
1. Introduction
Space weather events trigger numerous and diverse phenomena both at the surface and in the space sur-
rounding our planet. In particular, they manifest as varying electric currents flowing in the Earth's magne-
tosphere and ionosphere. These time-varying currents flowing in the upper atmosphere produce magnetic 
field variations at the Earth's surface, and also geoelectric fields as a result of Faraday's law of induction 
within the Earth. The geoelectric fields interact with ground-based infrastructures and generate geomag-
netically induced currents (GICs), which are electrical currents induced in conductors that operate on the 
Earth's surface (Boteler & Pirjola, 2017; Pulkkinen et al., 2017). Large infrastructures as electric-power trans-
mission grids, oil and gas pipelines and even railway signaling track circuits (Boteler, 2021) are commonly 
affected negatively by GICs. These can potentially cause problems such as damaged power transformers 
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and/or increased corrosion of pipeline steel, which in turn may have an impact on the critical infrastruc-
tures that provide services to the population such as electric power, gas or oil delivery and train systems.

The induced geoelectric fields have periods typically ranging from tens of seconds to several hours (or 
frequencies in the range of 10−1–10−4 Hz). These electric fields are conveyed to conductors running on the 
surface such as power lines, whose transformers are generally grounded working in an alternating current 
(AC) regime (50–60 Hz). Because the GICs are quasi-direct currents (DC) flowing in response to the geoe-
lectric field, they may disrupt or permanently damage these transformers.

These currents are responsible for both dramatic system-level failures, such as the famous Hydro-Québec 
1989 outage that affected millions of people, and less severe but far more frequent effects such as pipeline 
corrosion (Gummow & Eng, 2002; Pulkkinen et al., 2001), railway support system failures (Boteler, 2021) 
and power transformer wear. Although traditionally viewed as a high-latitude phenomenon, during the Hal-
loween storms of 2003 reports indicated important GIC impacts in South Africa (Gaunt & Coetzee, 2007), 
where geomagnetic latitudes range between 25°S and 35°S. After those reports and our first analysis in 
north-eastern Spain (Torta et al., 2012), vulnerability assessments of the GIC hazards in mid-to-low latitude 
countries have proliferated all over the world. Kelbert (2020) provides a complete review of the state of the 
GIC studies around the world.

GIC hazard assessment in a system does not require precise knowledge of GIC values, but rough estimates 
of its magnitude are sufficient (Pirjola, 2008). However, this assertion must not be misunderstood and con-
vey to lax approaches when constructing approximate models. Only using the highest voltage level tends to 
overestimate the predicted currents, and this could favor falling into certain catastrophism to be avoided. 
In the same way, ocean-land interfaces or the juxtaposition of provinces with notably different conductive 
structure could produce geographically distributed differences up to a factor of 1,000 in the derived geoe-
lectric fields (e.g., Bedrosian & Love, 2015), that can be masked when using solely homogeneous or 1D 
resistivity Earth structures.

With the above considerations in mind, after a decade of effort and continuous improvements, in this paper 
we present our latest results on the modeling of GICs in Spain. One of our main achievements has been 
the replacement of the homogeneous Earth's resistivity by a 3D lithospheric-scale geoelectric model in the 
Iberian Peninsula. Next, our efforts have been directed at determining how the derived geoelectric fields 
interact with the power transmission grid infrastructure by including the 220 kV voltage level. Both achieve-
ments have been validated by comparing model results with actual GIC measurements under particular 
power transmission lines.

2. New 3D Lithospheric Resistivity Model
Aimed at improving our previous analyses on the threat posed by GICs to the Spanish grid, we have under-
taken a critical review of the existing magnetotelluric (MT) data and models and created a new 3D Electrical 
Resistivity Model of the Iberian Lithosphere (ERMIL). Several local and regional 2D and 3D crustal and 
lithospheric electrical resistivity models had been obtained in the last 25 years (Alves Ribeiro et al., 2017; 
Campanyà et al., 2012, 2018; Carbonell et al., 1998; Garcia et al., 2015; Ledo et al., 2000; Marti et al., 2009; 
Monteiro Santos et al., 2002; Pous et al., 1995, 1997; 1999, 2004; Rosell et al., 2011). However, a lithospheric 
scale 3D model of the whole peninsula was still lacking. The available magnetotelluric sites (Figure 1) have 
an irregular distribution, being the NE and SE part of the peninsula the areas with a denser MT sites dis-
tribution. The western part of the Iberian Peninsula does not contain enough MT sites to obtain a reliable 
electrical resistivity model at lithospheric scale. New long period data are being collected, and existing long 
period data already acquired by other authors are being retrieved to complement the model presented in 
this work in the near future.

