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Abstract: This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding
regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs.
Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates
the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncR-
NAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes
for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based
mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to
these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread
deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or
acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control
3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic
point of view centered on the molecular machineries involved, the generation of 3′UTR variability by
the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative
exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new
3′UTRs with differential functional features.

Keywords: alternative 3′UTRs; 3′UTR shortening; alternative splicing; alternative polyadenylation
and cleavage; Alu exonization

1. Introduction

Almost all the eukaryotic mRNAs are similarly structured, with a central coding re-
gion flanked by two segments of non-coding sequences, the 5′ and 3′ untranslated regions
(UTRs), and a 3′ polyadenylated end-tail of variable length [1,2]. The stability and correct
spatiotemporal translation of mRNAs are ensured by 3′UTRs, which harbor regulatory
signals. These are sequence motifs that bind to different effectors such as RNA-binding
proteins, miRNAs or other ncRNAs. Recent works have evidenced that 3′UTRs are highly
polymorphic in length, and that a single gene is able to express a number of different
3′UTRs that differ in length, sequence and assembly of regulatory motifs. Thus, control
of 3′UTR length regulates accession of different effectors to 3′UTR functional boxes to
establish differential regulatory landscapes for mRNA function [3,4]. Here, we will review
recent literature on the mechanisms that control 3′UTR length dynamics and their alter-
ations in human disorders. We will specifically center on alternative polyadenylation and
cleavage (APA), alternative splicing and on the generation of new 3′UTRs by exonization
of Alu cassettes.
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2. Sequences at the 3′UTR Regulate mRNA Stability

The finding that 3′UTRs contained segments with a high degree of sequence-conservation
across species [5] changed the view of mRNA-3′UTRs from simple stabilizing end-regions
to complex and highly structured regulatory platforms that controlled how, when and
where the genetic information was translated. From a mechanistic point of view, the
functional organization of mRNA-3′UTRs is based on short-sequence, cis-regulatory el-
ements that are recognized and bound by trans-regulatory factors, either RNA binding
proteins (RBPs) or other RNAs, mainly miRNAs [4]. Usually, 3′UTR-cis-acting sequences
are structured in clusters of repeated modules that are recognized on a sequence basis by
RBPs with repeated RNA-binding motifs (RBMs) or by miRNAs and other ncRNAs [4,6],
although some of them are able to interact with the secondary structure of the binding
motif [7]. Most of these regulatory motifs have a critical role in the stability of mRNAs as
we will show in the following sections.

2.1. Stability Determinants in the 3′UTRs of Eukaryotic mRNAs Recognized byRNA
Binding Proteins

Initial detection of a number of messenger RNAs that were targeted for selective
and rapid degradation allowed the description of the first motifs for mRNA stability, i.e.,
the conserved AU-rich elements (AREs) at the 3′UTR of unstable cytokine/chemokine
mRNAs [8,9]. AREs, the best known of mRNA destabilizing motifs, are short sequences
(50–150 bases long) that include one to several copies of the pentanucleotide AUUUA in
an AU-rich context and recruit the degradation machinery to ARE-containing mRNAs,
although a few destabilizing regions have been also described that lack the AUUUA
box [10]. Other binding motifs have been also associated with the control of mRNA stability.
Thus a pyrimidine-rich sequence [(U/C)(C/U)CCCU] motif within the 3′UTR of tyrosine
hydroxylase mRNA increased its stability during hypoxia [11], while a highly conserved
UC-rich region in the 3-UTR of the androgen receptor mRNA that contained 5′-C(U)(n)C
and 3′-CCCUCCC motifs was shown to reduce expression of a luciferase reporter gene
through binding to HuR and to poly(C)-binding proteins-1 and-2 (CP1/2) [12].

The intracellular fate of mRNAs depends on the complex interplay among degradation
or stabilization-promoting RBPs, whose equilibrium determines mRNA half-life. Just as
an example, stability of the VEGF mRNA in response to hypoxia relied on the balance
among degradation-promoting ARE-binding factors, such as the ACTH-regulated zinc-
finger proteins Tis11,Tis11b and Tis11d [13], and the stabilization factors HuR that bound
to U-rich motifs [14] or hnRNPL that interacted with an AC-rich sequence [15]. In a similar
way, tristetraprolin (TTP) was shown to destabilize TNFα mRNA after binding directly to
the AU-rich region of its 3′UTR [16], AUF1 proteins (also known as hnRNP-D proteins)
were characterized as destabilizing factors of the α-globin mRNA by binding to AREs [17],
and KSRP was shown to promote mRNA degradation by associating to AREs through its
KH domain [18]. On the contrary, hnRNPsA1, E1 and K were shown to stabilize collagen
(Col) mRNAs by binding to CU-and AU-rich binding motifs [19], while the uPA mRNA
was stabilized by the binding of hnRNPC to an AU-rich sequence “in vitro” [20] and HuR,
a member of the ELAV family of RNA binding proteins, was shown to stabilize ARE-
containing mRNAs by binding to its ligands SETα/β, pp32 and APRIL [21]. Lastly, insulin
mRNA was stabilized by the binding of polypyrimidine tract-binding protein (PTB) to a
pyrimidine-rich sequence in its 3′UTR [22].

2.2. Stability Determinants Recognized by miRNAs in the 3′UTRs of Eukaryotic mRNAs

miRNAs are small RNAs with a critical role in the regulation of gene expression.
Although most miRNAs (canonical miRNAs) are transcribed by RNA polymerase II recent
work has highlighted a number of non-canonical miRNAs with alternative biogenesis [23].
miRNAs target the 3′UTRs of mRNAs for degradation or translational arrest, although
there are also reports on their association to coding regions especially in genes with short
3′UTRs [24]. It is estimated that the entire human miRNAome is composed by over
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2300 mature miRNAs [25] that can potentially interact with over 60% of total human
mRNAs [26], creating complex regulatory networks in which single miRNAs can target
dozens of different mRNAs which in turn can be regulated by many different miRNAs [27].

