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Abstract

The n-body problem is a classical problem in celestial mechanics which at-
tempts to describe the motion of n bodies under their mutual gravitational attrac-
tion. The problem is only solvable for two masses, and not much is known for the
general case of three or more bodies.

This work deals with some particular solutions of the n-body problem. First,
using its underlying Hamiltonian structure, we state the main properties of the
problem, its symmetries and first integrals. Next, we study central configurations
and their relation with homothetic and relative equilibria solutions. For three
bodies, the well-known Lagrange configuration provides a relative equilibria in
which three shifted particles in an equilateral triangle move along a periodic orbit,
known as a choreography. In the last chapter we consider the figure eight solution
which is another choreography of three bodies with some particular geometrical
and dynamical properties. Using an ad-hoc implementation of the Taylor method
developed for the numerical integration of the n-body problem we illustrate the
orbits and the properties of the particular solutions discussed in this work as well
as a numerical check of the remarkable linear stability property of the figure eight.

Resum

El problema de n cossos és un problema clàssic de macànica celeste que con-
sisteix en descriure el moviment de n cossos sota la seva atracció gravitatòria. El
problema només és resoluble per dos cossos, però no es coneixen gaires resultats
pels cassos generals de tres o més.

Aquest treball tracta algunes solucions del problema de n cossos. Primer, util-
itzant la subjacent estructura hamiltoniana que aquest poseeix, exposem les propi-
etats principals, les seves simetries i integrals primeres. Tot seguit, estudiem les
configuracions centrals i la seva relació amb les solucions homotètiques i d’equilibri
relatiu. Pel cas de tres cossos, la configuració de Lagrange proporciona un equilibri
relatiu en el qual tres cossos desplaçats formant un triangle equilàter es mouen
seguint una òrbita periòdica, una coreografia. En l’últim capítol, considerem la
solució de la figura vuit, la qual és una coreografia de tres cossos amb certes propi-
etats geomètriques i dinàmiques. Utilitzant una implementació ad-hoc del mètode
de Taylor desenvolupat per la integració numèrica del problema, il.lustrem les òr-
bites i les propietats de les solucions tractades en aquest treball. A més, també
proporcionem una comprovació numèrica de l’estabilitat lineal de la figura vuit.
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Introduction

The main goal of this work is to present a way of finding solutions of the n-
body problem. To do so, we are going to study a significant sort of configurations
of masses, central configurations, and a special type of solutions, choreographies.
We will introduce them in a general way and state their main properties, as well
as describe the motion of these particles in the setting of the n-body problem.
However, once stated, we will mainly focus in some specific examples of these
special solutions.

The Newtonian n-body problem is a classical problem in celestial mechanics
which consists in describing the motion of an arbitrary number of bodies, namely
n (n ≥ 2), under the influence of their mutual gravitational attraction, described
by Newton’s universal gravitational law.

We could generalize the statement of the problem by setting a general arbitrary
force or vector field instead of the gravitational force, and describing then the
motion of the particles under the influence of such force. Nonetheless, here we
will discuss only the classical gravitational problem. Therefore, we are going to
consider Newton’s law of gravitation stated by Newton in his well known work
Principia Mathematica, in order to describe the motions of the set of particles (we
leave aside relativistic features with the masses given by General Relativity).

We are going to study the motion of the n bodies from the point of view of
classical Hamiltonian mechanics. Hence, an introduction to this topic will also be
done. Furthermore, we are going to use a Taylor numerical method to compute
approximate solutions of the problem and throughout this work we are going to
exhibit the plots of solutions obtained with this method.

We note that usually the problem is contemplated for physical spatial dimen-
sions 2 or 3. However, we are going to present the problem and give most of the
results for an arbitrary spatial dimension d, unless otherwise stated. Besides, all
the plots hereby presented have been made only for solutions in the plane, for a
better visualization of the geometrical properties.

The manuscript is organized as follows. In the first chapter we are going
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iv Introduction

to introduce the problem and we will provide the Hamiltonian formalism to it.
Thereby we will be able to study its first integrals, which will facilitate our study
and comprehension of the problem. In the last section of the chapter, we will
briefly center our attention to the 2-body problem and we will relate our previous
findings to the Kepler problem.

In the second chapter, we will study central configurations. Central config-
urations are a special kind of configurations of masses that satisfy a particular
condition relating their acceleration vectors with the relative position to the other
masses. We will discuss the reason of studying them for the n-body problem and
we will prove some results of their existence as well. Additionally, in the last two
sections of the chapter we will explain two different specific central configurations,
which give rise to the only two explicit solutions known for the 3-body problem.

In the third and last chapter of this work, we will explain an extraordinary
solution of the n-body problem, whose discovery resulted into the exploration of
a new kind of solutions of the problem, choreographies. We will mainly focus
on the figure eight solution and, although we will not present the proof of its
existence, we will give an insight on its motion and characteristics. Moreover, we
will numerically study the orbit, first by finding the complete initial conditions
and computing the trajectory and then, by checking its distinguished attribute:
linear stability.

This work also includes an appendix containing an algorithm to obtain the
trajectory of the bodies, developed specifically for our problem and implemented
in C. It solves numerically the ODE system of the equations of motion of the
n-body problem in d dimensions, making use of the Taylor integration method.



Chapter 1

The n-body problem

We are going to study the n-body problem from the insight of Hamiltonian
systems in order to analyse properly the properties of the associated system, with
special emphasis on the search of first integrals of the problem. In the last section
we will exclusively focus on the problem of two bodies.

1.1 Stating the problem

In this section we introduce the n-body problem, which considers the motion of
n bodies under their mutual gravitational interaction. We consider this interaction
given by Newton’s universal gravitational law.

Consider the vector space Rd endorsed with an orthogonal basis, so that de-
fines a cartesian coordinate system. Then, we denote the position of the particles
with vectors xi ∈ Rd and the masses of such bodies with scalars mi ∈ R>0, for
i = 1, . . . , n. According to Newton’s universal law of gravitation, the gravitational
force acting on particle i due to the presence of particle j is

Fij =
Gmimj

r3
ij

(xj − xi),

where G is the universal gravitational constant and rij = |xi − xj|, with | · | repre-
senting the Euclidian norm in Rd. By choosing the appropiate units of mass we
can arrange G = 1. Taking into account all the other particles of the system, the
resulting force Fi acting on the particle i is the sum of the individual forces, that
is,

Fi =
n

∑
j=1
j 6=i

Fij = ∑
j 6=i

mimj

r3
ij

(xj − xi).

1



2 The n-body problem

Then the equation of motion for the i-th particle of the system is, by Newton’s
second law,

ẍi = ∑
j 6=i

mj

r3
ij
(xj − xi). (1.1)

Considering the n particles, this gives a system of nd second-order (autonomous)
differential equations. The study of the solutions of this equations system consti-
tutes the n-body problem.

Let us denote the right-hand side of equations (1.1) by fi(x). Note that the
function f = ( f1, . . . , fn) is only defined in Rnd \ ∆, called the configuration space,
where

∆ = {x ∈ Rnd : xi = xj for some i 6= j}
is called the collision or singular set. We can express the equations system (1.1) as
a system of first-order differential equations by introducing the variable v,

ẋ = v, v̇ = f (x) (1.2)

This differential equations system is defined in the phase space Ω = {(x, v) : x ∈
Rnd \ ∆, v ∈ Rnd}.

Let us set y = (x, v) and let X f (y) = (v, f (x))T denote the vector field asso-
ciated to (1.2). The solutions of the n-body problem will be of the form y(t) =

(x(t), v(t)) such that ẏ = X f (y). We have that the vector field X f is Cr, for any
r ≥ 1, in the open domain Ω and therefore the flow associated to the n-body
problem, given by the map

ϕ : D ⊂ R×Ω −→ Ω
(t; y0) 7−→ Φ(t; 0, y0)

is also Cr. Here Φ represents the evolution process induced by X f and D = I ×Ω
is an open domain, where I is the time interval where the evolution process is
defined.

1.2 The Hamiltonian formalism of the n-body problem

Let us now provide a Hamiltonian formalism to the n-body problem. We
define qi := xi the position vectors and pi := mi ẋi the momenta vectors for each
particle of the system. The vectors q = (q1, . . . , qn), p = (p1, . . . , pn) ∈ Rnd will be
called configuration and linear momentum vectors respectively.

In this section and those that follow in this chapter, we refer to [1] for general
background on the Hamiltonian formalisms.
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Definition 1.1. (Hamiltonian system) A (canonical) Hamiltonian system is a system
of differential equations for which the evolution law is given by Hamilton’s law

ż = XH(z) = J∇H(z)

where J =
(

0 I
−I 0

)
is a 2m× 2m matrix called the standard symplectic matrix, with I and

0 representing the identity and null matrices, and H is called the Hamiltonian function of
the system.

Let us present a property of Hamiltonian systems which is important in our
case.

Proposition 1.2. The Hamiltonian function H(q, p) is a first integral of the autonomous
vector field

XH =

(
∂H
∂p

,−∂H
∂q

)T

Proof. Let (q(t), p(t))T be a solution of ż = XH(z). Then

dH
dt

(q(t), p(t)) =
∂H
∂q

(q(t), p(t))q̇ +
∂H
∂p

(q(t), p(t)) ṗ =

=
∂H
∂q

(q(t), p(t))
∂H
∂p

(q(t), p(t))− ∂H
∂p

(q(t), p(t))
∂H
∂q

(q(t), p(t)) = 0

where in the first equality we have used the chain rule and in the second one the
fact that H defines a Hamiltonian system with vector field XH.

So for any autonomous Hamiltonian system we have that the Hamiltonian
function itself is a first integral. Now that we have introduced Hamiltonian sys-
tems, let us implement it into the n-body problem.

Consider the function

H(q, p) = T(p) + V(q) (1.3)

where T(p) and V(q) are known as the kinetic energy and the potential energy func-
tions, defined by

T(p) =
1
2

n

∑
i=1

|pi|2
mi

, V(q) = −∑
i<j

mimj

rij
= −U(q). (1.4)



4 The n-body problem

Proposition 1.3. The system of equations of the n-body problem in dimension d is Hamil-
tonian with Hamiltonian function

H : Rnd ×Rnd −→ R

(q, p) 7−→ H(q, p) = T(p) + V(q)

being T and V the kinetic and potential energies defined in (1.4).

Proof. We want to see

q̇i =
∂H
∂pi

(q, p), ṗi = −
∂H
∂qi

(q, p).

Differentiating H with respect to each variable we have

∂H
∂pi

=
∂T
∂pi

=
pi

mi
=

mi q̇i

mi
= q̇i

∂H
∂qi

=
∂V
∂qi

= ∑
l<j

mlmj

r2
l j

(
∂rl j

∂qi

)
= ∑

i 6=j

mimj

r3
ij

(qi − qj) = −mi q̈i = − ṗi

where the previous equality is due to

∂rl j

∂qik
=

∂

∂qik

√√√√ d

∑
s=1

(qls − qjs)2 =
1

2rij
2(qik − qjk) =

1
rij
(qik − qjk)

As a consequence, it follows from Proposition 1.2 that the Hamiltonian func-
tion (1.3) is a first integral of the n-body problem, since the associated vector field
XH is autonomous.

Remark 1.4. In the field of dynamical systems, when the Hamiltonian function is
the sum of functions T and V we say that the system is mechanic. Additionally, in
the case where T is a quadratic form of p we say it is a natural system. Thus, the
Hamiltonian system of the n-body problem that defines function (1.3) is a natural
Hamiltonian system.

Before we proceed further, let us clarify some notation. We shall often use z to
denote the vector (q, p), and m = nd to denote the dimension of the variables q
and p. Hence, z ∈ R2m. Additionally, in Chapter 2 we will usually call Newtonian
potential function to the function U(q), defined in (1.4) as the negative of the
potential energy.

Now, let us consider in the following example the two body problem as a
particular case, and for later references to the concrete equations.
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Example 1.5. Take the system of equations of motion for the 2-body problem
m1q̈1 =

m1m2

r3
12

(q2 − q1)

m2q̈2 =
m1m2

r3
12

(q1 − q2)
(1.5)

for q1, q2 ∈ Rd, together with the functions

T(p) =
1
2

(
|p1|2
m1

+
|p2|2
m2

)
and U(q) =

m1m2

r12
.

Then,

(∇1U(q))k =
∂U
∂q1k

(q) =
∂U(q)
∂r12

∂r12

∂q1k
= −m1m2

r12

(
1

2r12

)
2(q1k − q2k)

= −m1m2

r3
12

(q1k − q2k) = m1q̈1k

(∇2U(q))k =
∂U
∂q2k

(q) =
∂U(q)
∂r12

∂r12

∂q2k
= −m1m2

r12

(
1

2r12

)
2(q2k − q1k)

= −m1m2

r3
12

(q2k − q1k) = m2q̈2k

Therefore, ṗ1 = m1q̈1 = ∇1U(q) and ṗ2 = m2q̈2 = ∇2U(q) which is the result we
were looking for.

We know that the dimension of the configuration space is the number of de-
grees of freedom of the Hamiltonian system. Then, the d-dimensional n-body
problem has m = nd degrees of freedom. A Hamiltonian system with m degrees
of freedom is integrable if there exist m independent first integral functions in
involution (see pg. 7 after Definition 1.9).

In the following section we look for first integrals of the n-body problem. We
will see that it admits a total number of (d + 1)d/2+ 1 first integrals. In particular,
the n-body problem is not integrable for n ≥ 3. The existence of such a set of first
integrals will allow us to consider the evolution of the n-body problem on a lower
dimensional manifold since motion takes place within the constant level sets of
the first integrals. We remark with this argument the importance of knowing first
integrals of a Hamiltonian system.

1.3 First Integrals and Symmetries

We want to seek first integrals of the vector field XH in order to reduce the
dimension of the problem. Before we go deeper into the subject, let us note the
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following property.

Property. If the Hamiltonian function H(q, p) is independent of the position vector
qi for some i, then ṗi = ∂H

∂qi
= 0. Hence, the corresponding momentum vector

pi remains constant, i.e. pi is a first integral of the vector field XH. When this
property holds, the coordinate qi is called cyclic.

This property can be seen as a particular case of a much deeper relation be-
tween the properties of invariance of the Hamiltonian function and the existence
of first integrals. Symmetries of the system are then important to reveal the invari-
ance properties otherwise difficult to detect.

