

E,

so whether we prove that alhl−m+1 + blhl−m ≤ hl−m+2 we have the result for k = l + 1
already. Then, we claim that the following inequality holds

alh + bl ≤ h2 (4.31)

which gives us the desired inequality if multiplied by hl−m in each side. To prove this
claim it is sufficient to see that by definition, we have that

h ≥ c1 +
√

c2
1 + c2 ⇔ (h− c1)

2 ≥ c2
1 + c2 ⇔ h2 ≥ 2hc1 + c2 ≥ alh + bl

where the last inequality holds for all values of l ∈N.

Let us now compute a bound for the first integrals. To do so, we assume that a
bound for ‖Φ(l)

j ‖R is already known for 3 ≤ j ≤ r̃ given some r̃ > 3. This is actually
true since in the worst of the cases (r̃ = 3) we have that

‖Φ(l)
3 ‖R ≤

1
α3
‖ϕ

(l)
3 ‖ =

1
α3
‖ − {H3, Φ(l)

2 }‖R ≤
3
α3
‖H3‖R ≤

3
α3

S3

where we used the inequalities given by the equations (4.22, 4.21) and lemma 4.7 re-
spectively. Thus, we can bound the first integrals up to degree r > r̃ as follows:

Lemma 4.9. Let ‖Hk‖R ≤ Sk for 3 ≤ k ≤ r and ‖Φ(l)
j ‖R ≤ F(l)

j for 3 ≤ j ≤ r̃, being

3 ≤ r̃ ≤ r, and Sk and F(l)
j some positive constants. Then, it holds that ‖Φ(l)

j ‖R ≤ F(l)
j for
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r̃ < j ≤ r where

F(l)
j =

1
αj

[
Λ2

j−3

∑
k=1

(k + 2)(j− k)F(l)
k+2Sj−k + jSj

]
. (4.32)

Proof. Using (4.22), we have that

‖Φ(l)
j ‖R ≤

1
αj
‖ϕ

(l)
j ‖R =

1
αj
‖ −

j−3

∑
k=1
{Hj−k, Φ(l)

k+2} − {Hj, Φ(l)
2 }‖R.

Recalling now the triangular inequality and lemmas 4.5, 4.6 for the Poisson bracket in
the summation and the outside one respectively, it follows:

1
αj
‖ −

j−3

∑
k=1
{Hj−k, Φ(l)

k+2} − {Hj, Φ(l)
2 }‖R ≤

≤ 1
αj

[
j−3

∑
k=1

(j− k)(k + 2)Λ2‖Hj−k‖R‖Φ(l)
k+2‖R + j‖Hj‖R

]
.

Considering now the case j = r̃ + 1, the highest order of Φ(l) involved in the last
expression is Φ(l)

r̃ , so it follows that ‖Φ(l)
k+2‖R ≤ F(l)

k+2 by hypothesis. This, together with
the bounds of the terms of the Hamiltonian, conclude the proof for j = r̃ + 1. However,
repeating the same procedure in an inductive way the result can be proven for r̃ < j ≤ r.
Notice that if j ≥ r then we lack of a bound of ‖Hk‖R ≤ Sk so the scheme cannot be
repeated.

Finally, we will use the three lemmas introduced in this section to prove the follow-
ing result, which again gives us a quite technical but still useful lower bound.

Proposition 4.10. Given r and r̃ such that 3 ≤ r ≤ r̃, let ‖Hk‖R ≤ Sk for 3 ≤ k ≤ r̃, let
‖Hk‖R ≤ hk−r̃+1E for k > r and let ‖Φ(l)

j ‖R ≤ F(l)
j for 3 ≤ j ≤ r. Furthermore, let us assume

that hρ < 1. Then, within the domain ∆ρR it holds that |Φ̇(l,r)| ≤ R(l,r)(ρ), where:

R(l,r)(ρ) = Λ2
r−2

∑
j=1

(j + 2)ρjF(l)
j+2 ∑

r−j<p≤r̃
pρpSp+

+Λ2
r−2

∑
j=1

(j + 2)ρjF(l)
j+2

E
hr̃ · h

(r̃ + 1)(hρ)r̃+1 − r̃(hρ)r̃+2

(1− hρ)2 +

+ ∑
r<s≤r̃

sSsρ
s +

E
hr̃ · h

(r̃ + 1)(hρ)r̃+1 − r̃(hρ)r̃+2

(1− hρ)2 .

(4.33)

Proof. It will be useful to rewrite the equality (4.24) as follows

Φ̇(l,r) =
r−2

∑
j=1

∑
s>r
{Φ(l)

j+2, Hs−j}+ ∑
s>r
{Φ(l)

2 , Hs}.