Although miRNA binding sites (MBSs) are usually unique in an individual mRNA,
3′UTRs may include multiple binding sites for different miRNAs, or even for the same
miRNA [28], that can be organized in clusters of overlapping binding sequences [29]. The
determinants for miRNA binding in the 3′UTRs of mRNAs are not restricted to the miRNA
sequence but may also include contextual features in the form of neighboring protein
binding sites or other sequential structural frameworks that modulate miRNA binding
to its cognate sites [30]. In this sense, it has been described that protein puf-9 (a pumilio
homolog) and miRNA let-7 bound to closely associated neighbor sites in the 3′UTR of the
hunchback (hbl-1) mRNA to cooperatively repress its translation in C.elegans [31], while on
the contrary, binding of DND1 to U-rich regions at 3′UTRs protected target mRNAs by
blocking miRNA binding sites in human cells [32]. Lastly, a GC-rich motif frequently found
downstream of miRNA target sites has been shown to increase stability of miRNA–mRNA
duplexes [33], while a 27-nucleotide sequence between two let-7 binding sites at the 3′UTR
of the lin-41 mRNA in C.elegans, was required for the silencing effect of let-7 on lin-41 [34].

Another critical requirement for effective miRNA–mRNA interaction is the physical
accessibility of miRNAs to their binding sites, since 3′UTRs have the potential to form
highly folded structures “in vivo” that could modulate the accession of miRNAs to their
sites [35]. Thus, miRNA binding would require the local unwinding and unpairing of
the target site to promote the nucleation of a miRNA–mRNA seed whose elongation
would form the stable duplex [36], since structured stems overlapping the 5′ seed or
3′ complementary regions interfered with miRNA binding to cognate sites [37].

3. Temporal/Spatial Determinants of Translation in 3′UTRs: The Case of
Maternal mRNAs

Control of mRNA function by RBPs and miRNAs that target 3′UTR stability deter-
minants is not a stationary regulatory mechanism restricted to specific tissues or devel-
opmental stages, but a very dynamic process that includes temporal or spatial (different
subcellular locations) regulatory axes. A relevant model to study the mechanisms of
spatio-temporal regulation of mRNA translation is the oocytic cell in its first stages of
development, which are regulated by a pool of mRNAs (known as maternal mRNAs) that
are loaded onto the cell cytoplasm and account for over 7000 different transcripts [38,39].
A subset of these maternal mRNAs is maintained functionally inactive in oocytes until
the maternal-to-zygotic transition (MZT), when these are recruited onto polysomes and
translated in the absence of transcription [40,41]. After this translational repression is
released, maternal mRNAs are actively degraded and transcription takes then charge of the
regulation of gene expression [42]. Translational control of maternal mRNAs is a complex
issue that involves the binding of RBPs to specific 3′UTR motifs and AU-rich cytoplasmic
polyadenylation elements (CPEs) [43]. In the next section, we will review with more detail
these mechanisms regulating stability and function of maternal mRNAs.

3.1. Determinants for the Temporal Regulation of Stability and Translation of Maternal mRNAs in
the Maternal-to-Zygotic Transition

Unlike the regulatory mechanisms that control stability and translational arrest of
somatic mRNAs, maternal mRNAs require the activity of the 5′/3′ RNA degradation
machinery on the 3′ poly-A tail. Furthermore, while most eukaryotic RNAs require nuclear
3′end polyadenylation to initiate nuclear export and translation [44], several maternal
mRNAs are submitted to cytoplasmic polyadenylation to activate their translation precisely
at the maternal-to-zygotic transition, among them mRNAs that encode proteins involved
in transcriptional or developmental regulation, dorsoventral patterning, gastrulation or
germ layer formation [45].

A few RBPs have been identified that promote stability of maternal mRNAs, among
them RBPY-box binding protein2 (MSY2) [46] the insulin-like growth factor 2 mRNA bind-



Biomedicines 2021, 9, 1560 4 of 23

ing protein3 (IGF2BP3) [47] or the cytoplasmic poly-A polymerase Wispy [48]. On the other
hand, embryonic maturation leads to the phosphorylation of MSY2 and to the subsequent
activation of dormant maternal mRNAs that encode components of the RNA degradation
machinery [46] such as the members of the DCP1A-DCP2 decapping complex, the sub-
units 6l and 7 of the deadenylation machinery CCR4-NOT (CNOT6l/7), the deadenylase
complex CAF1-CCR4-NOT-interacting protein CUP [49], and the poly-A specific ribonucle-
ase subunit 2 (PAN2) [50]. Deadenylation results in mRNA destabilization, translational
inactivation [51] and the clearance of maternal mRNAs by the poly-A-specific exoribonu-
clease (PARN) [52], miR-430 [53] and the RNA m6A-reader, YTHN6-methyladenosine RNA
binding protein 2 (YTHDF2) [54]. Other factors also promote maternal mRNA activation
and instability by interacting with different 3′UTR motifs, with 3′ poly-A tails or even with
other RBPs, such as Smaug or members of the Musashi family (MSI). Smaug (Smg) is a
major regulator of the destabilization of a significant number of maternal mRNAs at the
MZT [39,55]. Smaug (also known as translational repressor of nanos [56]) is a RBP that
binds to motifs at the 3′UTR of mRNAs such as Staufen, TIAR, TIA1 and HuR [57] as well
as of maternal mRNAs to recruit the CCR4/NOT deadenylase complex and induce mRNA
degradation [58]. Interestingly, Smaug from Drosophila has been seen to recruit Ago1 to
the 3′UTR of nanos in a miRNA-independent manner, likely a new mechanism of mRNA
degradation [59]. Lastly, Musashi is another activator of dormant maternal mRNAs that
target mRNAs through its interaction with the RBPs poly-A-binding proteins ePABP or
PABPC1 [60].

3.2. Determinants for the Intracellular Spatial Localization of Maternal mRNAs in Oocytes

Appropriate spatial translation is ensured by restricting the intracellular distribution
of mRNAs through the binding of specific RBPs, to the extent that asymmetric distribution
of mRNAs is a widespread regulatory mechanism of gene expression. Genetic studies
in a number of cell systems have provided some insights on the mechanisms and genes
promoting and maintaining an asymmetric subcellular distribution of certain mRNAs
(see [61] for a recent review).

