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Llobregat, Spain 
c Department of Education and Psychology, Freie Universität Berlin, Berlin, 14159, Germany 
d Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, 10117, Germany 
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A B S T R A C T   

Choosing how much effort to expend is critical for everyday decisions. While several neuroimaging studies have 
examined effort-based decision-making, results have been highly heterogeneous, leaving unclear which brain 
regions process effort-related costs and integrate them with rewards. We conducted two meta-analyses of 
functional magnetic resonance imaging data to examine consistent neural correlates of effort demands (23 
studies, 15 maps, 549 participants) and net value (15 studies, 11 maps, 428 participants). The pre-supplementary 
motor area (pre-SMA) scaled positively with pure effort demand, whereas the ventromedial prefrontal cortex 
(vmPFC) showed the opposite effect. Moreover, regions that have been previously implicated in value integration 
in other cost domains, such as the vmPFC and ventral striatum, were consistently involved in signaling net value. 
The opposite response patterns of the pre-SMA and vmPFC imply that they are differentially involved in the 
representation of effort costs and value integration. These findings provide conclusive evidence that the vmPFC is 
a central node for net value computation and reveal potential brain targets to treat motivation-related disorders.   

1. Introduction 

Every day, we are faced with choices about whether to invest effort 
to attain certain goals (Bailey et al., 2016; Salamone et al., 2009). These 
effort demands are often regarded as costly, such that individuals tend to 
avoid one action if it requires too much effort with respect to the reward 
it entails (Kool et al., 2010; Kurniawan et al., 2011, 2010; Lopez-Ga
mundi and Wardle, 2018; Salamone et al., 2018). The ability to accu
rately weigh energy requirements against potential benefits (e.g., 
“effort-based decision-making”), is therefore crucial for optimal 
goal-directed action, and alterations in this function are believed to be a 
core component of motivational disorders, such as apathy (Chong and 

Husain, 2016; Hartmann et al., 2015; Husain and Roiser, 2018), and 
have been found across a variety of psychopathologies, including 
depression (Treadway et al., 2012; Yang et al., 2014), schizophrenia 
(Barch et al., 2014; Park et al., 2017), Parkinson’s disease (Chong, 2018; 
den Brok et al., 2015; Le Heron et al., 2018), and substance dependence 
(Grodin et al., 2016). Due to its clear clinical importance, there has been 
a recent surge of interest in how effort devalues prospective rewards, 
and such studies have demonstrated that effort might be a unique cost, 
distinct from other more investigated cost domains, such as risk and 
delay. However, work on the neural mechanisms underlying 
effort-based valuation have yielded heterogeneous results, and the 
question of how humans integrate effort and reward remains a subject of 
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contention. 
Most behavioral economic theories of reward-related behavior rely 

on the assumption that an organism weighs a reward and its associated 
costs to generate a net value of an option (Kahneman and Tversky, 1979; 
Sutton and Barto, 1998; Von Neumann and Morgenstern, 1990). A 
popular hypothesis proposes that, to effectively compare different op
tions, the net value of each must be represented in a ‘common currency’ 
(Padoa-Schioppa, 2011; Rangel et al., 2008; Westbrook and Braver, 
2015). A network of regions, including the ventromedial prefrontal 
cortex (vmPFC; and adjacent orbitofrontal cortex) and ventral striatum 
(VS), have been repeatedly implicated in the encoding of the net value of 
rewards discounted by the costs associated with obtaining them (Bartra 
et al., 2013; Levy and Glimcher, 2012). Based on these data, this valu
ation network is posited to be ‘domain-general’, as it tracks net value 
representations regardless of the nature of the reward (e.g., primary vs 
secondary) (Bartra et al., 2013; Sescousse et al., 2013) or of the type of 
cost (e.g., risk vs delay) (Kable and Glimcher, 2007; Peters and Büchel, 
2009; Prévost et al., 2010). 

However, much of these data have focused on outcome-related costs 
such as risk or delay. Notably, research on effort-based valuation sug
gests a limited role for the vmPFC and VS for value integration. Instead, 
other frontal regions beyond this core valuation network, including the 
anterior cingulate cortex (ACC), supplementary motor area (SMA), and 
anterior insula (AI), have been shown to signal net value discounted by 
effort costs (Arulpragasam et al., 2018; Camille et al., 2011; Chong et al., 
2017; Klein-Flügge et al., 2016; Massar et al., 2015; Skvortsova et al., 
2014; Walton et al., 2003). These findings are consistent with animal 
studies showing that lesions to the ACC, but not the nucleus accumbens, 
prelimbic/infralimbic cortex (homologous to the vmPFC), or orbito
frontal cortex, reduce the amount of effort rats invested for rewards 
(Rudebeck et al., 2006; Walton et al., 2009, 2003). Furthermore, neural 
activity in the ACC, as measured by single unit recordings, varies with 
cost-benefit weighting (Hillman and Bilkey, 2012, 2010) and 
effort-related choice (Cowen et al., 2012). This body of work thus raises 
the possibility that a distinct frontal network is specifically recruited to 
integrate effort-related value. 

On the other hand, these frontal regions (i.e. ACC, pre-SMA, AI, etc.) 
are also commonly implicated in cognitive control processes (Wu et al., 
2020), which may overlap or obscure value signals. For example, value- 
based decision-making may trigger cognitive control functions such as 
conflict detection and response inhibition (Botvinick and Braver, 2015; 
Botvinick et al., 2001), surprise and/or prediction error signaling 
(Vassena et al., 2020, 2017), and invigoration of goal-directed behavior 
(Kouneiher et al., 2009; Kurniawan et al., 2013; Mulert et al., 2005). 
Therefore, it is plausible that these regions are recruited to prepare and 
invigorate behaviors necessary for realizing a prospective reward 
instead of for computing prepotent net values per se. Cognitive control is 
also required for difficult decision-making, such as when two simulta
neously presented options have similar net value (Chong et al., 2017; 
Hunt et al., 2012; Klein-Flügge et al., 2016; Massar et al., 2015), and in 
exploration/exploitation and foraging contexts, where individuals 
forego more immediate, secure rewards in order to search for alternative 
reward sources (Kolling et al., 2016; Shenhav et al., 2013). Indeed, 
studies that have independently manipulated net value and decision 
difficulty showed that these frontal regions, particularly the dorsal ACC, 
specifically tracked decision difficulty (Hogan et al., 2017; Westbrook 
et al., 2019) while, in contrast, the vmPFC uniquely tracked net value 
(Westbrook et al., 2019). Similarly, exploration of the reward environ
ment – a behavior which is associated with increased cognitive control 
since it requires forgoing the “default” reward option in favor of un
certain rewards – also engages the dACC (Amiez et al., 2012; Cavanagh 
et al., 2012; although see Daw et al., 2006 for overlap with vmPFC). 
Taken together, these findings suggest that this distinct frontal network 
is recruited more specifically for cognitive control, such as response 
planning, option comparison, and foraging, whereas effort-related value 
integration is still processed in the core valuation network (e.g., vmPFC 