The absolute value of this last expression can be bounded using the norm, as seen in
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proposition 4.4 and noticing that each Poisson bracket has degree s, we have that

|Φ̇(l,r)| ≤
r−2

∑
j=1

∑
s>r
|{Φ(l)

j+2, Hs−j}|+ ∑
s>r
{Φ(l)

2 , Hs} ≤

≤
r−2

∑
j=1

∑
s>r

ρs‖{Φ(l)
j+2, Hs−j}‖R + ∑

s>r
ρs‖{Φ(l)

2 , Hs}‖R.

Whether we now take p = s− j, the last inequality reads:

|Φ̇(l,r)| ≤
r−2

∑
j=1

∑
p>r−j

ρp+j‖{Φ(l)
j+2, Hp}‖R + ∑

s>r
ρs‖{Φ(l)

2 , Hs}‖R. (4.34)

Note that the first summation can be decomposed as it is shown:

r−2

∑
j=1

[
∑

r−j<p≤r̃
ρp+j‖{Φ(l)

j+2, Hp}‖R + ∑
p>r̃

ρp+j‖{Φ(l)
j+2, Hp}‖R

]
. (4.35)

We now proceed as follows: in order to bound the right term in (4.34) we first aim to
bound the infinite summation in (4.35). Using lemmas 4.5, 4.9 we have that

r−2

∑
j=1

∑
p>r̃

ρp+j‖{Φ(l)
j+2, Hp}‖R ≤

r−2

∑
j=1

∑
p>r̃

ρp+jΛ2(j + 2)p‖Φ(l)
j+2‖R‖Hp‖R ≤

≤
r−2

∑
j=1

Λ2(j + 2)ρjF(l)
j+2 ∑

p>r̃
ρp · p‖Hp‖R.

Now, recalling that ‖Hp‖R ≤ hp−r̃+1E (given by lemma 4.8), the last term is bounded
by:

r−2

∑
j=1

Λ2(j + 2)ρjF(l)
j+2 ∑

p>r̃
ρp · p‖Hp‖R ≤

r−2

∑
j=1

Λ2(j + 2)ρjF(l)
j+2

E
hr̃−1 ∑

p>r̃
p · ρphp.

Finally, if we consider the identity

∑
p>r̃

pxp =
(r̃ + 1)xr̃+1 − r̃xr̃+2

(1− x)2 (4.36)

with x = hρ < 1, and complete the chain of inequalities, we find that:

r−2

∑
j=1

∑
p>r̃

ρp+j‖{Φ(l)
j+2, Hp}‖R ≤

r−2

∑
j=1

Λ2(j + 2)ρjF(l)
j+2

E
hr̃−1

(r̃ + 1)(hρ)r̃+1 − r̃(hρ)r̃+2

(1− hρ)2 . (4.37)

Let us focus now on the first summation in (4.35). Once more, using lemma 4.5 we
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get to following bound:

r−2

∑
j=1

∑
r−j<p≤r̃

ρp+j‖{Φ(l)
j+2, Hp}‖R ≤

r−2

∑
j=1

∑
r−j<p≤r̃

ρp+jΛ2(j + 2)p‖Φ(l)
j+2‖R‖Hp‖R ≤

≤ Λ2
r−2

∑
j=1

(j + 2)ρjF(l)
j+2 ∑

r−j<p≤r̃
pρpSp

(4.38)

where in the last inequality we recalled the bounds of the first integrals and the Hamil-
tonian found previously in this section. Notice that this bound along with the inequality
(4.37) give us a lower bound of the term (4.35). Then, to conclude the proof we only
need to find a bound of the remaining term in (4.34). This can be done bounding the
Poisson bracket involved:

∑
s>r

ρs‖{Φ(l)
2 , Hs}‖R ≤ ∑

s>r
sρs‖Hs‖R ≤ ∑

s>r
sSsρ

s =

= ∑
r<s≤r̃

sSsρ
s + ∑

s>r̃
sSsρ

s.

Applying now the result yield from lemma 4.8 to the second summation and the iden-
tity (4.36) we reach the final bound:

∑
s>r

ρs‖{Φ(l)
2 , Hs}‖R ≤ ∑

r<s≤r̃
sSsρ

s + ∑
s>r̃

E
hr̃−1 s(hρ)s =

= ∑
r<s≤r̃

sSsρ
s +

E
hr̃−1

(r̃ + 1)(hρ)r̃+1 − r̃(hρ)r̃+2

(1− hρ)2 .
(4.39)

The stated result follows from the combination of the inequalities found above.

4.3 Estimation of the escape time

Once the theoretical framework has been settled and the expansions of the Hamil-
tonian and first integrals have been bounded, we are now in position to find a lower
bound of the escape time of a trajectory initially within a concrete domain. To do so,
we use proposition 4.10.

