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Objectives: We aimed to develop and validate a prediction model, based on clinical history and exami-
nation findings on initial diagnosis of coronavirus disease 2019 (COVID-19), to identify patients at risk of
critical outcomes.
Methods: We used data from the SEMI-COVID-19 Registry, a cohort of consecutive patients hospitalized
for COVID-19 from 132 centres in Spain (23rd March to 21st May 2020). For the development cohort,
tertiary referral hospitals were selected, while the validation cohort included smaller hospitals. The
primary outcome was a composite of in-hospital death, mechanical ventilation, or admission to intensive
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care unit. Clinical signs and symptoms, demographics, and medical history ascertained at presentation
were screened using least absolute shrinkage and selection operator, and logistic regression was used to
construct the predictive model.
Results: There were 10 433 patients, 7850 in the development cohort (primary outcome 25.1%, 1967/
7850) and 2583 in the validation cohort (outcome 27.0%, 698/2583). The PRIORITY model included: age,
dependency, cardiovascular disease, chronic kidney disease, dyspnoea, tachypnoea, confusion, systolic
blood pressure, and SpO2 �93% or oxygen requirement. The model showed high discrimination for
critical illness in both the development (C-statistic 0.823; 95% confidence interval (CI) 0.813, 0.834) and
validation (C-statistic 0.794; 95%CI 0.775, 0.813) cohorts. A freely available web-based calculator was
developed based on this model (https://www.evidencio.com/models/show/2344).
Conclusions: The PRIORITY model, based on easily obtained clinical information, had good discrimination
and generalizability for identifying COVID-19 patients at risk of critical outcomes. Miguel Martínez-
Lacalzada, Clin Microbiol Infect 2021;27:1838
© 2021 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and

Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Coronavirus disease 2019 (COVID-19) has spread globally, with a
clinical spectrum ranging from an asymptomatic state to critical
illness [1e3]. Notably, Spain was one of the countries with the
highest incidence of COVID-19 during the first pandemic peak [4].
To optimize the use of limited healthcare resources, it is essential to
identify, as early as possible, those patients who are at high risk of
progressing to critical illness.

To date, studies of COVID-19 prognostic factors have focused on
laboratory measurements and radiological examinations obtained
following admission [5e15], which are not available in outpatient
or resource-limited settings. Recently published well-developed
models tend not to include clinical variables obtained from his-
tory and examination carried out on initial assessment [9e13].
Where one machine-learning model has addressed basic clinical
features, it has narrowed down the prediction to the mortality
outcome only and lacks wider generalizability [16]. Furthermore, a
critical appraisal of the COVID-19 models has shown poor reporting
and high risk of bias [14].

Prediction models based on easy-to-collect data have previ-
ously been developed for other infectious diseases, e.g. meningitis
and pneumonia [17e19]. As a global health emergency, manage-
ment of COVID-19 would benefit from a prediction model that
could be readily applied for initial diagnosis. Therefore, we
developed and externally validated a prediction modeldbased on
easily obtainable clinical measures at presentation with confirmed
COVID-19 diagnosisdto identify patients at risk of developing
critical outcomes.
Methods

Study design and data source

This study was based on the SEMI (Sociedad Espa~nola de
Medicina Interna) COVID-19 Registry [20]. It is an ongoing multi-
centre nationwide cohort of consecutive patients hospitalized for
COVID-19 across Spain. Eligibility criteria were age �18 years,
confirmed diagnosis of COVID-19 (defined as a positive result on
real-time reverse-transcription-PCR (RT-PCR) for the presence of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in
nasopharyngeal swab specimens or sputum samples), first hospital
admission for COVID-19, and hospital discharge or in-hospital
death [20]. The SEMI-COVID-19 Registry was approved by the
Provincial Research Ethics Committee of M�alaga (Spain) and the
Institutional Research Ethics Committees of each participating
hospital.