One of the most convenient cell systems to study the asymmetric distribution of
mRNAs is the oocytic cell. In the case of Drosophila, the body plan of the insect can be
traced down to the first stages of oogenesis, in which a complex interplay of regulatory
mechanisms in the form of RNPs produced by the neighbour nurse cells, ensure the loading
and asymmetric intracellular distribution of maternal determinants, their precise transla-
tional regulation, and the asymmetric cell divisions needed to generate daughter cells with
distinct cytoplasmic contents and developmental fates [62]. Briefly, the establishment of
an antero/posterior (a/p) axis is controlled by the asymmetric loading of the bicoid (bcd)
mRNA to the anterior pole, and of nanos (nos) and oskar (osk) mRNAs to the posterior pole
of the oocyte in a way dependent on the microtubule net work, on molecular motors of the
dynein and kinesin families [63], as well as on the presence of a conserved YUGUUYCUG
box in the 3′UTRs of bicoid and nanos mRNAs [64]. Fertilization will activate translation
of bicoid and nanos so that the asymmetric distribution of their protein products would
generate a functional a/p axis.

4. Regulation of 3′UTR Length by Alternative Polyadenylation or Alternative Splicing

The sequencing revolution has evidenced the high degree of variation in the length
of 3′UTRs of mRNAs, and its subsequent impact on the regulatory landscapes of mRNA
function. Regulation of 3′UTR length is thus becoming an important research topic in
the control of gene expression by its potential to regulate mRNA-protein or mRNA–RNA
interactions, and consequently mRNA function [4,65]. In this section we will deepen on the
mechanisms known to regulate 3′UTR length by alternative polyadenylation and cleavage
(APA) or alternative splicing (AS), as well as their alterations in human disorders (Table 1).
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4.1. Regulating 3′UTR Length by Alternative Polyadenylation

Pre-messenger RNAs (pre-mRNAs) are specifically cleaved and polyadenylated at
precise positions of their 3′ ends in a way determined by a specific polyadenylation signal
(PAS) and executed by a number of multiprotein complexes. The polyadenylation signal
(AAUAAA in its canonical form) positions the cleavage/polyadenylation specificity factor
complex (CPSF) close to the cleavage site, over 30 nts from the specific site at which the
pre-mRNA will be cleaved and the poly(A) tail will be added by the PAP activity ([66]
for a review). Cleavage precision is ensured by the presence of two U-rich, upstream
(USE) and downstream (DSE) sequence elements next to the AAUAAA signal that help
to distinguish functional polyadenylation sites from randomly occurring hexamers [67].
These U-rich sites are recognized by the multiprotein complexes cleavage factor I (CFI)
and cleavage/polyadenylation specificity factor (CPSF) which bind to the U-rich USE and
AAUAAA hexamer, respectively, and the cleavage stimulation factor CstF binding to the
U-rich DSE [68].

Over 70% of human genes have more than one polyadenylation site in their 3′UTRs
and 50% have three or more [69], while in mouse liver over 60% of expressed genes harbor
multiple polyadenylation signals in their 3′UTRs [70]. Use of different sites makes alterna-
tive polyadenylation a widespread mechanism to regulate gene expression by generating
transcript variants that are heterogeneous in length and show alternative 3′ ends [71,72]
(Figure 1A). When linked to alternative splicing of terminal exons, APA originate very
complex patterns of 3′UTR variability, as in the case of human DDX3X mRNA whose
three terminal untranslated exons originate six 3′UTR splicing variants that harbor five
different alternative PAS [73]. Additionally, 3′UTR-alternative mRNA isoforms may show
differential functional features with regards to stability [74], translational efficiency [75],
microRNA binding potential [76], and tissue specific expression [77], subcellular local-
ization at the mRNA [78] or at the protein level [79] or interactions with the network of
competing endogenous RNAs (ceRNAs) [80]. Nevertheless, other authors have proposed
that alternative 3′UTR sequences would have a reduced regulatory impact compared to
other mRNA regions [81].

The emerging picture on the use of alternative PASs proposes that 3′UTR shorten-
ing would increase mRNA stability by relaxing protein or miRNA-based mechanisms
of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to miR-
NAs [82]. In any case, alterations in the mechanisms regulating 3′UTR length would result
in widespread deregulations of gene expression that could eventually lead to diseases,
likely linked to the loss of specific miRNA binding sites (Table 1) [83,84]. While long
3′UTRs have been mostly detected in quiescent stem cells, differentiated cells, or early in
development, shortened 3′UTRs have been mostly described in quickly cycling cells such
as proliferative stem/progenitor cells or tumour cells [85–87]. Thus, shortened 3′UTRs
have been reported in proliferation-related transcripts in triple negative breast cancers [88],
non-small cell lung cancer [89], glioblastoma [90], esophageal carcinoma [91], multiple
myeloma [92], colorectal cancer [93] cardiac hypertrophy [94], etc. Furthermore, aberrant
APA dynamics has been also described in acute myeloid leukemia and mature erythroid
cells [95], neurological disorders [96], hypertrophic heart [97], heart failure [98] as well as
in arsenic stress [99], while neurons were shown to express 3′UTRs longer than other brain
cells [100].
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Figure 1. Original drawing showing three mechanisms that generate sequence length variability at 3′UTRs and their
potential impact on the regulatory landscape by miRNAs and RBPs. Other mechanisms, or combinations among those
displayed are not shown. In all cases C.EXON stands for Coding Exon. (A) Use of alternative polyadenylation and cleavage
sites. Diagram representing the generation of three different transcript isoforms from a primary transcript by the use of three
different polyadenylation and cleavage sites (PAS1, PAS2, PAS3), and how this changes the regulatory landscape. Shown
is a terminal coding exon with its stop codon (red dot), as well as the 3′UTRs (gray lines) with the different PAS, miRNA
binding sites (gray dots), and a RBP site (white box). [An] stands for the poly-A tail. (B) Use of alternative splicing sites:
Mutually Exclusive Terminal Exons (METES). Diagram representing the generation of two different transcript isoforms from
a single gene by the use of two mutually exclusive 3′UTR terminal exons, and how this changes the regulatory landscape.
Shown is a terminal coding exon with its stop codon (red dot), as well as the 3′UTRs (gray boxes/lines) with the different
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PAS, miRNA binding sites (gray dots), and a RBP site (white box). Dotted gray lines between exons show the two splice
events produced. [An] stands for the poly-A tail. (C) Exonization of an Alu cassette. Diagram representing the generation
of two different transcript isoforms from a single gene by the exonization of an Alu repeated element and how this changes
the regulatory landscape. The Alu cassette harbors cryptic splice sites (CSSs) originated by mutation or activated by the
unbalance of splicing regulatory elements (see main text for details). In this diagram, exonization of the Alu cassette lead to
a change in the ORF and to the activation of a premature stop codon and PAS (shown as *). Shown is the 3′ end of an ideal
gene and the two transcripts generated from it. The stop codon is shown as a red dot, the 3′UTRs as gray boxes/lines with
the different PAS, miRNA binding sites (gray dots), and a RBP site (white box). Dotted gray lines between exons show the
two splice events produced. [An] stands for the poly-A tail.