and VS) that have been identified in other cost domains. 
The inconsistencies in previous studies may be related to several 

issues. For example, some may have been statistically underpowered 
due to small sample sizes, which may have reduced the probability of 
detecting significant effects, and/or reduce the reliability of their find
ings (Müller et al., 2018; Poldrack et al., 2017). Furthermore, the spe
cific effort requirements of each task may have induced different 
patterns of brain activity, making it difficult to judge whether findings 
from individual studies can be generalized to the cognitive process of 
interest. A promising approach to address these issues is to quantita
tively synthesize fMRI data across multiple studies using an image-based 
meta-analysis (Müller et al., 2018). Relative to traditional meta-analyses 
based only on peak coordinates of significant activity, an image-based 
meta-analytic approach uses the full information of the statistical 
maps from each study, and has greater power to detect small effect sizes 
(Luijten et al., 2017; Salimi-Khorshidi et al., 2009). A previous study 
showed that even the inclusion of 20 % of statistical maps for included 
studies could significantly improve the precision of a meta-analysis 
(Radua et al., 2012). 

Here, we conducted a hybrid coordinate- and image-based fMRI 
meta-analysis to identify the neural correlates of effort-related cost 
processing and value integration. Considering their critical roles in 
response planning, we hypothesized that frontal regions like the ACC, 
SMA, and AI would be consistently involved in representing prospective 
effort, independent of the reward offer. We also aimed to test whether 
effort-related net value integration (i.e., the integration of reward value 
with the effort required to obtain it) relied on the core valuation areas 
such as the vmPFC and VS or broader frontal regions. 

2. Materials and methods 

2.1. Literature screen, data collection, and preparation 

2.1.1. Exhaustive literature search 
We conducted a systematic literature search to identify neuro

imaging studies on prospective effort and the integration of reward 
value and effort costs in healthy adults. Candidates for inclusion were 
initially identified by searching PubMed, ProQuest, and Web of Science 
on June 29, 2020 using the grouped terms (“fMRI” OR “functional 
magnetic resonance imaging”) AND (“effort discounting” OR “effort- 
based decision-making” OR “effort valuation” OR “effort anticipation” 
OR “cost-benefit valuation” OR “cognitive effort” OR “physical effort” 
OR “effort expenditure” OR “effort allocation” OR “effortful goal 
directed action” OR “reward related motivation” OR “reward related 
effort”). Searches were limited to human studies where databases would 
allow. 121, 787, and 127 studies were identified on PubMed, ProQuest, 
and Web of Science, respectively. We also searched existing in-house 
reference libraries and names of prominent authors in the field, result
ing in the addition of candidate studies. 934 candidate studies remained 
after search results were pooled and duplicates removed. Two re
searchers (PL-G, Y-WY) then independently reviewed the title and ab
stract of candidate papers to determine relevance, resulting in a pool of 
72 studies that underwent a full-text review (Fig. 1). 

2.1.2. Inclusion/exclusion criteria 
Studies were included if they: 1) had a healthy adult human sample 

in the non-elderly age range (ages 18–65, with one exception detailed 
below); 2) used functional MRI; 3) either reported or referenced a 
whole-brain analysis; and 4) utilized a task with an effort component 
with clear effort (or combined effort and reward) cues during an 
‘anticipation’ phase. Please note that ‘anticipation’ in this case refers to 
the evaluation of prospective effortful rewards before or during 
decision-making, and does not include anticipatory responses to reward 
post-effort exertion (e.g., the ‘evaluation’ phase described in Assadi et al. 
(2009)). 

To ensure that the selected studies could be meaningfully compared, 
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we limited the final corpus to those that used experimental paradigms 
with certain characteristics. First, because studies have found that loss 
and gain are asymmetric and partially dissociable (Chen et al., 2020; 
Porat et al., 2014; Tanaka et al., 2014), we excluded studies that used 
paradigms with only loss conditions, or that only conducted gain vs loss 
comparisons. Second, we excluded studies that only used a single 
speeded response as its effort component (e.g. classical Monetary 
Incentive Delay task (Knutson et al., 2000)), as this was not deemed as a 
significant effort demand, and other reviews and meta-analyses focusing 
on reward anticipation with these paradigms can be found elsewhere 
(Diekhof et al., 2012; Knutson and Greer, 2008; Wilson et al., 2018). 
Finally, we only included those studies which measured activity during 
the prospective valuation of an action and its rewards, rather than only at 
the time of reward outcome, as estimates of previously expended effort 
can be biased by reward receipt (Pooresmaeili et al., 2015). 

We contacted the corresponding authors of 28 candidate studies to 
request whole-brain statistical maps for the analyses of interest, and 
received whole-brain statistical maps or peak coordinates from 25 
studies. In cases where only between-group (e.g. clinical studies) and/or 
ROI results were reported, we contacted corresponding authors to 
inquire about the availability of whole-brain results for relevant con
trasts in healthy adult subjects. If images were not available, we 
requested they provide us with peak foci in stereotactic spatial co
ordinates (i.e., Talairach or MNI space), together with the direction of 
the effect (positive or negative). 

2.1.3. Data collection and preparation 
We performed two analyses of interest. The first examined activity 

related to the raw effort involved in the option itself. We included an
alyses that examined high vs. low effort demands (i.e., categorical 
contrasts) and those that examined continuous changes in effort (i.e., 

parametric modulation). The second analysis examined activity related 
to the prospective net value of an effortful reward. Whenever possible, 
we used the contrast related to the net value of a single option (i.e., the 
subjective value of the chosen option discounted by the effort required 
to obtain it). When this contrast was unavailable, we used the contrast 
related to the differences between options instead. Studies that only 
investigated BOLD activity associated with interactions between reward 
and effort were excluded, as they did not rely on the same discounting 
assumptions as other measures of net value. It should be noted that one 
study (Nagase et al., 2018) included two experiments with six common 
participants, so we selected the experiment with a larger sample size for 
the meta-analysis. In another study (Chong et al., 2017), all participants 
took part in both cognitive and physical effort-based decision-making 
tasks. Thus, we combined the statistical maps from both tasks to avoid 
selection bias. Finally, one study (Seaman et al., 2018) had a sample that 
included participants ranging from 22 to 83 years old. However, the 
authors of this study provided whole-brain maps that controlled for the 
effect of age, and we chose to include this data in the net value 
meta-analysis. 