Let us describe such relations in a more concrete way. To this end, we start by
introducing how to extend a point transformation from Rd to the phase space Ω.
To do so, we follow the ideas of [8]. Given

f : Rd −→ Rd

q 7−→ f (q) =: Q

a diffeomorphism acting on the space configuration Rd, we can extend f in order
to induce to a symplectic map in R2d in many different ways. These possible
extensions are called Mathieu transformations. One possibilty is to define a Mathieu
transformation M f from f as the map M f (q, p) = (Q, P) with

Q = f (q), P = D f (q)−T · p (1.6)

Mathieu transformations are important because symmetries are translated onto
transformations of the configuration space and we want to consider extensions
onto the phase space that preserve the Hamiltonian structure while revealing the
existence of first integrals. This is the reason why we need the transformation to
be symplectic.

Definition 1.6. (Symplectic Map) A map f : R2d → R2d is symplectic if its differential
map is represented by a symplectic matrix. Recall that a matrix M is symplectic if it
satisfies

MT JM = J

where J is the corresponding 2d-dimensional standard symplectic matrix, as in Defini-
tion 1.1.

Proposition 1.7. The map M f : (q, p) 7→ (Q, P) from (1.6) is symplectic.

Proof. We need to see that the differential map of M f is represented by a symplec-
tic matrix. In other words, we want to see that

DMT
f (q, p) · J · DM f (q, p) = J for all (q, p) ∈ Ω
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Since we have M f =
(

f (q)
D f (q)−T p

)
and DM f (q, p) =

(
D f (q) 0

D2 f (q)−T p D f (q)−T

)
, then(

D f (q) 0
D2 f (q)−T p D f (q)−T

)T (
0 I
−I 0

)(
D f (q) 0

D2 f (q)−T p D f (q)−T

)
=

(
−D2 f (q)−T p D f (q)
−D f (q)−T 0

)(
D f (q) 0

D2 f (q)−T p D f (q)−T

)
=

(
0 I
−I 0

)

Various laws of conservation that exist in nature can be seen simply as particu-
lar cases of the so-called Noether Theorem. Noether Theorem relates symmetries
on the phase space with first integrals of the problem. We refer to [1] for further
details on the general statement. Below we present a simplified version of the
theorem in the context of Hamiltonian systems.

Theorem 1.8. Consider a Hamiltonian system ż = J∇H(z) = XH(z) with m degrees of
freedom. We say that ż = XH(z) admits a one-parameter group of symplectic symmetries
if there exists a Hamiltonian function F : R2m → R such that the flow ψ(s, z) associated
to the system ż = J∇F(z) satisfies

H(ψ(s, z)) = H(z) + C ∀s ∈ R (1.7)

where C ∈ R is a constant. Then, F is a first integral of XH.

Before proving the theorem let us introduce the Poisson bracket in order to
simplify the notation.

Definition 1.9. Given two functions H and F, the Poisson bracket is defined as the binary
operation {H, F}(z) := DH(z)XF(z).

We say two first integrals are in involution if their Poisson bracket vanishes
identically, i.e. {H, F} ≡ 0. We recall that integrability in the sense of Liouville-
Arnold requires that first integrals of motion are independent and in involution.

Furthermore, the Poisson bracket is anticommutative,

−{F, H} = −DF · XH = −DF · J · ∇H = −DF · J · DT H = −(DH · JT · DT F)T

= −(DH · JT · DT F) = DH · J · DT F = DH · XF = {H, F}

where in the last equalities we have used that the product inside the parenthesis
is an scalar and the property JT = −J.

We proceed now to prove Theorem 1.8.
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Proof. From (1.7) we have that d
ds H(ψ(s, z)) = 0. Using that ψ(s, z) is the flow

associated to the system XF, for all (s, z) ∈ R×Ω we have

d
ds

H(ψ(s, z)) = DH(ψ(s, z))
∂ψ

∂s
(s, z) = DH(ψ(s, z))J∇F(ψ(s, z))

= DH(ψ(s, z))XF(ψ(s, z)) = 0
(1.8)

We have obtained that {H, F}(ψ(s, z)) = 0 for all (s, z) ∈ R × Ω, which is
equivalent to {H, F} ≡ 0. Hence, H and F are in involution. Moreover, since the
Poisson bracket is anticommutative we obtain {F, H} ≡ 0, or equivalently,

0 = DF(ψ(s, z))XH(ψ(s, z)) = DF(ψ(s, z))
∂ψ

∂s
(s, z) =

d
ds

F(ψ(s, z))

for all (s, z) ∈ R×Ω. Therefore, F is a first integral of the vector field XH.

This theorem shows how to find first integrals of the n-body problem out of its
symmetries.

Corollary 1.10. The n-body problem is translation invariant. Thus, we have that the total
linear momentum is preserved.

Proof. By linearity it is enough to see that the n-body problem is translation invari-
ant along the different directions defined by the canonical basis vectors e1, . . . , ed

from the spatial vector space Rd.

For a configuration vector q ∈ Rm (m = nd), consider f (q) = q + sEk, s ∈ R,
a translation in the ek direction, i.e. Ek = (ek, . . . , ek) ∈ Rm. Then the Mathieu
transformation is M f (q, p) = (q + sEk, p).

We have that M f (q, p) = ψ(s, (q, p)), where ψ(s, (q, p)) is the Hamiltonian flow
associated to a function F(q, p). Then ψ̇(s, (q, p)) = (Ek, 0) and therefore,

F(q, p) =
n

∑
i=1

pi · ek = p · Ek

We can express the associated vector field as XF = (Ek, 0)T. Moreover,

H(ψ(s, (q, p))) = H(q + sEk, p) = T(p) + V(q + sEk)

= T(p) + V(q) = H(q, p)

i.e. the Newtonian problem is translation invariant. Thus, ż = XH(z) admits a
continuous one-parameter symmetry group spanned by F which is a first integral
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of the vector field XH. In fact,

0 ={H, F}(ψ(s, (q, p)) = DH(ψ(s, (q, p))XF(ψ(s, (q, p)) = ∂H
∂q (q + sEk, p)
∂H
∂p (q + sEk, p)

T (
Ek

0

)
=

(
∂H
∂qi

)
i
Ek =

n

∑
i=1

ṗi · ek

which is equivalent to say that ṗi = 0 for i = 1, . . . , n. Thus, the total linear

momentum defined as ptot :=
n

∑
i=1

pi is a constant quantity.

At this point, we introduce an important element to consider when working
on the n-body problem, which is the center of mass of a configuration.

Definition 1.11. Given a configuration q = (q1, . . . , qn) ∈ Rnd with masses m1, . . . mn,
the center of mass of the configuration q is defined as

c =
1

m0
(m1q1 + · · ·+ mnqn) ∈ Rd

where m0 = m1 + · · ·+ mn is the total mass of the configuration.

We note that

ċ =
1

m0

n

∑
i=1

pi =
ptot

m0

and from Corollary 1.10 we obtain

c̈ =
1

m0

n

∑
i=1

ṗi = 0

Therefore the center of mass of the system, c(t), moves with uniform rectilinear
motion.

Moreover, it follows from the translation invariance property that given any
solution of the n-body problem, we can get another solution for which the cen-
ter of mass is placed at the origin, just using simple translations of coordinates.
Such solutions will be called centered. Actually, we can say more, from any given
solution, we can get a centered one and even with zero total linear momentum.

Proposition 1.12. Let q(t) be a solution of the n-body problem with total linear momen-
tum ptot and total mass m0. Then there exists a constant vector c0 ∈ Rd such that the
solution q̄(t) = q(t)− ptott/m0 − c0 is centered and has total momentum zero.
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Proof. We know that q̄(t) is a solution of the n-body problem as a consequence of
Corollary 1.10. We will see now that it satifies the properties stated.

First consider the configuration q̂(t) = q(t)− ptott/m0. Let p̂tot and ĉ denote
the total linear momentum and center of mass of the configuration q̂. Then,

p̂tot =
n

∑
i=1

p̂i =
n

∑
i=1

mi ˙̂qi =
n

∑
i=1

mi(q̇i − ptot/m0) =
n

∑
i=1

pi − ptot = 0

Hence, ˙̂c = p̂tot/m0 = 0, that is, ĉ is constant. We can take c0 = ĉ so then
q̄(t) = q(t)− ptott/m0− c0 is a configuration with center of mass at the origin and
zero total linear momentum.

Thus, we can assume from now on that all the solutions that we deal with
are centered in the origin without loss of generality. We will use this result when
finding solutions in Chapter 2.

Now we present another consequence of Theorem 1.8.

Corollary 1.13. The n-body problem is invariant under rotations, hence the angular mo-
mentum of the system is preserved.

Proof. Consider a one-parameter family of matrices Qs ∈ SO(m) of the form Qs =

esA, where A is an antisymmetric matrix (i.e. AT = −A). The one-parameter
group {Qs}s is a subgroup of SO(m).

Consider the diffeomorphism given by f (q) = Qsq. Then, the Mathieu trans-
formation is M f (q, p) = (Qsq, Qs p) since (D f (q)−1)T = (QT

s )
T. Besides, M f (q, p) =

ψ(s, (q, p)), where ψ(s, (q, p)) is the flow associated to(
q̇
ṗ

)
=

(
A 0
0 A

)(
q
p

)
⇔ ż = Âz = XF(z)

where Â :=
(

A 0
0 A

)
is a 2m × 2m antisymmetric matrix and F = 1

2 zT Ŝz, with
Ŝ := −J Â, a 2m× 2m symmetric matrix.

On the other hand, Â can be written in a certain basis as

Â =


0 1
−1 0

. . .
0 1
−1 0
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The invariance with respect to rotations on an arbitrary plane implies that, if q =

(q1, . . . , qn) and p = (p1, . . . , pn) then

F12 =
1
2

(
q1 q2 p1 p2

)
Ŝ12


q1

q2

p1

p2

 = p1q2 − p2q1

Since the plane is arbitrary (due to the fact that Qs is any rotation and due to the
change of basis) as well as the Hamiltonian H is rotation invariant (H(ψ(s, (q, p))) =
H(Qsq, Qs p) = H(q, p)), we have that F, which we define as the angular momen-
tum, is a first integral of XH.

Remark 1.14. The angular momentum is an antisymmetric (2, 0)-tensor. This is
a consequence of the fact that two vectors determine a plane in which rotation is
measured. It admits a representation as

Lkl =
n

∑
i=1

qik pil − qil pik

wiht Lkl being the components of the tensor and qik, pik being the k-th component
of the position and momentum vectors for the i-th body.

Moreover, for dimension m we have m(m−1)
2 independent planes. Focusing only

in one body, we have for the cases

• d = 2: one independent plane, thus the angular momentum is a scalar.

• d = 3: three independent planes. We can define a vector Lv = (Lx, Ly, Lz)

where Lx = L23 = p3q2− p2q3, Ly = L13 and Lz = L12, identifying it with the
components of the angular momentum tensor. Thus, invariance with respect
to

Ryz(s) =

1 0 0
0 cos(s) − sin(s)
0 sin(s) cos(s)


gives that Lx = p3q2 − p2q3 is a first integral. Analogously, choosing roat-
ions Rxz, Rxy we obtain that the other components of the vector Lv are first
integrals.

Corollaries 1.10 and 1.13 provide all the first integrals of the n-body problem
(1.2) [8]. As a matter of fact, we have seen that applying any simultaneous trans-
lation or rotation to a solution of the n-body problem, we obtain another solution.
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This is because Newton’s equations are invariant under translations and rotations
of all the position and momentum vectors. This property will be important when
studying a specific type of solutions in the next chapter.

1.4 The 2-body problem and the Kepler problem

We now focus on the 2-body problem in dimension 3 (see for example [1],
[8] and [9]). Consider the equations of motion of the 2-body problem given in
Example 1.5 for q1, q2 ∈ R3. We can separate the two body problem into two
different problems by means of the sum and substraction of the equations. By
addition, we obtain the problem of motion of the center of mass already discussed
after Definition 1.11. By substraction (after simplification of the masses) we obtain,

q̈2 − q̈1 = −m1 + m2

r3
12

(q2 − q1)

which we can rewrite as
q̈ = −m0

r3 q, (1.9)

that is, we obtain the equations of motion of the Kepler problem. Here q is the
relative position vector that goes from particle 1 to particle 2 and r := |q|, the
distance between the particles. Furthermore, the Kepler problem can be seen as
the problem of the motion of a particle of position q and unit mass, attracted to a
body of mass m0 fixed at the origin.

Example 1.15. Consider the planar Kepler problem with circular solutions which
move at a constant angular speed. These solutions are of the form q(t) = r(cos ωt,
sin ωt) where r, ω are constant. Then we have q̇(t) = rω(− sin ωt, cos ωt) and
q̈(t) = rω2(− cos ωt,− sin ωt) = −ω2q(t). From equation (1.9) we obtain the
relation

r3ω2 = m0

which is the so-called Kepler’s third law for this example.

Due to the fact that we derived the Kepler problem from the 2-body problem,
we obtain the following result as a direct consequence of Proposition 1.3.

Corollary 1.16. The Kepler problem (1.9) is a Hamiltonian system with Hamiltonian
function

H(q, p) = T(p) + V(q) =
|p|2

2
− m0

r
(1.10)

and the relation of the Hamiltonian variables is now p = q̇.
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Let us now write (1.10) in the form

|p|2
2

= H(q, p) +
m0

r

Clearly, the left-hand side of the equation is always positve. Then, if we consider
the Hamiltonian H to be negative we obtain a lower limit for the second term on
the left,

H +
m0

r
≥ 0⇔ m0

r
≥ −H

or, equivalently, an upper bound for r

r ≤ −m0

H
. (1.11)

Therefore, the trajectory of the mass unit object is bounded when the Hamiltonian
function is negative.

Recall that the n-body problem is invariant under rotations in the phase space
(see Corollary 1.13) and that implies that the angular momentum is a first integral
of the problem. Thus, we have that the angular momentum vector, as defined in
Remark 1.14 for dimension 3, is also constant for the Kepler problem.

We distinguish the two different scenarios that the angular momentum vector
can give.

Proposition 1.17. Consider the Kepler problem (1.9) and the angular momentum vector
given by L = q× p. Then we have two different situations.

1. When L = 0, the motion is rectilinear along the radius vector towards the origin,
leading to collision with the mass at the origin.

2. If L 6= 0 then the motion remains normal to the fixed constant vector L. That is, the
motion takes place in the plane spanned by q and p.

Proof.

1. Since L = 0, it must be p(t) = λ(t)q(t) for some function λ(t) and any time
t. Under this assumption, we obtain

d
dt

(q
r

)
=

rq̇− ṙq
r2 =

q̇
r
− q · q̇

r3 q =
p
r
− q · p

r3 q = λ

(
q
r
− r2

r3 q
)
= 0

Hence the vector q
r is constant, i.e. q(t) = r~k, so the motion is rectilinear and

collinear with the radius direction.