The initial model was set for four different units, namely sediments, upper crust, lower crust, lithospher-
ic mantle and asthenosphere, as well as the seawater around the peninsula. The limits between different 
units were obtained from the EUcrust07 model (Tesauro et al., 2008) and Fullea et al. (2021) for the lith-
osphere-asthenosphere boundary. It includes the bathymetry and the topography for the area. The resis-
tivity values used for each of those units were determined from previous 2D and local 3D MT models (see 
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references above). Figure  2 shows cross sections of the initial 3D model. For the sediments, a value of 
50 ohm·m was chosen, 5,000 ohm·m for the crust, 1,000 ohm·m for the lithospheric mantle, 30 ohm·m for 
the asthenosphere (not shown in the figure) and 0.3 ohm·m for the seawater.

The inversion of the 56 sites of Figure 1 was done using the ModEM 3D inversion code (Egbert & Kel-
bert, 2012; Kelbert et al., 2014) inverting the four components of the impedance tensor at 19 logarithmic 
scale equispaced periods from 1 to 30,000 s. Due to noise issues some of these values were rejected, giving 
rise to a total number of 2,603 values used. An error floor of 10% and 15% of ·xy yxZ Z was chosen for the 
anti-diagonal and diagonal components of the impedance tensor, respectively. A metric to characterize the 
global fit of the model responses to the measured data is the normalized root mean square error, defined as:
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where dobs,i and dcalc,i refer to the observed and calculated model responses, respectively, of the different 
components of the impedance tensor, and ei is the aforementioned error floor of the components and N is 
the total number of data used. Mesh dimensions of the model were 103 × 122 × 119, the horizontal size of 
the mesh of the whole peninsula was 11 × 11 km and the vertical elements above and below the bathym-
etry/topography changes were 100 m. The initial normalized RMS error was 40 and the final one after 150 
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Figure 1. Location of the magnetotelluric stations included in the inversion (black stars) and lines (AA′, BB′, and CC′) for the cross-sections of the initial and 
final 3D resistivity models. C1, C2, and C3 are the surface projections of low resistivity structures found in the final 3D electrical resistivity model, see text for 
discussion.
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iterations was 2.1. Comparisons between observed data and model responses can be found in Figure S1. 
Figure 3 shows cross sections of the final ERMIL.

The final model keeps the sharp limit between the sediments and the upper crust although the resistivity 
value of the crust and mantle structures shows some differences. The final model eliminates the electrical 
difference between the upper and lower crust, resulting in an overall moderately resistive crust. Low resis-
tivity structures appear at the Pyrenean (C1 in Figure 3) and the Betics orogens (C2 in Figure 3) as well as 
below the Iberian Chain (C3 in Figure 3). Those low resistivity structures have been reported previously by 
local studies (Campanyà et al., 2018; Rosell et al., 2011).

Another difference with the initial model is the contact between the electrical lithosphere–asthenosphere 
boundary (e-LAB) that is a bit shallower than the initial one based on other geophysical properties (Fullea 
et al., 2021) although the lack of data precludes a sufficiently accurate characterization.

Magnetotellurics is most sensitive to vertically integrated conductivity or conductance. For a uniform layer, 
the conductance is the product of conductivity and thickness. Figure 4 shows the comparison between the 
conductance down to 120 km depth for the initial and final 3D resistivity models (Figures 4a and 4b, re-
spectively). We have chosen this depth, which roughly coincides with the whole lithosphere, because this is 
the resolution limit of the available data. The conductance of the western part of the final model is like the 
original one, and below the Pyrenean and Betics orogens enhances because the electrical resistivity of the 
lower crust below those orogens was overestimated in the initial model.