For the study, we retrieved from the Registry clinical baseline
data, history of previous medication, and comorbidities collected
on admission, as well as complications during hospitalization and
status at discharge. We used data from patients admitted to 132
hospitals between 23rd March and 21st May 2020. We chose
hospital complexity as the criterion to assess the transportability
of the prognostic model in a setting other than the one in which it
was derived [21,22]. Patients admitted to tertiary referral hospi-
tals (�300 beds, according to the Ministry of Health of Spain [23])
were selected for the development cohort, while patients from
smaller hospitals (<300 beds) were included in a separate vali-
dation cohort.

Outcome description

The primary outcome, critical illness during hospitalization, was
defined as the composite of in-hospital death, mechanical venti-
lation or admission to the intensive care unit (ICU), according to
previously published studies [10,24,25].

Potential predictors

To develop a predictive model based only on easily measurable
variables registered at admission, we considered clinical signs and
symptoms, demographic variables, and medical history. An initial
list of 29 candidate variables was selected based on review of the
existing evidence [5e16], clinical plausibility, and relevance to
clinical care. To improve consensus on model applicability, a one-
round online questionnaire was conducted among a multidisci-
plinary panel of 24 physicians involved in the clinical management
of COVID-19 at nursing homes, emergency departments, primary
care centres and hospitalization wards (six per each setting). The
panellists were asked to rate (on a nine-point Likert scale) the
availability/reliability of each predictor, its ability to predict the
outcome, the best way to merge predictors of rare occurrence, and
the maximum number of variables the model should contain.
Agreement was considered when seven or fewer panellists rated
outside the three-point region containing the median [26].

Statistical analysis

The predictive model, called PRIORITY, was presented as the for-
mula for estimating the probability of COVID-19 critical illness
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outcome, as well as an associated web-based calculator. Patients'
characteristics were summarized as frequencies and percentages or
means and standard deviations. Statistical analysis was performed
usingRv4.0.0,withmice,mfp, glmnet, pROC, rmsand rmdapackages.

Model development
Missing values in the potential predictors were imputed using

single imputation, a reasonable alternative to multiple imputation
when dealing with relatively few missing values [27]. A stochastic
single imputation dataset was created for both cohorts (develop-
ment and validation) through multiple imputation by chained
equations. Quantitative variables were kept as continuous to avoid
loss of prognostic information, and non-linear relationships were
modelled by multivariate fractional polynomials with a maximum
of two degrees of freedom [28]. The least absolute shrinkage and
selection operator (LASSO) was the feature selection method used
to reduce the number of predictors down to the maximum agreed
by the expert panel [29]. Briefly, the potential predictors were
entered into the LASSO regularization process, which penalizes the
coefficients by gradually shrinking them to zero. We selected the
penalty parameter (l) that minimized the deviance within the
given maximum number of predictors. Those variables with non-
zero coefficients were retained for risk estimation using a logistic
regression model. Coefficients were presented as odds ratios (ORs)
and 95% confidence intervals (95%CIs).

Model performance
Nagelkerke's R2 and Brier score were used as overall perfor-

mance measures. We assessed the discriminative ability of the
model using the C-statistic, calculated as the area under the
receiver operating characteristic curve, with 95%CI. Calibration of
the model was visually assessed by plotting deciles of predicted
versus observed probabilities, and the calibration slope with 95%CI
was calculated [22].

Model validation
Internal validationwas carried out to assess optimism-corrected

performance by repeating the entiremodel development over 1000
bootstrap samples drawn from the development cohort [27]. We
externally validated the model in a separate cohort of patients
admitted at smaller hospitals to evaluate model transportability
[21]. Within this validation cohort, we reassessed model perfor-
mance and compared its discrimination ability with models based
on oxygen saturation and/or age, the most discriminating univari-
ate predictors for in-hospital mortality previously reported [15].
We also undertook a decision curve analysis, a method to ascertain
the adequacy of prediction models based on the relative value of
benefits (true positives) and harms (false positives) [30]. We
plotted the net benefit of the models for the full range of critical
illness probability thresholds.

