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Abstract 

Coronavirus disease 2019 (COVID19), caused by SARS-CoV-2, is a complex disease, with a variety of 
clinical manifestations ranging from asymptomatic infection or mild cold-like symptoms to more severe 
cases requiring hospitalization and critical care. The most severe presentations seem to be related with a 
delayed, deregulated immune response leading to exacerbated inflammation and organ damage with close 
similarities to sepsis.  
Methods: In order to improve the understanding on the relation between host immune response and 
disease course, we have studied the differences in the cellular (monocytes, CD8+ T and NK cells) and 
soluble (cytokines, chemokines and immunoregulatory ligands) immune response in blood between 
Healthy Donors (HD), COVID19 and a group of patients with non-COVID19 respiratory tract infections 
(NON-COV-RTI). In addition, the immune response profile has been analyzed in COVID19 patients 
according to disease severity.  
Results: In comparison to HDs and patients with NON-COV-RTI, COVID19 patients show a 
heterogeneous immune response with the presence of both activated and exhausted CD8+ T and NK 
cells characterised by the expression of the immune checkpoint LAG3 and the presence of the adaptive 
NK cell subset. An increased frequency of adaptive NK cells and a reduction of NK cells expressing the 
activating receptors NKp30 and NKp46 correlated with disease severity. Although both activated and 
exhausted NK cells expressing LAG3 were increased in moderate/severe cases, unsupervised cell 
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clustering analyses revealed a more complex scenario with single NK cells expressing more than one 
immune checkpoint (PD1, TIM3 and/or LAG3). A general increased level of inflammatory cytokines and 
chemokines was found in COVID19 patients, some of which like IL18, IL1RA, IL36B and IL31, IL2, IFNα 
and TNFα, CXCL10, CCL2 and CCL8 were able to differentiate between COVID19 and 
NON-COV-RTI and correlated with bad prognosis (IL2, TNFα, IL1RA, CCL2, CXCL10 and CXCL9). 
Notably, we found that soluble NKG2D ligands from the MIC and ULBPs families were increased in 
COVID19 compared to NON-COV-RTI and correlated with disease severity.  
Conclusions: Our results provide a detailed comprehensive analysis of the presence of activated and 
exhausted CD8+T, NK and monocyte cell subsets as well as extracellular inflammatory factors beyond 
cytokines/chemokines, specifically associated to COVID19. Importantly, multivariate analysis including 
clinical, demographical and immunological experimental variables have allowed us to reveal specific 
immune signatures to i) differentiate COVID19 from other infections and ii) predict disease severity and 
the risk of death. 
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Introduction 
Since December 2019 and up until October 2021, 

Severe Acute Respiratory Syndrome Coronavirus 
type 2 (SARS-CoV-2), the causative agent of the 
coronavirus disease 2019 (COVID19) pandemic, has 
infected more than 230 million people, causing more 
than 4.7 million deaths (1). SARS-CoV-2 infects 
epithelial cells from the upper respiratory tract and in 
most cases patient immune response will efficiently 
control infection, remaining asymptomatic or with 
mild cold-like symptoms. If virus avoids host 
immunity in the upper respiratory tract, it will 
colonise the lower respiratory tract where it can cause 
a more serious disease including pneumonia and in 
some cases death. Here the virus infects alveolar type 
II (AT2) cells (2) that comprise 15% of total lung tissue 
and maintain the alveolar microenvironment function 
(3). The airway epithelial cells (AECs) provide both 
physical and immunological barriers to protect from 
pathogens invading the respiratory tract. AECs 
express recognition receptors (PRRs) to rapidly detect 
and respond to pathogen-associated molecular 
patterns (PAMPs), which leads to the release of 
cytokines, chemokines and antimicrobial peptides 
that attract and activate immune cells (4). The 
activation of an efficient regulated immune response 
is key for a successful control of respiratory viral 
infections, before pathogen increases progeny and 
triggers an exacerbated deregulated immune response 
leading to self-tissue damage and disease. A good 
example of the dichotomy infection control versus 
immunopathology is represented by SARS 
coronaviruses. SARS-CoV-2 seems to have a dual 
nature, tragically lethal in some people and 
surprisingly benign in others. Although the reasons 
for these interpersonal differences are currently 
unknown it has been suggested that the generation of 
a strong innate immune response capable of 
restricting viral replication and/or the presence of 

some memory due to a previous infection with 
seasonal common cold coronaviruses which restrict 
virus replication might avoid severe infections (5-7). 
Indeed, mild cases and good recovery within 
hospitalized patients have been related to an early 
and robust response mediated by activated 
virus-specific CD8+ and CD4+ T cells (8). An initial 
inefficient innate and adaptive immune response due 
to aging and/or other medical conditions might lay 
behind severe infections (9, 10). The delayed immune 
responses might generate an exacerbated imbalanced 
response, characterized by strong inflammation 
associated to over-production of pro-inflammatory 
cytokines and deregulation of lymphocytes including 
a reduction in number and functionality (11-16). In 
addition, markers of T and NK cell exhaustion have 
been found during COVID19, which is enhanced in 
severe cases, albeit the relevance of activated and 
exhausted cell populations in COVID19 is not 
completely understood yet (13, 17-20). Despite these 
studies, there are still many caveats to properly 
understand the regulation of host immunity during 
SARS-CoV-2 infection and importantly, to reveal its 
potential utility to monitor clinical evolution and 
predict disease severity. Specially, since most studies 
have compared the immune response in COVID19 
with healthy donors, without including patient 
cohorts with other infections, which does not allow to 
reveal if there is an immune response profile 
specifically associated to SARS-CoV-2 infection. A 
major understanding of these responses will allow 
developing rational treatments to tune up the 
immune response in COVID19, promoting viral 
clearance and/or preventing immunopathology, 
without affecting the host protective immune 
response. 

Here we have performed a prospective 
multiparametric study of the immune response in 
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blood from 86 COVID19 patients collected at hospital 
admission and compared with 40 healthy donors and 
27 patients with other respiratory infections, focusing 
in some of the main cells involved in viral immunity 
(monocytes, CD8+T and NK cells) and in different 
families of soluble factors regulating their function 
(cytokines, chemokines, granzymes/Gzms and 
soluble NK cell ligands). The main objective of this 
work is to characterize COVID19 patient’s 
immunological profile at hospitalisation to better 
understand the regulation of host immunity in 
response to SARS-CoV-2 infection and to find out if 
immune profiling presents utility to differentiate 
COVID19 from other infections and to establish 
patient prognosis. 