3. Constructing a Model of the Spanish Power Network
The Spanish power network used in Torta et al. (2012, 2014) only included the 400 kV transmission lines 
and the corresponding substations acting as nodes of this network. The latter model has been improved 
upon to include the DC resistances of the 220 kV transmission lines and involved substations, along with 
the DC resistances for the high and low voltage windings of all their transformers where known. On the 

TORTA ET AL.

10.1029/2021SW002805

4 of 17

Figure 2. Cross-sections of the initial electrical resistivity model of the Iberian lithosphere (ERMIL) model (see 
Figure 1 for the location of each profile). V.E.: 2.000 x means that the vertical scale is twice the horizontal one.
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substations where these values were unknown, they were given 0.54 Ω and 0.13 Ω for the high and low 
voltage windings, respectively (these are the averages for those transformers with known winding resist-
ances), and (as in Torta et al., 2014) an earthing resistance of 0.15 Ω. Although there are lower voltage parts 
of the Spanish transmission network (110–150 kV lines), we do not have the resistance values of their ele-
ments from the power grid operator. In any case, because of their higher resistances and, in general, shorter 
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Figure 3. Cross-sections of the final electrical resistivity model of the Iberian lithosphere (ERMIL) model (see Figure 1 
for the location of each profile). V.E.: 2.000 x means that the vertical scale is twice the horizontal one. C1, C2, and C3 
are low resistivity structures, see text for discussion.

Figure 4. Conductance maps from the surface to 120 km depth for the initial (a) and final (b) model. The distances on the axes are according to the UTM 
projection relative to the center of the Iberian Peninsula.
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lengths, we assume that they would not add much difference to the modeled GICs. The effect of shield wires 
has been neglected. The schematic power network can be seen in Figure 5.

From Figure 5, although it seems that the improvement does not represent an enormous increase of sub-
stations and transmission lines, in practice we went from a total of 173 substations, 375 transformers and 
300 lines to 629, 1,401, and 912, respectively (these include a series of newly created 400 kV substations 
and lines). The counterintuitive appearance comes from the huge concentration of substations in densely 
populated areas, especially around the metropolitan regions of Madrid and Barcelona, which appear super-
posed in the figure. As in the previous studies, we have only included the border foreign stations of France, 
Portugal and Morocco.

4. New GIC Model Results
Once the information on the extended power network was gathered and properly arranged, the new 
DC-equivalent network model was created, from which the GIC values at the different parts of the system 
were calculated by subjecting the model network to unit geoelectric fields in the North and East directions. 
The procedure for solving the GICs was carried out using a standalone code written in Matlab for the gen-
eration of a DC-equivalent network and GIC calculation which works for power grids with multiple voltage 
levels. The equivalent network thus constructed consists of as many nodes per substation as the maximum 
number of voltages encountered in one single substation plus one. The former nodes play the role of buses 
of the equivalent substations and the latter plays the role of the neutral point. Our scheme, whose detailed 
description will be presented in a subsequent paper, is an alternative scheme to the mathematically equiva-
lent (Boteler and Pirjola, 2014) methods of Lehtinen and Pirjola (1985) (LP), which solves for the earthing 
currents at each node, and to the Nodal Admittance Matrix (NAM) method, which calculates first the nodal 
voltages, and the GICs in a subsequent step. Alternatively, our method solves the circuit laws for the current 
flowing between the bus nodes and the neutral point which, unlike LP, requires no (infinite-resistance) 
earth connection for the buses. Note that all of these methods require subsequent steps to calculate the 
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Figure 5. Spanish power transmission grid and substations. Red and blue colors denote 400 and 220 kV transmission 
lines, respectively. The distances on the axes are according to the UTM projection relative to the center of the Iberian 
Peninsula. The locations of EBR, SPT, and SFS geomagnetic observatories are indicated by green diamonds.
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GICs in the different parts of interest in the system (windings, transmission lines, and grounding current). 
However, the number of equations/unknowns is reduced in our method compared to the traditional ones, 
thus optimizing the computational cost (an advantage that becomes important for large networks) while 
keeping a good condition of the matrix to be inverted. In any case, we have checked that all three methods 
provide exactly the same GIC results.

This test allowed comparing the new results with those obtained by Torta et al. (2014) when applying uni-
form electric fields of 1 V/km oriented North and East and looking at the resulting GICs calculated at each 
of the nodes and transformer windings. Figure 6 shows the absolute values in red for the 400 kV voltage 
level and in blue when both the 400 and 220 kV levels are considered.