More precisely, let us consider a particle initially in the domain ∆ρ0R. For a given
ρ > ρ0, we aim to find a lower bound of the time that it takes for the particle to leave
from ∆ρR. Considering action variables, we ask for the distances in the phase space
between the action coordinates at a time t and at a time t0 = 0 to be smaller than the
distances from ∆ρR to ∆ρ0R in each axis. This condition reads:

|Il(t)− Il(0)| ≤
1
2

R2
l (ρ

2 − ρ2
0), 1 ≤ l ≤ n. (4.40)

In fact, if this condition holds, it is easy to see that the trajectory remains within the
domain ∆ρR at time t, since

|Il(t)| ≤ |Il(t)− Il(0)|+ |Il(0)| ≤
1
2

R2
l (ρ

2 − ρ2
0) +

1
2

R2
l ρ2

0 =
1
2

R2
l ρ2
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and in terms of the Cartesian coordinates, this implies that x2
l (t) + y2

l (t) ≤ R2
l ρ2. Ac-

tually, we will work with a bound less accurate than (4.40). For now, let us prove the
following lemma:

Lemma 4.11. Under the notation introduced in this section, we have that

|Il(t)−Φ(l,r)(t)| ≤ δ
(l)
r (ρ)

where δ
(l)
r (ρ) = ∑r

j=3 ‖Φ
(l)
j ‖Rρj. Moreover, for t = 0 we have the same result with ρ0 instead

of ρ.

Proof. Recalling that Φ(l,r) = Φ(l)
2 + . . . + Φ(l)

r , noticing the fact that Il(t) = 1
2 (x2

l + y2
l ) =

Φ(l)
2 (t), and applying the triangular inequality we get that

|Il(t)−Φ(l,r)(t)| = | −Φ(l)
3 (t)− . . .−Φ(l)

r (t)| ≤ |Φ(l)
3 (t)|+ . . . + |Φ(l)

r (t)|.

Applying now proposition 4.4, we obtain

|Φ(l)
3 (t)|+ . . . + |Φ(l)

r (t)| ≤ ρ3‖Φ(l)
3 (t)‖R + . . . + ρr‖Φ(l)

r (t)‖R = δ
(l)
r (ρ)

and the lemma follows.

Now, using this lemma we can write

|Il(t)− Il(0)| ≤ |Il(t)−Φ(l,r)(t)|+ |Φ(l,r)(t)−Φ(l,r)(0)|+ |Φ(l,r)(0)− Il(0)| ≤

≤ δ
(l)
r (ρ) + |Φ(l,r)(t)−Φ(l,r)(0)|+ δ

(l)
r (ρ0).

It is clear that if we ask to the right side of the previous inequality to be smaller
that 1

2 R2
l (ρ

2 − ρ2
0), then the condition (4.40) is fulfilled, and so the trajectory remains

in the domain ∆ρR, as seen above. Hence, imposing this, we can bound the maximum
variation of the truncated first integral from time 0 to t as

|Φ(l,r)(t)−Φ(l,r)(0)| ≤ 1
2

R2
l (ρ

2 − ρ2
0)− δ

(l)
r (ρ)− δ

(l)
r (ρ0). (4.41)

We will be calling ∆(l)
r (ρ0, ρ) = 1

2 R2
l (ρ

2 − ρ2
0) − δ

(l)
r (ρ) − δ

(l)
r (ρ0) from now on, and it

represents the maximum variation of Φ(l,r)(t) along the trajectory.

Now, recalling the mean value theorem we have that |Φ(l,r)(t)−Φ(l,r)(0)| = |Φ̇(l,r)(t∗)|t,
where t∗ ∈ (0, t). Hence, the time until which the particle is within ∆ρR fulfils

t ≤ ∆(l)
r (ρ0, ρ)

|Φ̇(l,r)|
.

Taking into account that there are l first integrals and recalling proposition 4.10, a lower
bound of the escape time can be defined

τ(ρ0, ρ) = min
l

∆(l)
r (ρ0, ρ)

R(l,r)(ρ)
. (4.42)
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4.4 Computational implementation

Here we use some of the results introduced so far to computationally obtain a lower
bound of the effective stability time for an infinitesimal particle in the Sun-Jupiter sys-
tem. To this end, we are provided with the work of À. Jorba [11] which is of open access.
The software described in this reference allows us to compute the series expansion of
the Hamiltonian centered in L4 in normal form already, as well as of the first integrals
truncated up to a finite order.

The fact that we are provided with this software, enables us to introduce little nu-
ances to the work of A. Celletti et al. [5] in order to obtain better lower bounds of the
series expansions. However, in this paper the authors go one step further maximizing
the escape time by considering many of the possible values of ρ for a given ρ0.

Let us first introduce how the software of À. Jorba is used for our own purpose and
how the time bound is computed afterwards.

4.4.1 Power series of the Hamiltonian and first integrals

These power series are obtained using the software mentioned. Therein, the power
expansion of the Hamiltonian is implemented as detailed in section 4.1, whereas the
computation of the normal form is conducted by implementing the Birkhoff normal
form, as stated in section 3.3.2.