Methods 
Patients, clinical data collection and sample 
processing 

Patients admitted to the "Lozano Blesa" 
University Hospital of Zaragoza with suspected 
SARS-CoV-2 infection were screened for SARS-CoV-2 
(Prospective study from April to May 2020). Healthy 
donors (HDs) were adults with no prior diagnosis or 
symptoms consistent with COVID19 recruited in 
April 2020. COVID19 was confirmed by PCR and/or 
serological test. The patients who presented 
symptoms compatible with COVID19 but diagnosis 
was not confirmed by PCR nor serological test were 
classified as patients with non-COVID19 respiratory 
tract infections (NON-COV-RTI). HDs meeting 
standard normal donor eligibility criteria were 
recruited to donate blood. Eligibility criteria for 
voluntary whole blood donation are: healthy, male or 
female from 18 to 65 years old with a weight > 50 Kg, 
without history of heart, lung, kidney disease, chronic 
anaemia or bleeding disorders and negative to 
COVID19, VIH, hepatitis B virus, hepatitis C virus, 
syphilis, HTLV1 and 2. The investigational nature of 
the studies in which their samples will be used, as 
well as the risks and benefits of the donation process 
was explained to all donors, and a signed informed 
consent document was obtained. All samples (HD 
and patients) were collected by the Aragon Biobank 
which is accredited by the Aragon Government and 
the study was approved by the local ethics committee 
(CEICA) which is accredited by the Spanish Agency 
for Medicaments and Sanitary products (AEMPS). 
The time from sample collection to analyses was 
24-48h in all cases. The final sample size was n = 48, n 
= 86 and n = 27 for HDs, COVID19 and 
NON-COV-RTI patients respectively. The latter is a 
heterogeneous respiratory infection patient cohort 
with clinical pictures similar to that one of COVID19 

patients that would allow us to detect the specific 
immune response profile associated to COVID19 in a 
real life situation. Samples and data from patients 
included in this study were provided by the Biobank 
of the Aragon Health System, integrated in the 
Spanish National Biobanks Network and they were 
processed following standard operating procedures 
with the appropriate approval of the Ethics and 
Scientific Committee (CEIC Aragon, number 
PI20/165). Peripheral blood was collected from all 
participants within the first 24h after hospital 
admission before any treatment was prescribed and 
clinical data were compiled from the electronic 
medical record into standardized case report forms. A 
Flow Diagram of the progress of the trial has been 
included as Figure S1. Serum, plasma and peripheral 
blood mononuclear cells (PBMCs) were obtained as 
described in supplementary materials. 

Flow cytometry and unsupervised analysis  
PBMCs were stained with specific antibodies 

using 4 different panels. Panel 1 (Treg cells): CD3, CD4, 
CD127, CD25. Panel 2 (activating/inhibitory NK cell 
receptors): CD3, CD56, CD16, CD57, NKG2A, 
NKG2C, NKG2D, NKp30, NKp46. Panel 3 
(activated/exhausted NK cells and Monocytes): CD3, 
CD56, CD16, CD14, GzmB, TIM3, LAG3, PD1, 
HLA-DR. Panel 4 (Activated/Exhausted CD8+T 
cells):CD3, CD8, GzmB, TIM3, LAG3, PD1, CD38, 
HLA-DR. A detailed list of antibodies and 
conventional and unsupervised flow cytometry data 
analysis are indicated in supplementary materials. 
The gating strategy followed for cell population and 
marker expression analysis is shown in Figure S2.  

Interferon-γ (IFN-γ) expression assay. 
A functional study of the interferon-γ (IFN-γ) 

expression by T cells was performed. PBMCs were 
stimulated with a SARS-CoV-2 peptide mixture (S, M 
and N proteins) for 6 hours, at 37 ºC, 5 % CO2. Besides, 
PBMCs were stimulated with CytoStim (Milteny) as 
positive control and without stimulation as negative 
controls. To detect IFN-γ secretion by T cells the IFN-γ 
Secretion Assay-Cell Enrichment and Detection Kit 
(PE) for humans (Miltenyi) was used. Briefly, each 
sample was pre-incubated with 4 µl of IFN-γ Catch 
Reagent, 5 min at 4 ºC, and after dilution with 
complete medium was incubated for 45 min, 37 ºC 
and rotation. PBMCs were washed and stained with 4 
µl of IFN-γ Detection Antibody PE, for detection of 
secreted IFN-γ, and 5 µl of Rapid Cytokine Inspector 
in order to define the T cell populations (CD3+, CD4+, 
CD8+). This mixture was then incubated for 15 min at 
4 ºC and darkness, and finally all samples were fixed 
with 2 % PFA and analysed by flow cytometry. 
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Multiplex plasma protein analyses and enzyme 
activity assays 

Luminex assay was run according to 
manufacturer’s instructions in 100 µl of plasma, using 
a custom human cytokine panel (R&D Systems, 
catalogue no. LXSAHM). A detailed list of the 
proteins included and their analysis is indicated in 
supplementary materials. Granzyme A and B activity 
was analysed in serum using specific quenching FRET 
fluorescent substrates (FAM-VANRSAS-DABCYL 
and FAM-IEPDNLV-DABCYL peptides, respectively) 
as described in supplementary materials. 

Statistics 
A detailed description of univariate and 

multivariate statistical analysis is included in 
supplementary materials.  

Results  
Demographical and clinical variables of 
COVID19 and NON-COV-RTI patients  

113 consecutive patients with respiratory 
infection symptoms compatible with COVID19 were 
included. 86 patients were confirmed as SARS-CoV-2 
infection (COVID19) and the other 27 patients, 
presenting COVID19-like symptoms but negative 
RT-PCR and serologic testing, were classified as 
NON-COV-RTI, since specific diagnosis was not 
accomplished. A summary of the demographical and 
clinical variables according to diagnosis and severity 
is shown in Tables S1 and S2. Sex, age, number of days 
from symptoms onset to blood sampling and median 
length of hospital stay were not significantly different 
between the cohorts (Table S1). Lymphocyte count 
was significantly lower in COVID19 than in 
NON-COV-RTI. Similarly to the different diagnosis 
groups, number of days from symptom onset to 
sampling was not significantly different between mild 
and moderate/severe COVID19 (Table S2). The 
classification in mild and moderate/severe cases 
agrees with known factors about COVID19 severity, 
as age. In fact, median age, but not gender, was 
significantly higher in moderate/severe cases (77.9) 
than in mild cases (61). When patients were grouped 
in mild/moderate and severe cases, there were no 
significant differences in age (75 and 80 respectively). 
The moderate/severe group presented significant 
lower lymphocyte counts (794 cell/µL) than the mild 
cases (1225 cell/µL) and significantly longer hospital 
stay (mean of 17 and 6 days respectively) further 
supporting the severity classification (Table S2). 
Regarding comorbidities, COVID19 severity was 
significantly increased in patients with chronic heart 
and neurological disease, hypertension, Diabetes 

mellitus, obesity and dementia (Table S3). 
Comorbidities were also compared between 
COVID19 and NON-COV-RTI patients with no 
significant differences (Table S4). 