Sensitivity analysis
To assess the impact of assumptions adopted in the model

development, we carried out a complete-case analysis using only
those patients with complete data in the potential predictors. We
also developed models without restricting the maximum number
of predictors (l at one-standard-error of the minimum) or using
linear continuous predictors instead of non-linear terms.

Results

We considered data from 10 433 patients included in the SEMI-
COVID-19 Registry. The development cohort included 7850 pa-
tients, of whom 1967 (25.1%) presented critical illness: 650 (8.3%)
were admitted to the ICU and 1598 (20.4%) died. The mean age
was 65.8 ± 16.4 years and 57.2% (4483/7834) were male. De-
mographics and clinical characteristics for the development
cohort are shown on Table 1.
Model development and performance

From an initial list of 29 candidate variables, the expert panel
forged an agreement on 21 potential predictors for further evalu-
ation in the predictive model. Chronic liver disease, previous
medication with angiotensin converting enzyme inhibitors or
angiotensin receptor blockers, cough, arthralgia/myalgia, ageusia/
anosmia, asthenia/anorexia, headache, gastrointestinal symptoms
were excluded. Consensus was achieved for including a range be-
tween five and nine variables in the final model. For transparency,
univariate analysis is shown in Supplementary Material Table S1,
even though it was not part of the model development process. The
21 potential predictors were included in the LASSO selection pro-
cess, retaining a subset of nine variables as the best predictors of
critical illness (Supplementary Material Fig. S1). A multivariable
logistic regression model was then fitted with these nine variables.
All of them, except for moderate or severe dependency, were sta-
tistically significant (Table 2).

Based on the logistic regression model, the probability of critical
COVID-19 illness could be calculated as:

Probability (%) ¼ 100/(1þexp(ez)), where z ¼
e4.665 þ 2.663$((age/100)2) þ 0.164$(dependency) þ 0.316$
(cardiovascular disease) þ 0.586$(chronic kidney disease)
þ 0.504$(dyspnoea)þ 0.844$(1/(SBP/100)2) þ 0.911$(tachypnoea)
þ 1.200$(SpO2 �93% or oxygen requirement)þ 0.681$(confusion).

All predictors were coded as binary variables (1 when present
and 0 when absent) except for age (years) and systolic blood
pressure (SBP, mmHg). We also developed an online calculator
based on this model (Supplementary Material Fig. S2), accessible at
https://www.evidencio.com/models/show/2344.

In the development cohort, the PRIORITY model had an R2 of
0.347 and a Brier score of 0.138. The apparent C-statistic was
0.823 (95%CI 0.813, 0.834) (Fig. 1a). After bootstrap internal
validation, optimism-corrected C-statistic was 0.821 (95%CI
0.810, 0.832). The model showed good calibration across the
range of predicted probabilities within the development cohort
(calibration slope 0.996, 95%CI 0.989, 0.999; Supplementary
Material Fig. S3a).
External validation

The validation cohort included 2583 patients, of whom 698
(27.0%) presented critical illness: 200 (7.7%) were admitted to the
ICU and 594 (23.0%) died. The mean age was 69.5 ± 16.0 years,
54.8% (1415/2580) were male (Table 1). The PRIORITY model
showed good discrimination for critical illness within the valida-
tion cohort (C-statistic 0.794, 95%CI 0.775, 0.813) (Fig. 1b), and a
calibration slope of 0.875, 95%CI 0.790, 0.960 (Supplementary
Material Fig. S3b).