2.1.4. Final corpus 
As shown in Fig. 1, 25 studies were ultimately included in the final 

corpus of studies, which were considered in one or both meta-analyses 
on raw effort evaluation and effort-reward integration. The raw effort 
valuation analysis included 15 maps (65 %) and 8 coordinates for raw 
effort processing, resulting in 23 studies, with a total sample of N = 549 
(mean age = 24.95; median = 22.5, range = [16–50]). A description of 
the final corpus of studies can be found in Table 1. The net value analysis 
included 11 maps (73 %) and 4 coordinates, resulting in 15 studies, with 
a total sample of N = 428 participants (mean age = 28.5; median = 23, 
range = [16–75]). 

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.  
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Table 1 
Summary of Included Studies.  

Study N Task Type Effort Type 
(Description) 

Effort 
exertion 

Analysis Data Type Parameter Net value calculation 

Aridan et al., 
2019 

40 Choice Physical 
(Handgrip) 

Offline (1 
trial) 

Net 
value 

Map Prob(yes) β1⋅R+ β2⋅L+ β3⋅E      

Effort Map Parametric 
effort demand   

Arulpragasam 
et al., 2018 

28 Choice Physical (Key 
press) 

Offline 
(all) 

Net 
value 

Map SV of Chosen Option R − k⋅Eρ       

Effort Map Effort demand of 
the variable option 
(at Cue 1)  

Bernacer et al., 
2019 

24 Choice Physical 
(Running) 

Offline (1 
trial) 

Net 
value 

Map SV Difference Hyperbolic, exponential, or double exponential 
discounting model based on individual model 
fit      

Effort Map Max > no effort  
Bonnelle et al., 

2016 
37 Choice Physical 

(Handgrip) 
Online 
(all) 

Net 
value 

Coordinates Expected Reward 
R
(

force
MVC

–(E –0.3)
)

Effort Coordinates Parametric effort 
demand  

Chong et al., 
2017a 34 Choice 

Physical 
(Handgrip) 
+Cognitive 
(RSVP) 

Offline 
(10 trials) 

Net 
value 

Map SV Difference 

Physical: R − k⋅E2  

Cognitive: 
R

1 + k⋅E 
(based on model 

comparisons)       

Effort Map 
Parametric effort 
demand  

Croxson et al., 
2009 16 No choice 

Physical 
(Trackball) 

Online 
(all) 

Net 
value Coordinates Log net value log⁡(

R
E
)

Effort Coordinates Increasing effort 
level  

Gaillard et al., 
2019 

23 No Choice Cognitive 
(Spatial WM) 

Online 
(all) 

Effort Map Categorial High vs 
Low WM Load  

Grodin et al., 
2016 17 No Choice 

Physical (Key 
press) 

Online 
(all) Effort Map 

Categorical High vs 
Low effort  

Hauser et al., 
2017 28 

Reward/ 
effort 
learning 

Physical 
(Handgrip) 

Online 
(all) Effort Map 

Parametric 
expected effort 
demand  

Hogan et al., 
2019 

34 Choice Physical 
(Handgrip) 

Offline 
(10 trials) 

Net 
value 

Map SV of chosen option − (− E)ρ  

Klein-Flügge 
et al., 2016 

21 Choice Physical 
(Handgrip) 

Online 
(30 % 
trials) 

Net 
value 

Map SV difference R
(

1 −

(
1

1 + e− k(E− p) −
1

1 + ekp

)(

1+
1

ekp

))

Effort Map 
Parametric Effort 
Difference  

Kurniawan 
et al., 2010 

17 Choice Physical 
(Handgrip) 

Offline 
(75 % 
trials) 

Net 
valueb Coordinates 

Choice × effort 
interaction (choice 
to grip > choice to 
hold)       

Effort Coordinates 
High > low effort of 
chosen option  

Kurniawan 
et al., 2013 19 No Choice 

Physical 
(Handgrip) 

Online 
(50 % 
trials) 

Effort Map 
High > low effort 
demand  

Massar et al., 
2015 

23 Choice 
Cognitive 
(Backwards 
typing) 

Offline (1 
trial) 

Net 
value 

Map SV of chosen option 
Indifference points from the experimental 
calibration      

Effort Map 
Parametric effort 
level  

Nagase et al., 
2018 33 

Reward/ 
effort 
learning 

Cognitive 
(Arithmetic) 

Online 
(all) Effort Map 

Expected effort 
demand of chosen 
option  

Park et al., 2017 30 No Choice Physical (Mouse 
click) 

Online 
(all) 

Effort Coordinates High vs low effort 
demand  

Prévost et al., 
2010 16 Choice 

Physical 
(Handgrip) 

Online 
(all) 

Net 
value Coordinates 

SV of variable 
option 

R
1 + k⋅E       

Effort Coordinates 
Parametric Effort 
Demand  

Sayalı and 
Badre, 2019 50 Choice 

Cognitive (Cued 
task switching) 

Online 
(all) Effort Map 

Expected effort 
demand of chosen 
option  

Scholl et al., 
2015 

20 
Reward/ 
effort 
learning 

Physical 
(Trackball) 

Online 
(all) 

Net 
value 

Map Decision value 
difference 

R + δ⋅Prob + γ⋅E
1 + δ + γ       

Effort Map 
Effort demand 
difference  

75 Choice Map SV of chosen option 

(continued on next page) 
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2.2. Meta-analytic procedures 

2.2.1. Seed-based d Mapping 
Because the inclusion of statistical maps can substantially increase 

the sensitivity of meta-analyses (Radua et al., 2012), we chose to 
perform combined image- and coordinate-based meta-analyses using the 
software Seed-based d Mapping with Permutation of Subject Images 
(SDM-PSI, version 6.21; https://www.sdmproject.com). SDM-PSI pre
serves the information about the sign of the effect and the methods have 
been validated in previous studies (Albajes-Eizagirre et al., 2019; Radua 
et al., 2012). During preprocessing, SDM-PSI recreated voxel-level maps 
of standardized effect sizes (i.e., Hedge’s g) and their variances and 
allowed the incorporation of both whole-brain t-maps and peak infor
mation (i.e., coordinates and t-values). Specifically, in the case where 
raw study images were available, effect sizes were estimated from the t, 
z, or p values of the map. However, when t-maps were unavailable, 
SDM-PSI used anisotropic kernels estimate lower and upper effect-size 
bounds for each study from reported coordinates and their respective 
t-values (Radua et al., 2014). 