On the other hand, the calculation of the first integrals has not been described yet.
Let Φ(l) be the first integrals for 1 ≤ l ≤ 3. Then, as seen in the introduction it holds
{H, Φ(l)} = 0. Now, recalling once more that {H2, Φ(l)

n } consists of terms having degree
n, we get

{H2, Φ(l)
n } = −

n

∑
j=3
{Hj, Φ(l)

n−j+2}. (4.43)

Note that the left side can be recursively computed because the biggest term of Φ(l)

involved in the right side is Φ(l)
n−1, and Φ(l)

2 is known beforehand. Then, it is simple

to isolate Φ(l)
n from the equation (4.43) due to the simplicity of the term H2 in normal

form.

Finally, let us remark the fact that nothing prevents ∑j≥2 Φ(l)
n from diverging. In fact,

in the general case H is non-integrable and a first integral cannot be found. However,
if we truncate Φ(l) up to a finite order the previous sum always converges.

4.4.2 Computation of the time bound

Since we aim to model the effective stability for the system Sun-Jupiter, the param-
eter µ = 9.5387536× 10−4 is fixed hereafter. Moreover, let us fix the vector R = (1, 1, 1)
in order to work with spherical domains. As it has been advanced, the escape time is

computed as the minimum of ∆(l)
r (ρ0,ρ)
R(l,r)(ρ)

for 1 ≤ l ≤ 3. Hence, the computation of the
numerator and denominator are performed for each l.

First, let us introduce the input parameters of the program:

• r, r̃: Positive integers that satisfy the condition r̃ > r. r is the highest order terms
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in the series expansions of the Hamiltonian and the first integrals, while r̃ is the
highest term until which we consider the bound of ‖Hk‖R given by lemma 4.7. In
this implementation we used r = 16 and r̃ = 32.

• ρ, ρ0: Reals that satisfy the condition ρ > ρ0.

• Sj, Fj for 1 ≤ j ≤ r: Reals. Terms of the series expansions of the Hamiltonian and
the first integral respectively.

With these inputs, the numerator is computed using its definition. The routine in
which this simple calculation is implemented is called obtainDelta, and it requires the
norm of the terms Φ(l)

s to be obtained beforehand by calling the routine obtainF.

Analogously, the denominator is computed by the routine Rbound using the ex-
pression of R(l,r) obtained in proposition 4.10, but with a few nuances in the bounds
mentioned in the hypothesis of the proposition. In concrete, the bounds we used follow:

• To bound ‖Hk‖R for 3 ≤ k ≤ r we used the absolute values of the series expansion
of the Hamiltonian.

• To bound ‖Hk‖R for r ≤ k ≤ r̃ we used the lower bounds given by lemma 4.7. The
implementation of this part is done by the routine simplebound.

• To bound ‖Hk‖R for k > r̃ we used the lower bounds given by lemma 4.8. the
implementation of this part is done by the routine hbound.

• To bound ‖Φ(l)
j ‖R for 3 ≤ k ≤ r we used the absolute values of the series expan-

sion of the first integrals.

It is important to note that the routines simplebound and hbound require c1 and c2 as in-
put parameters. However, once µ and R are fixed, these parameters can be numerically
obtained. The resulting values are c1 = 8.0572153 and c2 = 92.04853.

4.4.3 Results

We show the values of τ in Figure 4.1, for a concrete relationship between ρ and
ρ0. It can be noticed that the dependence of the time with the parameter ρ0 is the same
as shown in A. Celletti et al. [5]. As could have been expected, the lower bound of
the stability time decreases when we allow the infinitesimal particle to be further away
from the equilibrium point (meaning that ρ0 increases). Moreover, the linear behaviour
in a log-log scale seen in Figure 4.1 gives us the relationship:

τ ∝ ρ−λ
0

where λ is a real positive value. Then, recalling that t ∝ Φ/Φ̇ we obtain:

Φ̇ ∝ ρλ
0 ·Φ (4.44)

From here, we may notice that for a given ρ0 the drift in the first integral, which is
responsible for the escapement of the particle, increases with the first integral. Also, the
last equation shows that the first integral increases exponentially in time.
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Figure 4.1: Logarithm of the lower bound of the time escape as a function of the parameter ρ0 for ρ = 5ρ0.
While the dots represent the values obtained with the C++ implementation described above, the lines are
an interpolation to illustrate the linear behaviour.

Let us remember that the units of the distance and the time are given by the units
system that we have chosen. In particular, in the example of the system Sun-Jupiter, the
unit of time is 1

2π times the revolution period of Jupiter around the sun and the unit of
distance is the distance between the Sun and Jupiter.

A relevant application of the theory and the estimations made in this chapter is
found in the Trojans. These, are asteroids located nearby the points L4 and L5 of the
Sun-Jupiter system, and are thought to be effectively stable.

In fact, the proof of this statement was attempted by A. Celletti et al. in [5], among
others, by computing a bound of the escape time, as we did in here. However, no
concluding results have been found yet, since these methods proved effective stability
for a time of the order of the age of the Universe only for a small region ρ0, from which
the Trojans are not only not inside it, but also so far away.