Our model compared well against the risk stratification based on
univariate models including age (C-statistic 0.707, 95%CI 0.686,
0.729) or SpO2 �93%/oxygen requirement at admission (C-statistic
0.652, 95%CI 0.635, 0.670) as sole predictors. Likewise, the PRIORITY
model had better discriminative ability than the model including
both age and SpO2 �93%/oxygen supply (C-statistic 0.751, 95%CI
0.731, 0.771). Additionally, decision curve analysis showed that the
PRIORITY model had higher net benefit across a wide range of
threshold probabilities for developing critical illness compared to
risk stratification using age and/or SpO2�93%/oxygen supply (Fig. 2).

https://www.evidencio.com/models/show/2344


Table 1
Demographic and clinical characteristics among patients included in the development and validation cohorts

Development cohort Validation cohort

No of patients (%) or mean ± SD Total No (%) No of patients (%) or mean ± SD Total No (%)

Characteristics of the population
Critical illness 1967 (25.1%) 7850 (100%) 698 (27.0%) 2583 (100%)
Age [years] 65.8 ± 16.4 7816 (99.6%) 69.5 ± 16.0 2575 (97.3%)
Male 4483 (57.2%) 7834 (99.8%) 1415 (54.8%) 2580 (99.9%)
Ethnicity Caucasian 6836 (89.1%) 7677 (98.8%) 2340 (91.0%) 2572 (99.6%)

Latino 693 (9.0%) 193 (7.5%)
Other 148 (1.9%) 39 (1.5%)

Smoking history Never 5270 (70.9%) 7433 (94.7%) 1625 (65.7%) 2475 (95.8%)
Former smoker 1764 (23.7%) 718 (29.0%)
Active Smoker 399 (5.4%) 139 (5.3%)

Medical history
Obesitya 1665 (23.7%) 7012 (89.3%) 584 (24.3%) 2401 (93.0%)
Hypertension 3803 (48.6%) 7833 (99.8%) 1444 (56.1%) 2576 (99.7%)
Diabetes mellitus 1440 (18.4%) 7820 (99.6%) 509 (19.8%) 2570 (99.5%)
Cardiovascular diseaseb 1974 (25.3%) 7800 (99.4%) 806 (31.7%) 2545 (98.5%)
Pulmonary diseasesc 1625 (20.9%) 7776 (99.1%) 576 (22.6%) 2583 (98.9%)
Severe chronic kidney diseased 488 (6.2%) 7825 (99.7%) 163 (6.3%) 2583 (99.7%)
Malignancye 793 (10.2%) 7803 (99.4%) 259 (10.1%) 2571 (99.5%)
Immunocompromised statusf 650 (8.6%) 7549 (96.2%) 187 (7.6%) 2473 (95.7%)
Dependency (moderate/severe)g 1129 (14.7%) 7701 (98.1%) 605 (23.7%) 2555 (98.9%)
Symptoms at admission
Feverh 5138 (67.0%) 7663 (97.6%) 1670 (65.6%) 2544 (98.5%)
Dyspnoea 4427 (56.7%) 7805 (99.4%) 1523 (59.4%) 2562 (99.2%)
Clinical signs and physical exploration at admission
SBP (mmHg) 129.0 ± 21.5 7430 (94.6%) 127.6 ± 21.0 2451 (94.9%)
HR (beats/minute) 88.6 ± 17.4 7500 (95.5%) 87.5 ± 17.5 2504 (96.9%)
Tachypnoea (>20 breaths/min) 2271 (29.9%) 7604 (96.9%) 879 (35.1%) 2504 (96.9%)
SpO2 �93% or oxygen requirement at presentation 4152 (52.9%) 7842 (99.9%) 1605 (62.1%) 2583 (100%)
Pulmonary rales 4630 (60.7%) 7626 (97.1%) 1588 (63.6%) 2495 (96.6%)
Confusion 849 (11.0%) 7736 (98.5%) 384 (15.1%) 2546 (98.6%)

SD, standard deviation; HR, heart rate; SBP, systolic blood pressure; SpO2, peripheral oxygen saturation.
a Obesity is defined as medical history or body mass index �30 kg/m2.
b History of cerebrovascular disease, peripheral arterial disease, myocardial infarction, angina pectoris, heart failure or atrial fibrillation.
c Chronic obstructive pulmonary disease, obstructive sleep apnoea/hypopnoea syndrome and asthma.
d History of serum creatinine level >3 mg/dL or history of dialysis.
e History of solid tumour, leukaemia or lymphoma.
f History of autoimmune diseases, solid-organ transplant recipients, HIV infection or previous immunosuppressive treatment including systemic steroids.
g Moderate or severe dependency for activities of daily living (Barthel index score <60).
h Temperature �38�C or history of fever.