Comparing both results, we can see a general decrease in the GIC amplitude which, as expected, is mainly 
due to the fact that currents not only flow through the neutral points of the 400 kV circuit but are also dis-
tributed over the 220 kV lines. A very clear example can be seen in Figure 6 (bottom) in Galicia (Northwest 
of Spain).

To assess the maximum expected GIC in each transformer because of extreme geomagnetic storms, post-
event analysis of data from the Spanish geomagnetic observatories during the October 29–31, 2003 (“Hal-
loween storm”) were performed, although other episodes coincident with very abrupt storm onsets, which 
have proven to be more hazardous at these mid-latitudes, were analyzed as well. The resistivity model 
described in section 2 allowed obtaining the impedance tensor at each point of a dense, regularly distrib-
uted grid, which was then convolved with the geomagnetic field interpolated at the same points of that 
grid from the field measured at the Spanish and some surrounding observatories using the spherical ele-
mentary current systems (SECS) technique as shown in Torta et al. (2017), to provide the geoelectric field. 
Figure S2 shows the locations of all these observatories. The interpolated geoelectric fields from that grid 
were integrated along the power lines to obtain the necessary line voltages, from which the GICs were ulti-
mately calculated in the earthing points, in the power lines and in each separate winding of the substation 
transformers.

Movie S1 (top) shows the modeled GICs flowing to ground at each substation during the Halloween storm, 
with circles whose diameters are proportional to the flowing current. It is important to emphasize that we 
assumed the network configuration and elements currently in operation, which is possibly different from 
the one at the time of this event. Red/blue circles denote GICs flowing to/from the earth, respectively, while 
red and blue lines correspond to the 400 and 220 kV voltage levels, respectively. At the bottom, the time 
evolution is shown for the Ascó substation, where the model predicts the highest GIC throughout the whole 
time series.

Since it is the flow of the GICs through the winding of transformers that produces DC flow distorting the 
alternate AC flow, causing the saturation of the transformer core during the one-half cycle, it is more sig-
nificant to seek the maximum expected GIC flow throughout the windings of each transformer in order to 
look for its dangerousness. In connection with this, it is worth mentioning that different types of transform-
ers are not equally prone to GIC consequences, but they depend on their design (e.g., Rajput et al., 2020). 
Figure 7 (top) shows the peak absolute winding current at each transformer of the network during the 
Halloween storm, that is, the winding with the highest GIC is displayed for each transformer (either the pri-
mary or the secondary for full-winding transformers, or the series or common for autotransformers). These 
results contrast with those obtained with just the 400 kV grid (Figure 7, bottom). In both figures, null values 
correspond either to junctions (i.e., substations without transformers) or transformers at the first substation 
of neighboring (i.e., foreign) systems, where results are inaccurate due to the omission of the rest of the 
systems. Figures S3 and S4 correspond to the same Figure 7, but for the cases of using horizontal geoelectric 
fields of 1 V/km in the north and east directions, respectively.