A final but still important remark is that the implementation described in this section
does not provide us with a mathematical proof in the more strict sense. This fact, is
mainly due to the uncertainty about the errors made by the computer when rounding
terms in each operation.

In order to turn this implementation into a CAP (computer assisted proof) we would
need to include an interval arithmetic, as done by À. Jorba in [11]. Briefly, this consists
of a substitution of the real and integer magnitudes by intervals. Then, every time we
carry out an operation, we do it for the two extremes, rounding the above extreme to
a higher value and the bellow extreme to a smaller one. That way, we can guarantee
that the value resulting from the operation lays within the resulting interval, giving us
a control of the bounding errors of the computer. However, it is obvious that the size
of the intervals increase with the number of operations, resulting it in a more imprecise
interval each time.



Chapter 5

Summary and conclusions

In this work, we analysed the stability of the so familiar Lagrange points in the
restricted circular 3-body problem (both in the planar and spatial cases), from a non-
linear point of view. With that aim, the second chapter was devoted to introducing the
Hamiltonian ruling the dynamics of the system and the equilibrium points were briefly
deducted through analytical mechanics. Whereas the equilateral points were given by
a compact condition, the collinears, on the other hand, could not be found analytically.

Concerning the allowed regions for the infinitesimal particle under the gravitational
effects of the two primaries, it has been stated that these regions depend on the energy
level of such a particle, or likewise, on the well known Jacobi constant. In order to
illustrate this idea, an implementation of a numerical continuation method was done
in C++ to draw some of the zero velocity curves enclosing these regions, which again
depended on the energy level. The computation of these curves together with the
discussion for big values of C enabled us to visualise the shapes of the Hill’s regions,
for a wide range of energy levels.

The problem of stability in the planar case, however, was not faced until the third
chapter. There, we firstly introduced the basis of the Lyapunov stability theory, which
already gave us important results such as the Dirichlet’s and the Chetaev’s theorems.
Furthermore, a lot of results yielded from the linear behaviour already, such as the
presence of a one-parameter family of periodic solutions emanating the collinear points
and their instability, which also results from their linear behaviour. Nonetheless, we
went one step further to prove this instability without seeking any eigenvalues, but
using the Lyapunov theory instead.

After, the analysis of the stability of the equilateral points, still in the planar case,
resulted more laborious. In fact, no conclusive information could be inferred from the
linear regime in that case, leading us to the introduction of the KAM theory. Mainly de-
veloped by Kolmogorov, Moser, and Arnold, after several failed attempts from Poincare
and many others who struggled with that problem, this theory provided a mathemat-
ical proof of the claim that the equilateral points in the planar case are stable, under
certain conditions of the mass parameter.

In this dissertation, we briefly explained the celebrated Moser’s theorem, enlarg-
ing on the link between the equilibrium points of a differential equation and the fixed
points of a properly defined diffeomorphism. Afterwards, the Arnold’s theorem en-
abled us to construct invariant tori emanating the equilibrium points. Connecting the
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dots, altogether resulted in the stability behaviour of these points.

Accurately, we missed two cases of the mass parameter, in which the equilibrium
points are actually unstable. Although it has not been explained in this work for con-
ciseness, these cases correspond to certain integer resonance between the linear expo-
nents (meaning that their ratio is a certain integer number) and further details can be
found in K. Meyer et al. [15].

For what it concerns to the stability of the equilateral points in the spatial case, we
saw that the added dimension prevented us from proving a stability result based on
the KAM theory. Despite the fact that the theory was perfectly valid in that case too,
it failed to prove the stability, since the invariant tori do not enclose a subregion in
the new phase space. In addition, the infinitesimal particle is thought to leave from a
small region near these equilibria, through a phenomenon currently known as Arnold’s
diffusion. Nevertheless, the time that it may take for this particle to leave from an
equilibrium point might be of the order of the age of the solar system. Indeed, the
concept of effective stability was introduced to address the cases where stability is not
proven, but such a long time is needed for the trajectories nearby to leave. From that
point, our reasonings where motivated by the Nekhoroshev theory, even though our
intention was not to focus on this subject.

Analogously to the planar case, we faced the spatial problem by giving an overview
to the Hamiltonian, which involved working in a 6-dimensional phase space. Then, this
Hamiltonian was normalised and a change of variables was implemented to transfer
the origin to one of the equilateral points. Furthermore, we introduced the n first
integrals as a power series, which in turn enabled us to consider quasi first integrals
by considering the first integrals truncated up to a finite order. This was vital for the
computational implementation of the lower bound of the escape time (an approximation
of the time of effective stability).

Naturally, this computational implementation was subsequent to some technical
lemmas that aimed to bound the terms of the Hamiltonian and first integrals via the
norm that we defined. We also used an open software made by À. Jorba to compute the
series of the first integrals.