Table 2
Multivariate logistic regression of critical illness prediction in coronavirus 2019
(COVID-19)

Predictors Odds ratio 95%CI

(Age/100)2 Age in yearsa 14.339 10.054, 20.532
Cardiovascular disease 1.372 1.195, 1.573
Severe chronic kidney disease 1.797 1.433, 2.252
Dyspnoea 1.655 1.451, 1.891
1/(SBP/100)2 SBP in mmHga 2.326 1.837, 2.951
Tachypnoea (>20 breaths/min) 2.487 2.192, 2.824
SpO2 �93% or oxygen requirement 3.320 2.889, 3.819
Confusion 1.976 1.642, 2.380
Dependency (moderate or severe) 1.178 0.989, 1.404

Predictors in the PRIORITY model retained after LASSO feature selection. Model
coefficients were derived from a multivariate logistic regression, and presented as
odds ratios (ORs) and 95% confidence intervals (95%CIs). Variables entered into the
LASSO feature selection process were: age as a squared term, sex, ethnicity, smoking
history, obesity, hypertension, diabetes mellitus, cardiovascular disease, pulmonary
diseases, severe chronic kidney disease, malignancy, immunocompromised status,
dependency, fever, dyspnoea, systolic blood pressure (SBP) as the inverse of a
quadratic term, heart rate (HR) as a cubic term, tachypnoea, peripheral oxygen
saturation (SpO2) �93% on room air or oxygen requirement at presentation, pul-
monary rales, and confusion. All predictors were coded as binary variables (1 when
present and 0 when absent) except for age (years), SBP (mmHg) and HR (bpm).

a Continuous predictors modelled as fractional polynomial terms, including
rescaling when the range of values of the predictor was reasonably large. As
interpretability of the effect of non-linear continuous predictors can be difficult,
linear local approximations of ORs for 10-unit variations are provided at selected
values. ORs for age (10-year increments): OR (50/40) ¼ 1.271; OR (70/60) ¼ 1.414;
OR (90/80) ¼ 1.573. ORs for SBP (10-mmHg decreases): OR (110/120) ¼ 1.118; OR
(90/100) ¼ 1.219; OR (70/80) ¼ 1.497. Approximated ORs are provided for illus-
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Sensitivity analysis

Wecarried out a complete-case analysis selecting as development
cohort the 5513 patients with complete data on the 21 potential
predictors and the outcome. The resulting model had the same pre-
dictors as the PRIORITYmodel with apparent C-statistic 0.813 (95%CI
0.800, 0.826) and calibration slope 0.993 (95%CI 0.986, 0.997). Next,
wefitted anewmodelwith no restriction in themaximumnumber of
variables, resulting in a model which added sex, diabetes mellitus,
malignancy, immunocompromised status, pulmonary rales, and
heart rate cubed to the predictors in the PRIORITY model. C-statistic
was 0.831 (95%CI 0.821, 0.842) and slope 0.990 (95%CI 0.986, 0.996).
Likewise, we fitted an alternative model using linear continuous
predictors instead of non-linear terms, which included sex but
excluded the systolic blood pressure. C-statistic was 0.823 (95%CI
0.812, 0.833) and slope 0.994 (95%CI 0.988, 0.999).

Discussion

We developed and validated a new clinical risk model to predict
COVID-19 critical illness based on nine simple clinical features
easily available on initial assessment, which would be useful in
resource-limited or out-of-hospital settings without access to other
complementary tests. The model was well calibrated, had good
discrimination, and performed robustly in an external validation
cohort. Moreover, it showed a potential clinical benefit in a variety
trative purposes only and were not used for making predictions.