APA-depending shortening of 3′UTRs is caused by changes in the expression of
different components of the cleavage/polyadenylation complexes, i.e., cleavage factors CFI
(composed by CPSF5/CFIm25/NUDT21, CPSF6-7) and CFII (PCF11, CLP1), cleavage and
polyadenylation specificity factors CPSF (CPSF1-4, WDR33, FIP1L1) or cleavage stimulation
factors CSTF1-3 ([101,102] for reviews).

Table 1. Mechanisms that generate alternative 3′UTR isoforms and their impact on miRNA binding. Shown are the transcript
affected, the mechanism of 3′UTR shortening, the miRNA binding sites lost in the isoform affected, the cells/disease in
which the 3′UTR were detected and the reference of the work. See text for more details.

mRNA Alternative 3′UTR miRNAs Cells/Disease Reference

Igf1 APA LF:miR-29,miR-365 Osteoblastic differentiation [103]

CCND1 APA LF:over80miRNAs Mantle cell lymphoma [104]

Ki-67 APA LF:miR-133-3p,miR-140-3p Breast cancer [105]

FNDC3B APA LF:23miRNAs Nasopharyngeal carcinoma [106]

Tau APA LF:miR-34a Neuroblastoma cell lines [107]

PolH APA LF:miR-619 Lung or bladder cancer [108]

ABCB1 APA LF:miR-508-5p,miR-145 Leukemia cells [109]

ABCC2 APA LF:miR-379 Hepatoma cell line [110]

COX-2 APA n.s. Colon tumors [111]

Hsp70.3 APA LF:miR-378 Cardiac ischemic [112]

AAMDC APA LF:miR-2428/664a Adipogenesis [113]

Many APA * n.s Mammalian brain [114]

CYP20A1_Alu-LT Exonized Alus Over 140 miRNAs Primary neurons [115]

NR2C1,GTSE1,FHL2,
RAD1,FKBP9,CAD,SMA4 Exonized Alus miR-15a-3p HeLa cells [116]

ADD1andUBE2I Exonized Alus miR-302d-3p HeLa cells [116]

387genes Retained intron n.s. n.s. [117]

CerS1 Retained intron miRNA-574-5p HNSCC [118]

BCL11A Alternative splicing ExtraLF:miR-486-3p Erythroid cells [119]

BCL2 Alternative splicing LF:miR-204 HCT116 human colon
cancercells [120]

ADAM12 Alternative splicing LF:miR-29andmiR-200 Breast cáncer cells [121]

SEMA6Ba Alternative splicing miR-218,miR-19 ** MCF-7cell line [122]

CD34 Alternative splicing LF:miR-193-5p,miR-125,miR-
129-5p,miR-351-5p Atherosclerosis [123]

APA: alternative polyadenylation; HNSCC: head/neck squamous carcinoma; LF: long form; n.s.: non-stated; * Very distal polyadenylation
sites used, likely encoded by downstream lincRNAs; ** internal sites lost by alternative splicing.
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After transcriptomic analysis of HeLa cells in which CPSF5/CFIm25/NUDT21 had
been down-regulated, Masamha et al. identified 1450 transcripts with shortened 3′UTRs
because of the use of proximal polyadenylation signals (pPAS), among them known onco-
genes, and characterized CPSF5/CFIm25/NUDT21 as an inhibitor of proximal polyadeny-
lation [90,124]. Furthermore, expression of CPSF5/CFIm25/NUDT21 was reported to
be down-regulated in the lungs of patients with idiopathic pulmonary fibrosis (IPF) or
mice with pulmonary fibrosis [125], in HEK293 cells [126], and in low/high grade glioma
cells [127], causing a global shortening of 3′UTRs. Down-regulation of CPSF5/CFIm25/
NUDT21 was seen to promote shortening of the 3′UTRs of IGF1R, CCND1 and GSK3β mR-
NAs and to increase transcript stability in lung adenocarcinomas and lung squamous cell
carcinomas when compared to normal controls [128]. Lastly, CPSF5/CFIm25/NUDT21 not
only promoted the use of distal PAS but also increased the efficiency of miRNA-mediated
gene silencing by facilitating binding to AGO2 [129].

Other polyadenylation and cleavage factors also promoted the use of proximal PAS,
such as Pcf11 or Fip1 in C2C12 cells [130], CPSF6 in human hepatocellular carcinoma
cells [131], CSTF2 and CPEB3 in lung adenocarcinoma cells [132], or CSTF2 in bladder
carcinoma, through shortening of the RAC1-3′UTR [133], or in TAMR breast cancer cells by
shortening and stabilizing the 3′UTR of HuR [134]. Lastly, SRSF7, NUDT21 and HuD also
favored usage of proximal polyadenylation signals, resulting in shorter 3′UTRs [135–137].

On the contrary, other factors directly promoted the use of distal PAS, such as
PabpC/N1 in C2C12 cells [130] and SRSF3 in neuronal and 293T cells [135,138], or caused
3′UTR lengthening by displacing other factors as ADAR1 [139]. Lastly, a premature
polyadenylation signal created in the CCND1 gene by a single-point mutation promoted a
shortening of its 3′UTR that increased the risk to mantle cell lymphoma [140].

4.2. Regulating 3′UTR Length by Alternative Splicing

Splicing-based mechanisms, such as alternative or cryptic splicing of terminal un-
translated exons or the integration of repetitive elements through exonization also have
the potential to generate 3′UTR length variants ([123,141] and Figure 1). Nevertheless, the
impact of splicing-based mechanisms of 3′UTR lengthening is lower than those based in
alternative polyadenylation and cleavage, as highlighted by a bioinformatic analysis on
the superfamily of odorant receptor (OR) genes that showed that over 80% of OR mRNAs
were submitted to alternative polyadenylation while only a few of these used alternative
splicing to generate variant 3′UTRs [142].