CD8+T, NK and Monocyte cell profiles in 
COVID19, NON-COV-RTI and healthy donors 

In order to analyse the immune response against 
SARS-CoV-2 infection, first we compared the major 
PBMC populations between COVID19 patients and 
healthy donors (Figure 1A). We observed a decrease 
in CD3+ T cell frequency, in both CD4+ and CD8+ 
subpopulations, in COVID19 patients compared with 
HDs reflecting clinical lymphopenia, and an increase 
in the CD4+ regulatory T (Treg) cell population. We 
also found an increase in the frequency of both NKT 
and NK cells while monocyte frequency decreased 
(Figure 1A). When COVID19 patients were compared 
with NON-COV-RTI significant differences were only 
observed in an increase of NKT cells in COVID19 
patients. 

The expression of both activation 
(CD38+HLA-DR+GzmBHigh; Figure 1B) and exhaustion 
(TIM3+, LAG3+, PD1+; Figure 1C) markers in CD8+T 
cell population were significantly increased in 
COVID19 comparing with HD (Figure 1B/C). 
However, when Immune Checkpoint (IC) expression 
was analysed separately in either activated 
(HLA-DR+CD38+) or exhausted (GzmBLow) CD8+ T 
cells, it was found that the frequency of activated 
CD8+ T cells expressing either TIM3 or PD1 was 
significantly reduced, meanwhile the frequency of 
exhausted T cells expressing either TIM3 or LAG3 
was increased. An increase in activated CD8+ T cells is 
also observed in COVID19 patients in comparison 
with NON-COV-RTI (Figure 1B), although the 
frequency of exhausted CD8+ T cells (GzmBLow) did 
not change (Figure 1C). The viSNE maps generated by 
unsupervised flow cytometry analysis for COVID19, 
NON-COV-RTI and HDs show several distinct partial 
regions reflecting CD8+ T cell heterogeneity (Figure 
1D). Striking differences in densities of particular 
localised regions were found, implying altered 
relative abundances of CD8+T cell subpopulations 
between COVID19 patients, NON-COV-RTI and HDs 
that differentially identified each cohort. Minimum 
Spanning Tree (MST) generated by FlowSOM also 
showed clear differences between patients and HDs 
(Figure S3A), identifying ten major CD8+ T cell 
metaclusters (MTs) based on GzmB, CD38, HLA-DR, 
TIM3, LAG3 and PD1 expression (Figure 1E). MT2, 3, 
6 and 8 were increased in COVID19 patients with 
respect to HDs and NON-COV-RTI (Figure 1E). MT3 
and MT8 reflects activated CD8+T cells 
(CD38+HLA-DR+GzmBHigh) expressing all IC or LAG3 
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and PD1 respectively, while MT2 and MT6 reflect 
exhausted CD8+T cells expressing all IC 
(CD38+HLA-DR+GzmBLowIC+). A functional study of 
the interferon-γ (IFN-γ) secretion by T cells stimulated 
with a mixture of SARS-CoV-2 derived peptides (S, M 

and N) show a significant difference in the CD8+T cell 
production of IFN-γ between HD and moderate/ 
severe COVID19 as well as between mild and 
moderate/severe COVID19 patients (Figure 1F). 

 

 
Figure 1. Analysis of the main immune cell populations and activated and exhausted CD8+T cell subsets in blood from COVID19 patients compared with healthy donors (HD) 
and NON-COV-RTI patients. The presence of different immune cell populations was analysed in PBMCs by flow cytometry as indicated in methods. A) Frequencies of total T, 
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CD4+T, CD8+T, Treg, NKT and NK cells and monocytes. B) C) Frequencies of activated and exhausted CD8+T cells. D) viSNE maps of CD8+T cells from COVID19, HD and 
NON-COV-RTI. E) Mean fluorescence intensity (MFI) in each FlowSOM metacluster (z-scores) of GzmB, CD38, HLA-DR, TIM3, LAG3 and PD1 on CD8+T cells and percentage 
of CD8+T cells in each FlowSOM metacluster. Boxes represent interquartile ranges (IQRs). Statistical significance was determined by unpaired Mann-Whitney or Kruskal-Wallis 
tests as indicated in methods: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. F) Analyses of SARS-CoV-2 specific T cell functional responses by IFN-γ secretion assay. 
PBMCs from some COVID19 (n = 27) and HDs (n = 29) were stimulated with a mixture of S, M and N derived peptides (Peptivator, Miltenyi) for 6h and IFN-γ secretion was 
analysed in CD4+T and CD8+T cells by flow cytometry as indicated in methods. Statistical significance was determined by unpaired Mann-Whitney or Kruskal-Wallis test: as 
indicated in methods: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 

Significant differences in the immunoregulatory 
(NKCD56BrightCD16Low)/cytotoxic (NKCD56DimCD16Bright) 
ratio between COVID19 and HD were found (Figure 
2A), although differences in individual subsets were 
not detected. The expression of activation (NKp30/46, 
NKG2C/D, CD16), differentiation (CD57) and 
inhibitory (NKG2A) receptors in the NKCD56Dim cell 
subset is shown in Figure 2B. The adaptive NK cell 
subpopulation (CD16+NKG2C+CD57+NKG2A-) 
showed a marked increase in COVID19 versus HD, 
reaching a median of 21%. A significant increase and a 
significant decrease were found in NK cells 
expressing the activation receptors NKG2D and 
NKp30, respectively. No differences were found 
between COVID19 and NON-COV-RTI. Similarly, to 
the main population of CD8+ T cells and to exhausted 
CD8+ T cells, we found a significant increase in 
activated (GzmBHighPD1+, GzmBHighLAG3+, 
GzmBHighTIM3+) and exhausted (GzmBLowPD1+, 
GzmBLowLAG3+, GzmBLowTIM3+) NKCD56Dim cells in 
COVID19 in comparison with HD and with 
NON-COV-RTI (Figure 2C). Although differences on 
individual IC were found, notably only LAG3+ 
activated and exhausted cells were consistently 
increased in COVID19. Notably, the frequency of 
exhausted NK cells expressing LAG3 (21.6%) or PD1 
(12.5%) are higher than their homologous activated 
NK cells (LAG3, 11.4%; PD1, 2.9%), suggesting a 
predominance of exhausted NK cells in COVID19 
(Figure 2C). viSNE representation revealed a 
distinctive picture of NK cell subpopulations in 
COVID19 patients compared with HDs and 
NON-COV-RTI (Figure 2D/F) and FlowSOM 
clustering confirmed these differences (Figure S3B/C, 
Figure S3E/G). Although different MTs changed 
between COVID19 and HDs (Figure 2E), only MT7 
representing the adaptive NK cell population 
(CD56DimCD16+NKG2A-NKG2C+CD57+) increased in 
COVID19 compared with HDs and NON-COV-RTI 
(Figure 2E), confirming the results in conventional 
flow cytometry analysis. The NK cell IC profiles 
obtained in the unsupervised mapping (Figure 2F) 
and in FLowSOM clustering (Figure S3C) were also 
very different between HDs, NON-COV-RTI and 
COVID19, identifying ten different NK cell MTs 
(Figure 2G). Although some differences were found in 
individual MTs between COVID19, HDs and 
NON-COV-RTI; only MT5, MT6 and MT7 
differentiated COVID19 from both HDs and 
NON-COV-RTI. MT7 and MT5, reflecting 