2. It follows from the definition of L.
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Therefore, the Kepler problem can be reduced to dimension 1 or 2, depending
wether the angular momentum vector vanishes or not. Assume from now on that
we find ourselves in the case L 6= 0. Then we can consider the Kepler problem in
dimension 2 since the orbits will always remain in a fixed plane.

In the plane where the motion takes place, one can introduce polar coordinates
(r, θ). We express the coordinate transformation as q1 = r cos θ, q2 = r sin θ, where
here q = (q1, q2), i.e (q1, q2) represent the cartesian coordinates of the position
vector for the particle in motion. Regarding the canonical basis in R2, {e1, e2}, we
can write q = q1e1 + q2e2 = r(cos θe1 + sin θe2). To simplify notation, we indicate
cos θe1 + sin θe2 = er.

Then, computing its derivative we obtain

q̇ = ṙ(cos θe1 + sin θe2) + rθ̇(− sin θe1 + cos θe2) = ṙer + rθ̇eθ

where here, eθ = − sin θe1 + cos θe2. The set of vectors {er, eθ} is a basis in the
polar coordinate system. Furthermore, the second derivative is

q̈ = r̈(cos θe1 + sin θe2) + ṙθ̇(− sin θe1 + cos θe2) + ṙθ̇(− sin θe1 + cos θe2)

+ rθ̈(− sin θe1 + cos θe2)− rθ̇2(cos θe1 + sin θe2) = (r̈− rθ̇2)er + (2ṙθ̇ + rθ̈)eθ

from where we obtain r̈− rθ̇2 = −m0

r2

2ṙθ̇ + rθ̈ = 0
(1.12)

because in the Kepler problem the acceleration vector in the radial direction has
to be the same as in (1.9) and the angular acceleration is zero. These equations
represent the Kepler problem in polar coordinates.

We introduce now the Laplace-Runge-Lenz vector which is defined as

A = p× L− m0

r
q. (1.13)

As a consequence of the preservation of the angular momentum, and due to the
fact that the Kepler problem is given by an inverse-square law, we have

Proposition 1.18. The Laplace-Runge-Lenz vector is a first integral of the Kepler problem.

Proof. We want to see that

dA
dt

= ṗ× L−m0
d
dt

(q
r

)
= 0.
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Let us start by computing the first term using the Lagrange’s formula for the
triple product expansion,

ṗ× L = ṗ× (q× p) = ( ṗ · p)q− ( ṗ · q)p

Now, we substitute into this expression the value for ṗ from (1.9), ṗ = q̈, and
rearranging we shall obtain

ṗ× L = −m0

(
q · p
r3 q− r2

r3 p
)

Finally, from Proof in Proposition 1.17, we have

ṗ× L = −m0
d
dt

(q
r

)
as required.

Let us take now the dot product of A with vector q

A · q = q · (p× L)− m0

r
q · q = (q× p) · L−m0r = |L|2 −m0r (1.14)

From equation (1.14) we can obtain the expression for the radius of the orbit

|A|r cos θ + m0r = |L|2 ⇔ r =
|L|2

|A| cos θ + m0

and defining the eccentricity of the orbit as e = |A|
m0

, we arrive to

r =
|L|2

m0(1 + e cos θ)
(1.15)

We observe from equation (1.15) that the orbits defined by the Kepler problem are
conic sections with one focus at the origin, where for e = 0 we obtain a circle, for
0 < e < 1 we have an ellipse, for e = 1 a parabola and for e > 1 one branch of a
hyperbola.

Finally, we can relate these orbits to its energy given by the Hamiltonian func-
tion H. Take the dot product of A with itself and develop, then we obtain

A · A =
(

p× L−m0
q
r

)
·
(

p× L−m0
q
r

)
= (p× L) · (p× L)− 2

m0

r
(p× L) · q + m2

0
r2 r2 = |p|2|L|2 − 2|L|2 m0

r
+ m2

0

= 2|L|2
(
|p|2

2
− m0

r

)
+ m2

0 = 2|L|2H + m2
0 = |A|2
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Figure 1.1: Graphic of the potential energy function V(r) of the Kepler problem with
total mass m0 = 1 (light blue). Three level sets are plotted as well, H+ (green), H0 (red)
and H− (yellow).

Note that we have obtained an equation involving three integrals of the problem.
Moreover, using the definition of the eccentricity e = |A|

m0
in this equation,

|A|2 = 2|L|2H + m2
0 ⇔

|A|2
m0
− 1 =

2H|L|2
m0

⇔ e2 − 1 =
2H|L|2

m0

we eventually obtain the desired relation

e =

√
1 +

2H|L|2
m2

0
(1.16)

from which we can state that e < 1 (resp. e ≥ 1) corresponds to H < 0 (resp.
H ≥ 0), and therefore, closed orbits occur when H < 0, which is coherent with
(1.11), whereas open orbits happen when H ≥ 0.

We can also derive this assertion from the potential energy function as we
learned in the Ordinary Differential Equations course of the degree. We consider
the graphic of V(r), as given in (1.10), and different level sets H+, H−, H0 for when
the Hamiltonian function is strictly positive, negative or zero, respectively.

We can observe from Figure 1.1 that when H = H− < 0 we have periodic
orbits since the radius of the orbit is bounded by the value of H−. However, when
H = H+, H0 (H ≥ 0) we can see that the orbits are not bounded. In particular, for
H = H0, it must be T = 0 in the limit and then the body has zero escape velocity
at infinity (the corresponding orbit is parabolic). On the other hand, for H = H+

we have from (1.10) that T is always positive and hence the escape velocity of the
orbit at infinity is positive (the orbit is hyperbolic).



Chapter 2

Central Configurations

In the previous chapter we presented the n-body problem and some of its
properties. Here, we look for a way of finding explicit solutions of the n-body
problem, or at least some sort of them.

To do so, we introduce a kind of configurations which provide solutions of
the n-body problem, known as central configurations. Throughout this chapter, we
state their basic properties and the relation with these solutions. After proving its
existence we will end with some famous examples of central configurations.

2.1 Definition and Properties

First of all, let us start by giving their definition and stating some basic prop-
erties in order to work with them. Let c be the center of mass of a configuration
q = (q1, . . . , qn), as defined in Definition 1.11.

Definition 2.1. A configuration of n punctual masses q = (q1, . . . , qn) is called central
configuration (CC) if there exists λ > 0 such that

q̈i = −λ(qi − c) i = 1, . . . , n. (2.1)

Note that mi q̈i =
∂U
∂qi

(q), and then, by virtue of (1.4), the vector q̈i only depends
on the relative position of the particles.

In other words, a central configuration is an arrangement of n bodies where all
the acceleration vectors are pointing towards the center of mass and their magni-
tude is proportional to the distance from the center, with the same proportionality
constant for all the masses.

17
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The total force acting on a central configuration is 0. This follows from equa-
tions (2.1). Multiplying every equation by the corresponding mass mi and sum-
ming all the equations for i = 1, . . . , n, we obtain

n

∑
i=1

mi q̈i = −λ(
n

∑
i=1

miqi − c
n

∑
i=1

mi) = −λ(m0c− cm0) = 0.

Let us see that central configurations are invariant under rotations, translations
and homogeneous scalings of the configuration space.

Proposition 2.2. Given a central configuration q, a scaling factor k > 0, a rotation
matrix R ∈ SO(d) and a constant vector b ∈ Rd, the configuration q̄i = kRqi + b for
i = 1, . . . , n, is a CC.

Proof. Let us start by rotation and scaling invariance. We want to see that the
configuration q̂i = kRqi is a CC for i = 1, . . . , n. Let c be the center of mass of q.
Since q is a CC, the acceleration vector of q̂ satisfies

¨̂qi = kRq̈i = kR(−λ(qi − c)) = −λkRqi + λc = −λ(q̂i − c)

for every i, because the center of mass does not change under rotations and scal-
ings. Thus, q̂ is a central configuration.

Now consider the configuration q̄ given by q̄i = q̂i + b for i = 1, . . . , n. Then
the center of mass of the configuration q̄ is

c̄ =
1

m0

n

∑
i=1

mi q̄i =
1

m0

n

∑
i=1

mi q̂i +
1

m0

n

∑
i=1

mib = c + b

Computing the acceleration vector of q̄i for every i,

¨̄qi = ¨̂qi + b̈ = ¨̂qi = −λ(q̂i − c) = −λ(q̄i − b− c) = −λ(q̄i − c̄)

we obtain that q̄ satisfies equation (2.1) for every i. Hence, q̄ is a central configura-
tion.

Remark 2.3. From the latter equalities in the proof, one can see that the translation
vector b can be a linear function of time as well.

By Proposition 2.2 we shall assume, unless otherwise stated, that all central
configurations which we consider are centered at the origin. For centered CC’s the
equations that define a central configuration (2.1) are equivalent to the equations

q̈i = −λqi i = 1, . . . , n (2.2)
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As a more general consequence, it follows that we can define a relation between
central configurations for which two CC’s are related if we can obtain one of them
from the other by applying any simultaneous translation, scaling or rotation. This
is an equivalence relation in the set of central configurations and hence we can
work with classes of central configurations.

When it comes to counting central configurations, we will count by equivalence
classes. That means, we will count two equivalent configurations as one. Note that
this implies normalizations. We have already made one by setting the center of the
mass at the origin. We define the moment of inertia of the system as the function

I(q) =
1
2

n

∑
i=1

mi|qi|2 (2.3)

which measures the size of a configuration. Note then, that fixing I fixes the scale,
so when counting equivalence classes of central configurations we will keep the
same moment of inertia. A common normalization is taking I = 1.

Let us focus now on λ. If we manipulate a little bit equations (2.2),

q̈i = −λqi ⇔ ṗi = −λmiqi ⇔
∂U
∂qi

+ λmiqi = 0

we arrive to the equivalent equation ∇U(q) + λMq = 0, where M is a nd × nd
matrix with d copies of each mass along the diagonal, called the mass matrix. In
matrix form we can write the moment of inertia as I(q) = 1

2 qT Mq, so we have
∇I(q) = Mq. Hence, the previous equation can be also written as

∇U(q) + λ∇I(q) = 0. (2.4)

Note from this equation that λ can be considered as a Lagrange multiplier.
Indeed, a central configuration can be seen as a critical point of the Newtonian
potential function U restricted to a constant moment of inertia I = I0. We will
see the importance of this insight later on. Moreover, given a set of positions and
masses on a certain level set I, there will be a different central configuration for
every different value of λ, if any.

We remark that given a configuration q, every λ satisfying equations (2.2) gives
a central configuration. Nonetheless, these could all be equivalent by similarity
classes, and only after a normalization on the moment of inertia, the center of
mass and having the mass values fixed, we have that every different value of λ

leads to a different (non-equivalent) configuration.

We can explicitly state λ in terms of known functions, using Euler’s homogeneous
function Theorem.
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Definition 2.4. (Homogeneous function) A function f between two vector spaces is
called homogeneous of degree k ∈ R if for all the elements x of its domain and for all real
values t > 0, the relation f (tx) = tk f (x) holds.

From this definition, we obtain that function U is homogeneous of degree −1
and function I is homogeneous of degree 2.

Theorem 2.5. (Euler’s homogeneous function Theorem) Let f : Rn \ {0} → R be
a C1 function. If f is homogeneous of degree k then

x · ∇ f (x) = k f (x), ∀x ∈ Rn \ {0} (2.5)

Proof. It follows by derivating w.r.t. t the homogeneity relation and evaluating it
at t = 1.

Applying (2.5) to the equation (2.4), we deduce that for any configuration (since
q cannot be zero) we can write −U(q) + 2λI(q) = 0, or equivalently,

λ =
U(q)
2I(q)

> 0. (2.6)

Before going any further, we want to present some basic examples of central
configurations. Consider the case of n equal masses in Rd, then it is a basic ge-
ometry problem to see that placing the masses at the vertices of a regular n-gon
gives a central configuration, since all the acceleration vectors point towards the
barycenter of the figure, i.e. the center of mass of the configuration. Then, for
some λ the CC equations will hold.

This perfectly works for any n and any d, and furthermore, it is also possible
to put an arbitrary mass at the center of the configuration. For example, one could
think on satellital configurations of one heavy body in the center of mass and a
quantity of equal masses, equally separated between them, and placed in a circle
around the massive body. This type of central configurations lead to the study of
the so-called (1 + n)-central configurations for arbitrary mass values [12].

Remark 2.6. Note that the central configurations presented above are planar con-
figurations embedded in Rd. Similarly, one can consider non-planar CC’s for
d ≥ 3. Indeed, in dimension 3, the five regular platonic solids, the tetrahedron,
cube, octahedron, dodecahedron and icosahedron, admit also central configura-
tions with equal masses. For the polyhedrons with other numbers of vertices it
is not clear anymore. Additionally, there are six kinds of regular convex four-
dimensional polytopes but in higher dimensions there exist only three, namely
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the generalizations of the tetrahedron, cube and octahedron. We give [10] as a
reference on this matter.

2.1.1 Central Configurations of the 2-body problem

Let us now give an specific insight on central configurations for the case of two
masses, which form the most trivial central configurations. In fact,

Proposition 2.7. Any configuration of two masses is a CC.

Proof. Consider two bodies with qi ∈ Rd and mi > 0 for i = 1, 2, their position
vectors and masses respectively. Take reference frames so that m1q1 + m2q2 = 0,
i.e. the center of mass of the configuration lies at the origin. Recall that there is no
loss of generality by doing so, we only do it for simplicity.

From the equations of motion of both particles (1.5), we obtain

q̈1 =
m2(q2 − q1)

r3
12

=
m2q2 −m2q1

r3
12

=
−m1q1 −m2q1

r3
12

= −m1 + m2

r3
12

q1

and

q̈2 =
m1(q1 − q2)

r3
12

=
m1q1 −m1q2

r3
12

=
−m2q2 −m1q2

r3
12

= −m1 + m2

r3
12

q2

where the third equality in both equations is due to the fact that we chose the
center of mass at the origin. Hence, we obtain that for λ = m0/r3

12, the two masses
satisfy equations (2.2).

Note that λ from the previous result is positive and it is the same for each
particle, as required from Definition 2.1. However, one can easily observe that it
does depend on the distance between the particles (it determines the scale of the
configuration) and it does depend on the total mass of the system.

From the fact that all the 2-body configurations are equivalent by similarity
classes and due to Proposition 2.7 we have the following result.

Corollary 2.8. Given two masses, there exists only one central configuration for the 2-
body problem.