Although we developed the theory in order to obtain general bounds, we then ap-
plied it to a well known system: the Sun-Jupiter-Trojan system. Taking the correspond-
ing mass parameter, we managed to obtain some bounds of the time until the effective
stability holds, for a concrete relationship between the initial and final domains of the
infinitesimal particle.

However, we explained how this failed to provide a result of stability for the Trojan
asteroids for a time of the order of the age of the Universe. In fact, these asteroids
are not sufficiently close to the equilibrium point to explain how can they be stable by
using these bounds and approximations. Indeed, although it was widely studied in the
1990s, it just does not seem feasible to prove their stability using this type of bounds
nowadays, since only one real asteroid has been proven to be effectively stable using
these methods (see C. Skokos and A. Dokoumetzidis [19]).

Newer methods attempt to work with a normal form computed not in the equilib-
rium point, but in a point closer to the asteroids. This allows to compute invariant tori
near the asteroids, and therefore, the escape time found is bigger, since the asteroids
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are closer to the invariant tori, which are sticky1. One example of this method is found
in the work of F. Gabern et al. [7], where this methodology is applied to find invariant
tori near some of the asteroids assuming they are in the orbit’s plane.

Still, there are a lot of related topics that we did not address. From the discussion
of the linear behaviour to the proof of the lemma used in the proof of the Moser’s
theorem, there are many subjects that could have been developed further in a longer
dissertation. Besides, we restricted ourselves to just a particular case of the general
problem of 3 bodies, which was not our original intention but turned out as the most
convenient option due to the deep analysis that it allowed.

But, what happens if the circular or the restricted approaches are not considered?
How is the problem addressed for N > 3? Can it be faced with success if we consider
the theory of General Relativity to describe the gravitational interaction between the
particles? These are, among many others, some of the questions that have not been
answered in this thesis and can serve as ideas for ongoing work.

1This term suggests that the orbits near the invariant tori remain there for long periods of time.



Appendix A

The continuation method to find
zero-velocity curves

This method consists of an iteratively implementation of the well known Newton’s
method that finds ordered points for each zero-velocity curve.

For a given µ and C, such curves are given by the equation:

x2
1 + x2

2 +
2µ√

(x1 − (1− µ))2 + x2
2

+
2(1− µ)√

(x1 + µ)2 + x2
2

+ µ(1− µ)− C = 0. (A.1)

Let us assume we already know two points of the planar curve Pi and Pi+1. Let
δ > 0 be the inverse resolution parameter. Then, we are seeking a point Pi+2 ∈ R2 that
is a solution of (A.1) and is at a distance δ of Pi+1.

To do so, let us define the vector v = Pi+1 − Pi ∈ R2. Then, as the curve given
by (A.1) is smooth, the point Pi+1 + δ v

‖v‖ can be taken as a proper seed for a Newton’s
implementation to find Pi+2. Whenever Pi+2 turns to be at a minor distance from P0 than
δ, the algorithm has reached the end, since it means that we have found our enclosed
curve. Of course, this assumes that the corresponding parameterised curve visits the
point P0 only once, which is the case.

Hence, the remaining discussion focuses on how to find two points P0 and P1 that
fulfil (A.1) and which are at a distance δ from each other. In order to find P0, for the
curves that crosses the x1 axis, we set the trial P0 = (x1, 0). Imposing x2 = 0 in (A.1) we
get:

x2
1 ±

2µ

x1 − (1− µ)
± 2(1− µ)

x1 + µ
+ µ(1− µ)− C = 0. (A.2)

Now, considering the change ξ = x1 − (1− µ) we obtain that

(ξ + 1− µ)2 ± 2µ

ξ
± 2(1− µ)

ξ + 1
+ µ(1− µ)− C = 0 (A.3)

where the plus-minus signs are chosen so each term is positive (as they come from a
distance). It is clear that the equation (A.3) is a quartic polynomial equalled to zero, so
the solution can be obtained analytically, and therefore, P0.

Afterwards, P1 can be obtained using P0 + δ(0, 1) as the seed point in a Newton’s
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implementation, due to the geometry of these curves.

A final remark concerning the resolution parameter can be stated; because of the
geometrical properties of the curves, the resolution does not ever has to be the same. In
those regions where the curvature is smaller, a high resolution is not needed to draw
the curve, so the resolution parameter can be smaller (meaning that δ is bigger) in order
to make the algorithm faster. This can be easily adjusted with the steps that each step
of the Newton’s method takes to find the solution.

Code implementation

Here we show the most relevant blocks of the code implementation done in C++ to
obtain the zero velocity curves. First, since we aim to draw curves in two dimensions,
it is useful to define a point in 2D and the basic operations of this objects.