Regulation of alternative splicing is a very complex topic that involves multiple
regulatory sites at the pre-mRNAs (splicing donor and acceptor sites, canonical, cryptic
and alternative sites, splicing enhancers and silencers, etc.) that are recognized by a
plethora of mRNA binding proteins, U-small nuclear RNAs and associated proteins ([143]
for review). In this sense, and as a general rule, introns would be identified by the binding
of U1snRNP and the U2AF65/U2AF35 complex to the splice sites [144].

Basically, a few splicing mechanisms originate 3′UTR length variability and modify
3′UTR regulatory potential, i.e., intron retention, exon skipping, incorporation of one of two
mutually exclusive terminal exons of different length or activation of cryptic splice sites
that modify the relative lengths of the ORF and 3′UTR ([145] and Figure 1B). In this sense,
a number of splicing regulators have been implicated in the regulation of 3′UTR length.
Thus, cytoplasmic polyadenylation element binding protein1 (CPEB1) was seen to mediate
shortening of 3′UTRs by changing patterns of alternative splicing through repression of
U2AF65 recruitment or by influencing the use of alternative polyadenylation sites [146],
and splicing of the 3′UTR of Yes1-associated transcriptional regulator (YAP) mRNA was seen
to be dependent on hnRNPF [147]. Furthermore, SR protein kinase SPK-1 promoted 3′UTR
splicing of polarity protein Par-5 mRNA [148], and quaking (QK), a global regulator of
splicing [149], was seen to promote stability of hnRNPA1, a repressor of alternative splicing,
by binding a conserved 3′UTR sequence [150]. Lastly, expression of splicing factors ESRP1,
PTB and SF2/ASF, was significantly altered in cardiac hypertrophy, leading to removal
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of instability-promoting AT-rich elements from 3′UTRs [151]. As for the case of APA,
these splicing-based changes of 3′UTR length were associated with changes in the binding
patterns of miRNAs (Table 1).

A special case of 3′UTR-lengthening caused by alternative splicing is the retention
of non-coding introns [152]. Authors reported that a significant number of transcripts
included retained introns in their 3′UTRs that harbored miRNA binding sites (in 387 out of
the 2864 human genes analyzed [117]), or Staufen2 (Stau2) sites (in 356 transcripts [153]).
Interestingly the presence of an alternative retained intron in the 3′UTR of splicing factor
SRSF1 (ASF/SF2) protected this isoform from NMD degradation in HCT116 colon cancer
cells [154].

5. Regulation of 3′UTR Length by Exonization of Repeated Sequences of the
Alu Family

Mammalian 3′UTRs harbor a number of mobile genetic elements from the Short/Long
Interspersed Nuclear Element (SINE/LINE) families [141]. Among them, the most impor-
tant is the SINE family of Alu repeats, highly successful genomic invaders (over 106 Alu
elements are present per diploid genome), that originate from the processing of the 7SL
RNA component of the signal recognition particle (SRP) [155] which colonized the human
genome through repeated cycles of retrotranscription-retrogression [156]. Alu elements
can be found in clusters in intergenic or intronic regions, or embedded in transcriptional
units, mostly in the 3′UTRs of mRNAs but also in their 5′UTR or coding regions [157].
The genomic localization dictates the transcriptional fate of Alu elements, with intergenic
“free” Alus being transcribed by RNA Pol III from their own internal promoters while
mRNA-embedded Alus are transcribed by RNA Pol II from the promoter of the transcrip-
tional units harboring them [158]. Although most of the Alu elements are currently stable
genomic fossils, a very small number of Alu elements (called “young” or “master”Alus) are
still retrotransposition-competent [159], and still cause genomic alterations by insertional
mutagenesis, abnormal expression, or by facilitating recombinatory events among them
([160] for review).

Alu repeats impact on mRNA function by another, poorly known, mechanism termed
“exonization”, by which the splicing machinery incorporates, “de novo”, an intronic Alu
element to a mature transcript with the subsequent structural modifications derived of
the functional activation of alternative stop-codons and polyadenylation signals encoded
in or downstream of the Alu element [160]. As for their “normal” Alu counter parts,
exonized Alu elements are exclusively expressed in primates, thus adding an extra layer
of complexity to the onset and development of human diseases. Interestingly, another
mechanism for the generation of 3′UTR variability has been also described in which the
Alu insertion harbours an acceptor splice site whose activation results in the intronization
of the intermediate sequence and in the shortening of the 3′UTR [161]. Here, we will review
data on the impact of Alu elements on the stability and function of mRNAs, centering on
the effects derived from their exonization without considering other Alu-based mutagenic
mechanisms.

5.1. Docked-Alu Elements and the Stability of 3′UTRs: Sequence-Dependent vs.
Sequence-Independent Mechanisms

As discussed in the previous sections, 3′UTRs regulate mRNA stability by harbor
ring specific stability/degradation sequence motifs that recruit sequence-specific protein
or miRNAs. In this sense, 3′UTR-Alu repeats have been proposed as potential sites
for specific miRNA binding [162,163], with target sites coinciding with conserved Alu
sequences [164], although this is a highly controversial topic and other authors consider
these Alu-dependent miRNA binding sites as neutral or non-functional [165]. In this
sense, only a few 3′UTR-Alu/miRNA interactions have been confirmed, among them the
targeting of double minute 2/4 mRNAs (Mdm2/4) by miR-661 [166], or that of RAD1, GTSE1,
NR2C1, FKBP9 and UBE2l by miR-15a-3p and miR302d-3p [116]. Other authors consider
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that these 3′UTR-Alus could actually work as miRNA sponges [115,167] in a way similar
to that proposed for free Alus [168] or other ncRNAs [169].