To end this section, we check that for the configurations of two masses, λ

computed from (2.6) corresponds to the one found in Proposition 2.7. In the case
n = 2 we have

U(q) =
m1m2

r12
and 2I(q) = m1|q1|2 + m2|q2|2
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so λ obtained from (2.6) gives

λ =
m1m2

r12(m1|q1|2 + m2|q2|2)
. (2.7)

If we just consider the expression inside the parenthseses and we multiply it by
2(m1 + m2), we obtain

2m2
1|q1|2 + 2m1m2|q1|2 + 2m1m2|q2|2 + 2m2

2|q2|2

and now substracting two times the expression

m1|q1|(m1|q1|+ m2|q2|) + m2|q2|(m1|q1|+ m2|q2|)

which is 0 because we set the center of mass at the origin, we obtain

m2
1(2|q1|2 − 2|q1|2) + 2m1m2(|q1|2 + |q2|2 − 2|q1||q2|) + m2

2(2|q2|2 − 2|q2|2) =
= 2m1m2r2

12

Hence m1|q1|2 + m2|q2|2 =
m1m2r2

12
m1+m2

, and substituting this into equation (2.7), we

obtain λ = m0/r3
12 as we wanted to see.

2.2 Homographic solutions

Central configurations are important because they can be used in order to con-
struct simple, special solutions of the n-body problem, where the shape of the fig-
ure formed by the bodies will remain constant. In such solutions, the configuration
changes only by simultaneous translation, scaling and rotation, so configurations
q(t) at different times are all similar.

Equation (2.2) gives an idea of what would happen if the bodies in a central
configuration are released with zero initial velocity: all bodies would suffer an
acceleration towards the origin resulting into a collision. However, if for instance
the bodies are released from a CC with initial velocities normal to their position
vectors and with magnitudes proportional to their distances from the origin, that
is q̇i · qi = 0 and |q̇i| = µ|qi|, then each body would describe an elliptic orbit. In
particular, they could move in circles around the center of mass.

Let us state this argumentation more rigorously. We introduce the following
kinds of solutions of the n-body problem and then we will show their conncetion
to central configurations. We use [10] as a reference in this topic.
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Definition 2.9. A solution of the n-body problem is called self-similar or homographic if
it satisfies

q(t) = r(t)Q(t)q0 (2.8)

where q0 represents a constant configuration, r(t) > 0 a real scaling factor and Q(t) ∈
SO(d) a rotation. There are two special cases of homographic solutions:

• The homothetic solutions, where q(t) = r(t)q0

• The rigid motions or relative equilibrium solutions, where q(t) = Q(t)q0

The term "self-similar" is quite descriptive because all-time configurations of
these solutions will look-alike, since such solutions only change by scaling and
rotation. The name to describe the second kind of homothetic solutions is also very
revealing, since these solutions are equilibrium solutions in a rotating coordinate
system and they move through time as a rigid body.

Let us focus now on the two simplest, yet very interesting, homographic solu-
tions: the homothetic and the planar homographic solutions.

2.2.1 Homothetic Solutions

We will start by the simplest of them, the homothetic solutions. Let us see their
relation to central configurations by providing the following result.

Proposition 2.10. If q0 is a central configuration with constant λ and r(t) is any solution
of the one-dimensional Kepler problem

r̈(t) = − λ

r(t)2 (2.9)

then q(t) = r(t)q0 is a homothetic solution of the n-body problem and every homothetic
solution is of this form.

Otherwise stated, this means that all homothetic solutions of the n-body prob-
lem form a central configuration at all time and therefore, we can obtain homo-
thetic solutions by simply starting from a central configuration. Additionally, we
know that its motion will be defined by the Kepler problem.

Proof. Substituting q(t) = r(t)q0 into Newon’s equations of motion, we get

r̈(t)q0,i = ∑
j 6=i

mj
r(t)(q0,j − q0,i)

r(t)3|q0,i − q0,j|3
=

1
r(t)2 q̈0,i

This equation is satisfied if and only if there is some constant, say λ, such that
r̈(t)r(t)2 = −λ and q̈0,i = −λq0,i.
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Recall from Section 1.4 that the one-dimensional Kepler problem (2.9) describes
the motion of a unit mass particle on a line, gravitationally attracted to a mass λ

at the origin. The corresponding homothetic solutions mantain the shape of the
central configuration q0 while they collapse to a total collision at the center of mass
and each body moves in a straight line towards the center.

Therefore, central configurations govern the motion of particles near collision,
and actually, they give the limiting configuration before collapsing into a multiple
collision in finite time.

An example of a configuration that follows this solutions can be any regular
n-gon in the plane with equal masses.

Example 2.11. We consider indeed such an n-gon as a central configuration. Then
the position of the bodies are given by the configuration vector q0 ∈ R2n as

q0,i
T = r(cos (π/2 + 2πi/n) , sin(π/2 + 2πi/n)), for 1 ≤ i ≤ n, (2.10)

for an n-gon of radius r. From Proposition 2.10 we know that the particles will
move in linear directions towards the origin, where the center of mass is placed.
Hence, we must consider initial conditions that satisfy the one-dimensional Kepler
problem. We have seen in Proposition 1.17 that the angular momentum must be
zero, and so we consider the initial momenta of the particles as zero.

We illustrate the configuration for n = 5 and r = 1. We propagate the initial
configuration q0 using the Taylor method 1. The initial values of the velocities were
all set to zero and we gave the same value to all the masses, with m0 = 1. The
result can be seen in Figure 2.1.
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Figure 2.1: Motion of a 5-gon central configuration of radius 1, where particles are re-
leased with zero initial velocities. From left to right, pictures describe the position of the
configuration at times t = 0, 1, 2 seconds.

1All the numerical illustrations of this work have been computed using the ad-hoc implementa-
tion of the Taylor mehod included in Appendix A
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2.2.2 Planar Homographic Solutions

Central configurations lead to rigid motion solutions and also to more general
homographic solutions. We will see this only for the case of planar configurations.

Proposition 2.12. If q0 is a planar central configuration and (r(t), θ(t)) is any solution
of the two-dimensional Kepler problem (1.12), then q(t) = r(t)Q(θ(t))q0 is a planar
homographic solution of the n-body problem and every such solution is of this form.

From this result follows that every planar homographic solution of the n-body
problem is given by an initial central configuration and that the motion of its
particles is given by the planar Kepler problem, hence they follow conic section
orbits.

Proof. Let d = 2. Suppose q0 ∈ R2n is a planar CC with constant λ and let
Q(θ) ∈ SO(2) be the rotation matrix of angle θ ∈ [0, 2π). Consider the general
planar homographic solution q(t) = r(t)Q(θ(t))q0, for some functions r(t) > 0
and θ(t). Then,

q̈ = r̈Q(θ)q0 + 2ṙDQ(θ)θ̇q0 + r(t)D2Q(θ)θ̇2q0 + r(t)DQθ̈q0

= (r̈− rθ̇2)Q(θ)q0 + (rθ̈ + 2ṙθ̇)DQ(θ)q0

From Newton’s equations we have

q̈i = ∑
j 6=i

mj
(qj − qi)

r3
ij

= ∑
j 6=i

mjQ(θ)
r(q0j − q0i)

r3|q0i − q0j |3

and putting it all together we get

(r̈− rθ̇2)q0 + (rθ̈ + 2ṙθ̇)Jq0 =
1
r2 q̈0

where J is the block diagonal 2n× 2n matrix with 2× 2 blocks

Q(θ)−1DQ(θ) =

(
0 −1
1 0

)
.

Since q0 and Jq0 are non-zero vectors, there exists λ ∈ R, such thatr̈(t)− r(t)θ̇(t)2 = − λ
r(t)2

r(t)θ̈(t) + 2ṙ(t)θ̇(t) = 0
(2.11)

and q̈0 = −λq0, which is the equation that defines a CC. Note that equations (2.11)
define the two-dimensional Kepler problem in polar coordinates as in (1.12) where
λ represents the central mass value.
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In particular, if we choose a circular solution of the Kepler problem with r(t) =
1 we get a rigid motion solution where the initial planar central configuration just
rotates at a constant angular velocity around the center of mass. Let us see it in
the following example.

Example 2.13. Consider as in Example 2.11 an initial planar CC q0 ∈ R2n forming
a regular n-gon with equal masses. We observe that all the consecutive mutual
distances are equal. Let l denote the length of the sides, then we write rij = l, if
j = i + 1, for i = 1, . . . , n− 1 and r1n = l.

Let us now compute the value of λ for this central configuration, from the
formula given in (2.6). In our concrete setting, we can express the Newtonian
potential function and the moment of inertia as

U(q0) = ∑
i<j

mimj

rij
=

n−1

∑
i=1

n

∑
j=i+1

mimj

rij
=

n−1

∑
i=1

m2

ri,i+1
+

n−2

∑
i=1

n

∑
j=i+2

m2

rij
=

=
nm2

l
+

n−2

∑
i=1

n

∑
j=i+2

m2

rij
− m2

l
=

nm2

l
+

n−1

∑
j=3

m2

r1j
+

n−2

∑
i=2

n

∑
j=i+2

m2

rij
=

=
nm2

l

(
1 +

l
n

(
n−1

∑
j=3

1
r1j

+
n−2

∑
i=2

n

∑
j=i+2

1
rij

))

2I(q0) =
n

∑
i=1

mi|qi|2 =
n

∑
i=1

mr2 = nmr2

(2.12)

Therefore, λ is given by

λ =
U(q)
2I(q)

=
m
lr2

(
1 +

l
n

(
n−1

∑
j=3

1
r1j

+
n−2

∑
i=2

n

∑
j=i+2

1
rij

))
. (2.13)

Now, we shall look for the initial velocities to provide to the configuration.
Since the solutions we are seeking are of the form

qi(t) = r(t)
(

cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)
q0,i,

with r(t) constant, the velocities are given by

q̇i(t) = r(t)θ̇(t)
(
− sin θ(t) − cos θ(t)
cos θ(t) − sin θ(t)

)
q0,i

From Proposition 2.12 we know that the function of time θ(t) must be a solution
of the Kepler problem (1.12). Taking r(t) = 1 we have θ̇(t)2 = λ, θ̈(t) = 0, from
where we obtain a constant value for the angular velocity, θ̇(t) = ±

√
λ, with λ
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being the constant of the central configuration q0 given in (2.13). A solution of this
form will have initial conditions

qi(0) = q0,i q̇i(0) = ±
√

λ

(
0 −1
1 0

)
q0,i (2.14)

for i = 1, . . . , n and q0,i as in (2.10). The sign of the angular velocity indicates the
rotation sense (clockwise or counterclockwise) of the particles.

The solution that can be seen in Figure 2.2 was computed with the initial con-
ditions given by (2.14), for the case n = 5, m = 0.2, and r = 1. All the other
necessary values follow from them.
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Figure 2.2: Motion followed by the bodies of a 5-gon central configuration, with initial
conditions given in Example 2.13, up to a fifth of the period.

Remark 2.14. In higher spatial dimensions, the situation regarding rigid solu-
tions and also non-homothetic solutions is more complicated, mainly due to the
increased complexity of the rotation group SO(d). See [10] for further details.

Before closing this section, we want to emphasize that we have given a theoret-
ical background to find a special kind of solutions of the n-body problem. Indeed,
whenever we start with a central configuration as the initial configuration and we
apply any scaling and/or rotation, we will obtain homographic solutions. Further-
more, they are the only possible configurations that give place to such solutions.

2.3 Existence of Central Configurations for arbitrary masses

At this point, we have shown some interesting properties and examples of CC’s
and we have explained why we focus on them for the n-body problem. We have
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also shown their existence imposing some pretty clear and restrictive conditions.
Notice however that we don’t now yet if a CC is possible for any number of masses
or for any given mass values for them.

In order to study its existence, we are going to use the insight of central config-
urations as critical points of the Newtonian potential function, see (2.4). We will
follow the steps given in [10]. Recall that a configuration vector q0 is a CC if and
only if it is a critical point of U(q) subject to the constraint I(q) = I(q0).

Remark 2.15. Some authors (see [12], [15]) use a slightly different characterization
to determine a CC. Instead of seeing central configurations as critical points of the
Newtonian potential function U restricted to a manifold I, they see them as critical
points of the homogeneous function IU2. Both characterizations are equivalent
because when substituting the λ given in (2.6) into the equation (2.4) we obtain

∇U(q) +
U(q)
2I(q)

∇I(q) = 0⇔ 2I(q)∇U(q) + U∇I(q) = 0

from where one concludes that for a central configuration q, ∇(IU2)(q) = 0 holds.

To work with central configurations as critical points of U, it is helpful to have
a compact constraint set. Any configuration q determines a unique normalized
configuration with c = 0 and I = 1. Recall that equation (2.2) already implies
condition c = 0. So we only have to take into account the condition on the moment
of inertia I, which gives an ellipsoid in Rnd. Therefore, the manifold {q : I(q) = 1}
is diffeomorphic to the sphere Snd−1, hence, it is compact. The critical points will
lie in the constraint manifold {q : c = 0, I = 1}.

Proposition 2.16. A central configuration q is a critical point of the function U(q) on
the set {q : I(q) = 1} if and only if q is a normalized central configuration.

Proof. Suppose q is a normalized central configuration. Then c = 0, I(q) = I0(q) =
1 and equation (2.4) holds for some λ.

Now suppose q is a critical point of U on {q : I(q) = 1}. Then ∇U(q) =

−λ∇I(q) and I(q) = 1. Therefore q is a CC with I(q) = 1 and c = 0. The
latter assertation is a consequence of Proposition 2.2 since all central configurations
satisfying an equation equivalent to (2.2) are centered, as previously discussed.

Now we are prepared to prove the main result of this section.

Theorem 2.17. For every choice of masses mi > 0 in the n-body problem in Rd, there
exists at least one central configuration.
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Proof. Note that the set of normalized configurations, N = {q : c = 0, I(q) = 1},
is a compact submanifold of Rnd and that the Newtonian potential function defines
a smooth function U : N \ ∆ → R, where ∆ = {q : qi = qj for some i 6= j} is the
singular set. The set N ∩∆ is compact and U(q)→ ∞ as q→ ∆. Therefore, U must
achieve its minimum in N \ ∆ and thus, there exists a central configuration.

Remark 2.18. This result is true for any number n of masses and even regardless
of the choice of the mass values mi as long as they are positve. The positiveness of
the masses is important, otherwise the sign of U could change and it would not
be so easy to find its critical points. In fact, it is known that for n = 5 there exists
a continuum of central configurations if negative masses are allowed [5].