respectively, activated and exhausted NKCD56Dim cells 
expressing both TIM3 and LAG3 are the predominant 
MTs in NON-COV-RTI. Both are significantly higher 
in COVID19 in comparison with HDs and 
significantly lower in comparison with 
NON-COV-RTI. MT6, exhausted NKCD56Bright cells 
expressing all IC, significantly decreased in COVID19 
in comparison with HD and increased in comparison 
with NON-COV-RTI. MT3 (activated NKCD56Dim cells) 
and MT9 (NKT cells), the most abundant MTs in 
COVID19, were significantly higher in COVID19 than 
in NON-COV-RTI. In summary, activated NKCD56Dim 

cells are different in COVID19 and NON-COV-RTI, 
characterised by MT3 and MT7, respectively. MT3 
presents a higher expression of PD1, TIM3 and CD16 
but a lower expression of GzmB and HLA-DR than 
MT7, which indicates a lower cytotoxic activity. 

When the different monocyte subsets were 
determined (Figure 3A-C) a significant increase in 
intermediate monocytes (iMon; CD56-CD14+CD16+) 
of COVID19 patients in comparison with HDs and 
NON-COV-RTI and a significant decrease in 
non-classical monocytes (ncMon; 
CD56-CD14-CD16High) with respect to HDs were 
found. The frequency of TIM3+ cells increased in 
cMon and iMon while LAG3+ cells decreased in 
COVID19 in comparison with HD. In ncMon, TIM3+ 

and LAG3+ cells decreased in COVID19 patients in 
comparison with HD; similar results were observed in 
NON-COV-RTI cohort with no differences with 
COVID19. The frequency of PD1+ cells did not change 
in any monocyte subpopulations with respect to HDs 
but it decreased in ncMon of NON-COV-RTI (Figure 
3C), suggesting that TIM3 and LAG3 expression may 
be more relevant than PD1 during the regulation of 
monocyte responses in COVID19. The viSNE 
representation of the data highlighted key monocyte 
regions found preferentially in cMon (Figure S3D). 
The FlowSOM clustering analysis (Figure S3D) 
identified five different MTs (Figure 3E). MT1 
decreased in COVID19 while MT4 increased only in 
NON-COV-RTI. Both MT1 and MT4 represent cMon 
although MT1 presents a high expression of GzmB, 
TIM3, LAG3 and PD1 while MT4 reflect cells 
expressing only PD1 at a low level. MT3 (iMon: 
GzmBHigh, HLA-DRHigh, TIM3High, LAG3High and 
PD1neg) also increased in COVID19 and 
NON-COV-RTI patients compared with HDs and this 
change was also significant in NON-COV-RTI versus 
COVID19. MT2 frequency decreased in COVID19 
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while MT5 increased. Both represent ncMon but while 
MT2 expresses high levels of TIM3, LAG3 and PD1, 

MT5 only presents intermediate levels of PD1.  

 

 
Figure 2. Analysis of activated and exhausted NK cell profiles in blood from COVID19 patients compared with HD and NON-COV-RTI. The presence of different immune cell 
populations was analysed in PBMCs by flow cytometry as indicated in methods. A) Frequencies of the two major NK cell subsets, NKCD56Dim and NKCD56Bright cells. B) Expression 
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of activation and inhibitory receptors in NK cells; C-type lectin receptors (NKG2C, NKG2D and NKG2A) and natural cytotoxicity receptors (NCRs) (NKp30 and NKp46) in the 
NKCD56Dim cell subset. C) Expression of activation and exhaustion markers in NK CD56Dim subset, D, F) viSNE maps of CD56+ NK cell populations from COVID19 patients, HD 
and NON-COV-RTI. E, G) Heat maps showing the Mean fluorescence intensity (MFI) in each FlowSOM metacluster (z-scores) of activating/inhibitory receptors (E: CD3, CD16, 
CD57, NKp30, NKp46, NKG2C, NKG2D and NKG2A) or activation/exhaustion markers (F: CD3, HLA-DR, CD16, GzmB, TIM3, LAG3 and PD1) in CD56+ NK cells. The 
percentage of CD56+ cells in each FlowSOM metacluster is shown in the graphs. Boxes represent interquartile ranges (IQRs). Statistical significance was determined by unpaired 
Mann-Whitney or Kruskal-Wallis test: as indicated in methods: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 

 
Figure 3. Analysis of the monocyte cell populations in blood from COVID19 patients compared with HD and NON-COV-RTI. The presence of different immune cell 
populations was analysed in PBMCs by flow cytometry as indicated in methods. A, B, C) Expression of cell exhaustion markers (PD1, TIM3 and LAG3) in classical monocyte (A, 
cMon), intermediate monocyte (B, iMon) and non-classical monocyte (C, ncMon) subsets D) viSNE maps of the monocyte populations from COVID19 patients, HD and 
NON-COV-RTI. E) Heat maps showing the MFI in each FlowSOM metacluster (z-scores) of CD14, CD16, GzmB, HLA-DR, TIM3, LAG3 and PD1 in CD14+ monocyte cells. The 
percentage of monocyte cells in each FlowSOM metacluster is shown in the graphs. Boxes represent interquartile ranges (IQRs). Statistical significance was determined by 
unpaired Mann-Whitney or Kruskal-Wallis tests as indicated in methods: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 
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Correlation between immune cell profile and 
COVID19 severity 

The lymphopenia observed in moderate/severe 
cases was reflected in a significant decrease in the 
frequency of CD3+ T cells, both in the CD4+ and CD8+ 
T cell subpopulations, while no changes were 
observed in monocytes or NKT cells (Figure 4A). A 

significant increase was shown in NK cell percentage 
in moderate/severe group regarding to the mild 
group (Figure 4A). The decrease in both subsets of 
CD3+ T cells and the increase in NK cells were also 
significant in patients who died of COVID19, 
confirming the differences observed in the severity 
groups (Figure 4B). 