In addition to the sequence-specific determinants of mRNA stability above described,
other sequence-independent mechanisms have been reported that rely on the generation
of Alu-dependent secondary structures in the 3′UTRs and are recognized by the A-to-I
edition machinery [170], or by the Staufen-mediated Decay (SMD) pathway of mRNA
degradation [171], a mechanism similar to Nonsense Mediated Decay (NMD) [172]. In
these mechanisms, two Alu elements, embedded in the 3′UTR in an inverted orientation
base-pair to form dsRNA duplexes potentially targeted by RBPs such as Staufen [171]
or the RNA editing adenosine deaminase acting on RNA (ADAR) enzymes [173]. In the
SMD, Staufen (Stau) proteins bind to dsRNA regions, including the 3′UTR base-paired
Alu duplexes, and induce the degradation of the transcript [174,175] while, in A-to-I
edited transcripts, ADAR activity deaminated adenosines to inosines in the 3′UTR-Alu
elements [176], leading to the generation of transcripts lacking the repetitive elements and
intermediate sequences by eliminating the duplexed Alus and the associated stem-looped
sequence [177]. Furthermore, since inosines base-pair with cytidines, ADAR-mediated
mRNA editing in 3′UTR-Alu elements could also have an impact on the binding potential of
miRNAs and RBPs to 3′UTRs [178], and a recent study has detected a high number of edited
sites mapping to potential miRNA target binding sites in the 3′UTRs of mRNAs in human
lung tissue [179]. Lastly, A-to-I edition is a highly dynamic process and novel works have
showed alterations of the editome in lung adenocarcinomas [180], leukemias [181], thyroid
cancer [182], hepatocellular carcinomas [183], well as in the context of Alu exonization-
dependent evolution of cancer genomes [184].

5.2. Exonized Alus Impact on the 3′UTRome by Activating Alternative Stop Codons,
Polyadenylation Signals or Splicing Sites

Alu repeats modify the 3′UTRome through the double process of exonization and
subsequent neo-functionalization of the exonized sequence [158]. Alu-repeated elements
contain a number of potential 5′/3′ splice sites that facilitate their incorporation to 3′UTRs
by alternative splicing [185], although these are suboptimal variants of the canonical splic-
ing donor/acceptor signals and suggest that expression of the Alu-including variants
would not be constitutive, but optional [186]. The process of Alu-exonization is relatively
frequent and some authors have estimated that over 5% of alternative exons in the human
genome could derive from Alu elements [187], with over 300 of these (corresponding to
243 genes) leading to the formation of new 3′ terminal variants [188]. At the mechanistic
level, exonized Alus generate gene variants with alternative 3′ ends through the activation
of premature stop codons [189] or through the activation of downstream cryptic polyadeny-
lation sites (PAS) [190] that can truncate or elongate a mature transcript depending on the
location of the Alu-derived sequence (Figure 1C). In this sense, over 10,000 Alu elements
are harbored in 3′UTRs of human protein-coding genes, of which more than one hundred
have the ability to reprogram the 3′UTR length by providing functional polyadenylation
and cleavage sites (PAS) to their transcripts [191]. These 3′UTR-Alus are mainly found in
the forward sense orientation and show hot-spots of PAS-cleavage signals [188], mainly in
their A-rich linker region between the two Alu arms, or in the short polyA tails of the Alu
elements which can mutate to canonical AAUAAA polyadenylation signals [192].

The molecular mechanisms promoting the inclusion of exonized Alus into mature tran-
scripts are complex and poorly studied [193]. A first mechanism relies in the competition
for cryptic and functional splice sites between the exonization-promoting splicing factor
U2AF65 and the suppressive hnRNP-C1/C2 that displaces the former from splice sites
and represses exonization. Deregulation of this process, e.g., by mutations in hnRNP-C
binding sites, would cause the aberrant activation of cryptic splice sites and result in Alu
exonization [194]. Another mechanism for exonization involves the ADAR-depending
reaction of A-to-I edition that converts adenosines (A) to inosines (I) which subsequently
base-pair to cytosines (C) [195]. This process occurs mostly in the non-coding regions of
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mRNAs, and over 90% of all A-to-I editing events have been traced to 3′UTR-docked Alu
elements [176]. A-to-I editing of Alu repeats originated new splice donor (AU edited to
IU=GU) and acceptor (AA edited to AI=AG) sites that contribute to the exonization of
intronic Alus by alternative splicing [170]. ADAR acts on tandem Alu repeats with reverse
orientation that facilitate duplexing (termed IRAlus [196]), in a process that is highly de-
pendent on the distance separating the two reversed Alu elements which must be smaller
than 800bp [197]. Remarkably, while duplexed Alu elements in 3′UTRs have been shown
to be substrates of the viral sensor response of the innate immune response (TLRs, RIG-I
and MDA5, PK-R, NLRP3 inflammasome [198]), ADAR-1 A-to-I edited duplexed Alus
were characterized as suppressors of such a response [199,200]. Lastly, Alu exonization has
been shown to be altered in a number of human diseases as shown in Table 2.

Table 2. Alu repeat-mediated exonization events causing gene alterations or human disorders. Shown are the transcript
affected, the mechanism and effects of Alu exonization and the reference of the work.

GENE Mechanism or Effects of Alu Exonization References

INSL3 In-frame insertion of an Alu-J * [201]

CYP20A1 Transcript isoform 1 has 23 exonized Alus in its 3′UTR [115]

CD58gene Alu insertion induces skipping of exon 3 of the CD58 transcript,
originating a frameshifted transcript [202]

PKLR PK deficiency by activation of a premature stop codon encoded by an exonized Alu Yb9 [203]

BLOC1S2 Requires a SINE-MIR for exonization of the Alu element.
Exonization activates premature stop codons [204]

FVIII Mutation in hnRNPC binding sites exonizes an Alu Y and truncates F8 protein [205]

SMN Alu Y element reduces SMN mRNA levels (byNMD) in Spinal Muscular Atrophy [206]

ATP7Bgene Cryptic Alu exon being incorporated into the mature transcript activates a premature stop codon
producing a truncated, non-functional protein in Wilson’s disease. [207]

GPHA In-frame Alu-J element exonization increases length of the N-terminus and
enhances the bioactivity of HCG protein [208]

COL4A5 Downstream deletion induces exonization of an Alu-Y element encoding a stop codon, resulting
in a truncated protein in Alport Syndrome [209]

NSUN2 AluY element reduces NSUN2 mRNA levels and results in Dubowitz syndrome [210]

REL Increased transactivation activity by two fold [211]

CETP In-frame insertion of an Alu element * [212]

NARF RNA editing creates a functional AG3′ splice site, and eliminates a premature
stop-codon in the Alu exon element. [213]

Survivin2 Alu exon being incorporated into the mature transcript activates a premature stop codon,
making it susceptible to NMD [214]

GMRalpha In-frame inclusion of an Alu-element increases ORF by 34 aminoacids in the extracellular domain
of GMRalpha preferentially targeted by ectodomain proteases [215]

ACE n.d. [216]

Bcl-rambobeta Truncated protein by activation of a premature stop codon in exonized AluY [217]

DMD Dystrophin deficiency (X-linked dilated cardiomyopathy) by activation of a premature stop
codon encoded by the exonized Alu [218]

GUSB Mild mucopolysaccharidosistype VII (MPSVII) by premature termination
of β-glucuronidase translation [219]

RED1/ADAR2 Exonization of an in-frame Alu-J cassette in the deaminase domain reduces catalytic activity [186]

DRADA2 In-frame insertion of an Alu element * [220]
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Table 2. Cont.