In the remainder of this chapter, we are going to focus on the most "simple"
central configurations known so far, those which were analytically deduced from
the direct problem. We are going to present such configurations, proving that they
so are indeed, and giving some examples as well.

2.4 Collinear Central Configurations

We are going to study now a simple, yet very interesting and non trivial case
of central configurations, the collinear ones.

Excluding the 2-body scenario, where obviously all configurations are collinear
(and for which we have proved that they are CC’s regardless of the mass values,
see Proposition 2.7) it is not so simple to see that for any number n of bodies,
there exist collinear central configurations, specially for arbitrary masses. For
three equal masses, one could think on the example of a regular 2-gon with a
mass in the middle, deducing it from the examples of CC’s given in Section 2.1.

In fact, it was not until 1767 that Euler found the first non-trivial central con-
figuration, the 3-body central configuration on a line [4]. The generalization to n
bodies was proved to be a CC at the beginning of the last century, in 1910, by F.R.
Moulton (see [11]), almost 150 years after the discovery of Euler.

Before getting to Moulton’s Theorem, it will be interesting to see an approach
of how Euler found the 3-collinear central configuration. We follow the steps of
[15] to show it.

Consider the motion of three particles restricted to move on a line. If we fix the
ordering of the bodies to be q1 < q2 < q3 then this constraint is r12 + r23 − r13 = 0.
Furthermore, we can normalize it by setting one of the distances to 1 and another
one to x, i.e. r12 = 1, r23 = x, r13 = 1 + x.



30 Central Configurations

Now, in order to find central configurations on the line, we will seek critical
points of the homogeneous function F(rij) = U(rij)

2 I(rij) with the normalized
constraint, see Remark 2.15. Note that function U is already expressed in terms of
the mutual distances. Let us show how to obtain such an expression for function
I. Let m0 be the total mass and assume that the center of mass is at the origin,
then

∑
i

∑
j

mimjr2
ij = ∑

i
∑

j
mimj|qi − qj|2

= ∑
i

∑
j

mimj|qi|2 − 2 ∑
i

∑
j

mimj|qi||qj|+ ∑
i

∑
j

mimj|qj|2

= 2m0 I − 2 ∑
i

mi|qi|∑
j

mj|qj|+ 2m0 I = 4m0 I,

(2.15)

and we conclude

I =
1

4m0
∑

i
∑

j
mimjr2

ij =
1

2m0
∑
i<j

mimjr2
ij.

Therefore, we seek the solutions of

∇F(rij) + µ(−1)i+j+1 = 0, for 1 ≤ i < j ≤ 3,

where µ is the Lagrangian multiplier. This leads to the system of equations

U(rij)

m0
rij − 2I(rij)r−2

ij + (−1)i+j+1 µmk

U(rij)mimjmk
= 0, for 1 ≤ i < j ≤ 3.

We have that det(rij, r−2
ij , (−1)i+j+1mk) = 0, from where we obtain the following

fifth-degree polynomial equation for x,

(m1 + m2)x5 + (3m1 + 2m2)x4 + (3m1 + m2)x3

− (m2 + 3m3)x2 − (2m2 + 3m3)x− (m2 + m3) = 0
(2.16)

and consequently the problem reduces to determine the real positive roots of
(2.16), which depend on the values of the masses.

Proposition 2.19. Given a triplet of positive masses, there is a unique collinear central
configuration for each ordering of the bodies along the line, up to rotation and scaling.
That being exactly 3 different central configurations for every choice of the masses.

Proof. Since all the masses are greater than 0, we can see that the polynomial has at
least one change of sign in its positive domain. In fact, due to (m1 + m2) > 0, the
polynomial is positive for large positive x; while at x = 0 the polynomial attains
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the negative value −(m2 + m3), thus there exists at least one real positive root.
Moreover, the polynomial has one sign change in its coefficients. Then, because of
Descartes’s rule of signs, there is exactly one real positive root.

Additionally, we observe that interchanging the position of the bodies on the
line, after normalising again the mutual distances, gives the same equation except
that the masses mi are accordingly interchanged. However, since all the masses
are positive the previous reasoning holds anyway.

Equation (2.16) is a quintic equation which can be solved using a numerical
method. For example, we used the bisection method to find the positions where
the three particles need to be placed in order to obtain the central configuration for
masses m1 = 3, m2 = 1, m3 = 6, with q1 < q2 < q3. The corresponding collinear
CC obtained at different times is displayed in Figure 2.3.

-1  0  1

Figure 2.3: An example of the motion followed by 3 bodies on a line forming a collinear
CC with c = 0. Here each color represents the configuration at three different times. The
size of the points correspond to the relation beween the masses of the bodies and also
help to identify the body at each time.

The motion of the bodies was not discussed in Proposition 2.19, we only cov-
ered the exitence at a certain instant of time. However, from Section 2.2 we have
learned that given an initial central configuration we can find different homo-
graphic solutions of the n-body problem, concretely, homothetic solutions and
rigid motion solutions. An example of an homothetic solution is shown in Fig-
ure 2.3. Let us now introduce an example of a relative equilibrium motion.

We note the fact that the result is true for any of the relation between the
masses of the particles. Hence, one of them can be extremely small or the others
extremely large, and the statement will still be true. For example, given an object
with a certain arbitrary mass, then there exists a unique location between the Earth
and the Moon such that, if we place this object there with a specific initial velocity,
it will form a collinear central configuration (in rotational coordinates) together
with the Earth and the Moon.

The other two collinear central configurations would be when the Earth and
the Moon were in the middle of the configuration, respectively. In fact, these three
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different points where a body could be placed in relation to the Earth and the
Moon (or any other two primary bodies) and form a collinear central configura-
tion, are known as the Lagrange points L1, L2 and L3. These points were found
by Lagrange, when studying the planar, circular, restricted 3-body problem. In-
deed, in rotational coordinates, this collinear CC turn out to be three unstable
fixed points.

Moulton’s theorem extends collinear central configuration of 3 bodies to the
case of an arbitrary number of masses. We will prove it using [10].

Theorem 2.20. For the n-body problem with positive masses mi, there are precisely n!/2
collinear central configurations. More accurately, for each way the particles can be ordered
along a line, there is a unique position that causes a central configuration.

Proof. We can consider that the bodies live in R. Then, let q ∈ Rn \ ∆ be a con-
figuration vector of n particles, and let N and ∆ be the corresponding sets of nor-
malized configurations and collisions respectively. The collision set ∆ divides the
ellipsoid N into n! components Vk. Let V represent one of them, then V = int(V)
and ∂V ⊆ ∆. The Newtonian potential restricted to this component U|V : V → R

is smooth and U(q)→ ∞ as q→ ∂V . Therefore, U|V attains its minimum at some
point q0 ∈ V where q0 represents a CC with a given ordering of the particles on
the line, depending on the component where it lives.

We note that for the case n = 3, Theorem 2.20 corresponds to the collinear
central configurations that Euler had previously found, as one expects. However,
we can see that the strategy we followed to prove collinear central configurations
for the general case n is different to the one followed by Euler. The reason lies
behind the complexity of the polynomial functions that arise from doing the same
discussion as before for n > 3, see [12].

Additionally, let us give an insight about how F.R. Moulton proved this theo-
rem. His goal was to find the number of possible collinear CC’s for each number
of masses. His argument was based on an induction about what happened every
time a mass was added to the collinear configuration. He started from the Eule-
rian collinear configuration and proved that at each step, the number of collinear
CC’s increased by (k + 1). For further details, one can read [11].

From the discussions made for the homothetic and rigid motion solutions it
follows that if we place n bodies of arbitrary masses in the same straight line with
no initial velocity, their own attraction will make them collapse homotetically to
the center of mass of such configuration, as it can be seen in Figure 2.3 for three
masses. On the other hand, if we give some certain initial velocity to the particles,
these would follow conic section orbits.
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2.5 The equilateral Lagrange configuration

Only a few years after Euler’s finding of the collinear central configuration
for the case n = 3, Lagrange made another important discovery in the search for
central configurations. In the year 1772, he found the equilateral triangular central
configuration, that is, the configuration of three bodies lying on the vertices of an
equilateral triangle [7].

In order to arrive to this result, we are going to consider the distances between
the particles rij, with 1 ≤ i < j ≤ 3, as we did in the previous section. If we fix
the center of mass at the origin and identify two rotationally equivalent configura-
tions, then the three variables r12, r23, r13 are local coordinates near a noncollinear
configuration. Thus, by specifying the angle between a fixed line and q2 − q1, the
location of the center of mass and the three mentioned variables, then the config-
uration of masses is uniquely specified [8].

Note that holding I fixed is the same as holding m0 I =: I∗ fixed. Thus, the
conditions for U to have a critical point on the set I∗ in these coordinates are

−
mimj

r2
ij

+ λmimjrij = 0, for 1 ≤ i < j ≤ 3, (2.17)

from where we obtain the only real solution r12 = r23 = r13 = λ−1/3. We observe
that this solution represents an equilateral triangle independently of the values of
the masses m1, m2, m3 (previous normalization of the configuration).

Proposition 2.21. For any given values of the masses, there are two and only two non-
collinear central configurations for the 3-body problem, namely, the three particles are at
the vertices of an equilateral triangle. The two solutions correspond to the two orientations
of the triangle when the vertices are labeled by the bodies.

This result is true for any relation between the values of the masses, opposite
to what happened with the regular polygonal examples, mentioned in Section 2.1.
Moreover, let us emphasize that all the five different central configurations of the
3-body problem that we have found (the three collinear configurations and these
two triangular ones), happen to take place for any possible choices of positive
masses. Actually, these are the only explicit solutions known for arbitrary masses.

Hence, this result holds even in extreme settings where one of the masses is
infinitely smaller than the other two. For instance, consider the case where we
have two massive bodies as the Earth and the Moon, and the other is just an
artificial satellite or an asteroid. Following Proposition 2.21, we can affirm that
there exist two different spots in the universe where we could place an object, of
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any mass value (more precisely, at the vertices of the equilateral triangles drawn
by setting the Earth and the Moon at the vertices of the opposite side). With the
appropiate motion they would follow a trajectory forming an equilateral triangle
with the Earth and the Moon. Besides, on one of these spots the object would
follow the orbit of the Moon, and on the other, would lead the orbit.

In fact, from a more theoretical point of view, these two spots correspond to
the Lagrangian points L4 and L5, which happen to be stable. Indeed, there are
objects in the universe in such spots. At the beginning of the twentieth century,
the German astronomer M. Wolf found for the first time an equilateral central
configuration in the universe. He did it by exploring the L4 and L5 points of the
system Sun-Jupiter, and he found asteroids at each of these points, forming two
equilateral triangles. He called these asteroids Trojans [12].

Since they were discovered, these kind of asteroids became famous among
astronomers, who tried to find them for more planets in the Solar system. At the
moment, many of them have been found for various planets. In fact, since these
two spots are stable, there exist two stability regions on the orbits of the planets
containig a significant number of Trojan asteroids. In the case of the heaviest
planet in the Solar system, Jupiter, more than 9000 Trojans have been found2. As
a curiosity, in 2010 the first Trojan of the Earth was found, placed at the L4 point.

Before moving on to the case of n masses, we present a couple of examples
of Lagrangian configurations. As it can be seen in the plots of Figure 2.4, the
bodies form equilateral triangular configurations. On the left, we have a planar
homographic solution, with the bodies describing ellipses. The masses have been
set to mi = i. The points plotted represent the initial position of the particles, and
its size represents the masses of the bodies. On the right, we can see a homothetic
solution, with three different masses released with no velocity collapsing in finite
time to the center of mass of the configuration.

In the general case of n masses, we have a result that shows that Proposi-
tion 2.21 can be extended for configurations with a number of bodies greater than
3. In fact, it is easy to see that for four bodies, the configuration of masses given
by the tetrahedron (the natural extension of the triangle) is a CC in any dimen-
sion greater than 2. For an arbitrary value of n masses, we have that the regular
(n− 1)-simplex gives always a central configuration.

Proposition 2.22. The regular simplex in Rd, with d ≥ n− 1, is a central configuration
for all choices of the masses.

2See https://minorplanetcenter.net//iau/lists/Trojans.html

https://minorplanetcenter.net//iau/lists/Trojans.html
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Figure 2.4: Left: relative equilibrium motion of three bodies forming an equilateral tri-
angle. The points represent the initial position of the bodies, and their size shows the
relation to their masses. Right: homothetic solution of three different masses forming an
equilateral triangle collapsing to the center of mass, plotted with a cross.

Proof. Let q be a configuration of n masses in dimension d ≥ n− 1. We already
know that a central configuration can be found as a critical point of the Newtonian
potential function subject to a constraint on the moment of inertia. Consider the
function F(rij) = U(rij) + λI(rij) with mutual distance coordinates rij, 1 ≤ i < j ≤
n. Then F is expressed in such coordinates as

F(rij) = ∑
i<j

mimj

rij
+

λ

2m0
∑
i<j

mimjr2
ij

following the computations that we carried out in (2.15). Now computing the
partial derivatives w.r.t. the mutual distance coordinates, we obtain

∂F
∂rij

= mimj

(
− 1

r2
ij
+

λ

m0
rij

)

So the condition for a configuration with mutual distances rij to be a CC for a
certain λ would be written as

mimj

(
− 1

r2
ij
+

λ

m0
rij

)
= 0 for 1 ≤ i < j ≤ n (2.18)

Solving for every rij in (2.18) we obtain that the mutual distances are all (m0/λ)1/3,
condition that gives a regular simplex.
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Chapter 3

The figure eight solution

In this chapter we present a remarkable solution of the 3-body problem, the
figure eight solution. It was found in December 1999 by A. Chenciner and R. Mont-
gomery (see [3]).

3.1 Introduction to the figure 8. Choreographies

The figure eight solution consists of three bodies of equal masses moving pe-
riodically along the same eight-shaped curve on the plane, and with a constant
time shift between the particles of a third of the period. It belongs to a kind of
solutions of the n-body problem called choreographies.

Definition 3.1. A choreography is a solution of the n-body problem for which all the bodies
move periodically along the same fixed curve, without colliding, and with a constant phase
shift.

The name was coined by C. Simó in [2] and refers to the dance-like motion
that follow the bodies. The figure eight was the second choreography found, after
Lagrange’s equilateral triangular solution discussed in Section 2.5.