2.2.2. Meta-analysis 
Two separate whole-brain meta-analyses were conducted to examine 

consistent neural correlates of prospective effort and net value pro
cessing, respectively. SDM-PSI meta-analysis has been described in more 
detail elsewhere (Albajes-Eizagirre et al., 2019). Briefly, after 
pre-processing, maximum likelihood estimation (MLE) is used to 
initially estimate the voxel-wise mean effect sizes and variances. Next, 
study and subject images were imputed 50 times (Albajes-Eizagirre 
et al., 2019; Luijten et al., 2017). Using Rubin’s rules, SDM-PSI then 
combines subject images from the different imputations into single 
combined meta-analysis image. Random-effect models were then used 
to assess the mean effect size of each study, where the weight of a study 
is the inverse of the sum of its variance and the between-study variance. 
SDM z-maps were generated by dividing the voxel-wise effect sizes by 
their standard errors. As these z-values may deviate from a normal 
distribution, a null-distribution was estimated for each meta-analysis 
from 50 whole-brain permutations, as is standard in SDM-PSI. 

2.2.2.1. Region-of-interest (ROI) analysis. To directly investigate the 
involvement of key brain regions in effort-related cost processing and 
value integration, we focused on seven a priori regions of interest (ROIs) 
derived from an independent meta-analysis (Bartra et al., 2013) that 

examined valuation network in general. Those ROIs included: the 
vmPFC, right and left VS, ACC, pre-SMA, and right and left AI, which 
generally covered the core valuation network and additional frontal 
regions of interest. A spherical mask of radius 6 mm was created for each 
ROI centered on the respective peak coordinates. Effect sizes and vari
ances of those ROIs were extracted from each study and plotted as forest 
plots. We used the metafor package (Viechtbauer, 2010) in R version 
4.0.3 (https://www.r-project.org) to calculate mean effect sizes and 95 
% confidence intervals for each ROI, as this package allows for specifi
cation of variance estimates from each study. 

2.2.2.2. Whole-brain analysis. We also examined the whole-brain re
sults beyond these a priori ROIs. To reduce the false-positive results due 
to multiple comparisons, we applied a familywise error (FWE) correc
tion with 1000 subject-based permutations (Albajes-Eizagirre et al., 
2019). In accordance with SDM-PSI’s recommendations, a 
threshold-free cluster enhancement (TFCE) corrected p < 0.025 was 
used (Albajes-Eizagirre et al., 2019). 

In addition, we performed a conjunction analysis to identify regions 
that were associated with both raw effort demand and net value. For 
exploratory purposes, we created maps using a voxel-level uncorrected 
threshold of p < 0.001 and a cluster size > 20 voxels for both meta- 
analyses. Masks were generated from significant clusters scaled posi
tively or negatively with either raw effort demand or net value (i.e., 
based on absolute values). We then used SPM12 (http://www.fil.ion.ucl. 
ac.uk/spm) to perform a conjunction analysis to extract overlapping 
areas for both processes, regardless of the direction (Cutler and 
Campbell-Meiklejohn, 2019). 

Because of the high level of heterogeneity of task features and pa
rameters between studies, we were interested in assessing if our findings 
were driven by a specific design. Specifically, tasks varied in effort type 
(i.e. cognitive effort vs. physical effort), probability of effort execution 
(online vs offline effort), and net value parameter (single net value vs. 
value difference between two options). However, direct comparisons 
would be underpowered, as too few studies contained specific task 
features. Thus, in order to explore if studies with certain task features 
showed patterns of activity that were unique and/or overlapping to 
activations patterns identified in the main analyses, we conducted 6 
supplementary meta-analyses using subgroups of studies (N ≥ 10 studies 
in a subgroup) from the main raw effort and net value analyses. 

First, in order to identify regions involved in signaling prospective 
physical effort demands and integration of physical effort costs with 

Table 1 (continued ) 

Study N Task Type Effort Type 
(Description) 

Effort 
exertion 

Analysis Data Type Parameter Net value calculation 

Seaman et al., 
2018 

Physical 
(Keyboard) 

Online 
(50 % 
trials) 

Net 
value 

R
1 + k⋅E  

Skvortsova 
et al., 2014 

20 Reward/ 
effort 
learning 

Physical 
(Handgrip) 

Online 
(all) 

Net 
value 

Map Expected value 
demand of chosen 
option 

R − k⋅E (based on model comparisons)       

Effort Map Effort Q  
Stoppel et al., 

2011 
18 No Choice Cognitive (Line 

tracing) 
Online 
(all) 

Net 
valueb 

Coordinates Reward × difficulty       

Effort Coordinates Hard > easy effort  
Suzuki et al., 

2020 
19 Choice Physical 

(Keypress) 
Offline 
(all) 

Net 
value 

Coordinates SV of chosen option R − k⋅Ep   

29 No Choice Physical (Maze 
Navigation) 

Online 
(all) 

Effort Coordinates High > low effort  

Vassena et al., 
2014 

22 No Choice Cognitive 
(Arithmetic) 

Online 
(all) 

Effort Coordinates High > low effort  

Westbrook et al., 
2019 

21 Choice Cognitive (N- 
back) 

Offline (1 
trial) 

Net 
value 

Map SV of the more 
effortful option 

Indifference points from the experimental 
calibration      

Effort Map Effort demand  

Abbreviation: E, effort; L, loss; MVC, maximum voluntary contraction; Prob, probability; R, reward; RSVP, rapid serial visual presentation; WM, working memory. 
a Maps from separate tasks were combined for all analyses. 
b Only included in supplementary Net Value analysis. 
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reward, we repeated both raw effort and net value analyses with a 
subgroup of studies using physical effort tasks (N = 16 and N = 13, 
respectively). Note in the case of studies that had both physical and 
cognitive effort tasks (i.e. Chong et al. (2017)), only maps from the 
physical effort task were used. 