1 struct point {
2 double x1;
3 double x2;
4 };
5

6 // Compute the distance
7 double Pdist (point a, point b) {
8 return sqrt(pow(a.x1-b.x1 ,2)+pow(a.x2 -b.x2 ,2));
9 }

10

11 //Add points
12 point Psum (point a, point b) {
13 point sum;
14 sum.x1=a.x1+b.x1;
15 sum.x2=a.x2+b.x2;
16 return sum;
17 }
18

19 // Subtract points
20 point Prest (point a, point b) {
21 point rest;
22 rest.x1=a.x1-b.x1;
23 rest.x2=a.x2-b.x2;
24 return rest;
25 }

In the main program, given the required parameters1 C, mu, delta, P0, a second
point of the curve is computed. Afterwards, an implementation of the numerical con-
tinuation algorithm is run in order to find the shape of the whole curve.

1 int main () {
2

3 //Read the parameters
4

5 //Find the second point using newton method
6 point seedP1;
7 seedP1.x1=P0.x1;
8 seedP1.x2=P0.x2+delta;
9 pair <point , int > P1 =newton(seedP1 , P0, tol , maxIter , C, mu , delta);

1Note that the first point is a parameter. As explained, the procedure to find such a point is straightfor-
ward and it will not be explained in here.
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10

11 //Find all the others using the continuation method
12 vector <point > curve = continuation(P0 , P1.first , C, mu);
13

14 //Write the results down on a file
15 return 0;
16 }

The continuation algorithm is implemented in the 4-arguments routine continuation.

1 vector <point > continuation (point P0 , point P1, double C, double mu) {
2

3 // define delta , tol and maxIter for Newton ’s method
4 double delta=Pdist(P0, P1);
5 double tol =0.00001;
6 int maxIter =2000;
7

8 // Define a vector that will contain all the points
9 vector <point > curve;

10

11 curve.push_back (P0);
12 curve.push_back (P1);
13

14 // Define an index of curve
15 int i=1;
16 double d;
17

18 //Find all the points
19 do {
20

21 //Find the seed
22 point v=Prest(curve[i], curve[i-1]);
23 double vmod=sqrt(pow(v.x1 ,2)+pow(v.x2 ,2));
24 if (vmod < 0.00001) {
25 cerr << "divide by 0 in seed " << endl;
26 exit (1);
27 }
28 point vnew;
29 vnew.x1=delta*(v.x1/vmod);
30 vnew.x2=delta*(v.x2/vmod);
31 point seed=Psum(curve[i], vnew);
32

33 //Find the next point using Newton ’s method
34 pair <point , int > newpoint=newton(seed , curve[i], tol , maxIter , C

, mu , delta);
35 curve.push_back (newpoint.first);
36 i++;
37

38 // Adjust delta depending on the steps required in the Newton ’s
method

39

40 // Compute the distance between the new point and P0
41 d=Pdist(P0 , curve[i]);
42

43 } while (d>delta);
44

45 return curve;
46 }

The reader may notice that both in the main and in continuation routine the routine
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newton is called. This function returns both the aimed point of the curve and the
number of iterations it takes.

1 pair <point , int > newton (point x0 , point ant , double tol , int maxIter ,
double C, double mu, double delta) {

2 point xn=x0;
3 point sol;
4 int i, res=0, meanwhile =0;
5 for (i=0; i<maxIter && meanwhile ==0; i++) {
6 x0 = xn;
7

8 // Compute new xn
9

10 //Find the distance
11 double dcompare=Pdist(xn, x0);
12 if (dcompare < tol) {
13 res = 1;
14 sol = x0;
15 meanwhile = 1;
16 }
17 }
18

19 if (meanwhile == 0) {
20 res = 1;
21 }
22

23 if (res == 0) {
24 cerr << "No convergence reached in Newton " << endl;
25 exit (1);
26 }
27

28 pair <point ,int > newpoint;
29 newpoint.first=sol;
30 newpoint.second=i;
31

32 return newpoint;
33 }



Appendix B

Code implementation of the
computation of the escape time

In this last appendix we briefly explain the pseudo-code of the implementation of
the escape time lower bound. To begin with, we defined a structure to work with poly-
nomials. In fact, a polynomial is understood as a vector of monomials (vector<Monomial>),
which contains the exponents of each variable and the corresponding coefficient.

1 typedef struct Monomial{
2 vector <int > x, y;
3 double coef;
4 } Monomial;

Then, the norm of the series of the Hamiltonian and the first integrals were obtained
by applying the norm to the series given by the software of À. Jorba [11]. This is done
by the routines obtainBoundH and obtainBoundF, which receive the vector R, the reals
r and ρ0 and the name of the file containing the series expansion as parameters.