 

 
Figure 4. Analysis of the main immune cell subsets in blood from COVID19 patients classified according to severity. The presence of different immune cell populations was 
analysed in PBMCs by flow cytometry as indicated in methods. A) Frequencies of total T, CD4+T, CD8+T, Treg, NKT and NK cells and monocytes in mild and moderate/severe 
patients. B) Frequencies of total T, CD4+T, CD8+T, Treg, NKT and NK cells and monocytes in alive and deceased patients. C, D, E) Expression of activation/inhibitory receptors 
in NK cells in both NKCD56Dim and NKCD56DBright cells and activation/exhaustion markers in the NKCD56Dim cell subset mild and moderate/severe patients. F) Expression of 
activation/exhaustion markers in CD8+T cells mild and moderate/severe patients. G) LAG3 expression in total and exhausted CD8+T cells in alive and deceased patients. H) 
Frequency of iMon and cMon subsets and expression of exhaustion markers. I) Expression of TIM3 in monocyte subsets from alive and deceased patients. J, K, L, M) Heat maps 
showing the MFI in each FlowSOM metacluster (z-scores) of activation, inhibitory and exhaustion receptors and markers in CD8+T (J), CD56+ NK (K, L) and monocytes (I). The 
percentage of the respective cell populations in each FlowSOM metacluster is shown in the graphs. Boxes represent interquartile ranges (IQRs). Statistical significance was 
determined by unpaired Mann-Whitney or Kruskal-Wallis tests as indicated in methods: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 
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There were no differences between NKCD56Dim 
and NKCD56Bright cell frequency nor ratio (data not 
shown). NK cells expressing the inhibitory receptor 
NKG2A or the activation receptors NKp30 and 
NKp46 significantly decreased in moderate/severe 
patients in both NKCD56Dim and NKCD56Bright 
subpopulations (Figure 4C/D). A significant increase 
was observed in highly differentiated CD57+ 
NKCD56Dim and NKCD56Bright subpopulations and in the 
adaptive NK cell population in moderate/severe 
group (Figure 4C/D), although they were not 
significantly increased in COVID19 patients who 
died. In moderate/severe cases there was a significant 
decrease in TIM3+ activated NK cells and an increase 
in activated PD1+ or LAG3+ NK cells as well as in 
exhausted LAG3+ NK cells (Figure 4E). It should be 
remarked that the percentage of LAG3 expressing 
cells is higher in exhausted NK cells (27.9%) than in 
activated NK cells (18%), which could indicate a 
dysfunction in NK cell immune response in 
moderate/severe COVID19 (Figure 4E). 

A significant decrease in the frequency of 
activated CD8+ T cells expressing TIM3 was observed 
in moderate/severe cases (Figure 4F). However, a 
marked increase was found in exhausted CD8+T cells 
expressing LAG3, doubling from 6% in mild patients 
to 12% in moderate/severe patients, and in patients 
who died (Figure 4G). Interestingly, the frequency of 
activated CD8+ T cells expressing LAG3 did not vary 
among patients who died or survived (data not 
shown), which indicates a relative increase in the 
frequency of exhausted CD8+ T cells in comparison 
with activated ones. 

Finally, moderate/severe COVID19 patients 
presented a significantly lower iMon percentage than 
mild cases (Figure 4H) which might be related to a 
lower capacity to present antigens and initiate an 
immune response against COVID19 (21). Although 
the rest of monocyte subpopulations did not change 
(Figure 4H and data not shown), moderate/severe 
patients present a significant decrease in the 
percentage of cMon expressing the IC TIM3 and 
LAG3 and iMon expressing TIM3 (Figure 4H). 
Strikingly, TIM3 expressing monocytes also 
significantly decreased in cMon and iMon subsets of 
patients who died (Figure 4I), suggesting that their 
decrease could be related with a greater inflammatory 
potential, increasing disease severity and mortality.  

Regarding FlowSOM clustering analysis, in 
CD8+ T cells a statistically significant decrease in the 
frequency of MT10 was found in moderate/severe vs 
mild patients (Figure 4J), which represents exhausted 
cells, supporting the findings by conventional flow 
cytometry. On the other hand, the analysis of 
activating and inhibitory receptor patterns on NK 

(CD56+) cells showed a statistically significant 
decrease in MT1 and MT7 frequency between 
moderate/severe and mild patients while MT6 
frequency increased (Figure 4K). MT2, corresponding 
to adaptive NK cells (CD16+CD57+NKG2C+ 

NKG2ALow) increased in moderate/severe cases 
although it did not reach statistical significance. 
Regarding the IC panel (Figure 4L), an increase in the 
frequency of MT5 and MT10 and a decrease in the 
frequency of MT3 and MT9 were observed in 
moderate/severe cases. Within these MTs, the 
expression of LAG3 increased in moderate/severe 
cases. In addition, LAG3 was upregulated in many 
other NK cell MTs (MT2, MT6 and MT7) in 
moderate/severe patients with respect to mild 
patients. In the monocyte subsets a significant 
decrease in MT2 (TIM3+PD1+LAG3+ ncMon) was 
observed in moderate/severe cases (Figure 4M) 
confirming the potential role of these IC in controlling 
monocyte-mediated inflammation during COVID19.  

Immunomodulatory circulating soluble factors 
in HD, COVID19 and NON-COV-RTI and 
correlation with COVID19 severity 

In contrast to previous studies our analysis 
concerning soluble immunomodulatory proteins was 
not only restricted to inflammatory cytokines and 
chemokines, but in addition, we analysed the 
presence of T and NK-cell derived serine-proteases 
GzmA and GzmB, involved in the regulation of 
inflammatory responses, and soluble ligands for the 
CD8+T and NK cell activating receptor NKG2D (ULBP 
and MIC families) involved in pathogen 
immune-evasion. 

A general increase of inflammatory cytokine and 
chemokine levels was observed during COVID19 in 
comparison with HD (Table 1). Although a significant 
increase was observed in the mean values of IL1 
family members, IL1β, IL31, IL33 and IL36B and IFNα 
in COVID19, the concentration of these cytokines in a 
lot of patients was low or even undetectable. IFNβ 
was not detected in COVID19. Only IL18 is detected 
in most of the patients at relatively high levels, which 
suggest that it might be the best marker to study the 
role of IL1 family in COVID19. The level of NKG2D 
soluble ligands (MICs and ULBPs) and Gzms were 
significantly increased in COVID19 patients in 
comparison to HDs (Table 1), a finding that has not 
been previously reported.  

As expected, the differences between COVID19 
and NON-COV-RTI were less pronounced than in the 
comparison with HDs, yet several members of the IL1 
family such as IL18, IL1RA, IL36B and IL31, IL2, IFNα 
and TNFα increased significantly in COVID19. In 
addition, the chemokines involved in T, NK cell 
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and/or monocyte mobilization, CXCL10, CCL2, CCL8 
and the soluble NKG2D ligands, MICA and ULBP3 
increased significantly in COVID19 compared to 
NON-COV-RTI (Table 1). There was no difference in 
other inflammatory factors such as IL6, IL12, IL15, 
IL7, IL1β, IL10 and CXCL2 between NON-COV-RTI 
and COVID19 patients. A significant increase in 
GzmA and GzmB activity (Figure 5A) was found in 
COVID19 patients only in comparison with HDs 
(Figure 5A). A significant correlation was observed 
between GzmA activity, but not concentration, and 
the inflammatory cytokines IL2, IL6, the IL1 family 
members, IL33 and IL31, and the chemokine 
IL8/CXCL8 (Figure 5B). Supporting this correlation, it 
has been shown that active human GzmA can induce 
the generation of IL6 and IL8 in several cell types (22, 
23). GzmB activity also showed correlation with some 
soluble factors like the inflammatory cytokines IL2 
and IL6, the soluble NKG2D ligand ULBP3 and the 
chemokine CXCL9 (Figure 5B).  