Fig. 1. Discriminatory ability of the PRIORITY model in (a) the development and (b) the validation cohorts. Discriminative ability was assessed using the C-statistic, as the area under
the receiver operating characteristic curve, with 95% confidence intervals (CIs) computed with 1000 bootstrap replicates.
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of scenarios covering different healthcare situations over a range of
threshold probabilities for critical illness. The web-based calculator
can facilitate its immediate application for frontline clinicians.

Previously, an external validation of 22 prognostic models
showed that none of the multivariate models offered incremental
value for patient stratification compared to oxygen saturation or
age [15]. In this regard, the PRIORITY model showed higher
discriminative ability and net benefit than age and/or oxygen
saturation. Additionally, despite its simplicity, our model had a
performance similar to previously published prognostic tools
including laboratory and imaging tests [9e16].

It is worth noting that the PRIORITY model could be applied in
triage, using easily measurable variables available in settings
without access to laboratory or radiology tests, identifying high-
risk patients for referral to hospital. This model could be useful
Fig. 2. Decision curve analysis within the validation cohort. Clinical usefulness of the PRIO
�93% or oxygen requirement) and/or age (quadratic term). The x-axis represents the whole r
the net benefit (NB). NB calculated as: True positives/N e (false positives/N)*(pt/(1ept)), w
for supporting clinical management decisions over a range of risk
thresholds for critical illness which could be considered as relevant
in clinical practice. The choice of thresholds will vary across
different regions, according to changing epidemiological situations
and availability of health resources. For example, under pandemic
peak pressure or low-resource healthcare systems, policy-makers
may consider a cut-off point up to 20%, a threshold that will be
associated with higher reduction in unnecessary critical care ad-
missions. However, at low risk of overwhelming the critical care
capacity, a lower threshold may be considered at the expense of
unnecessary referrals. We recommend objectively defining specific
cut-off points considering the circumstances and the availability of
health resources.

This study has several methodological strengths maximizing
internal and external validity [23]. To the best of our knowledge,
RITY model compared to risk stratification based on oxygen saturation (binary: SpO2

ange of decision threshold probabilities for critical illness (pt) and the y-axis represents
ith N total sample size.
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this is the first generalizable COVID-19 predictive model built with
simple clinical information (excluding imaging and laboratory
data). We developed and validated the model in a large multicentre
national cohort. The methodology was rigorous, avoiding data-
driven predictor selection and biases that have affected previous
studies [14]. The practical application of the model was maximized
by forging an agreement among an expert panel on key issues.
Moreover, the model was validated in a separate cohort of patients
admitted in smaller hospitals, showing transportability to a setting
with a different level of healthcare [21,22].

The strengths of our findings should be interpreted in light of
some limitations. First, although we carefully selected easily
available clinical and demographic variables, the data were
collected at the time of hospital admission, which represents an
important selection bias that would require further studies in an
outpatient setting. Second, it could be suggested that, taking into
account the situation of healthcare pressure, data quality may be
affected. In this regard, it is notable that in this study there were
relatively fewmissing data and we used imputation to reduce their
impact. Third, since the COVID-19 pandemic has demonstrated
significant differences between countries and time periods, it could
affect the applicability of the model to other settings. However, we
considered this early pandemic period in Spain to reflect a scenario
with an overwhelmed healthcare system, where our predictive
model could be particularly useful. Nevertheless, further studies
introducing factors such as viral strains, healthcare system actions,
new treatments, or vaccination could improve the applicability of
the PRIORITY model. Finally, even though we compared the net
benefit of using the model with discrimination based on oxygen
saturation and/or age, its real clinical usefulness would require
comparisonwith the best existing scores or the clinician's decision.

In summary, we have developed and validated a new prediction
model, called PRIORITY, to estimate the risk of critical illness in
patients with COVID-19 based on nine clinical variables easily
measurable in resource-limited or out-of-hospital settings. The
study could provide underpinning evidence to inform decision-
making in health systems under pandemic pressure.
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