1 //We compute the norm of each H_k
2 double* obtainBoundH (int r, vector <double > R, double rho0 , string fname)

{
3

4 double* H;
5 //Save memory for H
6

7 ifstream fin;
8 //Open file
9

10 // Exponents sum
11 int e1, e2, e3;
12

13 double value;
14 int current , old=2;
15

16 int i=2;
17

18 // Exponents
19 vector <int > x(4,0), y(4,0);
20

21 while (fin >>x1) {
22

23 //Read other exponents and coefficient
24
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25 // Degree
26 current=x1+x2+x3+y1+y2+y3;
27

28 if(current >old) {
29 i++;
30 old ++;
31 }
32

33 //Save monomial
34 Monomial M;
35 M.x=x;
36 M.y=y;
37 M.coef=value;
38

39 e1=M.x[1]+M.y[1];
40 e2=M.x[2]+M.y[2];
41 e3=M.x[3]+M.y[3];
42

43 H[i]+= fabs(M.coef)*pow(R[1],e1)*pow(R[2],e2)*pow(R[3],e3);
44

45 }
46

47 //Close file
48

49 return H;
50

51 }

The routine obtainBoundF is basically the same but adapting the rows that have to be
read from the input file.

In order to compute the bounds of the Hamiltonian, we implemented the corre-
sponding lemmas in the routines simplebound and hbound. Specifically, this second
routine was implemented to perform the computation of the parameter h.

1 //Here we compute the bounds in lemma 1 in celletti1991
2 double* simplebound (double* H, int r, int rtilde , double c1 , double c2)

{
3

4 double* S;
5 S=( double *) malloc (( rtilde +1)*sizeof(double));
6

7 //From 2 to r the bound is the term in absolute value
8 for(int i=2; i<=r; i++)
9 S[i]=fabs(H[i]);

10

11 //From r+1 to rtilde the bound is as in lemma 1 in celletti1991
12 for(int i=r; i<rtilde; i++) {
13 S[i+1]=((((2* double(i))+1)/( double(i)+1))*c1*S[i]) + ((( double(i

))/( double(i)+1))*c2*S[i-1]);
14 }
15

16 return S;
17 }
18

19

20 //Here we find the parameter h
21 double hbound (double* S, int r, double c1 , double c2) {
22

23 double h=S[r]/S[r-1];
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24

25 double aux= c1 + sqrt((c1*c1) + c2);
26

27 if (aux >h)
28 h=aux;
29

30 return h;
31

32 }

Now, we are in condition to compute the bound given by proposition 4.10. This is
implemented in the routine called Rbound, and consists mainly of a simple translation
of summations into loops.

1 //Here we compute the bound of the derivative of the first integral
2 double Rbound (double* S, double* F, double h, double lambda , double E,

double rho , int r, int rtilde) {
3

4 double res=0;
5 double term1=0,term2=0, term3=0, term4 =0;
6 double sumint=0, num=0, frac =0;
7

8 //First line lemma 4 celletti1991
9 for(int j=1; j<=r-2; j++) {

10 sumint =0;
11 for(int p=r-j+1; p<= rtilde; p++) {
12 sumint +=p*pow(rho ,p)*S[p];
13 }
14 term1+= (j+2)*pow(rho ,j)*F[j+2]* sumint;
15 }
16 term1*=pow(lambda ,2);
17

18 // Second line lemma 4 celletti1991
19 num =(( rtilde +1)*(pow((h*rho),rtilde +1))) - (rtilde *(pow((h*rho),

rtilde +2)));
20 frac=(num)/(pow((1-(h*rho)) ,2));
21 frac *=(E/pow(h,rtilde))*h;
22 for(int j=1; j<=r-2; j++) {
23 term2+= (j+2)*pow(rho ,j)*F[j+2];
24 }
25 term2*=frac;
26 term2*=pow(lambda ,2);
27

28 //Third line lemma 4 celletti1991 first term
29 for(int s=r+1; s<= rtilde; s++) {
30 term3+= s*S[s]*pow(rho ,s);
31 }
32

33 //Third line lemma 4 celletti1991 second term
34 term4=frac;
35

36 res=term1+term2+term3+term4;
37

38 return res;
39 }

Finally, one last computation remains: the computation of ∆(ρ0, ρ). This is done in
the routine obtainDelta and it is quite straightforward considering its definition.

1 //We compute the Delta constant
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2 double obtainDelta (double rho , double rho0 , int r, double* F, double Rl)
{

3

4 double drho=0, drho0 =0;
5 double D=0;
6

7 // compute the delta functions involved
8 for(int j=3; j<=r; j++) {
9 drho+=F[j]*pow(rho ,j);

10 drho0+=F[j]*pow(rho0 ,j);
11 }
12

13 // Compute Delta (D)
14 D=pow(rho ,2)-pow(rho0 ,2);
15 D*=0.5* Rl*Rl;
16 D-=drho;
17 D-=drho0;
18

19 return D;
20 }

On the whole, the main program of this implementation applies the routines de-
scribed above to obtain the value of τ as shown in the expression 4.42. To do so, this
program receive the parameters c1 and c2 as well as the parameters ρ and ρ0. Also, the
user must introduce the parameters r and r̃ beforehand.
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