GENE Mechanism or Effects of Alu Exonization References

COL4A3 COL4A3 deficiency by activation of a premature stop codon encoded
by the exonized Alu in Alport Syndrome [221]

BGP In-frame insertion of an Alu element * [222]

CHRNA3 α-3AChR deficiency by activation of a premature stop codon in the exonized Alu [223]

Nramp NRAMP deficiency by activation of a premature stop codon encoded by the exonized Alu [224]

OAT OAT deficiency by activation of a premature stop codon encoded by the exonized Alu [225]

DAF Generation of alternative C-terminal domains and 3′UTRs in alternative DAF isoforms [226]

Complement-C5 In-frame insertion of an Alu element * [227]

This is a non-systematic recompilation of exonized Alus in 3′UTRs and includes only elements exonized in mRNAs but not in ncRNAs
and with an associated phenol type. See text for more details. Abbreviations: n.d., non-determined. (*) in-frame insertion creates
longer transcripts.

6. Conclusions and Future Trends

3′UTRs were originally considered as having only a protective role on mRNA stability,
but massive sequencing of cDNAs and new RNA.seq approaches have unveiled the diver-
sity of the UTR landscape. Now, it is widely accepted that 3′UTRs are dynamic regions
whose lengths, and sometimes their entire exonic composition, are highly regulated in
normal cells and altered in human disorders so that their arrangement of regulatory motifs
and their networks of regulative interactions can change. In this work we have reviewed
the main mechanisms modifying the 3′UTR landscape, from alternative polyadenylation
and cleavage to the less frequent alternative splicing of 3′-terminal exons or the rare ex-
onization of repetitive elements of the Alu family, mechanisms that alone or in combination
increase 3′UTR variability.

This research field is dependent on the generation of sequencing data and the asso-
ciated requirements, interpretation, curation, annotation and analysis of sequence data.
Current development of affordable, high-throughput sequencing technologies has had a
positive impact on the detection and characterization of functional 3′UTR variants, their
patterns of regulatory motifs and the establishment of alternative co-regulatory networks
with other mRNAs, miRNAs or ncRNAs (lincRNAs, ceRNAs, etc.). Nevertheless, new
technical developments are required to fully exploit the impact of 3′UTR variability and
its alterations on the mechanisms regulating gene expression in human disorders, and
especially in the following topics.

6.1. Detection of New Functional Roles of 3′UTRs (3′UTRs as lncRNAs)

Research on RNA is currently a very dynamic field and recent works have highlighted
unknown features of 3′UTRs that add some complexity to their function, and to their
relationship with other ncRNAs or with regulatory networks. Recent work has suggested
that fragments of 3′UTRs could be stabilized in the cytoplasm [228,229] and demonstrated
that mature mRNAs were frequently cleaved to generate autonomous 3′UTRs that were
polyadenylated and independently regulated by miRNAs (as found for 6068 genes out
of 17,393 genes analyzed [230]). This adds complexity to the RNA world and calls for
more intense research on the mechanisms generating these autonomous 3′UTRs and their
functional interference with the mechanisms ensuring mRNA function.

6.2. Improvements in Current 3′UTR Data Curation

There are generic databases of 3′UTRs sequences that integrate sequence data with
motif identification [231] and more specific databases of alternatively polyadenylated
3′UTRs [232,233]. Data on 3′UTR length variation should be integrated with expression
data of effectors of 3′UTR dynamics (splice factors, polyadenylation/cleavage factors)
extracted from the same microarray or RNA seq. experiments to detect those involved
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in the generation of 3′UTR variability, especially in disease samples, to characterize the
changes in the 3′UTR landscape produced in human disorders [234]. Furthermore, current
annotation of genomics and transcriptomics data should be improved to include more data
on 3′UTR dynamics, functional motifs and autonomous 3′UTRs. This would require the
development of new prediction/recognition algorithms and the analysis and re-annotation
of current sequence data.

6.3. Generation of New Data on 3′UTR Variants

Most of the data generated to date are subsidiary to standard cloning and sequencing
projects that were not specifically designed to cover 3′UTR variability. Although many ef-
forts have been made to facilitate generation of sequencing data, further improvements are
required for the effective sequencing of 3′UTR regions, especially in low-input/single-cell
samples. This should include the development of new algorithms to facilitate the genome
wide profiling and identification of 3′UTRs switching events by alternative polyadenyla-
tion/splicing or exonization and their integration with popular genomic browsers [101].

6.4. The Landscape of Epitranscriptomic Modifications

In previous sections we have given an overview of structural modifications affecting
ribonucleotides in 3′UTRs (A-to-I edition, poly(A) deadenylation, methylation, etc.) that
result in translational inactivation or RNA instability. This is to become a hot topic of RNA
research that will require new technical developments and advances in sequencing (and
consequently in data storage and curation) for its full development. In this sense, it will
be interesting to catalogue the epitranscriptomic chemical modifications, to study their
effects on RNA function and to characterize the molecular machineries involved. It is clear
that, in years to come, RNA research will unveil yet unsuspected mechanisms with an
impact on the regulation of gene expression, adding additional layers to the complexity of
the RNA world. We anticipate good times on the horizon for research on RNA structure
and function.
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Abbreviations