A clear increase was observed in the NKG2D 
soluble ligands, MICA and ULBPs in 
moderate/severe cases in comparison with mild cases 
(Figure 5C) and in the group of patients that died 

(Figure 5D). The inflammatory cytokine profile also 
showed significant differences between 
moderate/severe and mild groups as shown in Figure 
5C and 5D. From all of them it should be noted that 
TNFα, IL2 and IL1RA also showed an increase 
specifically associated to COVID19 (Table 1). Notably 
IFNλ2 was significantly downregulated in 
severe/moderate patients compared to mild ones 
(Figure 5C), albeit it was not significant in deceased 
patients (Figure 5D). Within the chemokines that were 
significantly upregulated in COVID19, CXCL10, 
CCL2 and CXCL9 together with IL8/CXCL8 
increased significantly in moderate/severe cases 
(Figure 5C) and CXCL10 and CXCL9 in patients who 
died (Figure 5D), indicating that CXCL10 and CXCL9 
differentiate COVID19 from NON-COV-RTI and 
correlate with severity upon admission and death 
within COVID19 patients. Finally, moderate/severe 
patients and those who died presented a significant 
increase in GzmA activity (Figure 5E/F). Individual 
violin plots and raw data of the plasma soluble factors 
is shown in Figures S4 and S5. 

 

Table 1. Comparison of the cytokine and chemokine levels (median and interquartile ranges) of COVID19 with HD and NON-COV-RTI. 
Statistical significance was determined by unpaired Mann-Whitney: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 

 P 
(HDs vs 
COVID19) 

HDs COVID19 NON-COV-RTI P (COVID19 vs 
NON-COV-RTI) median Q1 Q3 median Q1 Q3 median Q1 Q3 

MICA 0,002 28,5 14,0 70,3 57,9 31,1 150,1 29,6 6,5 47,4 0,006 
MICB 0,000 29,3 24,2 42,5 78,1 40,4 109,7 55,2 40,1 81,4 ns 
ULBP1 ns 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 ns 
ULBP-2/5/6 0,099 0,0 0,0 23,6 0,0 0,0 71,7 0,0 0,0 54,5 ns 
ULBP3 0,002 3,4 0,0 25,4 31,6 0,0 68,6 8,9 0,0 34,5 0,035 
IL12 0,003 0,0 0,0 0,0 0,0 0,0 55,2 0,0 0,0 39,2 ns 
IL25 ns 0,0 0,0 61,6 0,0 0,0 44,6 0,0 0,0 32,8 ns 
IL2 0,002 0,0 0,0 1,1 1,0 0,0 2,4 0,0 0,0 2,3 0,024 
IL15 0,000 0,8 0,0 1,2 3,4 1,6 7,7 2,4 0,5 4,7 ns 
IL6 0,000 0,7 0,4 1,5 15,3 5,6 51,8 7,4 2,5 33,3 ns 
IL1 B 0,002 0,0 0,0 0,1 0,1 0,0 1,3 0,3 0,0 1,4 ns 
IL18 0,000 219,5 180,8 305,3 533,7 339,1 808,4 312,2 225,6 673,3 0,006 
IL1RA 0,000 360 250 660 3400 1800 8400 1600 790 5000 0,017 
IL36 B 0,000 1,0 0,3 1,5 3,7 1,0 5,7 0,9 0,2 1,9 0,000 
IL33 0,003 0,0 0,0 0,0 0,0 0,0 0,8 0,0 0,0 0,6 ns 
IL31 0,002 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,042 
IL7 0,048 2,3 1,2 3,2 2,9 1,5 5,3 2,6 1,4 4,5 ns 
IL10 0,001 0,0 0,0 0,8 1,3 0,0 6,0 0,0 0,0 2,6 ns 
IL8 CXCL8 0,000 2,7 1,3 4,0 7,4 3,7 12,4 4,7 3,7 16,1 ns 
CXCL10 0,000 33,0 20,7 54,2 346,1 61,2 1181,4 61,5 50,4 165,8 0,002 
CCL2 0,000 122,3 97,0 158,7 243,6 150,1 379,7 142,6 92,8 305,6 0,034 
CXCL2 0,016 185,5 68,0 337,4 281,2 114,5 714,5 389,1 106,3 712,8 ns 
CXCL9 0,000 0,0 0,0 210,7 597,2 305,0 846,9 388,8 110,9 671,2 0,059 
CCL8 0,000 11,3 2,4 26,0 81,2 36,7 164,5 24,9 16,3 54,0 0,000 
IFN-λ3 ns 23,5 0,0 45,5 17,3 0,0 48,9 1,5 0,0 31,0 ns 
IFN-λ2 ns 0,0 0,0 24,2 0,0 0,0 43,0 0,0 0,0 43,0 ns 
IFNα 0,000 0,0 0,0 0,0 1,7 0,0 9,2 0,0 0,0 0,0 0,000 
IFNγ 0,000 0,0 0,0 0,0 1,8 0,0 10,6 0,0 0,0 12,5 ns 
IFNβ ns 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 ns 
FAS L ns 16,1 12,2 21,2 18,3 11,4 26,1 20,7 15,4 32,6 ns 
TNFα 0,000 2,0 1,3 2,7 5,9 4,2 9,7 3,6 3,3 6,7 0,007 
TRAIL 0,000 77,3 50,7 99,1 36,4 15,8 70,5 23,1 5,9 40,0 0,025 
GRANZYME A 0,000 12,8 2,1 20,2 42,1 24,8 50,9 33,6 14,7 47,4 ns 
GRANZYME B 0,000 0,0 0,0 3,7 14,0 7,4 21,2 9,4 1,4 12,7 0,011 
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Figure 5. Analysis of soluble GzmA and GzmB in COVID19 patients compared with HD and NON-COV-RTI and correlation with inflammatory cytokines. Gzm concentration 
and activity were analysed by multiplexed cytokine array and internally quenched fluorescent peptide substrates, respectively, in COVID19, HD and NON-COV-RTI as indicated 
in methods. A, B) GzmA and GzmB activities in serum (A) and Spearman correlation between GzmA or GzmB activities and cytokines in serum from COVID19 (B). Pearson 
correlation coefficient (ρ) and p values are indicated. C, D) Heat map of the expression of the indicated plasma soluble factors (z scores) from COVID19 patients classified 
according to either moderate/severe and mild cases (C) or alive and deceased patients (D). E, F) Serum GzmA Activity in COVID19 patients classified according to either 
moderate/severe and mild cases (E) or alive and deceased patients (F). Boxes represent interquartile ranges (IQRs). Statistical significance in A and C-F was determined by 
unpaired Mann-Whitney or Kruskal-Wallis tests as indicated in methods: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 

  

Patient classification and prediction of clinical 
outcome using multivariate logistic regression 
analyses 