When adding the 220 kV level, even though the system experiences an overall reduction in GIC flowing 
from the network to ground or vice versa, as reflected in Figure 6, the latter results show that at the trans-
former winding level they exhibit, in general, an augmentation. This is a consequence of the increase in the 
number of transmission lines that converge at substations, sometimes with sharp changes in line orienta-
tion, causing them to exhibit a large GIC. For example, when a 220 kV line continues in the same direction 
as a 400 kV line that formerly ended in an edge substation when only the higher voltage was considered, it 
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Figure 6. Absolute values of the geomagnetically induced currents (GICs) at the earthing point of each substation for 
a homogeneous horizontal geoelectric field of 1 V/km in the northward (top) and eastward (bottom) directions when 
the model was exclusively for the 400 kV network (red circles) and when we added the 220 kV network (blue circles). 
Red and green arrows in the top map indicate Mudarra and Manzanares substations, respectively. Red and green arrows 
in the bottom map indicate Muruarte and Manzanares substations, respectively.
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tends to increase the GICs through its windings. This is somehow illustrated in Zheng et al. (2013) and it 
is the case of Muruarte station (see Figure 8), the location of which is indicated by a red arrow in Figure 6, 
bottom. Another example of GIC increase is seen at Mudarra substation (Figure 9), the location of which 
is indicated by a red arrow in Figure 6, top. Although by shifting from a system model with only 400 kV 
voltage level to a 400 and 220 kV model the substation earthing current diminishes, the maximum winding 
GIC increases. The corresponding GIC values to/from ground can be scrutinized by zooming in on those 
locations on the map in Figure 6, and are clearly detailed in Figures 8 and 9, along with the GICs in the 
series windings of the corresponding transformers, and in each of the power lines that converge on those 
substations. Again, our analysis here focusses on the effects of horizontal geoelectric fields of 1 V/km in the 
north and east directions, but, as indicated by Bernabeu (2013), the extent of an actual impact depends on 
the magnitude and orientation of the geoelectric field, both of which vary stochastically over the course of 
an actual storm.
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Figure 7. Peak absolute winding geomagnetically induced current (GIC; A/phase) at each transformer during the Halloween storm for the grid with the 400 
and 220 kV voltage levels (top) and for the grid with only the 400 kV voltage level (bottom). Red/blue bars correspond to transformers with 400/220 kV at their 
higher voltage level.
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Figure 10 shows the modeled GICs flowing in the transmission lines of the Spanish grid for unit geoelectric 
fields in the north (top) and east (bottom) directions. The practical utility of this figure is to show the pow-
er lines under which the best signal-to-noise ratios are expected to be obtained for purposes of validating 
our model network with actual GIC measurements using the differential magnetometric method, that is, 
by placing a vector magnetometer under a power transmission line, and calculating the GICs flowing in it 
using Ampere's law by comparing its measurements with contemporary measurements at another station 
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Figure 8. Total geomagnetically induced current (GIC) along the power lines converging at Muruarte substation (at the center of the plots) due to a horizontal 
geoelectric field of 1 V/km in the north (left) and east (right) directions, when shifting from a system model with only 400 kV voltage level (top) to a 400 and 
220 kV model (bottom). The color bar on the right indicates the color coding for the GICs. Thin lines and blue labels correspond to 220 kV lines, while thick 
lines and red labels correspond to 400 kV lines. Currents are positive when directed toward that substation. The insets at the left side of the figures show the 
direct currents (DC)-equivalent of the substation, illustrating the resistances and the values of the current flow (np stands for neutral point). Note that the GIC 
flow at Muruarte is divided between two autotransformers built in parallel at the substation.
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located far enough from the line to exclude the signals derived from the GICs (as in, e.g., Hübert et al., 2020). 
The East-to-West line indicated by a red arrow at the northwest of EBR Observatory, for example, is a good 
candidate to perform such new measurements.

Validation is the latest fundamental step of the modeling process, as it allows assessing the validity of the 
assumptions made by comparing its output with real GIC observations. Using our own methodology for 
achieving GIC data in the way outlined above, we have started measuring the GICs flowing in a few power 
lines of the grid in regions where the ERMIL resistivity model was constructed with a dense distribution of 
MT sites. According to our experience, only induced currents above about 1 A give magnetic signatures that 
exceed the noise threshold in most deployments. As we started measuring during the solar minimum and 
Spain is a mid-latitude country, the latter fact limited the significance of the available recorded data, but we 
can already report the results for a number of minor geomagnetic storms. In Figure 11 we show them for 
an event in August 2020 at the power line where we obtained the best fits. It corresponds to a 400 kV line 
located in the southeasternmost corner of the Iberian Peninsula (indicated by the green arrow in Figure 10).

Figure 11 suggests that we are progressing correctly in the model improvement, as the measured GICs are 
significantly better predicted using the geoelectric field produced by the final ERMIL than using the initial 
model. When we calculate typical skill scores for that occasion, such as the correlation coefficient, r, or 

TORTA ET AL.