Second, in many effort-based decision-making studies, subjects were 
required to either execute the effort immediately after a choice (i.e., 
online execution) or execute the effort (or a random sample) at the end 
of the task (i.e., offline execution). Thus, to examine if regions consis
tently engaged in raw effort valuation overlapped with regions involved 
in signaling purely immediate effort requirements, we conducted a sub- 
group analysis that investigated prospective effort signaling in tasks 
using real online effort (N = 16). 

Third, because of the possible role of the dorsal ACC and other frontal 
regions in signaling choice difficulty, we were interested in assessing if 
our findings were influenced by studies that used net value differences as 
the parameter, rather than the net value of the chosen option. Thus, we 
repeated the meta-analysis with a subgroup of studies that used pa
rameters only representing the net value of a single option (N = 11). 

Fourth, because net value can also be more broadly defined as an 
interaction between reward and effort, we repeated the net value meta- 
analysis by including the coordinates of two additional studies (Kur
niawan et al., 2010; Stoppel et al., 2011) that used interaction param
eters (e.g. Reward × Effort) as opposed to traditional discounting 
parameters of net value (e.g. SV). 

Finally, although the neural correlates of raw reward have been 
widely examined in previous studies (e.g., Bartra et al., 2013; Sescousse 
et al., 2013), for the confirmatory purpose, we conducted a raw reward 
analysis based on studies that examined reward processing (N = 13). 
These analyses were conducted using the same procedures described 
above. 

2.2.3. Heterogeneity and publication bias 
Significant clusters were assessed for heterogeneity, or the degree of 

between-study variance due to other factors (e.g. differences in analyt
ical approaches, subject populations, etc.) aside from random error. For 
each meta-analysis, peaks with heterogeneity l2 values > 20 % were 
flagged and inspected. Although it has been suggested that l2 statistics 
are inflated in small sample meta-analyses (Von Hippel, 2015), we note 
any clusters with high l2 values > 20 %, values, as results from these 
clusters may be driven by other factors rather than chance. 

Publication bias, or the favoring of publishing significant, as opposed 
to null, findings, can inflate meta-analysis effect sizes. In order to assess 
publication bias, we created funnel plots for peak voxels of significant 
clusters in which Hedge’s g effect size estimates were plotted against a 
measure of precision (i.e. variance of Hedge’s g estimate). Funnel plots 
for each cluster were visually inspected for asymmetry, which would 
suggest that reported effect sizes are related to their statistical signifi
cance. For each significant cluster, Egger regression tests (Egger et al., 
1997) were also conducted to quantitatively test if the number of studies 
with statistically significant results is larger than expected. Significant 
results in an Egger regression would indicate the possible existence of 
unpublished studies with non-significant effects. These statistics are 
reported alongside the effect sizes for each significant cluster. 

2.3. Data availability 

The protocol for this study was not pre-registered. However, 
unthresholded z-maps of our results are available at NeuroVault: 
https://neurovault.org/collections/9286/. The TFCE-corrected maps as 
well as publication bias and heterogeneity data are available from the 
corresponding authors upon request. 

3. Results 

3.1. ROI analysis 

To directly examine the roles of key regions in raw effort prospect 
and effort-reward integration, we focused on seven a priori ROIs. Results 
are summarized in Table 2. The vmPFC consistently showed positive 
associations with net value and negative associations with raw effort. 
The bilateral VS showed a similar response pattern, but smaller effect 
sizes for both analyses. In contrast, the pre-SMA scaled positively with 
raw effort and, albeit more variably, negatively with net value. The ACC 
and bilateral AI showed a similar response pattern, but smaller effect 
sizes for both analyses. Figs. 2 and 3 show the Hedge’s g effect sizes for 
raw effort and net value analyses in the vmPFC and pre-SMA ROIs. The 
forest plots for other regions were shown in Figs. S1–S10. 

To statistically test the opposite response patterns of the vmPFC and 
pre-SMA, we focused on studies with both raw effort and net value data 
(N = 13) and conducted a linear mixed-effects model with Measure 
(Effort and Net Value), Region (vmPFC and pre-SMA), and their inter
action as fixed effects, study as a random effect, and Hedge’s g effect 
sizes as the dependent variable. As expected, the analysis identified a 
significant interaction between Measure and Region (β = -0.83, Z =
-7.16, p < 0.001), such that, for vmPFC, effect sizes were more positive 
for net value than effort. Conversely, for pre-SMA, effect sizes more 
positive for effort than net value (see Table S1 and Fig. S11). 

Finally, to explore the hierarchical structure of the seven ROIs during 
raw effort and net value processing, we examined the correlations be
tween effect sizes of these regions across studies. As shown in Fig. S12, 
the correlation map for the raw effort analysis revealed two distinct 
networks, with one including the vmPFC and bilateral VS, and the other 
including the pre-SMA, ACC, and bilateral AI. The pattern is less clear for 
the net value analysis (Fig. S13), where the vmPFC activity did not show 
strong correlations with other regions, possibly due to its low variance 
(i.e., high consistency) across studies. Other regions showed high cor
relations across studies. These findings further suggest that the vmPFC 
and pre-SMA may play opposite roles in effort-related cost encoding and 
net value computation, although the correlation maps identified here 
are complex and more evidence is still needed to elucidate how these 
regions interact with each other during effort-based valuation. 

3.2. Whole-brain analysis 

3.2.1. Raw effort 
We first examined brain regions that were consistently associated 

with raw effort processing. As illustrated in Fig. 4a, the analysis yielded 
positive effects clustered in the right pre-SMA and adjacent caudal ACC 
(see Table 3). At a more lenient, uncorrected p < 0.001 threshold, other 
positive foci were detected in the left SMA, right precuneus, and left 
middle frontal gyrus, and negative foci were detected in the bilateral 
vmPFC/OFC and left middle temporal gyrus. Heterogeneity I2 statistics, 
funnel plots and Egger regressions did not detect excess heterogeneity or 
publication bias in any significant clusters in the TFCE-corrected find
ings. However, in the uncorrected analysis, a cluster in the right pre
cuneus was found to be associated with extreme heterogeneity (I2 =

59.50 %). 

3.2.2. Net value 
Next, we examined brain regions that were consistently associated 

with net value encoding. As illustrated in Fig. 4b, the analysis yielded a 
large cluster connecting cortical and subcortical regions of the medial 
PFC, VS, dorsal striatum (bilateral putamen and left caudate), and 
temporal gyrus (see Table 3). Moreover, a cluster consisting of the 
bilateral medial and posterior cingulate cortex and precuneus and a 
separate cluster in the left middle frontal gyrus also showed significantly 
positive associations. Some small clusters, including the left SMA, right 
dorsolateral PFC (dlPFC), and right superior frontal gyrus, scaled 
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negatively with net value, although these results were only detectable at 
a lenient uncorrected p < 0.001 threshold. 