Let us now set a mathematical background for the figure eight solution. We
focus on the 3-body problem in the plane, i.e. n = 3 and d = 2. Consider
three bodies of unit mass in the Euclidean plane R2 under the influence of the
Newtonian gravitational field. Let qi(t) ∈ R2 for i = 1, 2, 3, denote the positions
of the three particles at time t. A parametrization of the figure-eight solution of
period T, will be a map γ : R/TZ −→ R2 such that

qj+1(t) = γ(t + jT/3) for j = 0, 1, 2.

37
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The existence of this solution is given by the following theorem, proved by A.
Chenciner and R. Montgomery in [3]. In order to announce it, let us define first
the actions of the Klein group1 Z/2Z×Z/2Z on R/TZ and R2, where T is any
positive real number. Given a pair of generators 〈σ, τ〉 of the Klein group,

σ · t = t +
T
2

, τ · t = −t +
T
2

, σ · (x, y) = (−x, y), τ · (x, y) = (x,−y)

for all t ∈ R/TZ and (x, y) ∈ R2.

Theorem 3.2. There exists an eight-shaped planar loop γ : R/TZ −→ R2 with γ(0) =
0, satisfying:

(i) for every t,
γ(t) + γ(t + T/3) + γ(t + 2T/3) = 0

(ii) γ is equivariant with respect to the actions of the Klein group on R/TZ and R2

defined above,

γ(σ · t) = σ · γ(t) and γ(τ · t) = τ · γ(t)

(iii) the loop q : R/TZ −→ R6 \ ∆ defined by

q(t) = (γ(t), γ(t + T/3), γ(t + 2T/3))

is a zero angular momentum T-periodic solution of the planar 3-body problem with
equal masses.

The proof of this theorem requires a variational argument and because of its
complexity we will not give it here. We refer to the literature for its examination.

Let us note that when refering to γ, t is the parameter of the curve, but when
refering to the bodies, it is the time of the solution. We observe that property
(iii) reflects that the position of the particles follow a collision-free solution of the
3-body problem in which they are shifted by one third of the period. Property (i)
means that the figure is always centered at the origin and lastly, we illustrate in
Figure 3.1 the symmetries stated by property (ii).

It can be seen from the motion of the bodies that in this solution the three
possible Eulerian collinear configurations take place twice in a full period. Such
configurations happen on the lines y = ±ax with a ≈ 0.2248, and each line is
visited alternatively every third of the period.

1The Klein group is a four-order group that is not cyclic.
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Figure 3.1: The action of σ and τ on the figure eight solution given by property (ii) of
Theorem 3.2. In yellow the bodies on the curve at time t, in purple at times σ(t) and τ(t).
On the left, σ gives a symmetry with respect to the y-axis. On the right, we observe the
symmetry with respect to the x-axis given by the action of τ.

The most important property discovered for the figure eight solution is its
stability. The solution is indeed linearly stable, and to remark its significance, let
us mention that it is actually the only choreography known so far, which fulfills
this property. Due to the complexity of the stability study by analytical means,
this feature has only been proven numerically. We will check the linear stability of
the figure eight in Section 3.2.2.

Another important property to mention is that the figure eight solution lives
on the zero angular momentum level. We refer to [13] to other properties of this
solution.

Remark 3.3. The discovery of the figure eight led to the question about the ex-
istence of other choreographies of the n-body problem. For n = 3, there exist
relative and satellite choreographies related to the eight. That means, they are a
direct consequence of the existence of this solution and they can be found from
continuous perturbations of the angular momentum and using rotation frames.
Furthermore, choreographies not related to the eight have been found as well.
Further details are given in [14].

Moreover, some studies were carried out in order to generalize the study of
choreographies to n bodies for n > 3, and in fact, many choreographies have been
found for different values of n. In [2] and [13] one can find many examples of
different choreographies for different numbers of masses.
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3.2 Numerical analysis of the figure 8 solution

In this section we give details on the numerical computations we have per-
formed on the figure eight.

3.2.1 Computing the orbit

First of all, we are going to explain how we obtained the orbit numerically. We
used the Taylor method adapted to this problem, as explained in Appendix A, to
compute the orbit of the figure eight as a solution of the planar 3-body problem
with the specific initial conditions given in [13].

We denote the position of the bodies by qi = (xi, yi) ∈ R2, for 1 ≤ i ≤ 3, where
the subscript denotes the particle. For the velocities of each particle we will set
q̇i = (ẋi, ẏi). For explainig the evolution of the masses along the figure eight, we
label the particles as q1 (resp. q2) the one in the left (resp. right) and q3 as the
particle in the middle of the configuration at the initial time, as in [13].

The initial conditions given in this paper correspond to a collinear configu-
ration along the axis y = 0 (note this is not the symmetry axis from Figure 3.1,
hence in the (x, y) coordinates used for the computation the figure is rotated).
Concretely, the initial conditions given are the velocity q̇3, and the positions of q1

and q2 on the x-axis. The velocities of these two bodies are considered so that
q̇1 = q̇2, as a consequence of the angular momentum being zero. Additionally, the
masses of the bodies are all equal to 1 and the period of the orbit is set to 2π.

The conditions not explicitly stated in the paper can be found analytically from
the ones given, by using the first integrals of the center of mass which is said to
be placed at the origin. Concretely,

• Since c = 0, we get x3 = 0, hence q3 is located at the origin.

• Taking time derivatives on the relation c = 0 and using q̇1 = q̇2, one obtains
the relation q̇1 = q̇2 = − 1

2 q̇3.

From these considerations we obtain an initial condition in R12 which we prop-
agate numerically to obtain the figure eight. Note that we have not used the
reduced problem given by constant values of the first integrals, instead we prop-
agate in R12 and we use the constant values of the first integrals for performing
checkings of propagation of the error along the orbit.

The numerical values with the exact decimal numbers obtained from the pre-
vious calculations and thus, used for the computation of the orbit, are given in
Table 3.1. With these data we computed the solution of the figure eight orbit using



3.2 Numerical analysis of the figure 8 solution 41

x1 = −0.995492 y1 = 0 ẋ1 = −0.347902 ẏ1 = −0.533930
x2 = 0.995492 y2 = 0 ẋ2 = −0.347902 ẏ2 = −0.533930
x3 = 0 y3 = 0 ẋ3 = 0.695804 ẏ3 = 1.067860

Table 3.1: Initial conditions data to plot the figure eight solution.

the Taylor integration method implemented in C (see Appendix A). We display
the obtained orbit, together with the initial positions, in Figure 3.2.

-0.5

 0

 0.5

-1  0  1

Figure 3.2: Figure eight solution obtained with the Taylor integration method. See the
text for details on the computation. The three coloured dots correspond to the initial
positions of the three bodies.

We emphasize that rotating the figure in the plot with the appropiate angle,
we could easily see that the figure has the symmetries stated in Theorem 3.2.

We have computed the error of the solution when it returns to the starting
points. This error is of the order of 10−6, which is the same order of precision
of the initial conditions we took from [13]. However, after two periods, we can
observe that the error has increased up to an order of 10−5, and it remains similar
after 10 revolutions. The error respect to the initial conditions after 100 revolutions
becomes of the order of 10−4.

3.2.2 Stability analysis

Here we study the stability property of the figure eight which we mentioned
before in Section 3.1 . We are going to present the numerical methods we em-
ployed to investigate on this property and the results achieved. We used [14] for a
reference on this matter.

In the first place, let us set a theorical background on the subject. In dynamical
systems, an orbit is usually said to be stable if all the points near enough to the
orbit remain close to it after a long period of time. This was checked by numerical
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explorations in [14]. The first step is to guarantee that the orbit is linearly stable,
meaning that the normal behaviour is elliptic. To investigate the linear stability of
the orbit it is very natural to make use of the Poincaré (or first return) map. Let
us recall the following theorem from the Ordinary Differential Equations degree
course, for concreteness here we omit the proof.

Theorem 3.4. Let X : Ω → Rm be a Cr vector field and let ϕ : D → Ω be the
associated flow. Consider a codimension 1 surface Σ transversal to the flow ϕ in z0 ∈ Ω
and z1 = ϕ(τ(z0), z0). Then, there exists an open neighbourhood U ⊂ Σ of z0 such that
there is a map τ : U → R and a diffeomorphism P : U → P(U) ⊂ Σ, both Cr, for which

ϕ(τ(z0), z0) = P(z0).
�

The surface Σ is called a Poincaré section and the map P is the Poincaré map,
or also first return map to the section Σ, because it gives the point of the trajectory
of z0 where the orbit returns to the section. Moreover, τ(z0) represents the time it
takes to return to the section.

The reason why we are interested in working with the Poincaré map is because
it converts, locally, the study of the dynamics in the phase space given by the flow,
to the study of a codimension-one discrete dynamical system in Σ. As an example
of this relation, we can see that the search of periodic orbits is reduced to the
search of fixed points, a more studied and well-known problem.

In particular, the figure eight solution corresponds to a fixed point of a suitable
Poincaré map. Hence, in order to study the linear stability of the solution we shall
compute the Jacobian matrix at the fixed point of such a Poincaré map. To pursue
this goal, there are different ways to compute a numerical approximation. We will
do it using a numercial differentiation scheme, based on the usage of centered
finite differences combined with Richardson extrapolation, as learned in the first
course of Numerical Methods of the degree.

We focus specifically in our problem. As a suitable Poincaré section we define

Σ = {q ∈ R12 | q is a collinear central configuration}

Note that Σ defines a transversal section to the flow around the figure eight.
Otherwise, the bodies would move along the collinear configuration and that
would lead to collision, as we showed in Section 2.4. We can then consider the
Poincaré map P̂ : Σ → Σ. In particular, the figure eight orbit is a fixed point
of P = P̂6, due to the fact that a collinear configuration happens every sixth
of the period, see Section 3.1. Then for z0 as such a fixed point, we have that
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DP(z0) =
(

∂P
∂z1

(z0) . . . ∂P
∂z11

(z0)
)

, where ∂
∂zk

represents the partial derivative w.r.t.
the k-th element of a normalized basis {u1, . . . , u11} of Tz0 Σ. Now, using finite
differences we can compute these twelve partial derivatives as

∂P
∂zk

(z0) ≈
P(z0 + huk)− P(z0 − huk)

2h
for h ≈ 0, 1 ≤ k ≤ 11. (3.1)

From (3.1) it follows that we need to compute the images of the Poincaré map
P for different points, concretely the images of the points z̃0,k±(h) = z0 ± huk,
k = 1, . . . , 11, for a fixed h. In our case, since z0 is a point of the orbit we recall
that P(z0) = ϕ(τ(z0), z0) = ϕ(T, z0), where T denotes the period of the orbit.
However, for any of the approximated points z̃0,k± , close to z0, we do not know its
return time τ(z̃0,k±) because these points do not belong to the orbit. We avoid the
problem by computing the Poincaré return map to Σ.

We will describe now the steps followed to numerically compute P̂. Basically,
our goal is to obtain the points at which the three particles return to the next
collinear configuration, which correspond to a point in Σ, and then we compute
P = P̂6.

We start with the initial conditions stated in [14] for which the bodies are
placed at Σ. These are different from the ones shown in Table 3.1 (in this paper the
figure eight is rescaled regarding the one in Figure 3.2 and the period also changes
accordingly). Then, at each step of the Taylor integration method used to compute
the orbit, we want to detect when the particles cross the collinear configuration
section. To do so, we take the vector that goes from particle 3 to particle 2, v32(t) =
(q2(t)− q3(t)), and the orthogonal vector that goes from particle 3 to particle 1,
v31
⊥(t) = (q1(t)− q3(t))⊥. After the bodies depart from the collinear section Σ,

these two vectors will form an angle α with either, 0 < α < π
2 or π

2 < α < π. Being
in the same line means α = π

2 .

Hence, we look for changes in sign of the function g(t) = v31
⊥(t) · v32(t).

One checks that Tz0 Σ = 〈(e2 + e4 − 2e6)⊥〉, where {ei} denotes the canonical basis
of R12. Note that Σ is defined by the condition g(t) = 0. Therefore, at every
time step we look for a change of sign of g and, once detected we use the last
computed value where the change has been achieved as the initial approximation
for the Newton method in order to find the zero of g.

Since the Taylor method that we developed computes the Taylor polynomial
expansion of the solution near the time given in the previous step (see Appendix
A), when employing the Newton method we compute a new time guess and then
we obtain the new point of the solution at that time by simply evaluating the
Taylor polynomial.
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Once we have found the intersection of the trajectory with Σ, we continue com-
puting the orbit of the solution in order to proceed to the next collinear configu-
ration. At the sixth time we repeat this process, we will obtain the return value
of the initial condition, that is, P(z) = ϕ(τ(z), z). Let us remark that with this
method, not only we obtain the images of P, but also we obtain, from the Taylor
integration method, τ(z) (the time that the body takes to return to the section).

Hence, now we are able to compute all the values P(z̃0,k±), and then, following
(3.1) we could obtain the differential of the Poincaré map. As said, in order to
improve the numerical precision of the computations for the derivatives, we use
Richardson extrapolation applied to centered finite differences. Let us denote by
D1(h) the approximation to first order of the derivative with difference h, of a real-
valued function f . Then we can express f ′(z0) = D1(h)−∑

s>0
h2s Ms, where Ms =

f (2s+1)(z0)
(2s+1)! . Now we consider the approximation of f ′(z0) for a difference of h/2.

What we obtain is f ′(z0) = D1(
h
2 )−∑

s>0

h2s

4s Ms. Multiplying the last expression by

4 and substracting the first one, we obtain

f ′(z0) = D1(
h
2 )−

D1(
h
2 )− D1(h)

3
−∑

s>1

1− 4s−1

3 · 4s−1 h2s Ms (3.2)

and now we set D2(h) = D1(
h
2 )−

D1(
h
2 )− D1(h)

3
. Let us prove by induction that,

in fact, we can express the first derivative of f at z0 as

f ′(z0) = Dk(h) +O(h2k), where Dk(h) = Dk−1(
h
2 ) +

Dk−1(
h
2 )− Dk−1(h)

4k−1 − 1
(3.3)

for k > 1.

We can see in (3.2) that the initial case k = 2 satisfies (3.3). Now, consider for
k > 2 the expression in (3.3) for a difference of h

2 . We then have,

f ′(z0) = Dk(
h
2 ) +O((

h
2 )

2k) = Dk(
h
2 ) +

1
4kO(h

2k)

By multypling this expression by the factor 4k and substracting the expression
from (3.3), we obtain

(4k − 1) f ′(z0) = 4kDk(
h
2 )− Dk(h) +O(h2(k+1))

from where we deduce

f ′(z0) = Dk+1(h) +O(h2(k+1)), with Dk+1(h) = Dk(
h
2 ) +

Dk(
h
2 )− Dk(h)
4k − 1

, (3.4)
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attaining the same expression as in (3.3).