10.1029/2021SW002805

11 of 17

Figure 9. Same as Figure 8 for Mudarra substation. Note that the geomagnetically induced current (GIC) flow at the substation is spread between two 
autotransformers built in parallel at the substation. Note also that the 400 kV circuit line through which the greatest current flows (connecting Mudarra 
substation to the North-West), in fact, includes three power lines.
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Figure 10. Absolute value of the geomagnetically induced current (GIC; A) along the power lines (considering the 
total currents when the lines are multiple) due to a horizontal geoelectric field of 1 V/km in the north (top) and east 
(bottom) directions. The color bar on the right indicates the color coding for the GICs. The most vulnerable lines 
are shown in warm colors. Thin lines represent 220 kV lines, while thick ones are 400 kV lines. See text for the lines 
indicated by arrows.
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the performance parameter, P′ (see Marsal & Torta, 2019), the former goes from 0.83 to an almost perfect 
correlation of 0.97; while the latter goes from 0.44 to 0.70. The not yet perfect match is a consequence of the 
model's underestimation of the measured signal, mainly originating from the numerous assumptions still 
made concerning the resistances of the network elements.

5. Discussion and Conclusion
During the last decade, we have followed a rather natural and common way to progressively approach the 
problem of assessing the hazard from GICs in a country. In our first steps, we established a modeling proce-
dure to derive GIC estimates in Spain that assumed a uniformly resistive Earth model with a conductivity 
of 0.001 S/m, and just used the elements of the 400 kV voltage level as the load of the circuit to which the 
geoelectrical source of the GICs was connected (Torta et al., 2014). Using the current network configuration 
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Figure 11. Modeled (red line) versus measured (blue line) 3-phase geomagnetically induced current (GIC) flowing in the Tabernas-Litoral power transmission 
line on August 28–29, 2020. The modeled GIC has been obtained using the geoelectric field produced either by the initial forward Earth's resistivity model (top), 
or by the final electrical resistivity model of the Iberian lithosphere (ERMIL) model (bottom).
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and all elements in operation yielded maximum transformer neutral GIC amplitudes of 70 A, and more 
than 100 A for the major storms of “Halloween” and March 24, 1991 (the one with the most abrupt onset 
ever recorded), respectively. The transmission lines in Spain cover a considerably large area, with edge-to-
edge lengths of the order of 1,000 km for several paths. Note that GIC flows not just in individual lines, 
but through the whole system, and the important length is not the "individual line length" but the "system 
length” (Zheng et al., 2013). However, those historical maximum amplitudes of the GICs certainly seem too 
large compared to those recorded or estimated for other countries with comparable geomagnetic latitudes. 
Unfortunately, GIC measurements were not available in Spain for the times of those historical events to val-
idate those predictions. In any case, they apparently produced no harmful effects for the period 2000–2010, 
as shown by a correlation analysis between the power utility's failure logs and the geomagnetic activity (Cid 
et al., 2013). The performance of such initial modeling could only be analyzed by assessing its agreement 
with actual measurements recorded in one substation (Vandellòs) during 2011 and 2012, and we, as many 
others, realized that the use of empirical magnetotelluric impedance tensors is essential to improve the 
match between model predictions and actual observations.

Geoelectric fields are rarely measured directly but can be estimated from ground observations of the mag-
netic field and knowledge of the surface impedance. Torta et al. (2017) acquired MT data at one site in the 
proximity of the Vandellòs substation, which is located on the Mediterranean coast in the NE of Spain and 
considered the measured impedances as the representative response of the regional geoelectrical structure 
for long periods. This pilot experience of using customized values of impedance instead of generic ones 
proved to be effective because the agreement between GIC model predictions and measurements improved 
significantly in that area. This single MT site has been supplemented now by other 55 stations, mainly 
distributed in the NE and SE areas of the Iberian Peninsula, which allowed to perform a 3D inversion that 
amended an initial resistivity model. The initial model was constructed by using the available information 
from bathymetry, topography, sediment thickness and depth to the upper and lower crust obtained from 
seismic and potential field methods and assuming typical resistivity values for each layer.

The ERMIL model still needs to be complemented by the inversion of more MT measurements filling the 
remaining gaps, especially in the western part of the Peninsula (including Portugal), but it is starting to 
provide realistic results, according to the validation already performed with the GIC measurements under 
a power line in the SE.