Finally, we inquired if particular cell populations 
and immunomodulatory soluble factor expression 
patterns might help to diagnose and predict clinical 
outcomes among COVID19 patients (Figure 6). To this 
aim we used univariate and multivariate logistic 

regression models in two groups of data sets as 
indicated in the methods section of Supplementary 
Information. The results of the analyses, including 
odds ratios and confidence intervals, for COVID19, 
HD and NON-COV-RTI classification are shown in 
Table S6 and Figure S6A/B. Within Group 1, four 
variables (IL15, CXCL9, GzmA and GzmB activity) 
accurately classified 97% of COVID19 diagnosis 
compared with HDs. In Group 2, also four variables 
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(TIM3+cMon and TIM3+ncMon, Treg cells and 
activated CD8+ T cells) classified 94.7% of patients. 
One variable in Group 1 (CXCL10) and four variables 
(PD1+ncMon, exhausted LAG3+NK cells, Treg and 

NKCD56Dim cells) in Group 2 classified 76.1% and 79.6% 
of the patients between COVID19 and 
NON-COV-RTI, respectively. 

 
 
 

 
Figure 6. Forest plots depicting the adjusted odds ratios obtained from multivariate logistic regression analysis at hospital admission classified according diagnosis, evolution and 
severity. Two groups of variables were used, Group 1: Soluble factors, lymphocyte counts and age. Group 2: Cellular immune populations, lymphocyte counts and age. A, B) 
Multivariable logistic regression analysis for the associations of immunological factors and disease groups, COVID19 vs HD (A) and COVID19 vs NON-COV-RTI (B). C, D, E) 
Multivariable logistic regression analysis for the associations of immunological factors and COVID19 severity groups: mild vs moderate/severe (C), worsening (D) and alive or 
deceased (E). Dotted line indicates the area of the plots where odds ratios are less than 1, indicative of negative associations. Adjusted odds ratios are indicated with points and 
confidence lines encompass the range between the lower and upper limits. In parent is indicted the percentage of case explained by the logistic regression model. 
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The results concerning disease severity, 
worsening and death are shown in Table S7 and 
Figure S6C-E. In Group 1, four variables (age, 
ULBP-2/5/6, IL6 and IFNλ2) were found to classify 
85% of moderate/severe COVID19. In group 2, eleven 
variables, including age, activated and exhausted 
CD8+T cells and adaptive NK cells were found to 
classify 87.2% of moderate/severe COVID19. In 
group 1, six variables (CXCL10, CXCL9, CCL8, IFNα, 
TNFα and GzmB) classified 83.1% of patients that got 
worse after 7 days. In Group 2, only 2 variables, 
NKCD56Dim and LAG3+cMon, classified 80.5% of 
patients that got worse. Finally, in the prediction 
models of patient death, four variables in group 1 
(Age, lymphocyte counts, CXCL10 and TNFα) 
predicted 83.0% of the patients that died. The same 
prediction value was obtained with four variables in 
group 2, (age, lymphocyte counts, exhausted 
PD1+CD8+T cells and TIM3+iMon). The Area Under 
the Curve (Tables S6 and S7) showed good (0.7-0.9) or 
very good (>0.9) significant values and the p values 
obtained in the Hosmer and Lemeshow test were 
always higher than 0.05 confirming the utility and the 
fit goodness of the different models. 

Discussion 
In this study, we present comprehensive 

immune profiles for human SARS-CoV-2 infection 
causing COVID19. By employing a diverse antibody 
panel and the Flowsom clustering techniques to 
systematically discover sub-populations and their 
frequencies in these data, we found a heterogeneous 
immune response in COVID19 characterised by the 
concomitant presence of activated and exhausted 
CD8+ T and NK cells. The presence of these cell 
populations is concomitant to an increased level of 
soluble inflammatory cytokines and chemokines as 
well as soluble ligands involved in the regulation of 
the antiviral activity of NK/CD8+T cells that partly 
explain an inefficient antiviral CD8+T/NK cell activity 
despite the presence of highly activated cells in severe 
patients that finally died. Among the different factors 
that might account for this inefficient deregulated 
immune response, age and ACE2 expression might be 
critical ones as previously described (24, 25). Indeed, 
although we did not determine ACE2 expression we 
also found that increased age as well as different 
comorbidities correlated with disease severity. 

Our results provide robust and detailed 
information on the effects of COVID19 infection on 
immune response and a number of novel findings, 
including host immunity-based models with potential 
utility for diagnosis and prognosis in COVID19. 
Notably, we have identified specific immune 
signatures in blood characteristic of COVID19 

patients, which are not only different from HD but in 
addition, they differ from other respiratory infections 
(NON-COV-RTI cohort), a question that remains 
poorly explored in COVID19.  

Our findings indicate a prominent CD8+T, NK 
cell and monocyte activation during the acute 
immune response in COVID19. According to our data 
there is a strong activation of CD8+T and NK cells 
with a high presence of adaptive and terminally 
differentiated NK cells and increased expression of 
NKG2D, correlating with disease severity. An 
excessive NK cell activation in COVID19 could 
amplify the systemic inflammatory response resulting 
in increased physiological dysfunction and organ 
injury as described for sepsis (26-28). Our results 
confirms and expand previous studies (29) by 
providing a number of new findings that contribute to 
explain the limitation of activated NK/CD8+T cells to 
control SARS-CoV-2 infection, a concept that is not 
clear yet (16, 17, 20, 30, 31). NK and CD8+T cell 
activation seems to be counterbalanced by the greater 
increase in exhausted cells observed in 
moderate/severe COVID19, with LAG3 IC being the 
most relevant one. This result agrees with previous 
findings showing an exhausted CD8+T cell phenotype 
in COVID19 patients, albeit those studies were mainly 
focused on PD1 expression and COVID19 was only 
compared with HDs (17, 32, 33). In contrast, our 
findings provide new insights into the phenotype of 
bona fide (GzmBLow) exhausted NK and CD8+T cells 
showing a more complex scenario where different IC, 
including soluble immunomodulatory ligands like 
MIC and ULBP family members, contribute to cell 
exhaustion and inactivation. Strikingly, when the flow 
cytometry data were considered by unsupervised 
analysis, we found different cell clusters resembling 
exhausted cells with a heterogeneous expression of 
TIM3, PD1 and LAG3 characterised by single cells 
expressing more than one IC, creating cellular 
fingerprints that differ between COVID19 and other 
respiratory infections (NON-COV-RTI). In addition, 
and in agreement with a recent study focused on PD1 
(34, 35), our results reveal that a large proportion of 
CD8+T cells expressing IC are not functionally 
exhausted but they are activated cells that express 
activation (HLA-DR, CD38) and cytotoxic (GzmB) 
markers. Our results expand this concept to NK cells 
indicating that a large proportion of NK cells 
expressing IC are not exhausted but activated cells. 
Yet these activated cells seem not to be able to control 
SARS-CoV-2 infection, which could be due to the 
presence of high levels of soluble CD8+T/NK cell 
ligands with immunosuppressive activity like MIC 
and ULBP family members, detected in 
moderate/severe COVID19 and deceased patients. 
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Soluble NKG2D ligands have been shown to 
modulate NK cell responses, inhibiting NK cell 
activity in cancer and infection (36). 