In addition, heterogeneity I2 statistics, funnel plots and Egger re
gressions showed no evidence of excess heterogeneity or publication 
bias in any of the significant clusters for the main net value or single SV 
subgroup TFCE-corrected results. No evidence of publication bias was 
detected in the uncorrected net value analysis, however negative clus
ters the left SMA and right dlPFC had I2 statistics of 64.09 % and 50.05 % 
respectively, suggesting that findings in these two regions were highly 
heterogenous. 

3.2.3. Conjunction analysis 
Finally, we performed a conjunction analysis to identify areas that 

are sensitive to both net value and effort requirements. Due to the 
exploratory nature of this analysis, we used a lenient threshold of 

uncorrected p < 0.001 at voxel level and k > 20 at cluster level. Note 
that we used absolute values in the conjunction analysis because of the 
opposite response pattern found in the main prospective effort and net 
value meta-analyses. We found that the vmPFC and left lateral orbito
frontal cortex scaled positively with net value and negatively with effort 
requirement. The response pattern was reversed in the pre-SMA and 
caudal ACC (Fig. 4c). However, these findings were not detectable after 
whole-brain TFCE-correction. 

3.2.4. Supplementary analyses 

3.2.4.1. Raw effort, physical effort subgroup. Findings generally over
lapped with the main raw effort analysis. The analysis yielded one 
cluster in the bilateral precuneus and PCC and extending towards the 
right supramarginal gyrus, another in the bilateral SMA and dACC, and a 

Table 2 
Results of ROI analyses.  

ROI MNI coordinate Analysis Hedge’s g Z p I2 (in %) Egger’s p 

vmPFC (2, 46, -8) Net value 0.31 6.19 < 0.01 < 0.01 0.61   
Raw effort ¡0.14 ¡3.18 < 0.01 1.51 0.83 

rVS (12, 10, -6) Net value 0.18 3.13 < 0.01 22.48 0.92   
Raw effort − 0.002 − 0.05 0.95 8.06 0.45 

lVS (-12, 12, -6) Net value 0.14 2.44 0.02 25.16 0.74   
Raw effort − 0.05 − 1.10 0.27 < 0.01 0.93 

Pre-SMA (-2, 16, 46) Net value ¡0.27 ¡2.62 < 0.01 73.04 0.12   
Raw effort 0.17 3.02 < 0.01 39.67 0.92 

ACC (-2, 28, 28) Net value − 0.11 − 1.19 0.23 69.07 0.22   
Raw effort 0.08 1.75 0.08 12.59 0.82 

rAI (32, 20, -6) Net value − 0.12 − 1.50 0.14 55.31 0.21   
Raw effort 0.08 1.86 0.06 < 0.01 0.34 

lAI (-30, 22, -6) Net value − 0.06 − 0.73 0.46 63.17 0.16   
Raw effort 0.03 0.83 0.41 0.69 0.51 

Abbreviations: ACC, anterior cingulate cortex; AI, anterior insula; l, left; r, right, vmPFC, ventromedial prefrontal cortex; VS, ventral striatum. The significant results 
are indicated in bold font. 

Fig. 2. Forest plot illustrating neural correlates of effort demand in the vmPFC and pre-SMA ROIs. The pre-SMA is positively associated with raw effort (Hedge’s g =
0.20, 95 % CI [0.02, 0.37]), whereas the vmPFC showed a negative association (Hedge’s g= -0.17, 95 % CI [-0.30, -0.03]). 

P. Lopez-Gamundi et al.                                                                                                                                                                                                                       



Neuroscience and Biobehavioral Reviews 131 (2021) 1275–1287

1282

third, small cluster in the right frontal pole and dlPFC that were 
consistently positively associated with physical effort demands (see 
Table S2 and Fig. S14). However, unlike the original raw effort meta- 
analysis, negative association in the vmPFC not significant. 

3.2.4.2. Net value, physical effort subgroup. Similar to the main net value 
analysis, BOLD activity in the mOFC, vmPFC, and rostral ACC, PCC and 
striatum was positively associated with the net value in studies 
measuring physical effort (see Table S3 and Fig. S15). Negative effects 
were also detected; however, they were associated with high heteroge
neity (all I2 > 40 %). 

3.2.4.3. Raw effort, online execution. Similar to the main prospective 
effort analysis, BOLD activity in the bilateral pre-SMA and ACC was 
positively associated with effort demand in studies requiring effort 
execution during the task (Table S4 and Fig. S16). 

3.2.4.4. Other metrics of net value. To ensure that the results of the net 

value meta-analysis were not driven by choice difficulty, we reran our 
analysis excluding four experiments that used the value of two options 
as their net value metric (e.g. difference in SV of more vs less effortful 
option). Importantly, the vmPFC and bilateral VS remained to be the foci 
with highest effect sizes, and the whole-brain activation pattern was 
qualitatively similar (see Table S5 and Fig. S17), suggesting that our 
main findings were not influenced by the cognitive demands of 
comparing two options. Moreover, to ensure that our findings were 
robust when using a broader definition of net value, we also repeated 
our analysis including two additional studies that used reward and effort 
interactions as a measure of net value. Main foci and whole-brain acti
vation patterns remained qualitatively similar to the initial net value 
meta-analysis (see Table S6 and Fig. S18). However, deactivations 
associated with net value were not detected in these supplementary 
analyses, suggesting that the deactivations in the SMA detected in the 
main meta-analysis were not robust. 

3.2.4.5. Raw reward. The results showed that the activity of a large 

Fig. 3. Forest plot illustrating neural correlates of net value in the vmPFC and pre-SMA ROIs. The vmPFC is positively associated with net value (Hedge’s g = 0.22, 95 
% CI [0.22, 0.44]), whereas the pre-SMA showed a negative association (Hedge’s g= -0.28, 95 % CI [-0.52, -0.03]). 

Fig. 4. Whole-brain meta-analytic results. A: neural activity related to pure effort cost representation; B: neural activity related to net value; and C: their conjunction 
based on absolute values. Display threshold: uncorrected p < 0.005 at voxel level. 
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cluster, including the vmPFC, bilateral VS, DS, PCC, ACC, and some 
occipital regions, was positively associated with raw reward magnitude. 
These results largely overlapped with clusters identified in the net value 
analysis (Table S7 and Fig. S19). 