We obtain the following method when translating the formula into an algo-
rithm to calculate the derivative up to an r-th step. First we start by comput-
ing the approximation D1(h). For simplicty, let us drop the h and let us write
Dk,j = Dk(

h
2j ). We observe from (3.4) that at the step k + 1 we only need to com-

pute Dk,1, since we already have Dk,0 from the previous step.

By a thorough inspection, we notice that in order to compute Dk,1, we need
to have Dk−1,1 and Dk−1,2, but it turns out that we had already computed Dk−1,1

for the computation of Dk,0. Again by induction, one can see that in fact, the only
derivative we need to calculate to apply the formula in (3.4) is D1,k−1.

Note also that, by the recurrence in the formula, it is only necessary to have
the values of the functions Dk from the current and the previous step. Thus, we
will denote D(1)

j to the values Dj computed at the current step and by D(0)
j to the

ones computed in the previous step, to simplify a little bit more the notation, but
specially, to emphasize that we only need those values.

Therefore, at the (k + 1)-th step, we want to find Dk+1,0. We only need to do
three things. First, we start by computing

D(1)
1 = D1,k = D1(

h
2k ) =

2k−1

h
( f (z0 +

h
2k )− f (z0 − h

2k )).

Then, for j = 2, . . . , k + 1, we compute D(1)
j = D(1)

j−1 +
D(1)

j−1 − D(0)
j−1

4j−1 − 1
. Finally, we

set the values D(1)
j in the variables D(0)

j . Note that the desired derivative at the

(k+ 1)-th step is D(1)
k+1. We repeat the process for k > 2 until the difference between

two consecutive derivatives is lower than the precision desired. Using this algo-
rithm we are able to accurately compute each of the partial derivatives ∂Pi

∂zk
(z0) that

compose the differential matrix of the Poincaré map, DP(z0) =
(

∂Pi
∂zk

(z0)
)

1≤i,k≤11
.

Once the Jacobian matrix is obtained we proceed to computing its eigenvalues
using PARI/GP [16] and we obtain 7 eigenvalues equal to 1 (with an error of 10−4)
and 4 complex eigenvalues λ = exp(±2πiνj), with ν1 ≈ 0.008422721636461862,
and ν2 ≈ 0.2980925294189548, which coincide on eight/nine digits, with the ones
given in [14]. The reason why we have obtained less digits might be due to the
fact that we have used double precision and only one Poincaré section for our
computations, while C. Simó used quadruple precision and a parallel shooting
strategy.

The results obtained regarding the eigenvalues can be heuristically justified as
follows. The planar three-body problem is a hamiltonian system with m = 3 · 2 = 6



46 The figure eight solution

degrees of freedom. We know from Section 1.3 that there are two first integrals
given by the linear momentum and one given by the angular momentum. Thus,
the problem can be reduced to three degrees of freedom. First integrals are func-
tions of the original coordinates of the system which are constant along the so-
lutions of the problem. Hence the gradient vectors of these functions become
eigenvectors of eigenvalue 1. The vectors associated to the conjugated coordinates
are also eigenvectors of eigenvalue 1, due to the Hamiltonian structure (the eigen-
values come by pairs, see [8]). Hence, we must have six real eigenvalues equal
to 1, two for each integral. The additional eigenvalue equal to 1 is due to the
preservation of the Hamiltonian function. Finally, the four remaining eigenvalues
correspond to two pairs of conjugated eigenvalues that provide the elliptic linear
behaviour of the figure eight orbit.

We conclude that the figure eight orbit is linearly stable due to the fact that
all the eigenvalues related to normal directions of the orbit have modulus 1. Note
that DP is a square matrix of dimenision 11. If we remove the conjugated direction
to the tangent direction, then DP can be considered as a matrix of dimension 10
and it must be symplectic (it has the same complex eigenvalues and six ones).

The previous discussions and computations show the linear stability of the
figure eight solution. As we mentioned in Section 3.1, the figure eight is indeed
stable for long times and it is the only choreography known having this property.
This conclusion introduces a completely new and very relevant physical possibil-
ity: universes of three stellar objects following a figure eight orbit without a central
star can exist.



Conclusions

We have investigated different properties of the n-body problem and their re-
lation with its Hamiltonian structure. We also discussed about central configura-
tions and their relation with simple (explicit) solutions of the n-body problem.

In particular, the Lagrange configuration of three bodies leads to a choreog-
raphy, a fact that motivated the study of the so-called figure eight solution. The
latter is also a choreography, which has several geometric and dynamical prop-
erties. Concretely, we investigated the linear stability of this solution using the
Taylor method adapted to this problem for numerical integration of the equations
of motion.

During this time, not only have we discovered many interesting results, but
also open questions and unsolved problems on this field of study that can lead to
a further exploration in the future and might also be an starting point for investi-
gating several related questions. We highlight some of the most relevant:

• Existence of central configurations in higher dimensions. As mentioned in Sec-
tion 2.1, the regular platonic solids lead to central configurations. However,
for higher dimensions there are fewer of such configurations. Moreover, it is
not known in general if there are other CC’s with equal masses not related
with regular platonic solids. The geometrical approach in [10] to the n-body
problem for higher dimensions might help in investigating such CC’s.

• Other stable choreographies related, or not, to the figure eight. In [14] it is dis-
cussed the existence of many choreographies that follow different paths but
resemble the figure eight solution, as well as other many choreographies
following completely different trajectories. It is stated that all of them are
linearly unstable, so one can wonder wether there are other stable chore-
ographies or not.

• Central configurations, relative equilibria and choreographies in other related prob-
lems. One can consider the existence of similar particular solutions for other
related problems like the n-body problem with different potential, the n-
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body problem in curvature spaces, etc. Several partial results can be found
in the literature, see for example [13].

• Applications to astrodynamics. The particular solutions can be potentially in-
teresting for applications to astrodynamics for mission design purposes, sta-
tion keeping, etc. Those solutions that are linearly stable can be of particular
interest to this end. Certainly, this is an interesting subject to be studied in
the future that we had no time to consider in this work.

As a final comment we remark that the combination of the theoretical and
numerical techniques used in this work helped to investigate and to understand
several properties of the problem. Developing our own implementation of the
Taylor method for the n-body problem turned out to be very useful to this end.



Appendix A

Taylor Integration Method

A.1 Applying the method to the n-body problem

In this appendix we describe the ad-hoc implementation of the Taylor method
used in this work to numerically solve the n-body problem for an aribitrary num-
ber of masses. We mainly use [6] as a reference.

We want to solve the initial value problem{
ż(t) = XH(z(t))

z(0) = z0
where XH(z) =

(
∂H
∂p

(z),−∂H
∂q

(z)
)T

(A.1)

for z = (q, p) and H = T + V the Hamiltonian function defined in (1.3). Solving
this problem means finding a function z : [0, tmax] −→ R2m such that z(t) is a
solution of (A.1) for all t ∈ [0, tmax].

Let us consider some intermediate times ts ∈ [0, tmax]. These will be computed
from the initial time value t0 = 0 and a succession of time steps denoted by hs,
s > 0 (we explain further on how we compute them). Thus, at the s-th time step
we will have ts = ts−1 + hs. We will calculate the approximation of the function z
at each time ts and we will represent these approximations by zs.

Suppose we finished to compute one of the steps and we find ourselves at the
beginning of the s-th step. Then, we compute the approximation of z(ts) from the
Taylor polynomial of z(t) at t = ts−1,

zs = zs−1 + ż(ts−1)hs +
z̈(ts−1)

2!
h2

s + · · ·+
z(r)(ts−1)

r!
hr

s (A.2)

So, the only thing we need to do to obtain this approximation is computing
the derivatives z(k). To obtain them, we note the following.
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Recall we have z = (q, p) for q, p ∈ Rnd, then ż = (q̇, ṗ) and for j = 1, . . . , n,
q̇j =

∂H
∂pj

=
pj

mj

ṗj = −
∂H
∂qj

=
n

∑
i=1
i 6=j

mimj

r3
ij

(qi − qj)
(A.3)

Therefore, to compute the derivative z(k) we need the derivatives (q(k), p(k)). Note
that in order to have z(k) it is sufficient to calculate the derivatives for only one
of the Hamiltonian variables, because we can obtain one from the other using the
relation

qj
(k) =

pj
(k)

mj
(A.4)

In order to symplify the discussion below, we introduce the following nota-
tion. If x : I ⊂ R −→ R denotes a smooth function, we call its normalized k-th
derivative to the value

x[k](t) =
x(k)(t)

k!
(A.5)

Then, z(t) =
r

∑
k=0

z[k](t)hk represents the Taylor polynomial for z at time t.

Let us see now how we compute the derivatives qj
[k] and pj

[k]. Given the initial
values q1

[0], . . . , qn
[0], p1

[0], . . . , qn
[0], we have for j = 1, . . . , n

qj
[1] = q̇j =

pj
[0]

mj

pj
[1] = ṗj = ∑

i 6=j

mimj

r3
ij

(qi
[0] − qj

[0])
(A.6)

Let us call f j to the function f j = ∑i 6=j
mimj

r3
ij
(qi − qj) to simplify notation as well.

Then, to compute the k-th normalized derivatives for each j we have

qj
[k] =

1
kmj

pj
[k−1]

pj
[k] =

1
k

f j
[k−1] for k = 1, . . . , r

(A.7)

In order to compute the derivatives f j
[k] we will use automatic differentiation.

Automatic differentiation (AD) is a recursive procedure used to calculate the val-
ues of the derivatives of a certain function at a given point.
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To apply AD we write the function f j as a combination of intermiadate scalar/vec-
tor functions xk, k = 1, . . . , 7. To those which correspond, we write xk = (xk

l )1≤l≤d.
Thus, we have for i, j = 1, . . . , n, i 6= j,

x1
ij,l = qil − qjl

x2
ij,l = (qil − qjl)

2 = x1
ij,l · x1

ij,l

x3
ij =

d

∑
l=1

(qil − qjl)
2 =

d

∑
l=1

x2
ij,l

x4
ij = r−3

ij = (x3
ij)
−3/2 = exp(−3

2
log(x3

ij))

x5
ij,l =

qil − qjl

r3
ij

= x4
ij · x1

ij,l

x6
ij,l =

mi

r3
ij
(qil − qjl) = mix5

ij,l

x7
j,l =

n

∑
i=1
i 6=j

mi

r3
ij
(qil − qjl) =

n

∑
i=1
i 6=j

x6
ij,l

f j,l = mj

n

∑
i=1
i 6=j

mi

r3
ij
(qil − qjl) = mjx7

j,l

(A.8)

Let us clarify the notation used. The superscript indicates the ordinal number
of the elementary function. The subscripts before the comma indicate the de-
pendence of the operation to the particles i and j. Lastly, the subscript after the
comma notes that the corresponding function x is a vector on the d dimensional
components.

The use of intermediate functions allows us to compute the k-th normalized
derivatives of q and p. To this end, we use the following properties relating AD
and the operations used above to define the intermediate functions xk in (A.8) [6].

Properties. Given functions b and c of class Ck and α ∈ R \ {0}, we have for a
function a of b and c,

1. If a(t) = b(t)± c(t), then a[k](t) = b[k](t)± c[k](t)

2. If a(t) = b(t)c(t), then a[k](t) =
k

∑
s=0

b[k−s](t)c[s](t)

3. If a(t) = b(t)α, then a[k](t) =
1

kb[0](t)

k−1

∑
s=0

(kα− s(α + 1))b[k−s](t)a[s](t)
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The first property follows from the linearity property of derivatives, and the sec-
ond one follows from Leibniz formula for the derivatives of a product,

a[k](t) =
1
k!

a(k)(t) =
1
k!

k

∑
s=0

(
k
s

)
b(k−s)(t)c(s)(t) =

k

∑
s=0

b[k−s](t)c[s](t)

For Property 3, we give some more details. Taking logarithms on both sides of
a(t) = b(t)α we get log a(t) = α log b(t). Now derivating w.r.t. t we acquire
ȧ(t)b(t) = αa(t)ḃ(t). Applying item 2 on both sides up to the (k− 1)-th derivative
we shall obtain

k−1

∑
s=0

(s + 1)b[k−1−s](t)a[s+1](t) = α
k−1

∑
s=0

(k− s)b[k−s](t)a[s] ⇐⇒

ka[k](t)b[0](t) +
k−2

∑
s=0

(s + 1)b[k−1−s](t)a[s+1](t) = α
k−1

∑
s=0

(k− s)b[k−s](t)a[s] ⇐⇒

ka[k](t)b[0](t) =
k−1

∑
s=0

α(k− s)b[k−s](t)a[s] −
k−1

∑
s=0

sb[k−s](t)a[s](t)⇐⇒

a[k](t) =
1

kb[0]
k−1

∑
s=0

(kα− s(α + 1))b[k−s](t)a[s](t)

Now we are ready to compute f j
[k−1], applying the previous properties to the

equations in (A.8) and setting α = −3/2:

(x1
ij,l)

[k−1]
= qil

[k−1] − qjl
[k−1]

(x2
ij,l)

[k−1]
=

k−1

∑
s=0

(x1
ij,l)

[k−1−s]
(x1

ij,l)
[s]

(x3
ij)

[k−1]
=

d

∑
l=1

(x2
ij,l)

[k−1]

(x4
ij)

[k−1]
=

1

k(x3
ij)

[0]

k−2

∑
s=0

(kα− s(α + 1))(x3
ij)

[k−1−s]
(x4

ij)
[s]

(x5
ij,l)

[k−1]
=

k−1

∑
s=0

(x4
ij)

[k−1−s]
(x1

ij,l)
[s]

(x6
ij,l)

[k−1]
= mi(x5

ij,l)
[k−1]

for i, j = 1, . . . , n, i 6= j, and then

(x7
j,l)

[k−1]
=

n

∑
i=1
i 6=j

(x6
ij,l)

[k−1]

f j, l[k−1] = mj(x7
j,l)

[k−1]

(A.9)
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and we finally obtain pj
[k] = f j

[k−1]/k. Doing so for j = 1, . . . , n, we eventually get
z[k](t).

Summarising, in order to obtain an approximation of z(t), we need to compute
at different times ts the Taylor approximation of z at the previous time value. That
involves computing derivatives of z (as a vector of q and p) up to r-th order. For
each derivative to compute, we use AD and we follow the steps given by (A.7) and
(A.9).

A.2 Coding the Taylor method

Here we add further comments on the C implementation of the previous
scheme. Throughout this section we shall refer to the code in Section A.3. First of
all, we created a function which manages the computation of the approximation
zs from zs−1. This function is called integ_taylor.