Our results present potential implications for the 
use of immune checkpoint inhibitors (ICIs) for 
COVID19 treatment, suggesting that LAG3 blockade 
could be more effective that PD1 blockade to increase 
immune response against SARS-CoV-2. However, our 
data showing the expression of several IC in single 
cells also suggest that targeting IC to enhance 
antiviral NK/CD8+T cell responses might be 
challenging as blocking several IC simultaneously 
might be required. Although functional assays 
employing IC inhibitors are necessary to confirm this 
hypothesis, this concept is supported by the results in 
cancer immunotherapy showing increased efficacy 
when several IC are simultaneously targeted (37). As 
an additional level of complexity, the increased 
amounts of soluble NKG2D ligands, MICs and 
ULBPs, in blood from moderate/severe COVID19, 
suggest that blocking LAG3, TIM3 and/or PD1 still 
might not be sufficient to generate optimal antiviral 
responses during COVID19. In contrast to CD8+T and 
NK cells, a decrease in the frequency of different 
monocyte subsets expressing IC is observed in 
moderate/severe COVID19 patients, which might 
enhance their proinflammatory capacity contributing 
to COVID19 pathogenesis as shown in sepsis (38-40). 
Thus, altogether our data suggest that the potential 
beneficial effects of targeting IC in COVID19 might be 
counterbalanced by activation of detrimental 
monocyte-mediated inflammation, albeit further 
experimental evidences will be required to confirm 
this hypothesis. 

Our data fit with an overaggressive immune 
response and the upregulation of inflammatory 
cytokines in a subset of patients who developed a 
more severe disease. Indeed, similar to other studies 
we also found elevated serum cytokines in plasma 
from moderate/severe COVID19 (11, 12, 15, 29). 
Expanding all these findings and providing new 
insights into the role of soluble immunomodulators 
during COVID19, we show that soluble ligands of the 
CD8+ T and NK cell activating receptor NKG2D from 
the MIC and ULBP families are specifically increased 
in moderate/severe COVID19 and in patients that die 
confirming the importance of NK cell regulation 
during COVID19. The soluble markers analysed 
define an immunological profile in COVID19 patients 
that is different from that in other infections and, in 
addition, differ between mild and moderate/severe 
cases. Notably, among all factors analysed it is 
striking that the chemokines CXCL10 and CXCL9 
increase in COVID19 in comparison with 
NON-COV-RTI and, in addition, they are increased in 

moderate/severe COVID19 and patients who end up 
dying. Thus, targeting the chemokine axes CXCL9, 
CXCL10, which are involved in T and NK cell 
mobilisation, might be helpful to treat COVID19 as 
previously found in experimental sepsis (41). Other 
inflammatory molecules such as IL6, IL12 or IL15 do 
not appear to be specific of COVID19, although their 
presence could correlate with COVID19 severity. In 
addition, our findings reveal a previously 
unrecognised potential role of Gzms, especially 
GzmA, in the pathology of COVID19, more 
specifically in upregulation of the inflammatory 
cytokine response. This result is supported by recent 
findings showing that GzmA is involved in the 
pathogenesis of bacterial and polymicrobial sepsis 
(23, 42). Intriguingly, GzmA or GzmB activity did not 
correlate with their serum concentration, suggesting 
that inactive forms of Gzms are present in circulation. 
This is not surprising and has been previously 
reported (43). Indeed, Gzms activity is regulated by 
extracellular inhibitors present in blood, some of 
which have been found to be downregulated during 
inflammatory responses like sepsis. This might 
explain the lack of correlation between Gzm 
concentration and activity during inflammation, and, 
as expected, that the active proinflammatory forms of 
Gzms, but not the total amount of Gzms, correlate 
with disease severity and the upregulation of 
inflammatory cytokines. Further experiments 
including animal models will be required to confirm 
the potential role of active GzmA and/or GzmB in 
COVID19. 

In addition to provide a major understanding on 
the immune response associated with COVID19 
pathogenesis, our study has allowed us to generate 
models based on cell immunity and soluble 
immunomodulators to differentiate COVID19 from 
other respiratory infections, classifying them 
according to severity and predicting the risk of death, 
importantly early at the moment of hospital 
admission. Strikingly, among other soluble factors, 
CXCL10 is present in all models classifying patients in 
COVID19 or NON-COV-RTI, moderate/severe 
COVID19 and death risk. In addition to modulate T 
and NK cell migration, CXCL10 has been related to 
thrombosis and correlated with the coagulation 
parameters in COVID19, although it did not show 
differences between severe/critical cases who either 
survive or die (44, 45). Regarding immune cells, the 
adaptive NK cell subset and different populations of 
exhausted cells appear in the different models 
confirming their importance to explain COVID19 
severity in some patients. Some of these models can 
be very useful to help in clinical decisions, stratifying 
patients according to prognosis and anticipating 
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treatments for those in whom a worse evolution is 
expected. 

The prospective character of our study using a 
large number of patients (87) strengthens the validity 
of the conclusions and of the models generated. 
However, these models will require validation in 
larger independent cohorts of COVID19, which is one 
of the main limitations of this study. In addition, the 
differences of age in HDs (44±12.5) and COVID19 
(71.2±17.9) groups could introduce a bias in data 
analyses as age might influence the presence of 
different immune cell subsets. However, we have 
repeated all cell analyses using an independent old 
HD cohort (mean age 71.2) and have found similar 
results discarding this potential problem. In addition, 
all samples from patients included in this study were 
collected during the first 24h after Hospital entrance, 
before any immunosuppressive treatment was 
prescribed, discarding any influence of these type of 
treatments in our analyses. 

Another limitation is the lack of specific 
diagnosis in the NON-COV-RTI group. 
Unfortunately, during the period the samples were 
taken, in the midst of the first COVID19 wave that 
strongly hit our country, specific diagnosis for other 
respiratory infections were not performed and 
respiratory samples were not stored at the Hospital 
due to logistic reasons. Last but not least, it would 
have been very useful to identify the specific 
infections in the NON-COV-RTI cohort, albeit these 
are infections that are not commonly identified in 
hospitalised patients. Thus, we could say that our 
classification represents a real-life situation in which 
COVID19 confirmed cases requires differentiation 
from other infections with similar symptoms for 
therapeutic but also logistic reasons. 

Abbreviations 
NON-COV-RTI (non-COVID19 respiratory tract 

infections), Treg (CD4+ regulatory T cell), Gzm 
(granzyme), IC (Immune Checkpoint), viSNE (Visual 
Interactive Stochastic Neighbor Embedding), MST 
(Minimum Spanning Tree), MT (metaclusters). 
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