4. Discussion 

We conducted a series of combined coordinate- and image-based 
meta-analyses to examine the neural substrates of effort-based valua
tion. We first investigated neural activity related to raw effort and net 
value in seven a priori ROIs previously implicated in value-based deci
sion-making. We found these regions could be broadly divided into two 
groups that exhibited distinct activity pattern during these two pro
cesses, with the vmPFC and pre-SMA as the central node of each. Spe
cifically, the vmPFC scaled positively with net value but negatively with 
raw effort, whereas the pre-SMA displayed the opposite pattern. The 
exploratory whole-brain and conjunction analyses further corroborate 
the ROI analyses. These findings provide strong evidence for different, 
yet complementary, roles of the vmPFC and pre-SMA in the valuation of 
effort costs, and implicate these two regions as core components of a 
network that drives motivated behavior. 

Our findings provide comprehensive evidence that effort-related net 
value integration is processed in a network centered around the vmPFC 
and VS. Accumulating evidence implicates the vmPFC as a general hub 
for value integration, as it has been identified to signal net value of re
wards across different cost domains, such as risk and delay (Croxson 
et al., 2009; Hogan et al., 2019; Kable and Glimcher, 2007; Levy et al., 
2010; Peters and Büchel, 2009; Schmidt et al., 2012; Westbrook et al., 
2019). Additionally, the network including the vmPFC has been impli
cated in tracking net values across reward domains (i.e., primary, sec
ondary, and aesthetic rewards), reward processing phases (Bartra et al., 
2013; Clithero and Rangel, 2014; Levy and Glimcher, 2012; Sescousse 
et al., 2013), reward rates, and the value of current and previous offers 
(Mehta et al., 2019). These findings are therefore consistent with 

prominent neuroeconomic accounts which propose that the vmPFC 
represents the net value of an option in a ‘common currency’, in order to 
facilitate value comparison during decision making (Padoa-Schioppa, 
2011; Rangel et al., 2008; Westbrook and Braver, 2015). 

One would hypothesize that a region involved in representing net 
value would negatively scale with effort demands. Except for the 
vmPFC, our study did not find that other net-value-related regions, such 
as the VS, meet this requirement. These findings are at odds with pre
vious reports that the VS activity is negatively modulated by effort costs 
in the presence of reward information (Westbrook et al., 2019). More
over, dorsal parts of the striatum have also been found to track both 
effort costs (Burke et al., 2013; Guitart-Masip et al., 2012; Klein-Flügge 
et al., 2016; Kurniawan et al., 2013, 2010; Yang et al., 2016) and net 
value of prospective effortful rewards (Klein-Flügge et al., 2016; Seaman 
et al., 2018). However, our results implicate motor-related regions of the 
striatum, particularly the putamen, as signaling net value alone. One 
plausible explanation is that the striatum signals reward information 
during the evaluation of prospective effortful rewards (which we 
focused on in the current study) and encodes effort costs during the 
initiation of an effortful action (Suzuki et al., 2020). In line with this, 
studies that have experimentally isolated prospective effort and reward 
cues showed that the striatum was not activated by effort alone during 
the anticipation phase (Arulpragasam et al., 2018). However, future 
investigations that examine the role of the striatum during different time 
windows are needed to directly test this hypothesis. 

The PCC also showed a reliable association with net value, but not 
effort requirement. Along with the vmPFC, the PCC is a critical node of 
the default mode network (Acikalin et al., 2017). It has also been 
considered as a key component of the valuation system in other cost 
domains (Bartra et al., 2013; Clithero and Rangel, 2014; Peters and 
Büchel, 2009). Its precise role in effort-based valuation remains largely 
unclear, but it has been implicated in monitoring temporal changes to 
the environment (Pearson et al., 2011) or integrating changes to the 
internal and external environment (Nakao et al., 2012). Moreover, 

Table 3 
Results of whole-brain analyses.  

Analysis Cluster Voxels Peak MNI coordinates BA Regions SDM-Z I2 (in %) Egger’s p 

Net value 1* 23,918 − 4, 52, -8 10 Left vmPFC 7.05 0.21 0.70    
2, 52, -8 11 Right vmPFC 6.47      
8, 10, -8  Right NAc 6.42      
30, -6, -4  Right putamen 5.78      
− 32, -16, 4  Left putamen 5.55      
− 22, -6, -14 34 Left amygdala 5.40      
24, 0, -16 34 Right amygdala 5.37      
− 50, -62, 14 37 Left temporal gyrus 5.34      
− 6, 14, -8  Left NAc 5.26      
− 6, 380 11 Left ACC 5.17      
− 52, -50, 2 21 Left middle temporal gyrus 5.15      
24, 14, -16 48 Right insula 5.13    

2* 3821 − 14, -38, 40 23 Left PCC 5.59 6.33 0.44    
− 12, -40, 44  Left precuneus 5.45      
0, -8, 42 23 Dorsal ACC 5.00      
− 16, -34, 40  Left superior parietal gyrus 4.88    

3* 337 − 26, 28, 38 9 Left dlPFC 4.25 3.27 0.59  
4 156 − 8, 16, 52 6 Left SMA − 3.72 64.09 0.09  
5 139 44, 38, 24 8 Right dlPFC − 4.26 50.05 0.19  
6 26 16, 20, 58 8 Right superior frontal gyrus − 3.80 24.71 0.25 

Prospective effort 1* 112 8, 16, 64 6 Right SMA 3.97 1.07 0.49  
2 46 − 8, 8, 52 6 Left SMA 3.92 0.16 0.68  
3 36 14, -66, 38 7 Right precuneus 3.62 59.40 0.11  
4 23 − 28, -6, 50 6 Left middle frontal gyrus 3.51 0.16 0.93  
5 72 − 8, 56, -8 11 Left vmPFC − 4.26 5.90 0.63  
6 67 − 42, 30, -14 47 Left OFC − 4.04 < 0.01 0.95  
7 59 6, 54, -14 11 Right vmPFC − 3.80 15.71 0.94  
8 56 − 56, -6, -18 21 Left middle temporal gyrus − 4.39 7.47 0.72 

All results survived a statistical threshold of voxel-level uncorrected p < 0.001 and cluster size > 20. 
Abbreviations: BA, Brodmann areas; vm, ventromedial; dl, dorsolateral; d, dorsal; r, rostral; PFC, prefrontal cortex; NAc, nucleus accumbens; ACC, anterior cingulate 
cortex; PCC, posterior cingulate cortex; SMA, supplementary motor area; OFC, orbitofrontal cortex. 