AAMDC: adipogenesis-associated Mth938 domain containing; ABCB1: ATP bind-
ing cassette subfamily B member 1; ABCC2: ATP binding cassette subfamily C member 2;
ACE: angiotensin I-converting enzyme; ACTH: adrenocorticotropic hormone; ADAM12: ADAM
metallopeptidase domain 12; ADAR: RNA adenosine deaminase; ADD1: adducin 1;
AGO1/2: argonaute RISC Catalytic Components 1/2; APRIL: TNF Superfamily Member
13; ATP7B: ATPase copper transporting beta; AUF1: F-box family protein; BCL11A: BAF
chromatin remodeling complex subunit BCL11A; bcd: bicoid; BCL2: BCL2 apoptosis reg-
ulator; BGP: biliary glycoprotein; BLOC1S2: biogenesis of lysosomal organelles complex
1 subunit 2; C5: fifth component of complement; CAD: CAD protein; CCND1: cyclin
D1; CD34: CD34 molecule; CCR4/NOT: CCR4-NOT transcription complex; CD58: CD58
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molecule; CerS1: ceramide synthase 1; CETP: cholesteryl ester transfer protein; CFI: cleavage
factor I; CFII: cleavage factor II composed by PCF11 and CLP1; CHRNA3: cholinergic recep-
tor nicotinic alpha 3 subunit; CNOT6l/7: CCR4-NOT transcription complex subunit 6-like/7;
COL4A3/A5: collagen type IV alpha 3/5 chain; COX-2: cyclooxygenase 2; CP1/2: poly(C)-
binding proteins-1 and -2; CPEB1/3: cytoplasmic polyadenylation element binding protein
3; CPSF: cleavage/polyadenylation specificity factor; CSTF: cleavage stimulation factor;
CYP20A1: cytochrome P450 family 20 subfamily A member 1; DAF: decay-accelerating fac-
tor; DCP1A/DCP2: decapping mRNA1A/mRNA2; DDX3X: DEAD-box helicase 3 X-Linked;
DND1: DND microRNA-mediated repression inhibitor 1; DRADA2: double-stranded RNA-
specific adenosine deaminase; DMD: dystrophin; ELAV: embryonic lethal abnormal vision;
ePABP: embryonic polyadenylation binding protein; ESRP1: epithelial-splicing regula-
tory protein 1; FHL2: four and a half LIM domains 2; Fip1: factor interacting with PAP;
FKBP9: FKBP prolyl isomerase 9; FNDC3B: fibronectin type III domain containing 3B;
FVIII: coagulation factor VIII; GM-CSFα: granulocyte-macrophage colony-stimulating fac-
tor receptor alpha; GMRα: colony-stimulating factor 2 receptor subunit alpha; GPHA: gly-
coprotein hormone alpha; GSK3β: glycogen synthase kinase 3 beta; GTSE1: G2 and S-phase
expressed 1; GUSB: β-glucuronidase; HN1 (JPT1): Jupiter microtubule associated homolog
1; hnRNP-A1 (C1/C2, D, F, E1, L, K, H): heterogeneous nuclear ribonucleoprotein particle-A1
(C1/C2, D, F, E1, L, K, H); Hsp70.3: heat shock protein 70; Hunchback (hbl-1): hunchback-
like-1; HuD: ELAV-like RNA binding protein 4; HuR (ELAVL1): ELAV-like RNA bind-
ing protein 1; Igf1: insulin-like growth factor 1; IGF1R: insulin-like growth factor 1 re-
ceptor; IGF2BP3: insulin-like growth factor 2 mRNA-binding protein 3; INSL3: insulin-
like 3; Ki-67: marker of proliferation Ki-67; KSRP: KH-type splicing regulatory protein;
MDA5: melanoma differentiation-associated protein 5 (interferon induced with helicase
C domain 1); MDM2/4: double minute 2 and 4; MSI: RNA binding protein (Musashi);
Nanos: C2HC-Type Zinc Finger; MSY2: Y-box binding protein 2; NARF: prelamin A
recognition factor; NRAMP: natural resistance-associated macrophage protein; NLRP3:
NLR family pyrin domain containing 3; NR2C1: nuclear receptor subfamily 2 group
C member 1; NSUN2: NOP2/Sun RNA methyltransferase 2; NUDT21/ CPSF5: cleav-
age factor Im complex 25 KDa subunit CPSF5 (nudix hydrolase 21); OAT: ornithine-δ
–amino transferase; OR: odorant receptors; Osk: oskar maternal effect protein; Pabp[C1/N1]:
polyA binding protein cytoplasmic/nuclear 1; PAN2: poly(A) specific ribonuclease sub-
unit 2; PAP: polyadenylate polymerase; PARN: poly(A)-specific exoribonuclease; Pcf11:
cleavage and polyadenylation factor subunit; PKLR: pyruvate kinase liver and RBC; PK-
R: protein kinase R; Pol II/Pol III: RNA polymerase II/III; PolH: DNA polymerase Eta;
pp32: acidic nuclear phosphoprotein 32; PTB: polypyrimidine tract-binding protein; PUF-
9: PUM-HD domain-containing protein; Pumilio: Pumilio RNA binding family member;
QK: quaking; RAC1: Rac family small GTPase 1; RAD1: RAD1 checkpoint DNA exonu-
clease; REL: REL proto-oncogene; RED1/ADAR2: adenosine deaminase RNA specific B1;
RIG-I: RNA helicase RIG-I; SEMA6Ba: semaphorin 6B; SETα,β: SET nuclear proto-oncogene
α,β; SMG: SMAUG; SPK-1: SRSF protein kinase; SRSF1[ASF//SF2]3/7: serine and arginine
rich splicing factors 1/3/7; STAU1/2: Staufen double-stranded RNA binding protein 2 1/2;
SMN: survival of motor neuron 1, telomeric (SMA4); Tau: microtubule associated protein
Tau; TIA1: cytotoxic granule-associated RNA binding protein; TIAR: cytotoxic granule-
associated RNA binding protein-like 1; TiS11/b/d: Tis11 zinc finger protein; TLRs: toll-like
receptors; TNFα: tumor necrosis factor-alpha; TTP: tristetraprolin; U2AF[6 5/35]: U2 small
nuclear RNA auxiliary factor 2; UBE2I: ubiquitin conjugating enzyme E2I; uPA: urokinase-
type plasminogen activator; VEGF: vascular endothelial growth factor; WDR33: WD repeat
domain 33; Wispy: GLD-2 cytoplasmic poly-A polymerase; YAP: Yes1-associated transcrip-
tional regulator; YES1: YES proto-oncogene 1; YTHDF2: YTH N6-methyladenosine RNA
binding protein 2.
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