Regardless of the Earth's resistivity structure used, the retrospectively predicted peak amplitudes for major 
historical events have in general been reduced at node level by adding the 220 kV level to the network model 
(see Figure 6). At the transformer previously considered as the most vulnerable (in Manzanares substation, 
indicated by the green arrows in that figure), the GIC drop is especially significant because that single 
autotransformer in the substation accumulated all the current flowing through a node that was wrongly 
considered as an edge node, as the 220 kV lines connected to it were omitted. This fact, along with a sub-
stantial change in the geoelectric field brought about by the replacement of an unrealistic highly resistive 
homogenous Earth for that region with one computed using the 3D approach, yields an extraordinary re-
duction in the earthing current predicted in that transformer again for the Halloween storm: now, it hardly 
exceeds a value of 10 A compared to the previous value of 70 A. Since GIC measurements at the neutral of 
that transformer are available, validation of the modeling is possible there (Figure 12), which gives satis-
factory results.

The decreases have not been as dramatic everywhere, so that the maximum absolute value of GICs in the 
whole network to ground at node level for that event is reduced from the 78.2 A given by Torta et al. (2014) 
to 56.5 A. The value for this maximum absolute GIC flow to ground, which can be taken as a proxy for the 
vulnerability of the network, amounted up to 70.7 A on the occasion of the most abrupt storm commence-
ment ever recorded (on March 24, 1991). As it is difficult to obtain geomagnetic data at the 1-min or lower 
cadence for that epoch, we just used magnetic field data from EBR (which had to be digitized from analog 
records using the technique described in Curto et al., 1996) to derive the geolectric field in that occasion 
(given the mid-latitudinal location of the Iberian Peninsula, this is a reasonable simplification). This is 
shown in Figure S5, while for comparison with Figure 7 (top), Figure S6 shows the peak absolute winding 
current at each transformer of the network during that storm. An additional relevant result of this study is 
that, although the GIC flowing to ground is reduced in general after inclusion of the 220 kV level, this is not 
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necessarily the case when applied to individual transformer windings, which is arguably the most critical 
quantity for assessing the vulnerability of the grid to Space Weather events.

Modeling GICs in complex power transmission networks involves facing important challenges regarding 
the true heterogeneity of the Earth's geoelectrical structure, the true values of the network resistances, and 
all the different voltage levels of the network. Our results confirm preconceived notions that the simplifying 
assumptions that often must be made to overcome these difficulties can lead to significant errors when pro-
ducing vulnerability assessments of power grid assets. There exists the possibility of approaching the prob-
lem by developing transfer functions that directly map geomagnetic field measurements to GICs in such a 
way that the errors by having assumed geoelectrical simple structures or simplified network characteristics 
are absorbed by the uncertainties of the derived parameters (Heyns et al., 2020).

However, empirical approaches need GIC data, but not all transformers in a network can be instrumented. 
The “traditional” modeling, such as the one outlined in this work, provide GIC estimates for all power trans-
mission lines, nodes and transformers, although they can become inaccurate if all the necessary elements in 
the modeling chain are not exactly known or have substantial uncertainties. Therefore, it is recommended 
to progressively enhance the model by introducing more MT data and network characteristics as they be-
come available. In any case, the analytical network modeling formulation and the assumptions made must 
be validated through significant GIC measurements. With the current available data, we have validated 
the modeling of GICs by measuring the magnetic effect of the induced currents on several 400 kV lines of 
the Spanish power grid. Results revealed good correlations with the GICs modeled in three of them, and 
especially in the Tabernas-Litoral line (as shown in Figure 11). This suggests that the 3D lithospheric resis-
tivity model works quite well in areas where it enjoyed a dense distribution of MT data to be inverted (see 
Figure 1). However, the mismatch in the GIC amplitude in three of the four tested power lines could be due 
to the existence of still substantial uncertainties in some assumed values of transformer winding resistances 
and/or their grounding, or due to the effect of having ignored power lines at voltages below 220 kV.
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Figure 12. Modeled (red line) versus measured (blue line) geomagnetically induced currents (GIC) flowing in the neutral of the transformer of Manzanares 
substation on September 07–08, 2017.
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Data Availability Statement
The data were obtained from www.intermagnet.org. In addition, EBR geomagnetic data are available from 
http://www.obsebre.es/en/en-om-data-catalogs-ebre. The input data to the ModEM code used are available 
in the institutional repository of the Universitat de Barcelona (https://doi.org/10.34810/data120).
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