* Regions survived a statistical threshold of TFCE-corrected p < 0.025. 
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previous studies have shown that the activity of the PCC was positively 
associated with the degree of uncertainty during value-based deci
sion-making (McCoy and Platt, 2005). Taken together, the PCC may play 
a role in transmitting the background information to the vmPFC to guide 
the net value calculation, although it remains to be tested by studies that 
dissociate net value and these components. 

Finally, both main and supplementary analyses consistently identi
fied a variety of parietotemporal regions as scaling positively and 
uniquely with net value representations. While these regions (i.e. 
intraparietal lobule, intraparietal sulcus, temporal pole, etc.) have been 
previously implicated in SV encoding of effortful rewards (Chong et al., 
2017; Massar et al., 2015), they also play a critical role in perceptual 
decision-making (Keuken et al., 2014), attention (Husain, 2019), risk 
weighting (Mohr et al., 2010), and decision difficulty (Westbrook et al., 
2019). Their notable absence in reward processing (Keuken et al., 2014; 
Sescousse et al., 2013) may thus suggest that these parietotemporal re
gions are involved in high-level perceptual and cognitive functions 
associated with task demands as opposed to net value computation. 

Previous studies have identified effort-related net value signals in 
other frontal regions, such as the pre-SMA and ACC, which suggests that 
these regions may be specifically relevant for effort-reward integration. 
In the current meta-analysis, however, we found that these regions – in 
particular, the pre-SMA and adjacent caudal ACC – all scaled positively 
with raw effort costs and, albeit less robustly, scaled negatively with net 
value. Such a pattern suggests that these regions are more likely to be 
involved in the processing of effort-related costs, rather than value 
integration per se. These findings align closely with a previous trans
cranial magnetic stimulation study, in which disruption of the SMA led 
to decreased effort perception (Zénon et al., 2015). The pre-SMA and 
dorsal ACC are also recruited to process other types of costs, such as risk 
(Mohr et al., 2010) and delay (Schüller et al., 2019). A plausible 
mechanism, therefore, is that these regions serve as a domain-general 
hub for cost encoding and transfer the cost information to the vmPFC 
for calculation of net value. Alternatively, neuroeconomic models of 
effort-based decision-making have posited that the ACC, in particular, is 
involved in good-to-action transformation (Padoa-Schioppa, 2011). 
Thus, another plausible mechanism is that the vmPFC computes and 
compares the net value of separate options and passes choice preference 
to action selection regions, such as the pre-SMA and ACC, for conversion 
to motor output. 

Despite strong evidence about the involvement of the caudal ACC, 
which is close to the pre-SMA, in effort costs processing, it should be 
noted that the ACC, as a whole, is highly heterogeneous (Neubert et al., 
2015; Yu et al., 2011). Indeed, the whole-brain results showed distinct 
response patterns across the ACC, in which the ventral part was mainly 
involved in net value computation, whereas the dorsal part in raw effort 
encoding. These findings suggest that subregions of the ACC could be 
linked to different aspects of the effort-related valuation, which may also 
partly explain the fact that some studies identified net value signals in 
the ACC (Klein-Flügge et al., 2016; Massar et al., 2015). Moreover, 
net-value-related activation may emerge in the dorsal ACC if it is highly 
correlated with other confounding variables, such as decision difficulty 
(Shenhav et al., 2013). It is particularly plausible for studies that have 
used the SV difference between two options as the net value parameter, 
as it often approximates decision difficulty (Klein-Flügge et al., 2016). 
Notably, studies that have experimentally isolated net value and deci
sion difficulty showed that the cognitive control network, including the 
dorsal ACC and other frontoparietal regions, tracked the latter but not 
the former (Hogan et al., 2019; Westbrook et al., 2019). 

The current study has some limitations. First, the sample size of the 
net value analysis is relatively small. Although the inclusion of statistical 
images partly offsets this issue, the number of included studies did not 
allow for us to perform meta-regressions, which would have provided 
more conclusive answers about the effects of potential moderators, such 
as effort type (i.e., physical vs. cognitive), parameter type (i.e., differ
ence in SV vs. SV of one option), and effort execution requirement (i.e., 

real vs. hypothetical). These secondary analyses could be particularly 
relevant for understanding less consistent effects, such as the ones 
detected here in the pre-SMA ROI. Specifically, it is unclear if the high 
degree of heterogeneity in our net value effect size estimates in the pre- 
SMA ROI were due to differences in preparatory motor activity between 
tasks, selective networks engaged for cognitive vs. physical effort, or 
other unobserved factors, such as individual differences. Furthermore, 
sub-group meta-analyses investigating effects of different reward 
schedules (e.g., cumulative vs. random payout) were underpowered. 
Thus, we were unable to disambiguate between pure reward/effort 
integration and encoding of probabilistic features of the individual tasks. 
This is particularly important for effects observed in the PCC, OFC, and 
mPFC, as these regions have been consistently involved in signaling 
prospective reward uncertainty (Bailey et al., 2016; Burke et al., 2013; 
Dreher, 2013; Peters and Büchel, 2009; Prévost et al., 2010). Given the 
sensitivity of effort-based decisions to both reward probability (Barch 
et al., 2014; Soder et al., 2020; Treadway et al., 2012) and opportunity 
costs (Otto and Daw, 2019), future research should directly explore the 
interaction between effort demand and other cost domains and/or task 
features. Second, the majority of the included studies focused on phys
ical effort. These findings should be treated cautiously when general
izing to other formats of effort. Finally, the meta-analytic results 
reflected consistent regional neural correlates across studies. Although 
our study identified critical brain regions related to effort-related value 
integration or cost encoding, how these regions interact with each other 
to achieve the dynamic valuation process remains to be elucidated by 
studies using task-based connectivity technique (Hauser et al., 2017) or 
imaging methods with higher temporal resolution (e.g., 
magnetoencephalography). 

In conclusion, this study is the first to use combined image- and 
coordinate-based meta-analyses to examine neural activity related to 
effort-related costs and net value. The results showed the pre-SMA is 
involved in cost representation of prospective effort independent of re
wards. In contrast, the vmPFC and VS, which have been implicated in 
value integration in other cost domains, are also involved in effort- 
reward integration. These findings further clarify the neural mecha
nisms underlying effort-related valuation and may provide candidate 
intervention targets for patients with decreased motivation to exert 
effort to obtain rewards. 
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