Before proceeding further, let us clarify the variables we use in the code. Vari-
able z is a 3-array, where the first component indicates the k-th order derivative.
The second one indicates the position or momentum of the particle, that is, for
i = 0, . . . n− 1 we have the positions of the n bodies, and for i = n, . . . , 2n− 1 the
momentums. At last, the third component denotes the spatial coordinate.

Moreover, m is an array containing the n mass values, t is a pointer representing
the time ts at each step and tmax is a double variable representing the end point
of the time interval. The pointer h will be the corresponding time step hs and hmin

and hmax are the bounds we set for the time steps hs so as to ensure a control on
the size of the steps. The integer variables ordre, n and dim give the values for the
maximum order of the derivatives, the number of bodies of the problem and the
space dimension respectively. Lastly, tol indicates the local tolerance required at
each step of the taylor method.

All these variables are declared in the main function. Let us detail now the
variables we used only for the function integ_taylor.

On computing the derivatives of z, we distinguish two cases. The initial case,
for which we calculate the first derivatives of z strictly following (A.6) and (A.8);
and the general k-th order case, where we compute the derivatives of z following
(A.7) and (A.9). In order to compute steps in (A.8) and (A.9) we declared the
following variables representing the elementary operations into which we broke f
down.

Let us remark that the variables we used and the way we decided to save
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memory are justified over the need of that value for further computations on that
time step.

In the first place, we declared difq as a 4-array to represent (x1)
[k], its depen-

dence on the particles i and j and the fact that x1 is a vector of d components as
well. Then, we represented (x2)

[k] with difq2 (since it is basically x1 squared) as a
vector of d components. Note that we just need this value for that concrete deriva-
tive and not any other, so it acts as sort of an slack variable for each derivative
step.

We declared sumdifq2 and norma as 3-arrays representing (x3)
[k] and (x4)

[k]

and its dependence on the particles i and j with which are calculated. Finally, to
represent (x5)

[k] we used the 2-array variable prod depending only on the particle
i and the spatial coordinate l. That is because on the implementation of (A.9) it is
only used once for each derivative and although it depends on the particle j for
which is calculated it is not necessary to keep this value for any other j.

The last intermediate variables x6 and x7 are not declared as variables on the
code, but are calculated on the corresponding momentum vector following the
relation given in (A.7) and (A.9) with such variables, the final function value f j

[k−1]

and pj
[k].

As we already explained, we start computing the derivatives of q and p. First
for the initial case, following (A.6) and (A.8) (lines 55-105), and afterwards for the
general k-th order case following (A.7) and (A.9) (lines 107-171).

Once we have calculated the r = ordre derivatives, we proceed to compute
the s-th time step hs (lines 173-187). To determine the step size we require the
last terms of the series to be of the order of the local error demanded. This is
heuristically justified since one expects the error between the true solution z(ts +

hs) and the truncated solution at order r to be of the order of the first ignored
term, by Taylor theorem. Then one requires

|z[r+1](ts)hr+1
s |∞ < tol

from where we obtain

|hs|∞ <

(
tol

z[r+1]

) 1
r+1

.

To avoid possible cancellations (due to symmerties of the problem) we consider
the two last computed terms to estimate hs, hence we choose

hs = min

((
tol

|z[r](ts)|∞

) 1
r

,
(

tol

|z[r−1](ts)|∞

) 1
r−1
)

(A.10)
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as the s-th time step to guarantee a local error of order tol1.

At last, we verify that the step we computed is inside the bounds given as hmin
and hmax. Once we have the definitive value for the time step, we compute the
new time value to which the approximation will correspond. In the case when
the new time overcomes the bound of the time interval, we take this bound as
the new time value and we notify it to the main function by returning the value
flag = 1, which indicates that we have reached the last step to computing the
approximation of the function z(t) (lines 188-199).

Finally, we are ready to compute the new approximation of the solution for the
new time value. In order to do so, we evaluate (A.2) using Horner’s method (lines
201-209).

A.3 Code sample in C

We include in this section the code in C for the implementation of the Taylor
time-stepper function integ_taylor.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4

5

6 double min(double var1 , double var2);

7 int integ_taylor(double ***z, double *m, double *t, double tmax , double *h,

double hmin , double hmax , int ordre , int n, int dim , double tol);

8 /* defineixo:

9 - z vector del camp ( z = (q,p); (ordre +1)*2n*dim )

10 - q vector de posicions ((ordre +1)*n*dim) [der][num][coord]

11 - p vector de moments (( ordre +1)*n*dim) [der][num][coord]

12 - m vector de masses (n)

13 - t instant de temps

14 - tmax temps maxim de l'interval temporal de definicio

15 - h pas de Taylor

16 - hmin cota inferior pel pas de Taylor

17 - hmax cota superior pel pas de Taylor

18 - ordre ordre del polinomi de Taylor

19 - n nombre de cossos

20 - dim dimensio espacial del problema

21 - tol tolerancia */

22

23

24

1A more restrictive strategy used for some of the computations consists in dividing the step from
(A.10) by the norm of z(ts).
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25 int integ_taylor(double ***z, double *m, double *t, double tmax , double *h,

double hmin , double hmax , int ordre , int n, int dim , double tol) {

26 /* el vector z =(q,p) ve donat per q[0][][] = z[0][0->n-1][] i p[0][][] =

z[0][n->2n-1] i m ve donat per m[0->n-1] */

27

28 /* declaracio de variables */

29 int i,j,k,l,s;

30 int flag;

31 double alfa = -1.5, suma , max1 , max2 , h1 , h2;

32 double ****difq , *difq2 , *** sumdifq2 , ***norma , **prod;

33

34 difq = (double ****) malloc ((ordre +1)*sizeof(double ***));

35 difq2 = (double *) malloc(dim*sizeof(double));

36 sumdifq2= (double ***) malloc ((ordre +1)*sizeof(double **));

37 norma = (double ***) malloc ((ordre +1)*sizeof(double **));

38 prod = (double **) malloc(n*sizeof(double *));

39 for (k = 0; k <= ordre; k++) {

40 difq[k] = (double ***) malloc(n*sizeof(double *));

41 sumdifq2[k] = (double **) malloc(n*sizeof(double));

42 norma[k] = (double **) malloc(n*sizeof(double));

43 for (j = 0; j < n; j++) {

44 difq[k][j] = (double **) malloc(n*sizeof(double *));

45 sumdifq2[k][j] = (double *) malloc(n*sizeof(double));

46 norma[k][j] = (double *) malloc(n*sizeof(double));

47 for (i = 0; i < n; i++)

48 difq[k][j][i] = (double *) malloc(dim*sizeof(double));

49 }

50 }

51 for (i = 0; i < n; i++)

52 prod[i] = (double *) malloc(dim*sizeof(double));

53

54

55 /* Derivada ordre 1 */

56 /* Calculem la derivada q[1] */

57 for (j = 0; j < n; j++) {

58 for (l = 0; l < dim; l++)

59 z[1][j][l] = z[0][j+n][l]/m[j];

60 }

61 /* Calculem la derivada p[1] */

62 for (j = 0; j < n; j++) {

63 for (i = 0; i < j; i++) {

64 /* calculem diferencia entre les q */

65 for (l = 0; l < dim; l++)

66 difq [0][j][i][l] = z[0][i][l] - z[0][j][l];

67 /* calculem el quadrat de les diferencies */

68 for (l = 0; l < dim; l++)

69 difq2[l] = difq [0][j][i][l]*difq [0][j][i][l];

70 /* calculem la suma de les diferencies al quadrat */

71 sumdifq2 [0][j][i] = 0;

72 for (l = 0; l < dim; l++)

73 sumdifq2 [0][j][i] += difq2[l];

74 if (fabs(sumdifq2 [0][j][i]) <= tol)

75 return -1;

76 /* calculem la norma del denominador */

77 norma [0][j][i] = exp(alfa*log(sumdifq2 [0][j][i]));

78 /* calculem el quocient */
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79 for (l = 0; l < dim; l++)

80 prod[i][l] = difq [0][j][i][l]*norma [0][j][i];

81 }

82 for (i = j+1; i < n; i++) {

83 for (l = 0; l < dim; l++)

84 difq [0][j][i][l] = z[0][i][l] - z[0][j][l];

85 for (l = 0; l < dim; l++)

86 difq2[l] = difq [0][j][i][l]*difq [0][j][i][l];

87 sumdifq2 [0][j][i] = 0;

88 for (l = 0; l < dim; l++)

89 sumdifq2 [0][j][i] += difq2[l];

90 if (fabs(sumdifq2 [0][j][i]) <= tol)

91 return -1;

92 norma [0][j][i] = exp(alfa*log(sumdifq2 [0][j][i]));

93 for (l = 0; l < dim; l++)

94 prod[i][l] = difq [0][j][i][l]*norma [0][j][i];

95 }

96 /* per a cada cos j, calculem el seu moment component a component ,

sumant sobre les i */

97 for (l = 0; l < dim; l++) {

98 z[1][j+n][l] = 0;

99 for (i = 0; i < j; i++)

100 z[1][j+n][l] += m[i]*prod[i][l];

101 for (i = j+1; i < n; i++)

102 z[1][j+n][l] += m[i]*prod[i][l];

103 z[1][j+n][l]*= m[j];

104 }

105 }

106

107 /* Derivada ordre k > 1 */

108 for (k = 2; k <= ordre; k++) {

109 for (j = 0; j < n; j++) {

110 /* Calculem les derivades q[k] */

111 for (l = 0; l < dim; l++)

112 z[k][j][l] = z[k-1][j+n][l]/(k*m[j]);

113 /* Calculem les derivades p[k] */

114 for (i = 0; i < j; i++) {

115 /* calculem diferencia entre les q */

116 for (l = 0; l < dim; l++)

117 difq[k-1][j][i][l] = z[k-1][i][l] - z[k-1][j][l];

118 /* calculem el quadrat de les diferencies */

119 for (l = 0; l < dim; l++) {

120 difq2[l] = 0;

121 for (s = 0; s <= k-1; s++)

122 difq2[l] += difq[k-1-s][j][i][l]*difq[s][j][i][l];

123 }

124 /* calculem la suma de les diferencies al quadrat */

125 sumdifq2[k-1][j][i] = 0;

126 for (l = 0; l < dim; l++)

127 sumdifq2[k-1][j][i] += difq2[l];

128 /* calculem la norma , considerem alfa =-1.5 i multipliquem */

129 suma = 0;

130 for (s = 0; s <= k-2; s++)

131 suma += ((k-1)*alfa - s*(alfa +1))*sumdifq2[k-1-s][j][i]*

norma[s][j][i];

132 norma[k-1][j][i] = suma /((k-1)*sumdifq2 [0][j][i]);
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133 /* calculem el quocient */

134 for (l = 0; l < dim; l++) {

135 prod[i][l] = 0;

136 for (s = 0; s <= k-1; s++)

137 prod[i][l] += difq[s][j][i][l]* norma[k-1-s][j][i];

138 }

139 }

140 for (i = j+1; i < n; i++) {

141 for (l = 0; l < dim; l++)

142 difq[k-1][j][i][l] = z[k-1][i][l] - z[k-1][j][l];

143 for (l = 0; l < dim; l++) {

144 difq2[l] = 0;

145 for (s = 0; s <= k-1; s++)

146 difq2[l] += difq[k-1-s][j][i][l]*difq[s][j][i][l];

147 }

148 sumdifq2[k-1][j][i] = 0;

149 for (l = 0; l < dim; l++)

150 sumdifq2[k-1][j][i] += difq2[l];

151 suma = 0;

152 for (s = 0; s <= k-2; s++)

153 suma += ((k-1)*alfa - s*(alfa +1))*sumdifq2[k-1-s][j][i]*

norma[s][j][i];

154 norma[k-1][j][i] = suma /((k-1)*sumdifq2 [0][j][i]);

155 for (l = 0; l < dim; l++) {

156 prod[i][l] = 0;

157 for (s = 0; s <= k-1; s++)

158 prod[i][l] += difq[s][j][i][l]* norma[k-1-s][j][i];

159 }

160 }

161 /* per a cada cos j, calculem el seu moment component a component ,

sumant sobre les i */

162 for (l = 0; l < dim; l++) {

163 suma = 0;

164 for (i = 0; i < j; i++)

165 suma += m[i]*prod[i][l];

166 for (i = j+1; i < n; i++)

167 suma += m[i]*prod[i][l];

168 z[k][j+n][l] = m[j]*suma/k;

169 }

170 }

171 }

172

173 /* triem pas h */

174 max1 = tol; max2 = tol;

175 for (i = 0; i < 2*n; i++) {

176 for (l = 0; l < dim; l++) {

177 /* norma subinfinit de z per la derivada d'ordre k=ordre -1 */

178 if (fabs(z[ordre -1][i][l]) > max1)

179 max1 = fabs(z[ordre -1][i][l]);

180 /* norma subinfinit de z per la derivada d'ordre k=ordre */

181 if (fabs(z[ordre][i][l]) > max2)

182 max2 = fabs(z[ordre ][i][l]);

183 }

184 }

185 h1 = pow(tol/max1 ,1./( ordre -1));

186 h2 = pow(tol/max2 ,1./ ordre);
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187 *h = min(h1,h2);

188 /* Miro que h estigui en l'interval correcte */

189 if(*h > hmax) *h = hmax;

190 else if(*h < hmin) {

191 *h = hmin;

192 flag = 2;

193 }

194 /* mirem no passar -nos de temps */

195 if(*t + *h > tmax) {

196 *h = tmax - *t;

197 flag = 1;

198 }

199 *t = *t + *h; /* nou temps */

200

201 /* sumem fent Horner pel polinomi de Taylor (component a component) */

202 for (j = 0; j < 2*n; j++) {

203 for (l = 0; l < dim; l++) {

204 suma = z[ordre ][j][l];

205 for (k = ordre -1; k >= 0; k--)

206 suma = suma *(*h) + z[k][j][l];

207 z[0][j][l] = suma;

208 }

209 }

210

211 /* alliberem memoria */

212 for (k = 0; k <= ordre; k++) {

213 for (j = 0; j < n; j++) {

214 for (i = 0; i < n; i++)

215 free(difq[k][j][i]);

216 free(difq[k][j]); free(sumdifq2[k][j]); free(norma[k][j]);

217 }

218 free(difq[k]); free(sumdifq2[k]); free(norma[k]);

219 }

220 for (i = 0; i < n; i++)

221 free(prod[i]);

222 free(difq); free(difq2); free(sumdifq2); free(norma); free(prod);

223

224 return flag;

225 }
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